36
Materials Science in Electronics devices - Semiconductor devices - 2014 Yutaka Oyama [email protected] http://www.material.tohoku.ac.jp/~denko/lab.html Contents Material issue of semiconductor devices and fabrication process Ultra fast and high frequency semiconductor electronic and photonic devices Crystal growth and semiconductor device epitaxy Device grade evaluation of semiconductor crystals

Materials Science in Electronics devices - Semiconductor devicesdenko/lecture/denshi_device/... · 2017. 3. 23. · Impurity doping: control of surface stoichiometry Electrical activation

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Materials Science in Electronics devices - Semiconductor devicesdenko/lecture/denshi_device/... · 2017. 3. 23. · Impurity doping: control of surface stoichiometry Electrical activation

Materials Science in Electronics devices

- Semiconductor devices -

2014 Yutaka Oyama

[email protected]

http://www.material.tohoku.ac.jp/~denko/lab.html

Contents

・Material issue of semiconductor devices and fabrication

process

・Ultra fast and high frequency semiconductor electronic and

photonic devices

・Crystal growth and semiconductor device epitaxy

・Device grade evaluation of semiconductor crystals

Page 2: Materials Science in Electronics devices - Semiconductor devicesdenko/lecture/denshi_device/... · 2017. 3. 23. · Impurity doping: control of surface stoichiometry Electrical activation

Optical fiber network in Japan&Worldwide

Background: activities in Tohoku UniversitySemiconductor

laser (1957)

Light

source

Optical fiber

Graded Index fiber (1964)

Avalanche photodiode

Pin photodiode (1950)

propagation detection

Optical fiber network (NTT)

Oversea cable Total length

13200kmPacific

ocean

Fiber cable under the sea

(Kagoshima-Okinawa 1000km)

Fiber To The Home(FTTH)

Fiber network (domestic)

Multi-media new frontier

Page 3: Materials Science in Electronics devices - Semiconductor devicesdenko/lecture/denshi_device/... · 2017. 3. 23. · Impurity doping: control of surface stoichiometry Electrical activation

FTTH Fiber To The Home

No. of contract of FTTH service in Japan

20062005200420032002

104 contracts

Page 4: Materials Science in Electronics devices - Semiconductor devicesdenko/lecture/denshi_device/... · 2017. 3. 23. · Impurity doping: control of surface stoichiometry Electrical activation

DSL 【xDSL】Digital Subscriber Line

NO. of contract of DSL service

104 contracts

20062005200420032002

saturation

decreased

Page 5: Materials Science in Electronics devices - Semiconductor devicesdenko/lecture/denshi_device/... · 2017. 3. 23. · Impurity doping: control of surface stoichiometry Electrical activation

Radio spectrum300GHz

3KHz

IRVisible

light UVX-ray

Cosmic

ray

Gamma

ray

30THz

Frequency

Allocation

(USA)

LD/LEDHEMT

HBT

Sub

millimeter

Not used region

THz region

Our target device for not-used THz region

ISIT

TUNNETT

(Semiconductor Raman laser) -30THz

BPT

FET

MOS

Thyrister

IGBT

Page 6: Materials Science in Electronics devices - Semiconductor devicesdenko/lecture/denshi_device/... · 2017. 3. 23. · Impurity doping: control of surface stoichiometry Electrical activation

環境汚染物質プラズマ分解

電気自動車動力制御

-----frequency-----

NOT USED

THz REGION

ISITTUNNETT

RAMAN LASER

FAR INFRAREDLASER

SI THYRISTER

ULTRA FAST SI DIODE

TARGET DEVICESTODAY’S ISSUE

HBT

,,,

LAB’S TARGET DEVICES

THz SOLID SOURCE

OUTPUT POWER vs FREQUENCY OF SEMICONDUCTOR

DEVICES

RF-SIT

Ou

tpu

t p

ow

er

(W)

Operation Frequency (Hz)

wavelength

NIR DFG

*NIR DFG: Near Infrared laser induced

Differential Frequency Generation

*ISIT: Ideal static induction transistor

*TUNNETT: Tunnel injection transit time effect diode

Page 7: Materials Science in Electronics devices - Semiconductor devicesdenko/lecture/denshi_device/... · 2017. 3. 23. · Impurity doping: control of surface stoichiometry Electrical activation

