27
MAGNETISMO Los materiales magnéticos tienen una doble importancia en los dispositivos de conversión de energía. Se pueden obtener grandes densidades de flujo con niveles relativamente bajos de fuerza magnetomotriz. Por otro lado, se pueden usar para delimitar y dirigir a los campos magnéticos en unas trayectorias definidas: hacen en magnetismo el papel de conductores, al igual que los conductores eléctricos en electricidad. Para el estudio del transformador es necesario el conocimiento de los circuitos magnéticos y de las leyes que los rigen. En el análisis de los circuitos magnéticos habituales se emplean las ecuaciones de Maxwell en su forma integral, con lo cual resultan leyes de uso común más sencillas. En concreto se utilizarán: - la ley de Ampere, - la ley de conservación del flujo, - la ley de inducción de Faraday, y - las propiedades magnéticas de los materiales empleados. (del griego elektron,ámbar, y del latín magnes, - etis, imán) Existe una estrecha relación entre la electricidad y el magnetismo dado que son fenómenos complementarios en lo que tiene que ver con muchas de sus aplicaciones. El magnetismo puede considerarse como la facultad que posee un cuerpo (denominado genéricamente imán) para atraer o repeler a otros cuerpos según su material y carga eléctrica. Es posible diferenciar tres clases de imanes: a. Imanes naturales: Variedad de óxido de hierro coincida como magnetita. El magnetismo es uno de los aspectos del electromagnetismo, que es una de las fuerzas fundamentales de la naturaleza (junto con la gravedad, la fuerza nuclear fuerte y la fuerza nuclear débil). Las fuerzas magnéticas son producidas por el movimiento de partículas cargadas, como por ejemplo electrones, lo que indica la estrecha relación entre la electricidad y el magnetismo. El marco que aúna ambas fuerzas se denomina teoría electromagnética (véase Radiación electromagnética). La manifestación más conocida del magnetismo es la fuerza de atracción o repulsión que actúa entre los materiales ferromagnéticos como el hierro. Desde la antigüedad se ha constatado la interacción entre el hierro o minerales como la magnetita con el campo magnético terrestre, de forma que el polo norte de un imán tiende a apuntar al polo sur de otro. En realidad, si se disponen de los instrumentos de medida adecuados, en toda la materia se pueden observar efectos más sutiles del magnetismo (como paramagnetismo y diamagnetismo). Recientemente, estos efectos han proporcionado claves importantes para comprender la estructura atómica de la materia. b. Imanes artificiales: Su formarán se fundamenta en la transmisión de las propiedades magnéticas a una barra de acero, mediante diversos procedimientos. Sus formas más comunes son la cilíndrica, recta y de herradura. c. Electroimanes: Consisten en piezas de hierro alrededor de las cuales se enrolla un conductor aislado. Las propiedades magnéticas aparecen cuando se hace circular una corriente eléctrica por el conductor. (Ver Electroimán). Es notable la característica de los imanes que consiste en tener dos polos llamados Norte y Sur los cuales componen en dos mitades todo el imán, estos dos polos son indivisibles, o sea si tomamos un imán recto y lo partimos a la mitad cada una de estas mitades

Magnetismo

Embed Size (px)

DESCRIPTION

magnetismo genaeralidades

Citation preview

Page 1: Magnetismo

MAGNETISMO

Los materiales magnéticos tienen una doble importancia en los dispositivos de conversión de

energía.

Se pueden obtener grandes densidades de flujo con niveles relativamente bajos de fuerza magnetomotriz.

Por otro lado, se pueden usar para delimitar y dirigir a los campos magnéticos en

unas trayectorias definidas: hacen en magnetismo el papel de conductores, al igual que los conductores eléctricos en electricidad.

Para el estudio del transformador es necesario el conocimiento de los circuitos

magnéticos y de las leyes que los rigen. En el análisis de los circuitos magnéticos

habituales se emplean las ecuaciones de Maxwell en su forma integral, con lo cual resultan leyes de uso común más sencillas. En concreto se utilizarán:

- la ley de Ampere,

- la ley de conservación del flujo,

- la ley de inducción de Faraday, y - las propiedades magnéticas de los materiales empleados.

(del griego elektron,ámbar, y del latín magnes, - etis, imán) Existe una estrecha

relación entre la electricidad y el magnetismo dado que son fenómenos

complementarios en lo que tiene que ver con muchas de sus aplicaciones. El

magnetismo puede considerarse como la facultad que posee un cuerpo

(denominado genéricamente imán) para atraer o repeler a otros cuerpos según su material y carga eléctrica. Es posible diferenciar tres clases de imanes:

a. Imanes naturales: Variedad de óxido de hierro coincida como magnetita. El

magnetismo es uno de los aspectos del electromagnetismo, que es una de las

fuerzas fundamentales de la naturaleza (junto con la gravedad, la fuerza nuclear

fuerte y la fuerza nuclear débil). Las fuerzas magnéticas son producidas por el

movimiento de partículas cargadas, como por ejemplo electrones, lo que indica la

estrecha relación entre la electricidad y el magnetismo. El marco que aúna ambas

fuerzas se denomina teoría electromagnética (véase Radiación electromagnética).

La manifestación más conocida del magnetismo es la fuerza de atracción o

repulsión que actúa entre los materiales ferromagnéticos como el hierro. Desde la

antigüedad se ha constatado la interacción entre el hierro o minerales como la

magnetita con el campo magnético terrestre, de forma que el polo norte de un

imán tiende a apuntar al polo sur de otro. En realidad, si se disponen de los

instrumentos de medida adecuados, en toda la materia se pueden observar efectos

más sutiles del magnetismo (como paramagnetismo y diamagnetismo).

Recientemente, estos efectos han proporcionado claves importantes para comprender la estructura atómica de la materia.

b. Imanes artificiales: Su formarán se fundamenta en la transmisión de las

propiedades magnéticas a una barra de acero, mediante diversos procedimientos. Sus formas más comunes son la cilíndrica, recta y de herradura.

c. Electroimanes: Consisten en piezas de hierro alrededor de las cuales se enrolla

un conductor aislado. Las propiedades magnéticas aparecen cuando se hace circular

una corriente eléctrica por el conductor. (Ver Electroimán). Es notable la

característica de los imanes que consiste en tener dos polos llamados Norte y Sur

los cuales componen en dos mitades todo el imán, estos dos polos son indivisibles,

o sea si tomamos un imán recto y lo partimos a la mitad cada una de estas mitades

Page 2: Magnetismo

será un nuevo imán con dos polos Norte y Sur, y así sucesivamente en cada

participan tendremos dos nuevos imanes. Esto es conocido en la física teórica como

la imposibilidad de obtener un monopolo magnético. Para caracterizar la interacción

magnética de dos o más cuerpos, y mostrar cómo se transforma el espacio en las

inmediaciones de un imán se utiliza el concepto de campo magnético, el cual se

puede representar mediante las llamadas líneas de fuerza ó líneas de inducción

magnética, éstas líneas son como unos hilos invisibles que unen los polos Norte y Sur de un imán.

