24
Main Injector Particle Production (MIPP) Experiment (FNAL-E907): Application to Cosmic Rays lliders to Cosmic Rays (…and ba Lake Tahoe USA Feb 28 2007 Wayne Springer University of Utah

Main Injector Particle Production (MIPP) Experiment (FNAL-E907): Application to Cosmic Rays

  • Upload
    gavril

  • View
    50

  • Download
    0

Embed Size (px)

DESCRIPTION

Main Injector Particle Production (MIPP) Experiment (FNAL-E907): Application to Cosmic Rays. Wayne Springer University of Utah. Colliders to Cosmic Rays (…and back) Lake Tahoe USA Feb 28 2007. Main Injector Particle Production (MIPP) Experiment (FNAL-E907): Application to Cosmic Rays. - PowerPoint PPT Presentation

Citation preview

Page 1: Main Injector Particle Production (MIPP) Experiment (FNAL-E907): Application to Cosmic Rays

Main Injector Particle Production (MIPP)Experiment (FNAL-E907):Application to Cosmic Rays

Colliders to Cosmic Rays (…and back) Lake Tahoe USA Feb 28 2007

Wayne SpringerUniversity of Utah

Page 2: Main Injector Particle Production (MIPP) Experiment (FNAL-E907): Application to Cosmic Rays

Main Injector Particle Production (MIPP)Experiment (FNAL-E907):Application to Cosmic Rays

• Extensive Air Showers– Determination of UHECR parameters

• Energy, Xmax and flux• Measurement Techniques

– Modeling of EAS• Hadronic Interaction Models and Corsika• Dependence on particle physics

• MIPP Experiment– Description– Measurements applicable to better understanding of EAS

Page 3: Main Injector Particle Production (MIPP) Experiment (FNAL-E907): Application to Cosmic Rays

Extensive Air ShowersProfiles: Longitudinal and Lateral

Longitudinal Profile Air FluorescenceLateral Profile

Ground ArraysOnly Measure effects related to Charged particle content of Extensive Air Showers !!!!

Page 4: Main Injector Particle Production (MIPP) Experiment (FNAL-E907): Application to Cosmic Rays

Determination of UHECR Parameters from EASCharged Particle Longitudinal Profile

Energy and Xmax Determination Integrate Shower profile

Correct for portion of shower not observedCorrect observed EM energy into total energy

Particle multiplicity and cross-section are influences on longitudinal profile shape and fraction correction

Need EAS models to calculate detector aperture as well as for energy determination

dxxdXdExNEEM )()(

Total

EM

EE

Page 5: Main Injector Particle Production (MIPP) Experiment (FNAL-E907): Application to Cosmic Rays

Ground ArrayAGASA Lateral Distribution

Energy Determination From Local density at 600m

Particle multiplicity, Cross sections and differential cross section influence the relation between S(600) and the Energy of the UHECR

E=2.13x1020eV

M. Teshima

Muon/Neutrino

Ele. Mag

Page 6: Main Injector Particle Production (MIPP) Experiment (FNAL-E907): Application to Cosmic Rays

Externsive Air Shower ModelingCorsika Simulated 1015 eV proton EAS

J. Oehlsclaeger and R. Engel

Well developed EAS models exist•High Energy

•DPMJET•neXus•QGSJET•SIBYLL

•Low/Intermediate Energy•GHEISHA•Hillas’ Splitting Algorithm•FLUKA•UrQMD•TARGET•HADRIN/NUCRIN•SOPHIA

QuestionsNeutral particlesEAS Muon ContentHow close to reality?

Page 7: Main Injector Particle Production (MIPP) Experiment (FNAL-E907): Application to Cosmic Rays

Hadronic Interaction Models Inputs

Particle Data Group

•Hadronic production •Cross-sections•Multiplicities

•Compare to measurements•Extrapolation at high energies

R. Engel

Page 8: Main Injector Particle Production (MIPP) Experiment (FNAL-E907): Application to Cosmic Rays

Example of Model Variability

Model Predictions: proton-proton at the LHC –Totem Expt- S.Lami

Predictions in the forward region within the CMS/TOTEM acceptance

(T1 + T2 + CASTOR)

