48
1 SOFT 2006 Warsaw M. Kaufmann Supported by H. Bolt, R. Dux, A. Kallenbach and R. Neu gsten as First Wall Material in Fusion Devi

M. Kaufmann Supported by H. Bolt, R. Dux, A. Kallenbach and R. Neu

  • Upload
    sherri

  • View
    24

  • Download
    0

Embed Size (px)

DESCRIPTION

Tungsten as First Wall Material in Fusion Devices. M. Kaufmann Supported by H. Bolt, R. Dux, A. Kallenbach and R. Neu. Tungsten as First Wall Material in Fusion Devices. Introduction Plasma Wall Interaction with Tungsten Edge and Core Transport Technological Developments Summary. - PowerPoint PPT Presentation

Citation preview

Page 1: M. Kaufmann Supported by  H. Bolt, R. Dux, A. Kallenbach  and  R. Neu

1SOFT 2006 Warsaw

M. KaufmannSupported by H. Bolt, R. Dux, A. Kallenbach and R. Neu

Tungsten as First Wall Material in Fusion Devices

Page 2: M. Kaufmann Supported by  H. Bolt, R. Dux, A. Kallenbach  and  R. Neu

2SOFT 2006 Warsaw

Tungsten as First Wall Material in Fusion Devices

1. Introduction2. Plasma Wall Interaction with Tungsten3. Edge and Core Transport4. Technological Developments5. Summary

Page 3: M. Kaufmann Supported by  H. Bolt, R. Dux, A. Kallenbach  and  R. Neu

3SOFT 2006 Warsaw

Introduction: PLT with tungsten limiter (1975)

Consequence of accumulation and central radiation!Since then most tokamaks and stellarators have used graphite as first wall material.

V. Arunasalam et al., Proc. 8th Conf. EPS, Prague 1977

Page 4: M. Kaufmann Supported by  H. Bolt, R. Dux, A. Kallenbach  and  R. Neu

4SOFT 2006 Warsaw

Tokamaks with High-Z-surfaces

Limiter tokamaks:• FTU (ENEA)• Textor (FZJ)

Divertor tokamaks: • Alcator C-Mod (MIT)• ASDEX Upgrade (IPP)• future: JET• ITER

M.L. Apicella et al., Nucl. Fusion 37

A. Pospieszczyk et al., J. Nucl. Mater. 290-293

B. Lipschultz et al., Nucl. Fusion 41

R. Neu et al., Plasma Phys. Control. Fusion 38

J. Pamela, this conference

G. Janeschitz,J. Nucl. Mat. 290-293

myk
low erosion
Page 5: M. Kaufmann Supported by  H. Bolt, R. Dux, A. Kallenbach  and  R. Neu

5SOFT 2006 Warsaw

FTU (ENEA Frascati)

until 1994:poloidal limiter(steel, TZM, W)

now:toroidal limiter TZM

M.L. Apicella, et al., J. Nucl. Mater. 313-316

Page 6: M. Kaufmann Supported by  H. Bolt, R. Dux, A. Kallenbach  and  R. Neu

6SOFT 2006 Warsaw

Alcator C-Mod (MIT)

Divertor configuration witha complete set of Mo-tiles

B. Lipschultz et al., Phys. Plasmas 13

Page 7: M. Kaufmann Supported by  H. Bolt, R. Dux, A. Kallenbach  and  R. Neu

7SOFT 2006 Warsaw

ASDEX Upgrade (IPP Garching)

Stepwise approach: remaining parts will be covered with tungsten in the 2007 campaign!R. Neu et al., Nucl. Fusion 45

myk
Open divertor, closed divertor.You see here the dark part in the divertror.Stepwise approach has many advantages!
Page 8: M. Kaufmann Supported by  H. Bolt, R. Dux, A. Kallenbach  and  R. Neu

8SOFT 2006 Warsaw

Graphite versus Tungstenpositive negative

graphite: low central radiation high erosion radiation in boundary tritium co-deposition forgives overload destruction by neutrons

tungsten: low erosion high central radiation low tritium co-deposition accumulation in centre resistant to neutrons critical with overload radioactive, however, short decay time