LASER

Light Amplification by Stimulated Emission of Radiation

light

Spontaneous

Emission

Stimulated

emission

Energy distribution of

electron

Fermi-Dirac distribution

Equilibrium⇔spontaneous熱平衡状態 自然放出

Negative temperature

distribution ⇔ stimulated(誘導放出)

(inversion) emission

From MASER (Microwave Amplification by Stimulated Emission of Radiation

Higher energy state

(excited state)

Lower energy state

light

Resonator

(cavity)

Resonator

(cavity)

負の温度

Page 8: Materials Science in Electronics devices - Semiconductor devicesdenko/lecture/denshi_device/... · 2017. 3. 23. · Impurity doping: control of surface stoichiometry Electrical activation

Laser is composed with

Laser material, a set of parallel mirror (cavity)

Methods to realize the inversion distribution (反転分布)

Flash lamp (solid laser etc.)

Electron injection(semiconductor laser: LD)Gas discharge(gas laser)LD excitation

Characteristic feature of laser

Coherent :interference due to well defined phase

Directional: parallel beam

Monochromatic light due to resonance

High energy density

tzAA 2

2cos0

Ln 2

Phase term

Page 9: Materials Science in Electronics devices - Semiconductor devicesdenko/lecture/denshi_device/... · 2017. 3. 23. · Impurity doping: control of surface stoichiometry Electrical activation

光通信三要素

光源 伝送路 検出器

半導体レーザ(半導体レーザ・メーザ:東北大)発光ダイオード

ガラスファイバー(屈折率分布型ファイバー:東北大)プラスティックファイバー赤外線無線伝送

Pinフォトダイオードアバランシェ(雪崩)フォトダイオード(東北大)

変調

静電誘導トランジスタ

多重周波数分離・多重周波数検波

静電誘導トランジスタ半導体ラマンレーザ

Three principle components for optical

communication

Light

source

Propagation

lineLight detector

Semiconductor laser(semiconductor maser:

Tohoku univ.)

Light emitting diode

Glass fiberGraded index fiber, (Tohoku univ.)

Step index fiber

Prastic fiber

IR transmission

RF transmission

pin photo diode (fast response)

Avalanche photo diode (high

sensitive amplification)

Tohoku Univ.

modulation

Static Induction

Transistor (Tohoku

Univ.)

Static Induction Transistor

Semiconductor Raman Laser

demodulation

Page 10: Materials Science in Electronics devices - Semiconductor devicesdenko/lecture/denshi_device/... · 2017. 3. 23. · Impurity doping: control of surface stoichiometry Electrical activation

ISIT実現のための要素技術 極微細構造電子デバイスの基盤技術

バリスティック伝導による走行時間

DS

chtransitqV

mlt

22

*

Transit time due to ballistic electron

transport

4nm channel length transistor

structure

Source/Drain

4nm

S/D 4nm Transistor for THz freq.

≤ 0.16 ps

Page 11: Materials Science in Electronics devices - Semiconductor devicesdenko/lecture/denshi_device/... · 2017. 3. 23. · Impurity doping: control of surface stoichiometry Electrical activation

ISIT(Ideal Static Induction Transistor)

invented in 1979 by J.Nishizawa

(J. Nishizawa, Proc. 1979 IEEE Int. Conf. Solid State Devices, 1979.)Washington DC

Ballistic electron transport

No scattering of electrons with lattices

Operation frequency (estimated)

Up to 800GHz (0.8THz)

Tunnel transport

Tk

VV

qTAJB

F

DSGS

FD

*0

2* exp

From Bethe theory (thermo ionic emission)

22*

3

4 Tkqm

hI

Bt

sF

Ballistic electron injection efficiency

Tk

ETk

h

wEmEE

ionicthermJ

tunnelJ

B

CBB

FBCF

SD

SD

exp2

3

2exp

22

*2

From Simmons theory,

WKB approximation

2

22

*

2ln

28

3

CF

B

B

CB

FB

tunnelEE

Tk

Tk

E

Em

hw

Tunnel injection

dominated condition

GaAs 25nm (RT)

90nm (77K)

Case: 0.855V

EF-EC=0.15eVCB E

Page 12: Materials Science in Electronics devices - Semiconductor devicesdenko/lecture/denshi_device/... · 2017. 3. 23. · Impurity doping: control of surface stoichiometry Electrical activation

Categories of semiconductor devices

Electron transport devices

Electronic devices

•Power devices

DC(direct current) electric transmission

Electric vehicle

Super express train (inverter control)

