Materil Gravity

Embed Size (px)

Citation preview

  • 8/3/2019 Materil Gravity

    1/50

    GEOPHYSICSGEOPHYSICSFORFOR

    GEOLOGISTGEOLOGISTANDAND

    ENGINEERENGINEER

    hidartan

  • 8/3/2019 Materil Gravity

    2/50

    GEOLOGIC

    FIELD

    STUDY

    SEISMIC

    SURVEYS

    ELECTRIC

    AND

    OTHERWELL

    SURVEYS

    SAMPLECUTTINGS

    ANDCORES

    GEOLOGIC

    CROSSSECTIONS

    Mapping,measuring,andd

    escribingsections

    Systematiccollectio

    nsofsamples

    anddetailedfacie

    sdescription

    Generalcorrelationan

    dinterpretation

    Detailcorrelationandinterpretation

    Generalusesincorrelationand

    gross-faciesde

    termination

    Detailedanalysesof

    curveshapes

    andfaciesboundaries

    Generalrock-type

    determination

    Detailed-facie

    sanalysis

    Generalregionalstratigra

    phyandstructure

    Detailcor

    relation

    DETERMINA TION OF B A SIN

    TY PE AND STRUCTURE

    DEV ELOPMENT OF TIME -

    STRA TIGRA PHIC FRAMEWORK

    DETECTION OF

    UNCONFORMITIES

    ENVIRONMENTA L - FA CIES

    A NA LY SIS

    RECONSTRUCTION OF

    PALEOGEOGRAPHY

    PREDICTION O F

    STRA TIGRA PHIC TRA P

    EXPLORATION TOOL S A ND TECHNIQUES

    (e.g

    .,numberofsands>20'thick)

    PALEOGEOGRAPHICMAPS

    (e.g.,isolith,three-component,ratio,etc)

    FACIES-DISTRIBUTIONMAPS

    GRAVITYSURVEYS

    MAGNETICSURVEYS

    R

    EMOTE-SENSINGSURVEYS

    SPECIAL-PURPOSEMAPS

    ISOPACHMAPS

    PETROGRAPHICANALYSIS

    GEOCHEMICALANALYSIS

    PALEONTOLOGY-AGE

    DETERMINATIONOFENVIRONMENTALFACIES

    PAL

    EONTOLOGIC-ENVIRONMENT

    E

    F

    AERIALPHOTOGRAPHYCANALYSIS

    PROCEDURALSTAGES

    A

    B

    C

    D

    X

    X

    X

    X

    X

    X X X X X X X X X X

    X X X X X X X X

    X

    X X X X X X X X X X X X X X

    XXXX

    XXXXX

    X

    X

    X

    X

    X

    X

    X

    X

    X

    X

    X

    X

    X

    XX X

    X

    X

    X

    PRIHADI SA / 2002

  • 8/3/2019 Materil Gravity

    3/50

    GRAVITYGRAVITY

  • 8/3/2019 Materil Gravity

    4/50

    MAIN FIELD EQUIPMENTSMAIN FIELD EQUIPMENTS

    Gravimeter : 1 unit La Coste and Romberg.

    Positioning : 2 set GPS-Receivers LEICA

    Elevation : 3 set Paulin Altimeter

    Communication : 2 unit SSB radios ( 1 unit at

    field, 1 unit at head office),

    4 unit Handy talky,2vehicles

    Data Processing: Laptop PC, printer, softwares,diskettes, calculator

    Crew : Geophysicist,Geodetic, 2 operator

    6 lokal labor Hidartan

  • 8/3/2019 Materil Gravity

    5/50

    DATA ACQUISITION PLANDATA ACQUISITION PLAN

    1. Calibration

    Calibration of the gravimeter is carried out several

    times : before and after a trip and every two weeks.

    2. Base Station

    The gravity base station in every location is

    established by tying the base station to the nearest

    standard base station to the location.