Page 9: M. Kaufmann Supported by  H. Bolt, R. Dux, A. Kallenbach  and  R. Neu

9SOFT 2006 Warsaw

Graphite versus Tungstentungsten: low erosion high central radiation low tritium co-deposition accumulation in centre resistant to neutrons critical with overload

Test in linear machines of limited relevance!

myk
Because of the inclined flux
Page 10: M. Kaufmann Supported by  H. Bolt, R. Dux, A. Kallenbach  and  R. Neu

10SOFT 2006 Warsaw

Graphite versus Tungstenpositive negative

graphite: low central radiation high erosion radiation in boundary tritium co-deposition forgives overload destruction by neutrons

tungsten: low erosion high central radiation no tritium co-deposition accumulation in centre resistant to neutrons critical with overload

JET/ITER-generation

Page 11: M. Kaufmann Supported by  H. Bolt, R. Dux, A. Kallenbach  and  R. Neu

11SOFT 2006 Warsaw

Graphite versus Tungstenpositive negative

graphite: low central radiation high erosion radiation in boundary tritium co-deposition forgives overload destruction by neutrons

tungsten: low erosion high central radiation no tritium co-deposition accumulation in centre resistant to neutrons critical with overload

DEMO-generation

Page 12: M. Kaufmann Supported by  H. Bolt, R. Dux, A. Kallenbach  and  R. Neu

12SOFT 2006 Warsaw

Tungsten: Erosion versus Radiation

W-erosion much lower than graphite!

(R.T)

Cchem (800K)

Page 13: M. Kaufmann Supported by  H. Bolt, R. Dux, A. Kallenbach  and  R. Neu

13SOFT 2006 Warsaw

Tungsten: Erosion versus Radiation

But central W-radiation much higher!

LZ

0

Page 14: M. Kaufmann Supported by  H. Bolt, R. Dux, A. Kallenbach  and  R. Neu

14SOFT 2006 Warsaw

Ignition Condition: Tungsten vs. Carbon

Page 15: M. Kaufmann Supported by  H. Bolt, R. Dux, A. Kallenbach  and  R. Neu

15SOFT 2006 Warsaw

Gain Experience: Diagnostic

W-lines at low temperature to determine influx (Textor)

394 396 398 400 402 404 406 408 410

0

100020003000400050006000700080009000

10000

OII

(407

.587

nm

)

OII

(407

.216

nm

)

CaI

I(39

6.84

7nm

)

OII

(409

.725

nm

)

OII

(395

.437

nm

)

OII

(397

.326

nm

)

WI(

407.

436n

m)

#98038

WI(

400.

875n

m)

wavelength / nm

G. Sergienko,A. Pospieszczyk et al.

W-lines at high temperature to determine core concentration (AUG)

graphite: extensive experience tungsten: limited experience

A. Thoma et al., Plasma Phys. Control. Fusion 39

A. Pospieszczyk et al., to be published

Page 16: M. Kaufmann Supported by  H. Bolt, R. Dux, A. Kallenbach  and  R. Neu

16SOFT 2006 Warsaw

Tungsten as First Wall Material in Fusion Devices

1. Introduction2. Plasma Wall Interaction with Tungsten3. Edge and Core Transport4. Technological Developments5. Summary

Page 17: M. Kaufmann Supported by  H. Bolt, R. Dux, A. Kallenbach  and  R. Neu

17SOFT 2006 Warsaw

Plasma Wall Interaction

Low erosion + no formation like hydro-carbons low hydrogen retention (0.1 …1% instead of 40…100%)

W: high mass, low velocity of eroded particles ionization length << gyro radius 90% prompt redeposition

W C

D. Naujoks et al., Nucl. Fusion 36

R. Causey, J. Nucl. Mater. 300J. Roth, M. Mayer, J. Nucl. Mater. 313-316

Page 18: M. Kaufmann Supported by  H. Bolt, R. Dux, A. Kallenbach  and  R. Neu

18SOFT 2006 Warsaw

Erosion on Target Plates/Limiter

V. Philipps et al., PPCF 42

Page 19: M. Kaufmann Supported by  H. Bolt, R. Dux, A. Kallenbach  and  R. Neu

19SOFT 2006 Warsaw

Typical ITER reference H-mode pressure profile forms steep edge pedestal:

Sources for W-Erosion: ELMs

ELMs produce main chamber erosion and target plate erosion.In both cases sputtering by low Z-components dominant.