Thyristor, power diode, IGBT(Insulating gate bipolar transistor)

•Low power consumption devices

Mobile phones, pad

MOS(Metal Oxide Semiconductor) device

GaAs FET

•High frequency (RF) devices

Microwave telecommunication

High speed CPU

Satellite broadcast

Short channel MOS

HEMT, HBT device

NRD device

TUNNETT, ISIT

IMPATT, GUNN

Page 13: Materials Science in Electronics devices - Semiconductor devicesdenko/lecture/denshi_device/... · 2017. 3. 23. · Impurity doping: control of surface stoichiometry Electrical activation

光デバイス・半導体レーザ光通信(ファイバー通信),情報メディア DVD,CD,MO ,printer

溶接ストライプレーザ量子井戸レーザ面発光レーザ量子カスケードレーザ(光~遠赤外・マイクロ波)パワーレーザ・マルチストライプレーザ(~数 100W)

・発光ダイオードインディケーター,照明用

・光演算

発光デバイス

受光デバイス

波長領域遠赤外(PbTe,量子カスケードレーザ)近赤外(InGaAs)

可視光(AlGaAs,InGaAlP)

青色(GaN,SiC,ZnSe)

紫外線(ダイヤモンド)

pin, avalanche diode

Quantum well / dot device

Opto devices

(optoelectronics)Light emission

Light detection

Semiconductor laser (LD)(laser diode:LD)

Optical telecommunication

DVD CD writer/pickup

Welding (high power)

Simple edge emitting LD(stripe LD)

Quantum well LD

Surface emitting LD

(vertical cavity LD)

Quantum cascade LD

Multi-stripe LD(high power)

Light emitting diode (LED)Indicator

Lighting, illumination

Pin, avalanche diode

Quantum well/dot detector

Wavelength

Far IR PbTe, QCLD(quantum cascade LD)

Near IR InGaAs …..

Visible AlGaAs, InGaAlP ……

Blue InGaN, SiC, ZnO

UV GaN, Diamond

Page 14: Materials Science in Electronics devices - Semiconductor devicesdenko/lecture/denshi_device/... · 2017. 3. 23. · Impurity doping: control of surface stoichiometry Electrical activation

半導体デバイスプロセス

設計(CADシミュレーター)

プロセス インプロセスモニター 特性

信頼性再現性

設計へ

各種TEG(Test Element Group)

In-situ (その場)分析膜厚モニター組成・ドーピングモニター

デバイスの微細化低温・低損傷セルフアラインプロセス

開発費用・期間の低減

バーンイン・フィールドテスト加速試験

問題点の把握と克服技術の開発

高速・自動測定

Principle semiconductor device process flow

Device design By

CAD

Circuit/device

simulation

Device process In-process monitor characterization

Reproducibility

testDevice design

Reduction of cost/time

Reduction of device size

requires low temp. low

damage process

TEG(Test Element Group)

In-situ monitoring of process

Thickness/doping

High speed &

automated test

Find problems

Develop new

process

Burn-in & accelerated

Field testFrom m to nm

Page 15: Materials Science in Electronics devices - Semiconductor devicesdenko/lecture/denshi_device/... · 2017. 3. 23. · Impurity doping: control of surface stoichiometry Electrical activation

半導体デバイスプロセス要素技術

金属・半導体・絶縁体(セラミックス)

半導体デバイス構造

半導体ほとんどは単結晶材料

他にアモルファス半導体有機半導体など

Principle device elements of

semiconductor devices

Device structures

Metal, Semiconductor, Insulator (Ceramics)

Semiconductor

Single crystal material

Others

Amorphous (TFT Tr. LCD driver)

Polycrystalline (solar cells)

Organic semiconductors

Page 16: Materials Science in Electronics devices - Semiconductor devicesdenko/lecture/denshi_device/... · 2017. 3. 23. · Impurity doping: control of surface stoichiometry Electrical activation

半導体デバイスは、「金属・半導体・セラミックス」を総合して形成。理想型静電誘導トランジスタのプロセス例

METAL

35A

HEAVY DOPING

DOPING EPITAXY 1019-1020cm-3

(SURFACE STOICHIOMETRY CONTROL)

LOW-T& SELECTIVE

MOLECULAR LAYER EPITAXY (MLE)

WITH ATOMIC ACCURACY (AA)

HIGH QUALITY

REGROWN INTERFACE(SURFACE STOICHIOMETRY CONTROL)