Brújula: Instrumento formado por una aguja imantada suspendida sobre un eje,

que gira a causa del campo magnético terrestre y señala siempre aproximadamente la dirección N-S. Sirve para orientarse sobre la superficie de la Tierra.

Campo.

Campo eléctrico: Región del espacio en la que se dejan sentir las fuerzas de

atracción o repulsión que una carga eléctrica ejerce sobre otra de distinto o igual signo, respectivamente, situada en otro punto de ese espacio

ELECTROMAGNETISMO

Electromagnetismo es la parte de la física que estudia los campos

electromagnéticos, sus interacciones con la materia y, en general, la electricidad y

el magnetismo. Estudio de los fenómenos producidos por la interrelación entre los

campos eléctrico y magnético. Toda carga eléctrica en movimiento crea a su

alrededor un campo magnético, con propiedades similares a las de un imán, y a su

vez todo campo magnético ejerce una fuerza sobre los conductores por los que

circula una corriente eléctrica o la crea en éstos cuando varía el flujo de líneas

magnéticas que los atraviesa. De ello se deduce que la energía eléctrica puede ser

transformada en trabajo mecánico (motor eléctrico) y que la energía mecánica

puede convertirse en electricidad (fenómeno de inducción magnética).

El electromagnetismo estudia conjuntamente los fenómenos físicos en los cuales

intervienen cargas eléctricas en reposo y en movimiento, así como los relativos a los campos magnéticos y a sus efectos sobre diversas sustancias.

El electromagnetismo, por lo tanto estudia los fenómenos eléctricos y magnéticos

que se unen en una sola teoría, que se resumen en cuatro ecuaciones vectoriales

que relacionan campos eléctricos y magnéticos conocidas como las ecuaciones de

Maxwell. Gracias a la invención de la pila se pudieron efectuar los estudios de los

efectos magnéticos que se originan por el paso de corriente eléctrica a través de un

conductor.

La idea propuesta y materializada por el físico escocés James Clerk Maxwell (1831-

1879), quien luego de estudiar los fenómenos eléctricos y magnéticos concluyó que

son producto de una misma interacción, denominada interacción electromagnética,

lo que le llevó a formular, alrededor del año 1850, las ecuaciones antes citadas,

que llevan su nombre, en las que se describe el comportamiento del campo electromagnético. Estas ecuaciones dicen esencialmente que:

· Existen portadores de cargas eléctricas, y las líneas del campo eléctrico parten

desde las cargas positivas y terminan en las cargas negativas.

· No existen portadores de carga magnética; por lo tanto, el número de líneas del

campo magnético que salen desde un volumen dado, debe ser igual al número de

líneas que entran a dicho volumen.

· Un imán en movimiento, o, dicho de otra forma, un campo magnético variable,

Page 3: Magnetismo

genera una corriente eléctrica llamada corriente inducida.

· cargas eléctricas en movimiento generan campos magnéticos.

Campo magnético de las corrientes

Oersted descubrió en 1820 que una corriente eléctrica (cargas en movimiento) está

rodeada por un campo magnético. Una ley fundamental de Amper permite

computar la magitud del campo magnético debido a una corriente eléctrica.

Consideremos una longitud elemental (infinitesimal) , dl, de un alambre que

transporta una corriente I (ver Fig. 2-1). De acuerdo con la ley de Ampere, la

contribución del elemento dl al campo magnético (dH), en un punto P a una distancia r del alambre es

donde es el ángulo entre, la línea (r) que une el alambre (dl) al punto P y la

dirección de la corriente (la tangente a dl) . Para obtener la intensidad (H) total del

campo en el punto P, se deben sumar las contribuciones elementales del campo a lo largo de la longitud del alambre; és decir debe integrarse la expresión para dH:

Cuando esta expresion se calcula para varias formas de alambres se obtienen los

siguientes resultados.

1. Alambre recto. La intensidad de campo (en oersted), a una distancia de r cm del eje de un alambre recto que transporta una corriente de 1 amperes es

2. Espira circular. La intensidad de campo en el centro de una espira circular de alambre, de radio r, que transporta una corriente de 1 amperes, es

Page 4: Magnetismo

Fíg. 2-1. Definición del campo magnético alrededor de un alambre (Ley de Ampere).

Esta expresión se usa para definir la unidad électromagnética de corriente o

abampere, como la corriente que en una espira circular de 1 cm de radio produce

en el centro una intensidad de campo de 2 oersteds. (Resolviendo para I, después

de sustituir la definición de campo, I = 10 amperes. Por lo tanto, la unidad electromagnética de corriente, abampere = 10 amperes.)

3. Bobina plana circular. La intensidad de campo en el centro de una bobina plana

de N espiras circulares (vueltas) es

4. Bobina larga (Solenoide). Un solenoide es una bobina de alambre bobinado

uniformemente en una hélice larga. La intensidad de campo en el centro de una

bobina larga, o solenoide, de N espiras de alambre y de longitud 1 cm, que

transporta una corriente de I amperes, es

Esta expresión también da la intensidad de campo a lo largo del eje de una bobina toroidal (anillo).

Forma circuital de la ley de Ampere

En esta forma la ley establece que el trabajo realizado para mover una unidad

aislada magnética en un camino cerrado (de cualquier forma) alrededor de un conductor que transporta corriente es

Nótese que la cantidad de trabajo (W) es independiente de la longitud del camino.

Page 5: Magnetismo

ELECTROIMÁN: Barra de hierro dulce que adquiere propiedades magnéticas al

circular una corriente eléctrica por un hilo enrollado a su alrededor a modo de

bobina, dando origen a un campo magnético. Cuando la corriente cesa, el hierro se

desimanta. Se emplea en los electromotores, timbres, interruptores, para levantar

chatarra, etc.

Campo electromagnético: Espacio en el que se dan simultáneamente un campo

eléctrico y otro magnético estrechamente relacionados entre sí.

ELECTROMAGNETISMO

SENTIDO CAMPO MAGNETICO El primero en descubrir los efectos magnéticos de la

corriente eléctrica fue el físico danés H. C. Oersted, quien en 1881 observó que la

aguja de una brújula en las proximidades de un conductor eléctrico se desviaba

cuando circulaba corriente por el conductor, o sea la aguja magnética

experimentaba una desviación de su posición de equilibrio cuya magnitud dependía

de la intensidad de la corriente y de la distancia entre el conductor y la aguja. La

orientación final de la aguja imantada dependía también del sentido de circulación

de la corriente.