    3. Data Acquisition Methods

    hidartan

  • 8/3/2019 Materil Gravity

    6/50

    hidartanCONTOH METODA PENGUKURAN

  • 8/3/2019 Materil Gravity

    7/50

    D a y 1D a y 2

    CONTOH METODA PENGUKURANHidartan

  • 8/3/2019 Materil Gravity

    8/50Hidarrtan

    F i e l d D a t a S t a t i o nM o d e m5 6 . 6 k b p s

    T e l e p h o n e N e t

    F i e l d D a t ai n A S C I I F o r m a t

    T r a n s c e i v e r P r o t o c o l

    b y Z m o d e m o r K e r m i tS o f t w a r e

    T r a n s c e i v e r P r o t o c o lb y Z m o d e m o r K e r m i tS o f t w a r e

    F i e l d D a t a

    i n S p r e a d S h e e tF o r m a t S o f t w a r e

    f i l t e r

    D a t a M e d i a s t o r a g eH a r d i s k 4 0 G b .

    D a t a P r o c e s s i n g ,I m p l e m e n t a t i o n ,

    a n d D e s k t o p P u b l i s h i n

    O f f i c e D a t a S t a t i o n

    O f f i c e D a t a S t a t i o

    F i e l d D a t a S t a t i o n

    M o d e m5 6 . 6 k b p s

    M o d e m5 6 . 6 k b p s

    M o d e m5 6 . 6 k b p s

    P C P I V - 1 G h

    P C P I V - 1 G h

    DESIGN OF REMOTE DATA COMMUNICATION SYSTEMDESIGN OF REMOTE DATA COMMUNICATION SYSTEM

  • 8/3/2019 Materil Gravity

    9/50

    DATA PROCESSINGDATA PROCESSING

    The data obtained from the sites are sentdirectly to the base camp and processed.

    11. DATA REDUCTION. DATA REDUCTION

    22. GRAVITY PROFILES. GRAVITY PROFILES

    3.3. GRAVITY MAPGRAVITY MAP

    4.4. MODELINGMODELING

  • 8/3/2019 Materil Gravity

    10/50

    GRAVITY PROFILES

    * Station Coordinate

    * Station Elevation

    * Gravity Value

    DATA ACQUISITION* Gravity Measurement

    * GPS Positioning

    DRIFT and TIDAL

    CORRECTION

    * FREE AIR CORRECTION

    * BOUGUER CORRECTION

    TERRAIN CORRECTION* Inner (Field Processing)

    * Outer (Head Office Processing)

    * Bouguer Anomaly

    * Complete Bouguer Anomaly

    hidartan

    GRAVITYGRAVITY

    DATADATA

    PROCESSINGPROCESSING

    FLOWFLOW

    CHARTCHART

  • 8/3/2019 Materil Gravity

    11/50

    Hidartan

    11. DATA REDUCTION. DATA REDUCTION

    The gravity data reduction consists of two types

    of correction which are internal and external

    correction.

    The internal corrections are drift and tidal

    corrections.

    The external corrections are ellipsoid gravityvalue, free air, bouguer, and terrain corrections.

  • 8/3/2019 Materil Gravity

    12/50

    DRIFT CORRECTIONDRIFT CORRECTION is applied to eliminate the

    effect of spring fatigue of the La Coste instrument.

    This correction is derived by double check thestarting base station at appropriate time interval.

    TIDAL CORRECTIONTIDAL CORRECTION is applied to eliminate

    gravity of the sun and moon which are time

    function due to relative motion among earth,

    moon and sun. The tidal correction had beencalculated in advance using computer by applying

    the Longmans formula.

    Hidartan

  • 8/3/2019 Materil Gravity

    13/50Hidartan

  • 8/3/2019 Materil Gravity

    14/50

    ELLIPSOID EARTH GRAVITYELLIPSOID EARTH GRAVITY reference has to be

    applied to produce an earth gravity value at the

    mean sea level as a function of location latitude.

    This reference implies an homogenous mass

    distribution of the ellipsoid earth model.