Multiplicity Total Energy

Page 9: Main Injector Particle Production (MIPP) Experiment (FNAL-E907): Application to Cosmic Rays

Main Injector Particle Production ExperimentMIPP (FNAL E907)

D.Isenhower,M.Sadler,R.Towell,S.WatsonAbilene Christian University

R.J.PetersonUniversity of Colorado, Boulder

W.Baker,D.Carey, D.Christian,M.Demarteau,D.Jensen,C.Johnstone,H.Meyer, R.Raja,A.Ronzhin,N.Solomey,W.Wester

Fermi National Accelerator LaboratoryH.Gutbrod,K.Peters,

GSI, Darmstadt, GermanyG. Feldman,

Harvard UniversityY.Torun,

Illinois Institute of TechnologyM. Messier,J.PaleyIndiana University

U.Akgun,G.Aydin,F.Duru,E.Gülmez,Y.Gunaydin,Y.Onel, A.PenzoUniversity of Iowa

V.Avdeichicov,R.Leitner,J.Manjavidze,V.Nikitin,I.Rufanov,A.Sissakian,T.TopuriaJoint Institute for Nuclear Researah, Dubna, Russia

D.M.Manley,Kent State University

H.Löhner, J.Messchendorp,KVI, Groningen, Netherlands

H.R.Gustafson,M.Longo,T.Nigmanov, D.RajaramUniversity of Michigan

S.P.Kruglov,I.V.Lopatin,N.G.Kozlenko,A.A.Kulbardis,D.V.Nowinsky, A.K.Radkov,V.V.Sumachev

Petersburg Nuclear Physics Institute, Gatchina, RussiaA.Bujak, L.Gutay,Purdue University

A.Godley,S.R.Mishra,C.RosenfeldUniversity of South Carolina

C.Dukes,C.Materniak,K.Nelson,A.NormanUniversity of Virginia

P.Desiati, F.Halzen, T.Montaruli,University of Wisconsin, Madison

Livermore dropped out. Rest still on proposal. 7 new institutions have joined. More

inegotiaitions. Previous collaboration built MIPP up from ground level. Less to do this time round. More data.

Page 10: Main Injector Particle Production (MIPP) Experiment (FNAL-E907): Application to Cosmic Rays

Main Injector Particle Production ExperimentMIPP (FNAL E907)

Beamline

Targets

Detector

Data

Physics Topics

Page 11: Main Injector Particle Production (MIPP) Experiment (FNAL-E907): Application to Cosmic Rays

MIPP Secondary Beam Line

120GeV Main Injector Primary protons

secondary beams of K p from 5 GeV/c to 85 GeV/c

Measure particle production cross sections on various nuclei including nitrogen.

Page 12: Main Injector Particle Production (MIPP) Experiment (FNAL-E907): Application to Cosmic Rays

MIPP Targets

Target inserted into TPC

Surrounded by Crystal Ball Recoil detector (in upgrade)

Cryogenic Target Will allow Liquid N2 Target

Nuclear Targets The A-List

H2,D2,Li,Be,B,C,N2,O2,Mg,Al,Si,P,S,Ar,K,Ca,,Fe,Ni,Cu,Zn,Nb,Ag,Sn,W,Pt,Au,Hg,Pb,Bi,U

The B-List Na, Ti,V, Cr,Mn,Mo,I, Cd, Cs,

Ba

Page 13: Main Injector Particle Production (MIPP) Experiment (FNAL-E907): Application to Cosmic Rays

MIPP DetectorOpen Geometry Spectrometer

“Jolly Green Giant” Magnet

Time Projection Chamber(TPC) Momentum and dE/dx meaasurement

Time-of-Flight (TOF)

Cerenkov DetectorBeam CerenkovRing Imaging CHerenkov

Tracking Chambers

CalorimetersElectromagneticHadronic

“Crystal Ball” (in proposed upgrade)

Excellent Particle ID momentum resolution

Measure differential production cross-sections for inclusive hadrons

Page 14: Main Injector Particle Production (MIPP) Experiment (FNAL-E907): Application to Cosmic Rays

Time Projection Chamber (TPC)

Located inside the JGG magnet

3D tracking

dE/dx particle identification for particles with low momentum.

Current DAQ rate limited to 30Hz upgrade to 3000 Hz

Page 15: Main Injector Particle Production (MIPP) Experiment (FNAL-E907): Application to Cosmic Rays

Time Projection ChamberParticle ID

Number of tracks vs dEdx in arbitrary units for a momentum slice ranging from 150 MeV.c to 250 MeV/c. Data is from a 20 GeV p-C run.

Number of tracks vs. dEdx in arbitrary units vs. momentum in GeV/c for 20 GeV p-C data

Page 16: Main Injector Particle Production (MIPP) Experiment (FNAL-E907): Application to Cosmic Rays

Beam Cherenkov Detectors

Two differential Beam Cerenkov detectors

Long radiator (>30 meters total)

Separate p for beam momenta above 10 GeV/c

Beam TOF for beam momenta below 10 GeV/c

Provides beam particle id at the trigger level.

Page 17: Main Injector Particle Production (MIPP) Experiment (FNAL-E907): Application to Cosmic Rays

Ring Imaging Cherenkov Detector

Rings are imaged onto an array of 32x96 1/2 inch diameter pmts. Many hits per ring -> good particle id.

Provides Particle ID for particles produced in collision

Page 18: Main Injector Particle Production (MIPP) Experiment (FNAL-E907): Application to Cosmic Rays

Overall MIPP Particle ID Performance

Good Particle ID over most of p v pt parameter space

Page 19: Main Injector Particle Production (MIPP) Experiment (FNAL-E907): Application to Cosmic Rays

The recoil detector

Detect recoil protons, neutrons, neutral and charged pions, kaons

Page 20: Main Injector Particle Production (MIPP) Experiment (FNAL-E907): Application to Cosmic Rays

Comparison of model predictions for observable distributions

Preliminary NUMI target to FLUKA predictions

Multiplicty

Momentum

Page 21: Main Injector Particle Production (MIPP) Experiment (FNAL-E907): Application to Cosmic Rays

Transverse Momentum vs MomentumDistributions

Differential Cross-Sections for particle production will be measured

Need input from model builders as to how to best present the data

Page 22: Main Injector Particle Production (MIPP) Experiment (FNAL-E907): Application to Cosmic Rays

Data Taken Data Summary

27 February 2006 Acquired Data by Target and Beam Energy

Number of events, x 106 Target E

Z Element Trigger Mix 5 20 35 40 55 60 65 85 120

Total

Empty1 Normal 0.10 0.14 0.52 0.25 1.01 K Mass2 No Int. 5.48 0.50 7.39 0.96 14.33 0

Empty LH1 Normal 0.30 0.61 0.31 1 LH Normal 0.21 1.94 1.98 1.73

7.08

p only 1.08 4 Be

Normal 0.10 0.56 1.75

C Mixed 0.21 C 2% Mixed 0.39 0.26 0.47

1.33 6

NuMI p only 1.78 1.78 13 Al Normal 0.10 0.10

p only 1.05 83 Bi

Normal 0.52 1.26 2.83

92 U Normal 1.18 1.18 Total 0.21 2.73 0.86 5.48 0.50 13.97 0.96 2.04 4.63 31.38

Page 23: Main Injector Particle Production (MIPP) Experiment (FNAL-E907): Application to Cosmic Rays

Other MIPP Physics Topics Non-perturbative QCD physics

Scaling law of particle fragmentation provide new, precise data to theorists so they can test new models

Nuclear physics y scaling propagation of flavor through nuclei strangeness production in nuclei

Searches Missing baryon resonances predicted by SU(3) Search for glue balls

Charged Kaon mass measurement Service measurements

neutrino experiments Pion and kaon production on NuMI target for MINOS to

understand the neutrino flux (energy spectrum) Cross sections on N2 (air) for atmospheric neutrino experiment

flux Proton Radiography (homeland security, etc.)

Page 24: Main Injector Particle Production (MIPP) Experiment (FNAL-E907): Application to Cosmic Rays

Summary

UHECR measurements are dependent upon particle physics models

Measurements from MIPP can provide input to those models

Current MIPP data set useful. Work ongoing. Physics DSTs available soon..

MIPP upgrade should be designed with needs of EAS models in mind