La explicación de este fenómeno parte del hecho que alrededor de cualquier carga

eléctrica en movimiento se forma un campo magnético perpendicular al vector

velocidad de la partícula, cuya dirección se determina utilizando la regla de la mano

derecha. Por tanto si en vez de tener una carga puntual tenemos un flujo continuo

de cargas por el interior de un conductor en el sentido AB, tomando con el dedo

pulgar el sentido de la corriente, la dirección del campo magnético será desde el

centro de la mano hacia la punta de los dedos formando círculos concéntricos alrededor del conductor.

Flujo magnético

El flujo magnético está representado por líneas de fuerza

magnética. El número total de líneas de fuerza creadas por un

campo magnético se llama flujo magnético (representado por la

letra griega ). La unidad de flujo magnético es una sola línea de

fuerza, designada maxwell. En el sistema mks, se usa una unidad

mayor, el weber; 1 weber = 100.000.000 o 108 maxwells. El

número de líneas de fuerza que pasan perpendiculaimente por un

área de 1 centímetro cuadrado se denomina densidad de flujo (B) y

se mide en gauss (1 gauss = 1 maxwell/cm2). La unidad de

densidad de flujo en el sistema mks es el weber/m2, el cual es

equivalente a 10.000 gauss. De estas definiciones se deduce que,

Permeabilidad magnética .

Si un núcleo de hierro dulce o de otro material magnético se introduce en un solenoide, éste se transforma en un electroimán,

Page 6: Magnetismo

Fig. 2-3. Curva típica de magnetización (Problema 58).

y el flujo magnético aumenta notablemente por la inducción magnética en el núcleo

de hierro. La relación entre la densidad de flujo (B) y la intensidad de campo (H) en

un material magnético se llama permeabilidad (letra griega µ) y es una medida de la facilidad de magnetización del material.

La permeabilidad de un material ferromagnético, no es una cantidad constante sino

que depende de la historia magnética previa y de la intensidad del campo

magnético mismo (curva B-H ) . En el aire o en el vacío, µ = 1, y por lo tanto, la

intensidad de campo (H) y la densidad de flujo (B) son numéricamente iguales.

Consecuentemente, la permeabilidad puede definirse también como la relación de

la intensidad de flujo que se obtiene con un determinado espécimen magnético, a la que se produce en el aire o en el vacío.

PROBLEMA 6. La curva de magnetización (B-H) de un material magnético indica

una densidad de flujo de 8.500 gauss a una intensidad de campo de 35 oersteds

(Fig. 2-3). ¿Cuál es la permeabilidad del material para esa intensidad de campo?

Circuitos magnéticos

El camino que cierra los lazos de flujo magnético se denomina circuito magnético.

Los cálculos en circuitos magnéticos son similares a los de los circuitos eléctricos.

Por ejemplo, se ha establecido que la intensidad de campo en el centro de un solenoide recto ( o a lo largo del eje de un solenoide en anillo) es

Page 7: Magnetismo

Si se introduce un núcleo magnético en el solenoide (o se devana un solenoide

toroidal alrededor de un anillo de material magnético) , el flujo total en el núcleo es,

donde A es la sección recta del núcleo y µ su permeabilidad. Reordenando esta expresión, se obtiene la ley del circuito magnético:

El flujo es análogo a la corriente que circula en un circuito eléctrico, la fuerza

magnetomotriz (fmm) , a la fem y la reluctancia ( ) a la resistencia de un

circuito. La fuerza magnetomotriz es directamente proporcional al

número de amper-vueltas (NI) y se mide en gilberts; 1 amper-vuelta crea una fmm

de 0,4πn = 1,259 gilberts. La reluctancia ( = l/ µA) es directamente

proporcional a la longitud (l) en cm del circuito magnético y es inversamente

proporcional al producto de la permeabilidad ( µ ) y a la sección (A) en cm2 del camino magnético. Un centímetro cúbico de aire tiene la unidad de reluctancia.

Fig. 2-4. Ilustración del Problema 59.

Page 8: Magnetismo

Fuerza sobre un conductor en un campo magnético

Cuando un conductor que transporta corriente está localizado

en un campo magnético, la interacción entre el conductor y el

campo magnético externo ejerce una fuerza sobre el

conductor. De acuerdo con la ley de Ampére (para la fuerza

sobre el conductor) un conductor que lleva corriente,

colocado en ángulo recto a las líneas de fuerza de un campo

magnético uniforme, será solicitado por una fuerza F (en

dinas) que es directamente proporcional a la densidad del

flujo B (en gauss), a la corriente I (en amperes) y a la

longitud l (en cm) del conductor:

Fig. 2-5. Dirección de la fuerza sobre un conductor (Regla de la mano izquierda ).

Si el conductor forma un ángulo θ con el

flujo magnético, su long¡tud efectiva es la

componente perpendicular, l sen θ, y entonces,

donde θ es el ángulo entre el conductor y el

campo.

La dirección de la fuerza está determinada por la regla de la mano derecha (motor)

: Extendiendo el pulgar, el dedo índice y el central en ángulos rectos uno de otro, y

representando el índice, el flujo, el central la corriente y el pulgar el movimiento o fuerza (ver Fig. 2-5).

PROBLEMA 8. Dos alambres paralelos están separados 4 cm y conducen cada uno

una corriente de 8 amperes. ¿Cuál es la fuerza entre los alambres por cm de

longitud si las corrientes en los alambres son a) de la misma dirección y b) de direcciones opuestas?

SOLUCIóN. a) Las líneas de fuerza en la parte externa de ambos alambres tienen la

misma dirección, y entonces, allí se refuerza el campo; entre los alambres, las

líneas de fuerza son opuestas, y el campo se debilita. Por lo tanto los alambres se

atraen mutuamente hacia el campo más débil. La intensidad (H) en cada alambre debido a la corriente que circula en el otro es

Page 9: Magnetismo

En el aire, B = H numéricamente. Entonces,

fuerza de atracción por cm,

b) Con las corrientes en direcciones opuestas, las líneas de campo se invierten

mutuamente. El campo se refuerza entre los alambres y se debilita fuera de ellos.

Por lo tanto los alambres se repelen mutuamente con una fuerza de 0,32 dinas por cm de longitud.

Fuerza electromotriz inducida

La inducción eléctrica fue descubierta en 1831 por el

físico inglés Miguel Faraday quien suponía que si una

corriente puede producir un campo magnético,

debería poder producirse corriente eléctrica mediante un campo magnético.