    The ellipsoid model in the IUGG 1979 formula is :

    gg = 978.03185 (1 + 0.005278895 sin= 978.03185 (1 + 0.005278895 sin22 ++

    0.000023462 sin0.000023462 sin44

    ) , mgal) , mgalwhere

    g

    = theoretical gravity as function of

    = latitude of the observation point.Hidartan

  • 8/3/2019 Materil Gravity

    15/50

    FREE-AIR CORRECTIONFREE-AIR CORRECTION (FAC) is applied toestimate the earth gravity at certain altitude of an

    observation above mean sea level.

    The free air correction formula is calculated foraverage earth radius at elevation h in meters.

    FAC = - 0.3086 h, mgalFAC = - 0.3086 h, mgal

    Hidartan

  • 8/3/2019 Materil Gravity

    16/50

    BOUGUER CORRECTIONBOUGUER CORRECTION (BCBC) is applied to estimate the

    earth gravity at elevation h above sea level with earth mass

    of density (gr./cm3) fill up the space of thickness h.

    This theoretical Bouguer correction can be written as:BCBC == 2h2h Gh =Gh = 0.041870.04187 hh, mgalwhere :G = 6.67 x 10-9 Cgs unit

    = the chosen density in gr./cm3

    H = altitude of observation point in meters.

    BOUGUER ANOMALYBOUGUER ANOMALY (BABA) is the difference between the

    observation gravity value (gobs

    ) and the expected earth

    normal gravity at an observation point.

    BABA = gobs - (g - FAC + BC)

    where the magnitude in the bracket is the expected earth normal

    gravity.

    Hidartan

  • 8/3/2019 Materil Gravity

    17/50

    h

    A

    B

    M

    BOUGUER EFFECTBOUGUER EFFECT

    Hidartan

  • 8/3/2019 Materil Gravity

    18/50

    PRIHADI SA / 2002

    Pengukuran gaya berat sering dilakukan pada

    daerah dengan topografi yang cukup bervariasi.

    Koreksi terrain harus dihitung untuk

    menghilangkan efek relief permukaan bumiterhadap nilai anomali Bouguer yang dihitung.

    Koreksi ini dihitung sebagai efek gaya berat yang

    ditimbulkan oleh suatu badan massa tiga

    dimensional yaitu adanya bukit dan lembah disekitar stasion pengukuran gaya berat.

    TERRAIN CORRECTIONTERRAIN CORRECTION

  • 8/3/2019 Materil Gravity

    19/50

    Hidartan

  • 8/3/2019 Materil Gravity

    20/50

    INNER ZONE CORRECTIONINNER ZONE CORRECTION

    To apply this correction, a simple topographicsurvey has to be performed at every gravity

    station along a radius of 35 and 68 meterswhich may be done before or after gravity reading.

    Such survey should include the nature of localmorphology and the distance to the gravity station

    which affects the observation.

    The correction was directly calculated at the fieldby using a certain gravity terrain inner correction

    chart.

    Hidartan

  • 8/3/2019 Materil Gravity

    21/50

    OUTER ZONE CORRECTIONOUTER ZONE CORRECTION

    This correction was done by using the HammerChart, usually based on a topographic map of 1 :

    250.000 scale.

    Applying the terrain correction, the Bouguer

    Anomaly (BA) can be refined to be a Complete

    Bouguer Anomaly (CBA) following this formula :

    CBA = gCBA = gobsobs - (g- (g - FAC + BC - TC)- FAC + BC - TC)

    or

    CBA = BA + TC

    Hidartan

  • 8/3/2019 Materil Gravity

    22/50

    Hidartan

    Metoda konvensional untuk menghitung koreksi

    terrain adalah dengan menggunakan Hammer

    Chart dan peta topografi berskala tertentu.

    Sekarang ini perhitungan koreksi terrain

    dilakukan dengan bantuan komputer, salah

    satunya adalah Metoda Integrasi Numerik.