LOW c CONTACT(METAL/SEMI CONTACT)NON-ALLOYED

VERY THIN MIXED LAYER

SELECTIVE EPITAXY

(SELF-ALIGN PROCESS)

ULTRA SHALLOW GROVE

LOW-T&DAMAGE ETCHING(PHOTO-STIMULATED GAS FLOW ETCHING)

LOW-T&DAMAGE SiN CVD

(REMOTE PLASMA CVD)

MISゲート{

DETAILED CRITICAL PROCESSES FOR ISITMETAL/CERAMICS/SEMICONDUCTOR BREAKTHROUGH PROCESSES

Page 17: Materials Science in Electronics devices - Semiconductor devicesdenko/lecture/denshi_device/... · 2017. 3. 23. · Impurity doping: control of surface stoichiometry Electrical activation

S/D=3.5nm

Page 18: Materials Science in Electronics devices - Semiconductor devicesdenko/lecture/denshi_device/... · 2017. 3. 23. · Impurity doping: control of surface stoichiometry Electrical activation

Principle of MLE :GaAs case

Molecular Layer Epitaxy in brief

ALE(Atomic Layer Epitaxy) of poly-ZnS on glass substrate for EL application

T. Suntola, U.S. Patent 4058430, 1977.

M. Ahonen, M. Pessa, T. Suntola, Thin Solid Films 65 (1980) 301.

MLE(Molecular Layer Epitaxy) of GaAs single crystal on GaAs

J. Nishizawa et. al. Extended Abstracts of the 16th Conference on Solid State Device and Materials

(The Japan Society of Applied Physics, Kobe, Japan, 1984), p. 1.

J. Nishizawa, et. al. J. Electrochem. Soc., 132 (1985) 1197.

Page 19: Materials Science in Electronics devices - Semiconductor devicesdenko/lecture/denshi_device/... · 2017. 3. 23. · Impurity doping: control of surface stoichiometry Electrical activation

Molecular layer epitaxy of GaAs

Thin Solid Films, 225 (1993), 1-6.

Jun-ichi Nishizawa, Hiroshi Sakuraba Yutaka Oyama など

Principle of MLE

Mono-molecular layer epitaxy

Self-limiting epitaxy with atomic accuracy (AA)

Area selective epitaxy

Page 20: Materials Science in Electronics devices - Semiconductor devicesdenko/lecture/denshi_device/... · 2017. 3. 23. · Impurity doping: control of surface stoichiometry Electrical activation

表面反応Surface reaction process

Page 21: Materials Science in Electronics devices - Semiconductor devicesdenko/lecture/denshi_device/... · 2017. 3. 23. · Impurity doping: control of surface stoichiometry Electrical activation

Detailed reaction processes of Epitaxial growth

・Si_react

Vapor phase or solution reaction

Diffusion to the surface

Surface adsorption

Surface reaction

Surface diffusion

(migration)nucleation

desorption

Real surface reaction

process in MLE Si

Page 22: Materials Science in Electronics devices - Semiconductor devicesdenko/lecture/denshi_device/... · 2017. 3. 23. · Impurity doping: control of surface stoichiometry Electrical activation

Impurity doping: control of surface stoichiometry

Electrical activation of Te and Se in GaAs at extremely heavy doping up to 5×1020cm-3 prepared by

intermittent injection of TEG/AsH3 in ultra-high vacuum,

Journal of Crystal Growth, Volume 212, Issues 3-4, May 2000, Pages 402-410

Yutaka Oyama, Jun-ichi Nishizawa, Kohichi Seo and Ken Suto など Ohno T et. al.

Page 23: Materials Science in Electronics devices - Semiconductor devicesdenko/lecture/denshi_device/... · 2017. 3. 23. · Impurity doping: control of surface stoichiometry Electrical activation

0

0.5

1

1.5

2

2.5

DEZn Pressure (Torr)

Car

rier

Co

nce

ntr

atio

n (

cm-3

)

Gro

wth

Rat

e (A

/C

ycl

e)

AA Mode(C.C.)

AA'Mode(C.C.)

IG Mode(C.C.)

10

10

10

10

20

19

19

18

1x

5x

1x

5x

10 10 10 10-6 -5 -5 -4

3x 1x 3x 1x

Hole concentration vs. DEZn pressure for Zn doping for temperature synchronized MLE.