Uno de los aparatos que Faraday usó en sus

experimentos es de mucho interés histórico, ya que

representa el prototipo de los transformadores de

corriente alterna actuales. Consiste en un anillo de

hierro provisto de dos bobinas de cobre aislado. Una

de las bobinas se conecta a un galvanómetro y la

otra a una pila. Cuando se cierra o abre el circuito, la

aguja del galvanómetro oscila. De este y otros

experimentos realizados con el empleo de imanes y bobinas, Faraday concluyó que:

a. Cuando un imán se desplaza hacia una bobina y

se introduce en su interior, se crea o «induce» una

corriente eléctrica.

b. La corriente es de dirección contraria cuando el

imán se desplaza alejándose de la bobina, y saliendo de su interior .

Ya vimos que si por un conductor se hacía circular

una corriente eléctrica, en torno al mismo se

creaban un conjunto de líneas de fuerza cuyo sentido

de rotación dependía de la dirección con que fluía

dicha corriente. Estudiaremos ahora cómo es posible

generar una fuerza electromotriz (que en adelante

llamaremos f.e.m. ) valiéndonos de las propiedades del magnetismo.

Fig. 2-5A Generación de una f.e.m. en un conductor aproximado a un campo magnético variable .

Page 10: Magnetismo

Es un hecho demostrado que colocando un conductor

bajo la influencia de un campo magnético (bajo la

influencia de un imán, por ejemplo) y moviendo

dicho conductor de modo tal que "corte" las líneas de

fuerza existentes en torno a la pieza magnética es

decir moviendo el conductor transversalnente a la

dirección de las líneas de fuerza, en dicho conductor se generará una f.e.m. denominada de inducción.

Para comprender mejor este fenómeno observemos

la figura 2-5A, en la cual hemos dispuesto un

alambre conductor cuyos dos extremos han sido

conectados a un galvanómetro, instrumento de

elevada sensibilidad que se utiliza para la medición

de pequeños pasajes de corriente eléctrica. En la

misma figura representamos un iman del tipo "de

barra", uno de cuyos polos se encuentra próximo al

conductor, y que para mayor comprensión de este

tema, vamos a suponer que el mismo es movido

hacia arriba y hacia abajo, según la trayectoria A-B.

Moviendo el polo del iman del punto A al punto B,

de modo que pase muy próximo al conductor, los

electrones de los atomos del alambre se verán

influenciados por la vecindad del campo magnético

y, según sea el polo enfrentado, dichos electrones

serán atraídos o repelidos por el campo magnético,

dando lugar así a un desequilibrio en la estabilidad

natural de los electrones del alambre conductor.

Este desequilibrio no será otra cosa que un

movimiento de electrones, o lo que es lo mismo,

una corriente eléctrica, de cuya existencia nos dará

pruebas la aguja del instrumento, que en el instante

de producirse el paso del polo del imán por la

proximidad del conductor, en la dirección A-B, se

habrá desviado en un sentido, según sea la

dirección de dicha corriente.

Un hecho importante de destacar es que la aguja

del galvanómetro nos dará la indicación máxima

cuando el polo del iman sea movido de modo tal

que sus líneas de fuerza sean cortadas en forma

transversal por el conductor, o sea, cuando el

conductor sea movido hacia arriba, y hacia abajo. El

sentido de circulaciónde la f.e.m. inducida en el

conductor dependerá del sentido en que se desplace

el iman, pues moviendo el mismo en la dirección A-

B la dirección de la corriente inducida tendrá un

sentido, y moviendo el iman en la dirección B-A,el

sentido de circulación de la corriente será inverso.

La f.e.m. será inducida en el conductor unicamente

cuando exista una variación en las líneas de fuerza

del campo magnético, o esa cuando el campo

magnético no se encuentre fijo. Esta f.e.m. será

más intensa cuanto mas intenso sea el valor de

dicho campo y cuantas más líneas de fuerza sean

Fig. 2-5B . El sentido de una f.e.m. inducida depende de la dirección de las líneas de fuerza magnéticas .

Page 11: Magnetismo

las que corten al conductor.

También contribuirá a aumentar la intensidad de la

corriente el número de veces que sea movido el

iman en una y otra dirección, en la unidad de tiempo, esto es el segundo.

Si en lugar de mover el iman es el conductor el que

se desplaza en forma transversal a las líneas

magneticas, se podrá obtener igualmente una

circulación de corriente eléctrica por el conductor,

pues lo esencial es que dicho conductor sea

sometido a la acción de un campo magnético variable.

La f.e.m. inducida será mas intensa cuanto mayor

sea la porción de conductor (longitud del mismo) expuesta a la acción del campo magnético variable.

Si en lugar de tomar un conductor recto nos

valemos de un solenoide, podremos obtener un considerable aumento de corriente.

En la figura 2-5B representamos dicho solenoide, en

cuyo exterior se encuentra conectado un

galvanómetro, y al costado de aquel vamos a

suponer que se encuentra un iman moviéndose

hacia el interior y hacia el exterior del bobinado.

Igual que en la explicación anterior, en el momento

de penetrar dicho iman en el interior del solenoide,

se inducirá en el mismo una f.e.m. cuyo sentido de

circulación dependerá del polo que se aproxime a la

bobina. Retirando el iman del solenoide, el sentido

de circulación de la corriente será contrario a la dirección anterior.

Si el iman es introducido y retirado lentamente del

interior del bobinado, la aguja del instrumento nos

acusará el pasaje de una corriente débil. Pero si por

el contrario, acercamos y alejamos rápidamente el

imán, notaremos que la aguja del galvanómetro se

desviará más bruscamente, acorde con los

movimientos, y el valor de la corriente inducida será

mucho más elevada. También se elevará el valor de

la corriente si aumentamos el número de espiras del

solenoide y la intensidad del campo magnético

circundante.

De todas las consideraciones expuestas es posible deducir la siguiente fórmula para

calcular la f.e.m. inducida en un solenoide:

Page 12: Magnetismo

en donde es la intensidad del flujo magnético en maxwells o sea la cantidad de

líneas de fuerza. n es el número de espiras del solenoide, f el número de

movimientos completos hacia adentro y hacia afuera o frecuencia con que es

movido el iman, t el tiempo en segundos y 108 es un valor constante, que

representa el número 10 a la octava potencia, o sea 100.000.000. Dicho valor sería

la cantidad de lineas de fuerza que un conductor necesitaría cortar en un segundo

para que en el mismo se genere una f.e.m. de un voltio.

En un conductor se induce una fuerza electromotriz (fem) cada vez que hay un

cambio en el flujo magnético que pasa por el mismo. La magnitud de la fem es

proporcional a la relación de tiempos en que varía el flujo magnético.

Alternativamente, una fem puede pensarse como inducida en un conductor que

corta líneas de fuerza de un campo magnético. La magnitud de la fem es

proporcional a la velocidad con la cual se cortan la líneas de fuerza. Si el flujo varía

(o el flujo es cortado) a una velocidad de 100.000.000 o 108 líneas por segundo, se

induce en el conductor una fem de 1 volt. Entonces, fem inducida en un conductor

(volts) ,

donde es la variación de flujo (en líneas o maxwells) en un un intervalo de

tiempo .