    METODA PERHITUNGAN KOREKSI TERRAINMETODA PERHITUNGAN KOREKSI TERRAIN

  • 8/3/2019 Materil Gravity

    23/50

    Projection

    System Similar to

    the Map

    Y

    N

    Gravity

    Observation

    Station

    Position X, Y, Z

    Transformation

    of the Coordinate

    Topographic

    Map

    Digitizing,

    Gridding and

    Merging

    Terrain Correction

    TERRAIN CORRECTION CALCULATION FLOW CHARTTERRAIN CORRECTION CALCULATION FLOW CHART

    Hidartan

    N W

  • 8/3/2019 Materil Gravity

    24/50

    Hidartan

    65

    m

    R I V E R

    H I L L R O C K

    A

    B

    C

    D

    B

    Sketch measurement topographic for Terrain Correction

  • 8/3/2019 Materil Gravity

    25/50

    Dua persoalan terlebih dahulu harus dipecahkan untuk dapat

    melakukan komputasi koreksi terrain.

    Pertama adalah bagaimana menghitung efek gaya berat

    yang ditimbulkan oleh suatu badan massa tiga dimensidengan bentuk yang tak beraturan.

    Efek gaya berat yang disebabkan oleh massa bervolume V

    terhadap suatu titik dengan koordinat (Xo,Yo,Zo) dapat

    dihitung dengan persamaan :

    Hidartan

    ( )g X Y Z ZR dx dy dzv0 0 03 2

    , ,/

    =

    ( ) ( ) ( )R X X Y Y Z Z2 0 2 0 2 0 2= + +

    dengan : : konstanta gravitasi

    : densitas

    (1)

  • 8/3/2019 Materil Gravity

    26/50

    Kesulitan utama dalam memecahkan persamaan

    integral di atas disebabkan karena batas-batas

    integralnya, yang berupa permukaan bumi,bentuknya tidak beraturan.

    Pada metoda konvensional, persamaan

    dipecahkan secara analitik dengan pendekatan

    yang menggunakan bentuk-bentuk geometrisederhana seperti silinder, kerucut, dan

    sebagainya.

    Dengan komputer, kita dapat menghitungpersamaan integral secara numerik yang batas

    integralnya dapat mendekati bentuk permukaan

    bumi secara lebih teliti.

    Hidartan

  • 8/3/2019 Materil Gravity

    27/50

    INTEGRASI NUMERIKINTEGRASI NUMERIK

    Apabila persamaan (1) ditulis dalam koordinat silinder maka

    bentuknya adalah sebagai berikut :

    Hidartan

    g r rZRo o

    o

    h

    r

    r

    ( , )/

    =

    3 2

    1

    2

    1

    2

    R r z

    h Z r Z o

    2 2 2= +

    = ( , )

    dengan Zo

    : elevasi stasiun

    (2)

  • 8/3/2019 Materil Gravity

    28/50

    Bentuk ini lebih sesuai digunakan, karena

    koreksi terrain biasanya dihitung untuk daerah

    yang berbentuk lingkaran dalam radiusbeberapa kilometer dari titik stasiun.

    Lebih lanjut persamaan (2) dapat

    disederhanakan menjadi persamaan (3) :

    ( ) ( )g r r rr

    r h

    dr do or

    r

    ,

    =

    +

    2 1

    2 21

    2

    1

    2

    Hidartan

  • 8/3/2019 Materil Gravity

    29/50

    Suku kedua dapat dihitung secara numerik apabila nilai h

    dapat diketahui pada titik-titik sampel integrasi.

    Teknik integrasi yang digunakan adalah metoda Quadratur

    Gauss dengan bentuk umum :

    ( )G d d W W Gi j i jj

    n

    i

    m

    , ,=

    =

    =

    111

    1

    1

    1

    Wi, W

    j: koefisien bobot

    i,

    j : titik sampel integrasi

    Dalam hal ini G(i,

    j) merupakan fungsi dari beda elevasi h

    yang harus dihitung untuk sembarang titik dengan teknik

    interpolasi. Hidartan

  • 8/3/2019 Materil Gravity

    30/50

    Hidartan

    Untuk mendapatkan nilai elevasi di setiap titik padadaerah integrasi, dilakukan interpolasi.

    Teknik ini hanya memerlukan nilai elevasi pada titik -

    titik tertentu, kemudian dihitung fungsi hampiran

    sehingga elevasi dapat dihitung :h = f(x,y).