Zinc doping of GaAs grown with temperature synchronized molecular layer epitaxy

AsH3 AsH3DEZn TEG

evacuation evacuation evacuation evacuation

time

Tem

per

ature

temperature synchronized molecular layer epitaxy

AA' - after arsine doping mode

precursor injection phases

360 380 400 420 440 4600

1

2

4

AA Mode

AA'Mode

IG Mode

undoped

10

10

10

17

18

19

2x

1x

1x

3

Substrate temperature during AsH3 injection [・C]

Ho

le c

on

centr

atio

n

[cm

-3]

Gro

wth

rat

e per

cycl

e [

・]

Growth rate and hole concentration vs. temperature during arsine injectionfor Zn doped GaAs grown with temperature synchronized MLE.

file: d:\0q\fig_s56s.cdr ZnTS.cdr

DOPING CHARACTERISTICS OF p-GaAs:Zn MLE

Page 24: Materials Science in Electronics devices - Semiconductor devicesdenko/lecture/denshi_device/... · 2017. 3. 23. · Impurity doping: control of surface stoichiometry Electrical activation

Doping mode dependences of impurity concentration evaluated by one-epitaxial run: base DETe doping.

Extremely high and steep impurity profile

Page 25: Materials Science in Electronics devices - Semiconductor devicesdenko/lecture/denshi_device/... · 2017. 3. 23. · Impurity doping: control of surface stoichiometry Electrical activation

▲Te DOPING

○Se DOPING

UP TO 1021cm-3 IMPURITY CONCENTRATION

5x1019cm-3 ELECTRON CONCENTRATION

Required for nm-channel Tr.

DOPING CHARACTERISTICS OF n-GaAs MLE

Page 26: Materials Science in Electronics devices - Semiconductor devicesdenko/lecture/denshi_device/... · 2017. 3. 23. · Impurity doping: control of surface stoichiometry Electrical activation

DOPING CHARACTERISTICS OF p-GaAs:Be MLE

0 10 20 30 40 50 601018

1019

1020

1021

Be

co

nce

ntr

atio

n (c

m-3

)

Be(MeCp)2 injection time (sec)

●AA ■AG

UP TO 4x1020cm-3 IMPURITY CONCENTRATION

8x1019cm-3 HOLE CONCENTRATION

Required for nm-channel Tr.

Ohno T et. al.

Page 27: Materials Science in Electronics devices - Semiconductor devicesdenko/lecture/denshi_device/... · 2017. 3. 23. · Impurity doping: control of surface stoichiometry Electrical activation

Ultra low c metal/semiconductor contact:

non-alloyed and selective CVD by W(CO)6

XTEM of MS interface with atomically

flat interface

Low-resistance Contacts with Chemical Vapor Deposited Tungsten on GaAs Grown by

Molecular Layer Epitaxy

[J. Electrochem. Soc., 146 (1), (1999), 131 - 136]

Yutaka Oyama, Piotr Plotka, Fumio Matsumoto, Toru Kurabayashi, H.hamano,

Hideyuki Kikuchi and Jun-ichi Nishizawa など

Page 28: Materials Science in Electronics devices - Semiconductor devicesdenko/lecture/denshi_device/... · 2017. 3. 23. · Impurity doping: control of surface stoichiometry Electrical activation

Contact resistivity for n-GaAs (MLE grown)

Also for p-GaAs (down to 10-8Wcm2 order)

Almost the limit of TLM method

Page 29: Materials Science in Electronics devices - Semiconductor devicesdenko/lecture/denshi_device/... · 2017. 3. 23. · Impurity doping: control of surface stoichiometry Electrical activation

High quality regrown interface

"Optimization of low temperature surface treatment of GaAs crystal",

J.Nishizawa, Y.Oyama, P.Plotka and H.Sakuraba,

Surface Science, 348, 105-114 (1996). など

Good interface

Page 30: Materials Science in Electronics devices - Semiconductor devicesdenko/lecture/denshi_device/... · 2017. 3. 23. · Impurity doping: control of surface stoichiometry Electrical activation

No trace of oxides and carbide after optimized

surface treatment

QMS desorption analysis

Also by XPS analysis

High quality regrown interface: chemical analysis

Page 31: Materials Science in Electronics devices - Semiconductor devicesdenko/lecture/denshi_device/... · 2017. 3. 23. · Impurity doping: control of surface stoichiometry Electrical activation

[110]