Dado que 108 líneas de fuerza constituyen 1 weber de flujo en el sistema mks, se puede expresar también la fem inducida en un conductor

El signo menos (-) de esta expresión indica que la fem inducida se opone a la

acción que la produce ( ley de Lenz). Para una bobina de varias espiras (N)

encadenadas por la misma variación de flujo, se inducen iguales fem en cada una

de las espiras y el total de la fem inducida es la suma de éstas. Por lo tanto, la fem inducida en una bobina,

La fem inducida también puede expresarse en términos de la velocidad del

movimiento. Cuando un conductor de longitud l (cm) se mueve en ángulo recto en

un campo magnético de densidad de flujo B (gauss), con una velocidad de v (cm/seg), la fem inducida en el conductor es

Page 13: Magnetismo

donde v es la componente de velocidad normal (perpendicular) relativa, con que es

cortado el flujo. (A un ángulo θ relativo al flujo, la componente normal de la

velocidad es v sen θ.)

Ley de Lenz

Habiendo analizado cómo se produce una f.e.m. inducida en un conductor cuando

se lo somete a la acción de un campo magnético variable, corresponde ahora observar la dirección que toma esta corriente bajo la influencia del campo citado.

Dijimos al referirnos a la figura 2-5B que el sentido de circulación de la corriente

dependía del polo del iman que enfrentaba al solenoide y de la dirección del

movimiento del iman.

Fig. 2-5C Al introducir el iman en el solenoide, en ese extremo se origina un polo magnético de igual sentido que el del iman .

Fig. 2-5D Al retirar el iman del solenoide, en éste se induce un polo magnético contrario al del imán .

Recurramos ahora a la figura 2-5C, donde observamos el mismo esquema anterior,

pero en este caso vamos a considerar que el iman se desplaza hacia el interior del

bobinado. Siendo el polo Norte del iman el que avanza hacia el extremo derecho del

solenoide en este extremo de la bobina se inducirá también un polo Norte. De esta

forma, siendo de un mismo sentido los dos campos magnéticos del iman y del solenoide, se rechazarán.

La dirección de la corriente inducida en la bobina es la indicada por las flechas y el galvanómetro intercalado se desplazará en el sentido indicado.

Si invertimos ahora el movimiento del iman, es decir, si ahora lo retiramos por el

mismo extremo que fue introducido, tal como se aprecia en la Figura 2-5D, dicho

extremo del solenoide dejará de ser polo Norte y se convertirá en polo Sud, pero

ocurre que el extremo introducido del iman permanecerá, como es natural, con su

Page 14: Magnetismo

polaridad Norte. Entonces se registrará una fuerza de atracción entre el polo del

solenoide y el del imán. Como ha variado la polaridad de la bobina, variará también

el sentido de la corriente inducida, que será ahora en sentido contrario tal como indican las flechas. El galvanómetro, por su parte, se desplazará en sentido inverso.

De estas consideraciones deducimos un hecho fundamental: Introduciendo el iman

en el solenoide se induce en este último un polo de igual sentido que el del extremo

del iman, produciendose por lo tanto un efecto de rechazo entre ambos polos

magnéticos. Retirando el iman del solenoide, cambia la polaridad del solenoide y

entonces el mismo extremo del bobinado que antes rechazaba al iman ahora

produce sobre este un efecto de atracción. En otras palabras: introduciendo el imán

en el solenoide se produce una fuerza de repulsión que tiende a evitar esta

aproximación, y retirando el iman se origina entonces otra fuerza opuesta que pugna por evitar que el iman sea retirado.

Estos fenómenos tan interesantes están fijados segun la Ley de Lenz que

establece que: "La corriente inducida en un circuito cerrado posee un sentido tal

que genera a través de su propio circuito un campo magnético que se opone a toda variación del campo magnético principal que la origina".

Este enunciado nos expresa en forma categórica la características propias de toda corriente inducida: la de ofrecer oposición a la causa que la genera.

Esto se explica del siguiente modo: cuando se aproxima el iman, las líneas de

fuerza del mismo cortan mayor número de espiras del solenoide, es decir, que la

cantidad de espiras cortadas por las líneas magnéticas va en aumento y se induce

en el solenoide un polo magnético del mismo sentido que el iman, que por ser del

mismo sentido, se opone a que siga aumentando la cantidad de espiras cortadas por las líneas de fuerza del campo inductor.

Cuando se retira el iman del solenoide, las líneas de fuerza del primero van

cortando menos espiras de la bobina, o sea, que la cantidad de espiras cortadas por

el campo del imán van en disminución, y en este caso cambia el sentido del polo

magnético inducido y el polo opuesto ahora generado en la bobina, tiende a evitar

que continúe disminuyendo el número de espiras cortadas por las líneas de fuerza

del iman.

Mientras el campo magnético inductor no sea variable no se generará ninguna

f.e.m. inducida. Corresponde aclarar pues que: "las corrientes inducidas principian y finalizan con las causas que las originan".

Page 15: Magnetismo

Fig. 2-6, Dirección de la fem inducida (Regla de la mano derecha).

La dirección de una fem inducida puede deducirse de la ley de Lenz, que establece que una corriente producida (en un circuito cerrado) por una fem inducida, circula en dirección tal que su propio campo magnetico se opone a la acción que la produce. Por ejemplo, si un incremento de flujo en una bobina induce una corriente, su dirección será tal que las líneas de su propio campo magnético se oponen a las líneas del campo original que producen esta corriente.

De acuerdo con la ley de Lenz la corriente inducida en un anillo cerrado o en una bobina que se mueve cortando las líneas de flujo magnético, circula en dirección tal que su campo magnético se opone al movimiento.

Para propósitos prácticos, la ley le Lenz puede simplificarse con la regla de la mano derecha (generador) para determinar la dirección de una fem inducida o corriente (convencional) : Extendiendo el dedo pulgar, el índice y el medio, de la mano derecha, en ángulos rectos uno a otro, y haciendo índice = flujo y pulgar = movimiento del conductor, entonces, el dedo central = dirección de la fem o corriente (ver Fig. 2-6) .