    Teknik interpolasi berupa pencocokan permukaan

    (surface fitting) yang tingkat ketelitiannya bervariasi

    untuk tiap metodanya.Seperangkat data elevasi dan persamaan

    pencocokan permukaannya merupakan satu model

    topografi.

    MODEL TOPOGRAFIMODEL TOPOGRAFI

  • 8/3/2019 Materil Gravity

    31/50

    Model topografi yang digunakan dibangun berdasarkan data

    elevasi pada titik-titik kasa (grid).

    Metoda pencocokan permukaan yang digunakan adalah

    persamaan multi-quadric dengan persamaan :

    Z X Y C X X Y Yj j jj

    n

    ( , )

    /

    = +

    =

    2 2 1 2

    1

    Persamaan ini menyatakan bahwa elevasi suatu titik di dalam

    daerah data adalah kombinasi linier dari fungsi-fungsi

    permukaan kerucut, yang titik puncaknya merupakan elevasititik-titik yang diketahui.

    Fungsi Z(x,y) adalah permukaan yang smooth dan melalui

    setiap titik data.

    Hidartan

  • 8/3/2019 Materil Gravity

    32/50

    Koefisien kerataan (flatness coefficient) Cj

    didapat dari pemecahan persamaan linier

    berikut :[A] C = Z

    dimana :

    i j j i j ix x y y=

    +

    2 2 1 2/

    i = 1,2,3, ... n

    j = 1,2,3, ... n

    Zi

    : elevasi yang diketahui

    Hidartan

    Y-axis PRIHADI SA / 2002

  • 8/3/2019 Materil Gravity

    33/50

    A

    B

    C D

    E

    FGH

    X-axis

    P (0,0,0)

    Z-axis

    Z Bottom

    Z Top

    Contour at depth Z

    Body M

    PRIHADI SA / 2002

    Penentuan gravity pada satu titik dari suatu bentuk tiga dimensi yang tak beraturan

  • 8/3/2019 Materil Gravity

    34/50

    Hidartan

  • 8/3/2019 Materil Gravity

    35/50

    Hidartan

  • 8/3/2019 Materil Gravity

    36/50

    HIdartan

    22. GRAVITY PROFILES. GRAVITY PROFILES

    Gravity profile will be produced for each line using

    its reduced data to present the trend of gravity

    values along the line.

    33. GRAVITY MAP. GRAVITY MAP

    Consists of CBA/BA anomaly map, regional

    gravity map, residual gravity map.

    Density of Common Geologic Material ( Telford et al. 1990 )

  • 8/3/2019 Materil Gravity

    37/50

    Density range Approximate average

    No. Material Type ( Mg / m 3 ) density ( Mg / m 3 )

    Unconsolidated Sediment

    1. Alluvium 1.96 - 2.00 1.98

    2. Clay 1.63 - 2.60 2.21

    3. Gravel 1.70 - 2.40 2.00

    4. Loess 1.40 - 1.93 1.64

    5. Silt 1.80 - 2.20 1.93

    6. Soil 1.20 - 2.40 1.92

    Sedimentary Rocks

    7. Sand 1.70 - 2.30 2.00

    8. Sandstone 1.61 - 2.76 2.35

    9. Shale 1.77 - 3.20 2.40

    10. Limestone 1.93 - 2.90 2.55

    11. Dolomite 2.28 - 2.90 2.7012. Chalk 1.53 - 2.60 2.01

    13. Halite 2.10 - 2.60 2.22

    14. Glacier Ice 0.88 - 0.92 0.90

    Igneous Rocks

    15. Rhyolite 2.35 - 2.70 2.52

    16. Granite 2.50 - 2.81 2.64

    17. Andesite 2.40 - 2.80 2.61

    18. Syenite 2.60 - 2.95 2.77

    19. Basalt 2.70 - 3.30 2.99

    20. Gabbro 2.70 - 3.50 3.03

    Metamorphic Rocks

    21. Schist 2.39 - 2.90 2.64

    22. Gneiss 2.59 - 3.00 2.80

    23. Phylite 2.68 - 2.80 2.74

    24. Slate 2.70 - 2.90 2.79

    25. Granulite 2.52 - 2.73 2.65

    26. Amphibolite 2.90 - 3.04 2.96

    27. Eclogite 3.20 - 3.54 3.37

    ( from John M. Reynolds, An Introduction to Applied and Environmental Geophysics, 1997 )hidartan