[11

0]

{001}

R

F

R

R

R

F

F

F

F

FF

F

R

R

R

R

F

F

F

F

F

F

F

F

TOP VIEW

Regrown p+-GaAs:Be 1st n+-GaAs:Te&S

epitaxy (49nm)

1st n+-GaAs:Te&S

epitaxy (49nm)

S.I.GaAs

Ti/Au non-alloyed

contact

Sidewall tunnel junctions

(regrowth interface)

Sidewall tunnel junction

(regrowth interface)

CROSS SECTIONAL VIEW

RF F

Figure 1. Schematic drawings of the cross sectional and top view of the fabricated sidewall

tunnel diodes. “F” and “R” mean the first epitaxial layers and the regrowth layers. The

arrows indicate the positions of sidewall regrown tunnel junctions. Large pad has 100m

in length, and small one has 50m.

Application of MLE GaAs to high quality

ultra-small tunnel junctions

Side-wall regrowth process

Application of low-temperature area-selective regrowth for ultrashallow sidewall GaAs tunnel junctions

Yutaka Oyama, Takeo Ohno, Kenji Tezuka, Ken Suto and Jun-ichi Nishizawa

Applied Physics Letters, 81, 2563-2565 (2002). など

Page 32: Materials Science in Electronics devices - Semiconductor devicesdenko/lecture/denshi_device/... · 2017. 3. 23. · Impurity doping: control of surface stoichiometry Electrical activation

Ti/Au

non-alloyed

contact

n+-GaAs:Te&S layer

(50nm)regrown p+-GaAs:Be layer

SI GaAs substrate

sidewall

tunnel junction (SJ~10-8cm2)

100 nm

1 m

n+-GaAs:Te&S

p+-GaAs:Be

Application of MLE GaAs

to high quality ultra-small

tunnel junctions

Side-wall regrowth process

Page 33: Materials Science in Electronics devices - Semiconductor devicesdenko/lecture/denshi_device/... · 2017. 3. 23. · Impurity doping: control of surface stoichiometry Electrical activation

Figure 2. J-V

characteristics of GaAs

sidewall tunnel junctions at

290 and 77K on (a) normal

mesa, (b) 45° inclined

configuration and (c)

reverse mesa sidewall

orientations.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.70.0

5.0x103

1.0x104

1.5x104

2.0x104

2.5x104

3.0x104

3.5x104

290K

77K

NORMAL MESA ORIENTATION

Curr

ent

Den

sity

[A

cm-2]

Voltage Bias [volts]

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.70.0

5.0x103

1.0x104

290K

77K

45° INCLINED

CONFIGURATION

Curr

ent

Den

sity

[A

cm-2]

Voltage bias [volts]

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.70

1x103

2x103

3x103

4x103

5x103

290K

77KREVERSE MESA

ORIENTATION

Curr

ent

Den

sity

[A

cm-2]

Voltage Bias [volts]

Record high peak current density

Current-voltage characteristics of sidewall TUNNEL junctions

Sidewall mesa orientation dependences

Ohno T et. al.

Page 34: Materials Science in Electronics devices - Semiconductor devicesdenko/lecture/denshi_device/... · 2017. 3. 23. · Impurity doping: control of surface stoichiometry Electrical activation

(Jin, 2003)

● Our results:2002

GaAs tunnel diode (PVCR=28)

(Ahmed, 1997)

Figure of merits of fabricated TUNNEL junctions

RITD:

Resonant Interband Tunnel diode Ohno T et. al.

Page 35: Materials Science in Electronics devices - Semiconductor devicesdenko/lecture/denshi_device/... · 2017. 3. 23. · Impurity doping: control of surface stoichiometry Electrical activation

0 200 400 600 800 1000 1200 1400

1018

1019

1020

tunnel junction

(regrown p+-GaAs:Be/n

+-GaAs:Te&S interface)

epitaxial/substrate

interface

Be

S

Te

Impuri

ty c

oncentr

ati

on [

cm-3]

Depth from the surface [A]

Very high & steep impurity profile at tunnel junction interface

up to 2x1018cm-3 impurities /A Ohno T et. al.

Page 36: Materials Science in Electronics devices - Semiconductor devicesdenko/lecture/denshi_device/... · 2017. 3. 23. · Impurity doping: control of surface stoichiometry Electrical activation

Ultra fast and high frequency semiconductor electronic

and photonic devices

To be continued to next week