Autoinducción

Una variación en la corriente que pasa a través de una bobina produce una

variación en el flujo magético de la bobina; esta variación de flujo, a su vez induce

una fem de autoinducción en la bobina. La fem de autoinducción es proporcional a la velocidad con que varía la corriente, o

donde di/dt es la relación instantánea de variación

(derivada) de la corriente con respecto al tiempo, y

la proporcionalidad constante, L, se denomina

coeficiente de autoinducción o simplemente

inductancia. El signo menos (-) indica que la fem

inducida se opone a la variación de corriente que la

produce ( por eso se llama también fuerza contra-

electromotriz). La fem inducida (contra) se expresa

en volts, si i está en amperes, t en segundos y L en

Henrios. Esto define al coeficiente de autoinducción

(inductancia), L: Una bobina (o circuito) tiene una

inductancia de 1 henrio si se induce una fuerza

contraelectromotriz (fcem) de 1 volt, como resultado

de una variación de corriente de 1 amp/seg (1 henrio

= 103 milihenrios = 106 microhenrios).

La autoinductancia de una bobina o solenoide puede

determinarse igualando las dos expresiones para la

fem inducida

Page 16: Magnetismo

donde N es el número de vueltas y dΦ/di es la variación instantánea (derivada) de

flujo con respecto a la corriente. Si el flujo cambia uniformemente con el aumento

de la corriente y alcanza un valor final Φ cuando la corriente es I , la inductancia de una bobina es

Esto indica que un circuito tiene una inductancia de 1 henrio si produce un encadenamiento de flujo de 108 (NF) por amper de corriente en el mismo.

Inductancia de un solenoide. Sustituyendo F = µHA, y H= 4πNI/10l , para el

campo del solenoide en la fórmula anterior, la inductancia de un solenoide es,

donde N = N° de vueltas, A = sección del núcleo, µ = permeabilidad del núcleo, y l

= longitud del núcleo.

Inductancia de bobinas con núcleo de aire. Para bobinas con núcleo de aire, las

siguientes fórmulas prácticas dan una aproximación del 2 %.

donde

r = radio medio de la bobina en cm l = longitud de la bobina en cm N = número total de espiras. b = espesor del bobinado en cm (solamente para bobinas de varias capas)

Constante de tiempo ínductiva. Dado que una inductancia se opone a cualquier

variación de la corriente que la recorre, la corriente de un circuito inductivo está

atrasada respecto al voltaje impreso. El tiempo necesario para que la corriente en

un circuito inluctívo alcance el 63,2 % de su valor final (E/R) se llama constante de tiempo inductiva (CT) y está dada por:

constante de tiempo inductiva, CT = L/R

Page 17: Magnetismo

donde CT es en segundos, L es la inductancia en henrios, y R es la resistencia (en

ohms) del circuito (incluyendo la bobina). En dos constantes de tiempo (CT = 2L/R)

la corriente alcanza el 86,5 % de su valor final, y en tres constantes de tiempo (CT = 3L/R) alcanza el 95 % de este valor.

Energía almacenada en el campo magnético. La energía acumulada en el campo magnético de una bobina o circuito inductivo es

W = 1/2 L I2 joules

donde L = inductancia en henrios, e I = corriente en amperes.

Inductancias en serie . La autoinductancia (L) de un número de bobinas, o

inductores, conectados en serie, pero no acoplados mutuamente es: L = L1 + L2 + L3 + . . . (henrios)

Inductancias en paralelo. La autoinductancia (L) de un número de bobinas en paralelo, pero no acopladas mutuamente, está dada por:

La autoinductancia de dos bobinas (L1 y L2) conectadas en paralelo, pero sin acoplamiento mutuo es

Inductancia mutua

Si una bobina primaria y secundaria se colocan cerca (ver Fig. 2-8) y la corriente de

la bobina es variable, la bobina secundaria estará rodeada por el flujo variable de la primaria, induciéndose una fem en ella.

Fig. 2-8. Inductancia mutua entre dos bobinas.

(Esta fem de inductancia mutua se suma a la fem de autoinducción inducida en la

bobina primaria por el mismo flujo variable.) La fem (E2) inducida en la bobina

secundaria o circuito, es proporcional a la velocidad de variación (derivada) de la corriente primaria (i1) , o

Page 18: Magnetismo

donde la constante de proporcionalidad, M, se denomina coeficiente de inducción

mutua, o simplemente inductancia mutua. Si la inductancia mutua (M) está dada

en henrios, i, en amperes y t en segundos, la fem inducida (E2) , estará expresada

en volts. Dos bobinas tienen una inductancia mutua de 1 henrio cuando una

variación de corriente de 1 amp/seg en una bobina produce una fem de 1 volt, inducido en la otra bobina.

Coeficiente de acoplamiento

Cuando dos bobinas están acopladas inductivamente colocándolas

cercanas una de otra, la relación entre sus inductancias mutuas, M y sus inductancias individuales, L1 y L2 es

donde k es el coeficiente de acoplamiento y tiene un valor entre

cero y uno - (k es 1 si todo el flujo producido por la corriente en una bobina se encadena a las espiras de la otra bobina) .

Bobinas acopladas en serie. Si dos bobinas acopladas mutuamente

se conectan en serie con sus campos sumándose mutuamente

(serie aditiva) (ver Fig. 2-9 A), la inductancia total es

L = L1 + L2 + 2M (henrios)

donde M es la inductancia mutua, y L1 y L2 , son las inductancias de las bobinas

individuales. Si las bobinas se conectan en serie, y

Fig. 2-9. Conexión de bohinas acopladas: A) en serie aditiva: B) en serie sustractiva.

sus campos se oponen mutuamente (ver Fig. 2-9 M) , la inductancia total está dada

por

L = L1 + L2 - 2M (henrios)

Estas fórmulas pueden ser usadas para determinar la inductancia mutua (M)

conectando primero las bobinas en serie aditiva y luego en serie sustractiva. Entonces,

Page 19: Magnetismo

donde La es la inductancia total de las bobinas en serie aditiva y Lb, es la

inductancia total de las bobinas en serie sustractiva.

Bobinas acopladas en Paralelo. La inductancia total (L) de dos bobinas acopladas, conectadas en paralelo, con sus campos que se suman, es

donde L1; L2 ; y M corresponden a las definiciones anteriores (en henrios) . La

inductancia total de dos bobinas acopladas, conectadas en paralelo, con sus campos en oposición, está dada por

Transformadores

El transformador , el autotransformador , núcleos , laminados , pérdidas.

Un transformador consiste en una bobina primaria y otra secundaria devanadas

sobre un mismo núcleo de hierro, y se usa para elevar o para reducir el voltaje de

corriente alternada . Una corriente alternada circulando por el primario crea una

variación continua de flujo en el núcleo, que induce una fem alternada en la bobina

secundaria. Para un transformador ideal (uno que no tenga pérdidas ni escapes de

flujo fuera de las bobinas) la relación entre los voltajes primario y secundario, E1 y

E2, entre las corrientes primarias. y secundarias I1 e I2 , y el número de espiras en

las bobinas primarias y secundarias, N1 y N2 , está dada por

La eficiencia de los transformadores prácticos es generalmente muy alta y se aproxima a las relaciones ideales establecidas anteriormente.