    Densities of Minerals and Miscellaneous Materials ( Telford et al, 1990 )

  • 8/3/2019 Materil Gravity

    38/50

    Density Range Approximate average density

    Material Type ( Mg/m 3 ) ( Mg / m 3 )

    Metallic minerals

    Oxides, Carbonates

    A. Manganite 4.2 - 4.4 4.32

    B. Chromite 4.2 - 4.6 4.36

    C. Magnetite 4.9 - 5.2 5.12

    D. Haematite 4.9 - 5.3 5.18

    E. Cuprite 5.7 - 6.15 5.92

    F. Cassiterite 6.8 - 7.1 6.92

    G. Woframite 7.1 - 7.5 7.32

    H. Uraninite 8.0 - 9.97 9.17

    Copper n.d 8.7

    Silver n.d 10.5

    Gold 15.6 - 19.4 17.0

    Sulphides

    A. Malachite 3.9 - 4.03 4.0

    B. Stannite 4.3 - 4.52 4.4

    C. Pyrrhotite 4.5 - 4.8 4.65

    D. Molybdenite 4.4 - 4.8 4.7

    E. Pyrite 4.9 - 5.2 5.0

    F. Cobaltite 5.8 - 6.3 6.1

    G. Galena 7.4 - 7.6 7.5

    H. Cinnabar 8.0 - 8.2 8.1

    Non-metallic mineralsGypsum 2.2 - 2.6 2.35

    Bauxite 2.3 - 2.55 2.45

    Kaolinite 2.2 - 2.63 2.53

    Baryte 4.3 - 4.7 4.47

    Miscellaneous materials

    Snow 0.05 - 0.88 n.d

    Petroleum 0.6 - 0.9 n.d

    Lignite 1.1 - 1.25 1.19

    Anthracite 1.34 - 1.8 1.50

    No.

    1.

    2.

    3.

    4.

    5.

    6.

    7.

    8.

    9.

    12.

    13.

    10.

    11.

    Hidartan

  • 8/3/2019 Materil Gravity

    39/50

    DATA REDUCTION TABLEDATA REDUCTION TABLE

    D a te T im e S tat ionR e ad ingG -o b s L at i tud eLo ng itu deE levat ionG -n orm a lC om b. C T erra in C orr .B A C B A

    (m ga l) (m ga l) (d eg ree )(degre e ) (m ) (m ga l ) (m ga l ) Inne r O u te r(m ga l )(m ga l