Pedestal breaks down during ELMs!

n

r

A. Herrmann et al., accepted for publ. in J. Nucl. Mater

Page 20: M. Kaufmann Supported by  H. Bolt, R. Dux, A. Kallenbach  and  R. Neu

20SOFT 2006 Warsaw

Sources for W-Erosion: NBI

Fast particles losses from neutral beam injection can be identified as a tungsten source on limiters.

Increase during ELMs.

3+8

Quantitative agreement with calculations Extrapolation to ITER: no problem! R.Dux, to be published

R. Dux et al., accepted for publ. in J. Nucl. Mater

Page 21: M. Kaufmann Supported by  H. Bolt, R. Dux, A. Kallenbach  and  R. Neu

21SOFT 2006 Warsaw

Sources for W-Erosion: ICRH

Localized boronization by ECRH helps to identify zone of Mo-erosion.

Alcator C-Mod:

In ICRH heated plasmas without boronization: high radiation by molybdenum.Strongly reduced by boronization.

However, effect lasts only for 10s total pulse duration.

B. Lipschultz et al., Phys. Plasmas 13

Page 22: M. Kaufmann Supported by  H. Bolt, R. Dux, A. Kallenbach  and  R. Neu

22SOFT 2006 Warsaw

Sources for W-Erosion: ICRH

- small zone on top of divertor responsible for Mo-erosion.- field lines map back to antenna.- sheath potential 100-400eV

Conclusions:

Page 23: M. Kaufmann Supported by  H. Bolt, R. Dux, A. Kallenbach  and  R. Neu

23SOFT 2006 Warsaw

Sources for W-Erosion: ICRH

Can one reduce the sheath potential?

Lots of open questions!

Faraday screen parallel to field lines: small effect

Is tungsten ITER/reactor compatible?ICRH reactor compatible?

Vl.V. Bobkov et al., accepted for publ. in J. Nucl.

Page 24: M. Kaufmann Supported by  H. Bolt, R. Dux, A. Kallenbach  and  R. Neu

24SOFT 2006 Warsaw

Replacement of Carbon as Radiator

Carbon radiates in the plasma boundary.

It reduces therefore the load to the target plates considerably.

It is highly self-regulating!

Replacement by a noble gas such as Argon or Neon seems necessary: Robust feed back method is needed!

controlled argon seeding

Control by thermo currents through divertor plates:

A. Kallenbach et al., J. Nucl. Mater. 337-339

Page 25: M. Kaufmann Supported by  H. Bolt, R. Dux, A. Kallenbach  and  R. Neu

25SOFT 2006 Warsaw

Tungsten as First Wall Material in Fusion Devices

1. Introduction2. Plasma Wall Interaction with Tungsten3. Edge and Core Transport4. Technological Developments5. Summary

Page 26: M. Kaufmann Supported by  H. Bolt, R. Dux, A. Kallenbach  and  R. Neu

26SOFT 2006 Warsaw

Neoclassical Transport

Neoclassical transport by Coulomb collisions including drift motion leads to two fluxes.

Strong peaking of tungsten concentration in case of peaked density profiles ( small) is expected.nL

)/1)5.0...25.0(/1( TnD LLDZv

diffusion:

inward drift:

2/1 ZD

myk
Decay length
Page 27: M. Kaufmann Supported by  H. Bolt, R. Dux, A. Kallenbach  and  R. Neu

27SOFT 2006 Warsaw

Transport in the H-Mode Pedestal

Steep density profile strong inward drift!

n

r

ELMs wash tungsten out!

High ELM frequency is required anyhow to reduce load to target plates!

P. Lang et al., Nucl. Fusion 45

Page 28: M. Kaufmann Supported by  H. Bolt, R. Dux, A. Kallenbach  and  R. Neu

28SOFT 2006 Warsaw

Influence of Anomalous Transport

A peaked density profile without strong anomalous transport leads to strong tungsten accumulation.

Central heating overcompensates neoclassical inward drift by anomalous transport!

A. Kallenbach et al., Plasma Phys. Control. Fusion 47

Page 29: M. Kaufmann Supported by  H. Bolt, R. Dux, A. Kallenbach  and  R. Neu

29SOFT 2006 Warsaw

Influence of Anomalous Transport

Anomalous transport induced by central heating can easily overcompensate neoclassical inward drift :

Recent theoretical work: no turbulent transport mechanisms for strong high Z-ions inward drift!

In summary, one expects with a high probability no peaked W concentration profiles in a burning device!

ZvZD D /1/1 2

C. Angioni, A.G. Peeters, Phys. Rev. Let. 96

Page 30: M. Kaufmann Supported by  H. Bolt, R. Dux, A. Kallenbach  and  R. Neu

30SOFT 2006 Warsaw

W-concentration

W-concentration strongly depending on discharge conditions!

Erosion and transport determine concentration.

AUG

myk
boronization
Page 31: M. Kaufmann Supported by  H. Bolt, R. Dux, A. Kallenbach  and  R. Neu

31SOFT 2006 Warsaw

Tungsten as First Wall Material in Fusion Devices

1. Introduction2. Plasma Wall Interaction with Tungsten3. Edge and Core Transport4. Technological Developments

Tungsten Coatings Massive Tungsten

5. Summary

Page 32: M. Kaufmann Supported by  H. Bolt, R. Dux, A. Kallenbach  and  R. Neu

32SOFT 2006 Warsaw

W-Coatings on Graphite

In present day devices with low particle fluencies W-coating on graphite is used - because of lower eddy and halo currents. - because of lower weight.

Different techniques are available, e.g.:- physical vapor deposition (PVD)- chemical vapor deposition (CVD)- plasma spray (PS)

H. Maier et al., accepted for publ. in J. Nucl. Mater.

Page 33: M. Kaufmann Supported by  H. Bolt, R. Dux, A. Kallenbach  and  R. Neu

33SOFT 2006 Warsaw

W-Coatings on Graphite: JET

In JET the ‘ITER like wall project’ is under preparation.

The first wall will be partly covered with tungsten.

green: Bered: W-Coatingblue: massive W (probably)

highly loaded areas: 200µ sheath by PSothers: PVD

Highly loaded areas can be later replaced by uncoated graphite!

Page 34: M. Kaufmann Supported by  H. Bolt, R. Dux, A. Kallenbach  and  R. Neu

34SOFT 2006 Warsaw

Massive W-Structures: JET

High particle fluencies (ITER, DEMO): massive W-structures are necessary.

They are ‘castellated’ - because of eddy currents (JET)- because of different thermal expansion (ITER, DEMO).

FZJ

Page 35: M. Kaufmann Supported by  H. Bolt, R. Dux, A. Kallenbach  and  R. Neu

35SOFT 2006 Warsaw

The ITER reference design

test at FZJ

Page 36: M. Kaufmann Supported by  H. Bolt, R. Dux, A. Kallenbach  and  R. Neu

36SOFT 2006 Warsaw

DEMOpositive negative

graphite: low central radiation high erosion radiation in boundary tritium co-deposition forgives overload destruction by neutrons

tungsten: low erosion high central radiation no tritium co-deposition accumulation in centre resistant to neutrons critical with overload

DEMO-generation

Is ITER DEMO-relevant?Can the first wall be exchanged?

Page 37: M. Kaufmann Supported by  H. Bolt, R. Dux, A. Kallenbach  and  R. Neu

37SOFT 2006 Warsaw

Developments for DEMODuctile to brittle transitiontemperature (DBTT) high.Problem e.g. in W-steel-connections

He-cooled divertor (FZK):

Nuclear loads increase DBTT. Development of W-alloys can reduce that problem.