PROBLEMA 18. El voltaje inducido en uno de dos circuitos acoplados es 20 volts

cuando la corriente en el otro varía a una velocidad de 4 amps/seg. ¿Cuál es la inductancia mutua?

Page 20: Magnetismo

PROBLEMA 21. Un transformador reductor con un bobinado primario de 174.000

espiras y un bobinado secundario de 1000 espiras, opera desde una línea de alta

tensión de 40.000 volts y alimenta una carga de 60 amperes. Determinar el voltaje

secundario, la corriente primaria y la potencia de salida del transformador. Suponiendo una eficiencia del 100 %.

SOLUCIóN.

potencia de salida = E2 I2 = 230 volts X 60 amps = 13.800 watts = 13,8 kw

(Indudablemente ésta es igual a la potencia de entrada = 40.000 volts x 0,345 amp

= 13.800 watts.)

Page 21: Magnetismo

Potencia eléctrica

La energía eléctrica se transmite por líneas sobre torres, como estas en Brisbane,

Australia.

La potencia eléctrica es la relación de paso de energía de un flujo por unidad de

tiempo; es decir, la cantidad de energía entregada o absorbida por un elemento en un

tiempo determinado. La unidad en el Sistema Internacional de Unidades es el vatio

(watt).

Cuando una corriente eléctrica fluye en cualquier circuito, puede transferir energía al

hacer un trabajo mecánico o termodinámico. Los dispositivos convierten la energía

eléctrica de muchas maneras útiles, como calor, luz (lámpara incandescente),

movimiento (motor eléctrico), sonido (altavoz) o procesos químicos. La electricidad se

puede producir mecánica o químicamente por la generación de energía eléctrica, o

también por la transformación de la luz en las células fotoeléctricas. Por último, se

puede almacenar químicamente en baterías.

La energía consumida por un dispositivo eléctrico se mide en vatios-hora (Wh), o en

kilovatios-hora (kWh). Normalmente las empresas que suministran energía eléctrica a la

industria y los hogares, en lugar de facturar el consumo en vatios-hora, lo hacen en

kilovatios-hora (kWh). La potencia en vatios (W) o kilovatios (kW) de todos los

aparatos eléctricos debe figurar junto con la tensión de alimentación en una placa

metálica ubicada, generalmente, en la parte trasera de dichos equipos. En los motores,

esa placa se halla colocada en uno de sus costados y en el caso de las bombillas de

alumbrado el dato viene impreso en el cristal o en su base.

Índice

1 Potencia en corriente continua

2 Potencia en corriente alterna

Page 22: Magnetismo

o 2.1 Componentes de la intensidad

o 2.2 Potencia aparente

o 2.3 Potencia activa

o 2.4 Potencia Reactiva Inductiva

o 2.5 Potencia Reactiva Capacitiva

o 2.6 Potencia de cargas reactivas é in-reactivas

3 Potencia trifásica

4 Véase también

5 Enlaces externos

Potencia en corriente continua

Cuando se trata de corriente continua (CC) la potencia eléctrica desarrollada en un

cierto instante por un dispositivo de dos terminales, es el producto de la diferencia de

potencial entre dichos terminales y la intensidad de corriente que pasa a través del

dispositivo. Por esta razón la potencia es proporcional a la corriente y a la tensión. Esto

es,

(1)

donde I es el valor instantáneo de la intensidad de corriente y V es el valor instantáneo

del voltaje. Si I se expresa en amperios y V en voltios, P estará expresada en watts

(vatios). Igual definición se aplica cuando se consideran valores promedio para I, V y P.

Cuando el dispositivo es una resistencia de valor R o se puede calcular la resistencia

equivalente del dispositivo, la potencia también puede calcularse como,

(2)

recordando que a mayor corriente, menor voltaje.

Potencia en corriente alterna

Cuando se trata de corriente alterna (AC) sinusoidal, el promedio de potencia eléctrica

desarrollada por un dispositivo de dos terminales es una función de los valores eficaces

o valores cuadráticos medios, de la diferencia de potencial entre los terminales y de la

intensidad de corriente que pasa a través del dispositivo.

Si a un circuito se aplica una tensión sinusoidal con velocidad angular y valor de

pico de forma

Esto provocará, en el caso de un circuito de carácter inductivo (caso más común), una

corriente desfasada un ángulo respecto de la tensión aplicada:

Page 23: Magnetismo

Donde, para el caso puramente resistivo, se puede tomar el ángulo de desfase como

cero.

La potencia instantánea vendrá dada como el producto de las expresiones anteriores:

Mediante trigonometría, la expresión anterior puede transformarse en la siguiente:

Y sustituyendo los valores del pico por los eficaces:

Se obtiene así para la potencia un valor constante, y otro variable con el

tiempo, . Al primer valor se le denomina potencia activa y al

segundo potencia fluctuante.

Componentes de la intensidad

Figura 1.- Componentes activa y reactiva de la intensidad; supuestos inductivo,

izquierda y capacitivo, derecha.

Consideremos un circuito de C. A. en el que la corriente y la tensión tienen un desfase

φ. Se define componente activa de la intensidad, Ia, a la componente de ésta que está en

fase con la tensión, y componente reactiva, Ir, a la que está en cuadratura con ella (véase

Figura 1). Sus valores son:

El producto de la intensidad, I, y las de sus componentes activa, Ia, y reactiva, Ir, por la

tensión, V, da como resultado las potencias aparente (S), activa (P) y reactiva (Q),

respectivamente:

Page 24: Magnetismo

Potencia aparente

Figura 2.- Relación entre potencia activa, aparente y reactiva.

La potencia compleja de un circuito eléctrico de corriente alterna (cuya magnitud se

conoce como potencia aparente y se identifica con la letra S), es la suma (vectorial) de

la potencia que disipa dicho circuito y se transforma en calor o trabajo (conocida como

potencia promedio, activa o real, que se designa con la letra P y se mide en vatios

(W)) y la potencia utilizada para la formación de los campos eléctrico y magnético de

sus componentes, que fluctuará entre estos componentes y la fuente de energía

(conocida como potencia reactiva, que se identifica con la letra Q y se mide en

voltiamperios reactivos (var)). Esto significa que la potencia aparente representa la

potencia total desarrollada en un circuito con impedancia Z. La relación entre todas las

potencias aludidas es .

Esta potencia aparente (S) no es realmente la "útil", salvo cuando el factor de potencia

es la unidad (cos φ=1), y señala que la red de alimentación de un circuito no sólo ha de

satisfacer la energía consumida por los elementos resistivos, sino que también ha de

contarse con la que van a "almacenar" las bobinas y condensadores. Se mide en

voltiamperios (VA), aunque para aludir a grandes cantidades de potencia aparente lo

más frecuente es utilizar como unidad de medida el kilovoltiamperio (kVA).