    Hidartan

    GRAVITY DATA SHEET

  • 8/3/2019 Materil Gravity

    40/50

    GRAVITY DATA SHEETGRAVITY DATA SHEET

    Hidartan

    COMBINE GRAVITY DATA SHEETCOMBINE GRAVITY DATA SHEET Hidartan

  • 8/3/2019 Materil Gravity

    41/50

    COMBINE GRAVITY DATA SHEETCOMBINE GRAVITY DATA SHEET

    HidartanDENSITYDENSITY

  • 8/3/2019 Materil Gravity

    42/50

    DENSITY

    DETERMINATIONDETERMINATION

  • 8/3/2019 Materil Gravity

    43/50

    Hidartan

  • 8/3/2019 Materil Gravity

    44/50

    Hidartan

    1 4 8

  • 8/3/2019 Materil Gravity

    45/50

    6 9 6 6 9 8 7 0 0 7 0 2 7 0 4 7 0 6 7 0 8 7 1 0 7 1 2

    1 3 2

    1 3 4

    1 3 6

    1 3 8

    1 4 0

    1 4 2

    1 4 4

    1 4 6

    L H D - 4 , 8 , 9 , 1 0L H D - 6

    L H D - 7L H D - 5L H D - 1

    L H D - 2

    L H D - 3

    GRAVITASI

    ANOMALI

    BOUGUER

    rapat massa = 2.67 gr/cm3

    U

    2 km

    Hidartan

    1 4 8

  • 8/3/2019 Materil Gravity

    46/50

    6 9 6 6 9 8 7 0 0 7 0 2 7 0 4 7 0 6 7 0 8 7 1 0 7 1 2

    1 3 2

    1 3 4

    1 3 6

    1 3 8

    1 4 0

    1 4 2

    1 4 4

    1 4 6

    L H D - 1

    L H D - 2

    L H D - 3

    L H D - 4 , 8 , 9 , 1 0

    L H D - 5

    L H D - 6

    L H D - 7L H D - 5 L H D - 7

    GRAVITASI

    ANOMALI

    REGIONAL

    POLINOM FIT

    ORDE - 2

    U

    2 km

    Hidartan

    1 4 8

  • 8/3/2019 Materil Gravity

    47/50

    6 9 6 6 9 8 7 0 0 7 0 2 7 0 4 7 0 6 7 0 8 7 1 0 7 1 2

    1 3 2

    1 3 4

    1 3 6

    1 3 8

    1 4 0

    1 4 2

    1 4 4

    1 4 6

    L H D - 1L H D - 5 L H D - 7

    L H D - 4 , 8 , 9 , 1 0L H D - 6

    L H D - 3

    L H D - 2

    GRAVITASIANOMALI SISA

    U

    2 km

    Hidartan

    1 0 . 0

  • 8/3/2019 Materil Gravity

    48/50

    1 3 2 1 3 6 1 4 0 1 4 4 1 4 8

    - 5 . 0

    0 . 0

    5 . 0

    A

    N

    O

    M

    A

    L

    I

    S

    IS

    A

    (M

    G

    A

    L

    )

    - 3 . 0

    - 2 . 0

    - 1 . 0

    0 . 0

    1 . 0

    E

    L

    E

    V

    A

    S

    I

    (K

    M

    )

    L H D - 4 L H D - 5 L H D - 2 L H D - 3

    S E L A T A N U T A R A

    a n d e s i t b a s a l t i k t e r u b a h ( 2 . 5 g r / c c )

    t u f f a , i g n i m b r i t e ( 2 . 0 g r / c c )

    a n d e s i t ( 2 . 6 g r / c c )

    s e d i m e n ( 2 . 2 g r / c c )

    a n d e s i t ( 2 . 6 7 g r / c c )

    i n t r u s i d i o r i t ( 2 . 9 g r / c c )

    d a t a

    p e r h i t u n g a n

    GRAVITASI

    PROFIL

    ANOMALI

    SISA

    DANMODEL

    2-DIMENSI

    Hidartan

    1 0 . 0

  • 8/3/2019 Materil Gravity

    49/50

    6 9 6 7 0 0 7 0 4 7 0 8 7 1 2

    - 5 . 0

    0 . 0

    5 . 0

    A

    N

    O

    M

    A

    L

    I

    S

    IS

    A

    (M

    G

    A

    L

    )

    - 3 . 0

    - 2 . 0

    - 1 . 0

    0 . 0

    1 . 0

    E

    L

    E

    V

    A

    S

    I

    (K

    M

    )

    B A R A T T I M U R

    L H D - 1 L H D - 5L H D - 7

    d a t a

    p e r h i t u n g a n

    a n d e s i t b a s a l t i k t e r u b a h ( 2 . 5 g r / c c )

    t u f f a , i g n i m b r i t e ( 2 . 0 g r / c c )

    a n d e s i t ( 2 . 6 g r / c c )

    a n d e s i t ( 2 . 6 7 g r / c c )

    i n t r u s i d i o r i t ( 2 . 9 g r / c c )

    GRAVITASI

    PROFIL

    ANOMALI

    SISA

    DANMODEL

    2-DIMENSI

    PRIHADI SA / 2002

  • 8/3/2019 Materil Gravity

    50/50