Page 38: M. Kaufmann Supported by  H. Bolt, R. Dux, A. Kallenbach  and  R. Neu

38SOFT 2006 Warsaw

Developments for DEMO

Surfaces with reduced load:

A few mm tungsten sheets on EUROFER by PS or CVD

IPP, Petten. FZJ

Page 39: M. Kaufmann Supported by  H. Bolt, R. Dux, A. Kallenbach  and  R. Neu

39SOFT 2006 Warsaw

DEMO: Safety Issues

SEIF Study, EFDA-S-RF-1, April 2001

Loss of coolant and intense air ingress:formation of radioactive WO3-compounds with high evaporation rate which can leave hot vessel.

Tungsten:

WSi0.82Cr0.

45:

Oxidation rate (mg cm-2 s-1)

WSi0.82:

6 0 0 ° C

8 0 0 ° C

1 0 0 0 ° C

6 0 0 ° C

8 0 0 ° C

1 0 0 0 ° C

6 0 0 ° C

8 0 0 ° C

1 0 0 0 ° C

1 0

- 7

1 0

- 6

1 0

- 5

1 0

- 4

1 0

- 3

1 0

- 2

1 0

- 1

F. Koch, H. Bolt, subm. to Physica Scripta

Page 40: M. Kaufmann Supported by  H. Bolt, R. Dux, A. Kallenbach  and  R. Neu

40SOFT 2006 Warsaw

Summary

In a fusion reactor, low-Z as a first wall material (graphite, Be) will have to be replaced by tungsten. So far, plasma experiments have demonstrated that in most scenarios the tungsten erosion of the surfaces and its concentration in the central plasma can be kept sufficiently low. In certain scenarios with high edge temperatures this may, however, not be the case. In addition, the high erosion in the neighbourhood of an ICRH antenna needs particular attention. As an intermediate solution, the coating of graphite with tungsten is an available technology. Technological solutions for the highly loaded divertor targets in a fusion reactor are under development. The relatively high ductile to brittle transition temperature, however, poses specific problems.

Page 41: M. Kaufmann Supported by  H. Bolt, R. Dux, A. Kallenbach  and  R. Neu

41SOFT 2006 Warsaw

Summary

Altogether tungsten as the first wall material looks promising.

However, several open questions still remain to be solved.

Page 42: M. Kaufmann Supported by  H. Bolt, R. Dux, A. Kallenbach  and  R. Neu

42SOFT 2006 Warsaw

Reserve

Page 43: M. Kaufmann Supported by  H. Bolt, R. Dux, A. Kallenbach  and  R. Neu

43SOFT 2006 Warsaw

Sources for W-Erosion: ELMs

Erosion on target plates:

Page 44: M. Kaufmann Supported by  H. Bolt, R. Dux, A. Kallenbach  and  R. Neu

44SOFT 2006 Warsaw

Sources for W-Erosion: ICRH

ASDEX Upgrade: Localized measurement on ICRH-antenna

Fast (< 1ms) and localized increase increase due to sheath rectified E-fields

Page 45: M. Kaufmann Supported by  H. Bolt, R. Dux, A. Kallenbach  and  R. Neu

45SOFT 2006 Warsaw

Transport in the H-Mode Pedestal

Argon seeding has to be well controlled!

Page 46: M. Kaufmann Supported by  H. Bolt, R. Dux, A. Kallenbach  and  R. Neu

46SOFT 2006 Warsaw

Tungsten has 200 times larger conductivity than graphite,therefore eddy and halo currents larger.

Tungsten has 8.5 times larger mass density than graphite.

In case of low particle fluencies often W-coating on graphite are used.

Different techniques are available, e.g.:- physical vapor deposition (PVD)- chemical vapor deposition (CVD)- plasma spray (PS)

Page 47: M. Kaufmann Supported by  H. Bolt, R. Dux, A. Kallenbach  and  R. Neu

47SOFT 2006 Warsaw

Plasma Wall Interaction

Blistering:

Page 48: M. Kaufmann Supported by  H. Bolt, R. Dux, A. Kallenbach  and  R. Neu

48SOFT 2006 Warsaw