La fórmula de la potencia aparente es:

Potencia activa

Es la potencia capaz de transformar la energía eléctrica en trabajo. Los diferentes

dispositivos eléctricos existentes convierten la energía eléctrica en otras formas de

energía tales como: mecánica, lumínica, térmica, química, etc. Esta potencia es, por lo

tanto, la realmente consumida por los circuitos y, en consecuencia, cuando se habla de

demanda eléctrica, es esta potencia la que se utiliza para determinar dicha demanda.

Page 25: Magnetismo

Se designa con la letra P y se mide en vatios -watt- (W) o kilovatios -kilowatt- (kW).

De acuerdo con su expresión, la ley de Ohm y el triángulo de impedancias:

Resultado que indica que la potencia activa se debe a los elementos resistivos.

Potencia Reactiva Inductiva

Esta potencia no se consume ni se genera en el sentido estricto (el uso de los términos

"potencia reactiva generada" y/o "potencia reactiva consumida" es una convención) y en

circuitos lineales solo aparece cuando existen bobinas o condensadores. Por ende, es

toda aquella potencia desarrollada en circuitos inductivos. Considérese el caso ideal de

que un circuito pasivo contenga exclusivamente, un elemento inductivo (R = 0; Xc = 0

y Xl = o) al cual se aplica una tensión senoidal de la forma u(t) = Umáx * sen w*t. En

dicho caso ideal se supone a la bobina como carente de resistencia y capacidad, de

modo que sólo opondrá su reactancia inductiva a las variaciones de la intensidad del

circuito. En dicha condición, al aplicar una tensión alterna a la bobina la onda de la

intensidad de corriente correspondiente resultará con el máximo angulo de desfasaje

(90º). La onda representativa de dicho circuito es senoidal, de frecuencia doble a la de

red, con su eje de simetría coincidiendo con el de abscisas, y por ende con alternancias

que encierran áreas positivas y negativas de idéntico valor. La suma algebraica de

dichas sumas positivas y negativas da una potencia resultante nula, fenómeno que se

explica conceptualmente considerando que durante las alternancias positivas el circuito

toma energía de la red para crear el campo magnético en la bobina; mientras en las

alternancias negativas el circuito la devuelve, y a dicha devolución se debe la

desaparición temporaria del campo magnético. Esta energía que va y vuelve de la red

constantemente no produce trabajo y recibe el nombre de "energía oscilante",

correspondiendo a la potencia que varía entre cero y el valor (Umáx*Imáx)/2 tanto en

sentido positivo como en negativo.

Por dicha razón, para la condición indicada resulta que P = 0 y por existir como único

factor de oposición la reactancia inductiva de la bobina, la intensidad eficaz del circuito

vale:

El desfasaje angular de la corriente (I) respecto de la tensión (U) es de 90º, tal como se

puede apreciar en este diagrama de un circuito inductivo puro. Nótese como la sinusoide

correspondiente a la Potencia (P = U*I) es positiva en las partes en que tanto I como U

son positivas o negativas, y cómo es negativa en las partes en que ya sea U o I es

positiva y la otra negativa.

Page 26: Magnetismo

En circuitos inductivos puros, pese a que no existe potencia activa alguna igual se

manifiesta la denominada "Potencia reactiva" de carácter inductivo que vale:

L = U/Xl = U/(2*π*f*L)

Siendo φ = 90º (Dado que la corriente atrasa con respecto de la tensión)

Ql = I²*Xl

La potencia reactiva tiene un valor medio nulo, por lo que no produce trabajo y se dice

que es una potencia desvatada (no produce vatios), se mide en voltiamperios reactivos

(var) y se designa con la letra Q.

A partir de su expresión,

Lo que reafirma en que esta potencia se debe únicamente a los elementos reactivos.

Potencia Reactiva Capacitiva

Es toda aquella potencia desarrollada en un circuito capacitivo. Considerando el caso

ideal de que un circuito pasivo contenga unicamente un capacitor (R = 0; Xl = 0; Xc =

0) al que se aplica una tensión senoidal de la forma U(t) = Umáx*sen w*t, la onda

correspondiente a la corriente I, que permanentemente carga y descarga al capacitor

resultará 90º adelantada en relación a la onda de tensión aplicada. Por dicha razón

también en este caso el valor de la potencia posee como curva representativa a una onda

senoidal de valor oscilante entre los valores cero y (Umáx*Imáx)/2 en sentido positivo y

negativo.

Las alternancias de dicha onda encierran áreas positivas correspondientes a los períodos

en que las placas del capacitor reciben la carga de la red; significando los períodos

negativos el momento de descarga del capacitor, que es cuando se devuelve a la red la

totalidad de la energía recibida. En esta potencia también la suma algebraica de las áreas

positivas y negativas es nula dado que dicha áreas son de igual y opuesto valor. La

potencia activa vale cero, y por existir como único factor de oposición la reactancia

capacitiva del circuito la intensidad eficaz que recorre al mismo vale:

I = U/Xc = U*2Π*f*C

Siendo φ = 90º (La tensión atrasa respecto de la corriente)

Page 27: Magnetismo

Diagrama de un circuito puramente capacitivo en el cual la tensión atrasa 90º respecto

de la corriente.

En los circuitos capacitivos puros no existe potencia activa, pero si existe la potencia

reactiva de carácter capacitivo que vale:

Qc = I²*Xc

Potencia de cargas reactivas é in-reactivas

Para calcular la potencia de algunos tipos de equipos que trabajan con corriente alterna,

es necesario tener en cuenta también el valor del factor de potencia o coseno de phi

( ) que poseen. En ese caso se encuentran los equipos que trabajan con carga

reactiva o inductiva, es decir, aquellos aparatos que para funcionar utilizan una o más

bobinas o enrollado de alambre de cobre, como ocurre, por ejemplo, con los motores

eléctricos, o también con los aparatos de aire acondicionado o los tubos fluorescentes.

Las cargas reactivas o inductivas, que poseen los motores eléctricos, tienen un factor de

potencia menor que “1” (generalmente su valor varía entre 0,85 y 0,98), por lo cual la

eficiencia de trabajo del equipo en cuestión y de la red de suministro eléctrico

disminuye cuando el factor se aleja mucho de la unidad, traduciéndose en un mayor

gasto de energía y en un mayor desembolso económico.

Potencia trifásica

La representación matemática de la potencia activa en un sistema trifásico equilibrado

(las tres tensiones de fase tienen idéntico valor y las tres intensidades de fase también

coinciden) está dada por la ecuación:

Siendo la intensidad de línea y la tensión de línea (no deben emplearse para esta

ecuación los valores de fase). Para reactiva y aparente: