153
SDMSDocID 2027682

Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

SDMSDocID 2027682

Page 2: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

Environmental Consultants

SCS ENGINEERS

August 30,2000File No. 10.199007.01

2702 North 44* StreetSuite 105BPhoenix, AZ 85008-1583

602 840 2596FAX 602 224 0572

2027682

pr

[

Mr. David W. BasingerWater Division, U.S. EPA75 Hawthorne Street (WST-7)San Francisco, CA 94105-3901

Re: Slope Stability and Erosion Analysis for the Sunrise Mountain Landfill

Dear Mr. Basinger:

Per Mr. Thomas Huetteman's letter to Messrs. Gaddy and Schlegel dated June 13,2000enclosed is the slope stability and erosion analysis for the Sunrise Mountain Landfill.

The referenced June 13,2000 letter also acknowledged receipt of a proposal dated June 2,2000, prepared by SCS Engineers that recommended an appropriate method to determineslope stability. The slope stability analysis has been prepared in accordance with theproposal dated June 2,2000.

Attachment A contains information regarding the slope stability analysis and includes fiveExhibits of supporting data. Attachment B contains information regarding the erosionanalysis and includes six Exhibits of supporting data.

If you have any questions or comments concerning this submittal, please feel free to contactMr. Alan Gaddy at (702) 644-4210.

Respectfully,s~

f,.David J. Mezzacappa, P.E.Project Engineer

Stephen B. Smith, P.E.Project DirectorSCS Engineers

CC: Mr. Thomas Huetteman EPAMr. Steve Wall-EPAMr. Mark Morse - BLMMr. Dave Emme - NDEPMr. John Schlegel - Clark County Comprehensive PlanningMr. Clare Schmutz -Clark County Health DistrictMs. Sandy Doty-SAIC

F.VDATA\PROJECTS\9900701.sunrise\TASK 01-Waste Vol & Cover\august 31THREE doc

OFFICES NATIONWIDE

Page 3: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

,IIIIII ATTACHMENT A

SLOPE STABILITY ANALYSIS

I

I

I

I

I

I

I

I

I

I

Page 4: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIIIIIIII1IIIIIII

ATTACHMENT ASTABILITY ANALYSIS

INTRODUCTION

The analyses presented herein have been performed in accordance with the recommendationsof SCS Engineers (SCS) in a letter dated June 1, 2000 addressed to Mr. Tom Gardnerproposing to amend subtask 3.4.3.5 of the Final Landfill Assessment Work Plan datedFebruary 29, 2000.

The recommendation by SCS was to perform the slope stability analysis in two parts. Thetwo parts are identified as follows:

1 . Review of State regulatory requirements and compare these to the existing slopes atthe Sunrise Mountain Landfill.

2. Assessment of the slope stability of the existing final cover using two analyticalmethods, the infinite slope method (Soong and Koerner, 1996), and the Giroud andBeech (1989) method.

The presentation in this Attachment has been separated into two parts. The first part presentsa review and comparison of the State of Nevada regulatory requirements concerning landfillslope stability with other adjacent dry, arid states. This information is summarized and thencompared to existing landfill slopes at the Sunrise Mountain Landfill to assess the structuralstability.

The second part utilizes two analytical methods for determining the stability of the existingfinal cover soils. These methods have been used in other states to demonstrate slope stabilityfor permitting requirements.

PART I: SLOPE STABILITY ANALYSIS - REVIEW AND COMPARISON OFSTATE REGULATORY REQUIREMENTS AND ASSESSMENT OF STRUCTURALSTABILITY OF EXISTING LANDFILL SLOPES

State Regulatory Requirements

The review of State regulations for the State of Nevada and adjacent states that have similarclimates to Nevada is summarized in Table 1. As shown in Table 1, there are no regulatorylimits on the maximum slope allowed in the State of Nevada. The State of Nevada doesspecify a minimum slope requirement of 3 percent. The State of Nevada regulations dorequire that the final cover design must be sufficient to control erosion and maintain stabilityof the slope. Landfills have been permitted in the State of Nevada with side slopes of

The stability analysis requirements of the adjacent five States (Arizona, California, Idaho,Oregon, and Utah) vary greatly. California requires that final slopes be supported by a slopestability report. Final grades must be stable based on site-specific static and dynamicconditions. At a minimum, a factor of safety of 1.5 (dynamic) must be demonstrated in theslope stability report.

A-l

Page 5: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIIIIIIIIIIIIIIII

Arizona and Utah do not require a stability analysis and do not have any slope limitationswithin their regulations. The State of Arizona in a guidance document does suggest amaximum 3(H): 1 (V) slope. Slopes of 2:1 may be allowed if ten-foot wide benches areprovided for every 25 feet of elevation change.

While Oregon regulations do not specifically require a slope stability report, the 1996Department of Environmental Quality guidance document does suggest a slope stabilityreport be performed. Factors of safety from the USEPA Guidance document (factor ofsafety from 1.25 to 1.5 where actual soil parameters are known) are incorporated into theOregon guidelines. Oregon regulation has a maximum slope limitation of 30 percent.

Idaho does not require a stability analysis within their regulations. Idaho has a limitationthat final slopes cannot exceed 15 percent without approval. In a phone conversation withMr. Dean Ellhert from the State of Idaho, it was confirmed that landfills have been permittedwith side slopes exceeding 15 percent. At least one landfill has been approved with 3:1 sideslopes. The State of Idaho does not have published guidance on stability reports. It is up tothe applicant to demonstrate the stability of proposed slopes.

Existing Landfill Slopes

The topographic base map dated August 1999 was used to determine the maximum existingslopes at the Sunrise Mountain Landfill. This aerial topography and associated data isconsidered by SCS to reflect the "existing or baseline condition" relevant to theAdministrative Orders. The topographic base map has been previously submitted to theUSEPA and has served as the base map for reports submitted to date as required by theUSEPA. The topographic base map has the necessary data points for one-foot contourintervals, although to date only the five-foot contour intervals have been used. The data filesfrom the electronic version of the topographic base map were loaded into Land DevelopmentDesktop (LDD) software. The software was used to generate a 3-dimensional surface of thelandfill. Sections were then cut through the computer-generated surface to assess themaximum slope values. The Site Plan showing the locations of the sections is presented inExhibit 1 of this Attachment. The sections are presented in Exhibit 2 of this Attachment.

In analysis of the sections, it was found that the existing side slopes at the Sunrise MountainLandfill range from 13.7:1 to 4:1 (7.3 to 25 percent) based on the aerial topographicinformation dated August 1999. The steepest slope at the Sunrise Mountain Landfill basedon the sections analyzed (Section E-3, see Exhibit 2) was found to be 4:1. The steepest slopeand all other analyzed slopes at the Sunrise Mountain Landfill will meet the State ofNevada's or any of the adjacent States' regulations for stability limits.

PART II: SLOPE STABILITY ANALYSIS - ASSESSMENT OF THE SLOPESTABILITY OF THE EXISTING FINAL COVER

Two different analytical methods were used to assess the slope stability of the existing finalcover. The first method is the infinite slope (Soong and Koerner, 1996) method. Thismethod is a one-dimensional analysis that compares the internal friction angle of the soil tothe slope angle of the steepest slope. The second method is the Giroud and Beech (1989)method. This method uses a sliding block analysis to evaluate stability of the final cover.

A-2

Page 6: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIIIIIIIIIIIIIIII

Cross-Sections Analyzed

The same sections derived for performance of Part I of the Slope Stability Analysis havebeen used to assess the slope stability of the final cover using the two analytical methods. Inanalysis of the sections, minimal benches were identified. The locations of the sections areshown in Exhibit 1 of this Attachment. The sections are presented in Exhibit 2 of thisAttachment. In addition to the sections from the Sunrise Mountain Landfill, a hypotheticalsection consisting of a 100-foot long 3:1 slope was also chosen for assessment. All sectionswere evaluated and modeled using the infinite slope (Soong and Koerner, 1996) method andthe Giroud and Beech (1989) method.

Data Needs, Approaches and Assumptions

The data needs and the approaches used in assessing the slope stability of the existing finalcover are as follows:

1. Obtain project-specific geotechnical testing data on the existing cover soils such asunit weight and internal shear strengths including internal friction angle and internalcohesion.

2. Calculate the factor of safety of a maximum slope section using infinite slopeequation (Soong and Koerner, 1996) method (one-dimensional analysis). If thefactor of safety is greater than 1.0, the slope is stable. The USEPA suggests a factorof safety of 1.5 where actual soil parameters are known and there is imminent dangerto human life or major environmental impact and a factor of safety of 1.25 wherethere is no imminent danger.

3. For the same maximum slope section, calculate the maximum slope height allowed,using Giroud and Beech (1989) equations (sliding block analysis). If the slope heightin the maximum slope section analyzed is less than the maximum slope heightcalculated for that section, the slope is stable. If the slope in the maximum slopesection exceeds the maximum slope height calculated for that section, the amount ofreinforcement needed to provide a stable slope can be calculated.

4. Using the Giroud and Beech (1989) method, vary the cover thickness to assess thesensitivity of the analysis to cover thickness. For purposes of the sensitivity analysis,cover thicknesses of 2 feet and 4 feet were used.

The following assumptions were used in the final cover slope stability analysis:

1. The critical interface is assumed to be within the existing final cover soil or above thewaste/soil interface.

2. The maximum side slope between the upper deck of the Top Deck Area and theLower Southern Flats Area of the landfill is measured to be ranging from 5.9:1 to 4:1.No benching is assumed in the analysis.

A-3

Page 7: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIIIIIIIIIIIIIIII

3. The maximum slope along the southern side slopes of the Lower Southern Flats Areaof the landfill is measured to be ranging from 13.7:1 to 5.3:1. No benching isassumed in the analysis.

4. The seasonal high groundwater table is below the bottom of waste in the landfill.

5. No geosynthetic material was used in the existing final cover system. Therefore, nogeosynthetic/soil interface friction angle is considered in the analysis.

Laboratory Testing Results

All of the geotechnical testing of the final cover soils has not been completed as of August30, 2000. Partial results from three triaxial compression tests are currently available. Basedon the currently available laboratory test results that are presented in Exhibit 5 to thisAttachment, the project-specific unit weight and internal shear strength values of the existingfinal cover soil are as follows:

1. Minimum internal friction angle = 28.8 degrees. Values currently range from 28.8 to43 degrees. This assumption will be verified by completion of the triaxialcompression tests.

2. Due to the cohesionless nature of the final cover soil material, it is assumed that thecohesion of the existing final cover soil = 0 pounds per square foot (psf). Thisassumption will be verified by completion of the triaxial compression tests.

3. Average unit weight of the existing cover soil = 125 pounds per cubic foot (pcf).

Infinite Slope Method

This method of analysis calculates the factor of safety using the infinite slope (Soong andKoerner, 1996) equation. An infinite planar-type failure is assumed and the failure surface isassumed to be within the weakest plane of the existing cover soil just above the waste mass,which has the lowest interface friction angle. Factor of safety is defined as follows:

FOS = {tanS} / {tan(}>}

Where:FOS8

*

Factor of SafetyInternal friction angle of soil coverSlope angle

Giroud and Beech Method

Giroud and Beech (1989) equilibrium equations, which were formulated in an Excelspreadsheet, were used to calculate the maximum slope height and assess the slope stability.The Giroud and Beech equations assume infinite slope conditions, but also include factors

A-4

Page 8: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

III

IIIIIIIIIIIII

such as the buttress forces at the bottom of the side slope and the cover thickness above theweakest plane. The factor of safety assumed in the equation is equal to 1.0. The failuresurface is assumed to be along the weakest plane or interface, which corresponds to thecritical (lowest) internal friction angle.

Results Of Analysis

The results of the slope stability analysis using the infinite slope (Soong and Koerner, 1996)method and the Giroud and Beech (1989) method are summarized as follows:

1. In the steepest slope condition of 4:1 (Section E-3, see Exhibit 2), the calculatedfactor of safety using the infinite slope (Soong and Koerner, 1996) method is equal to2.2. Assuming a factor of safety of 1.5 and a maximum slope of 4:1, the minimumfriction angle of the cover soil can be calculated as 20.6 degrees. The minimumfriction angle currently found in the geotechnical testing of the existing cover soil is28.8 degrees. In the hypothetical condition of a 3:1 slope, the calculated factor ofsafety is equal to 1.6. Detailed slope geometry used in the analysis of the selectedsections is presented in Exhibit 3 of this Attachment.

2. The Giroud and Beech (1989) method was used to calculate the maximum slopeheight allowed for the selected sections. The results are presented in Exhibit 4 of thisAttachment. The negative slope height calculated for all slope sections, presented inExhibit 4, indicates that there is no restriction on the slope height when the frictionangle of the cover soil is equal to or greater than 28.8 degrees. Side slopes up to 3:1are stable. There is minimal difference in slope stability due to varying the coverthickness from 2 to 4 feet.

Conclusions and Recommendations

Based on the results of the analyses presented herein, it is concluded that:

1. When a minimum internal friction angle of 28.8 degrees and a slope of 4:1 are usedfor infinite slope stability of the existing/final cover system, the minimumcorresponding factor of safety is equal to 2.2. Even with the assumption of a 3:1slope, the corresponding factor of safety is equal to 1.6, which exceeds the USEPAsuggested range of 1.25 to 1.5 and is considered to be acceptable based on regulatoryand industry standards.

2. The results obtained from the Giroud and Beech (1989) method indicate that theexisting/final cover slope is stable and slope reinforcement is not required.Additionally, based on the selected sections, the analysis is not sensitive to coverthickness.

Based on the results and conclusions, the following recommendation is made:

1. The friction angle and cohesion of the existing/final cover soil has been establishedbased on partial completion of the geotechnical testing for analysis methodspresented herein. It is recommended that the values be verified by completion of thegeotechnical testing.

A-5

Page 9: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

I REFERENCES

I 1. Giroud, J.P. and Beech, J.F., "Stability of Soil Layers on Geosynthetic Lining Systems",in Proceedings of Geosynthetics '89 Conference, San Diego, International Fabrics

• Association International Publication, St. Paul, MN, pp.35 to 47,1989.

2. Soong, Te-Yang and Koerner, Robert M., "Cover Soil Slope Stability Involving

I Geosynthetic Interfaces", in Geosynthetic Research Institute Report #18, DrexelUniversity, Philadelphia, PA, pp. 4 to 15, December 1996.

I

I

I

I

I

I

I

I

I

I

I

I

I

IA-6

Page 10: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

Table 1. Summary of Landfill Slope Stability Requirements

State

Arizona

California

Idaho

Nevada

Oregon

Utah

Stability

Analysis

No

Yes

No

Yes

No

No

Slope

Jmits

No

Yes

Yes

No

Yes

No

^fotes:

Final cover slope must be supported by a slope stability report. Finalgrades must be stable based on site-specific static and dynamicconditions. Must demonstrate a minimum factor of safety of 1 .5(dynamic).

Final slopes not to exceed 15% without approval.

The final cover design must be sufficient to control erosion andmaintain stability of the slope. Min. slope = 3 percent.

Final side slopes cannot exceed 30%.

Stability

Reg. Citation

Title 14, Division7, Chapter 3,Article 7.8,Sec. 17777,recently combinedwith Title 23 intoa revised Title 27

Slope limit

Reg. Citation

Same

16-01-06-006

NAC 444.680 NAC 444.6891

340-94-1 20(2)(a)

Notes:

1. The regulations were reviewed for specific slope stability requirements or final grade limitations listed in the text of the regulation.2. Citations given are for the section in the regulation where stability or slope limitations can be found.3. No citation is given for states that do not specifically require stability analysis or place a limit on slopes by regulation.

A-7

Page 11: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIII

I

Attachment AIExhibit 1

I Site Plan - Stability Analysis

I

I

I

I

1

I

I

I

I

I

I

Page 12: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

OVERSIZE ITEM(S)

Due to the size of this item, it has been scanned separately.

See Document #______________ for scanned image(s).2019141

Page 13: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

II

ATTACHMENT AEXHIBIT 1STABILITY

Page 14: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

II

Attachment A

Exhibit 2

Cross-Sections - Stability Analysis

Page 15: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIIIIIIIIIIIIIIII

ATTACHMENT AEXHIBIT 2STABILITY

Page 16: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

OVERSIZE ITEM(S)

Due to the size of this item, it has been scanned separately.

See Document #______________ for scanned image(s).2019142

Page 17: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIIIIIIIIIII.IIIII

Attachment A

Exhibit 3

Detailed Slope Geometry Used in the Infinite Slope Equation Method

Page 18: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

Exhibit 3. Detailed Slope Geometry Used in the Infinite Slope Equation Method

Section

Eastern Upper Deck

ElE2E3E4E5E6E7E8

HypotheticalSouthern Lower Flat

Areas

SIS2S3S4S5

Slope Length, H(ft.)

809592488636297465333592100

185106175165821

Slope Height, V(ft-)

169125.512210959877610133.3

3320302560

Slope, deg. (H:V)

11.8(4.8:1)12.0(4.7:1)14.0(4:1)9.7(5.8:1)11.2(5.1:1)10.6(5.3:1)12.9(4.4:1)9.6(5.9:1)18.4(3:1)

10.1(5.1:1)10.6(5:109.7(6:1)

8.6(6.6:1)4.2(13.7:1)

Soil InternalFriction Angle

(degree)

28.828.828.828.828.828.828.828.828.8

28.828.828.828.828.8

Factor of Safety,FOS

2.62.62.23.22.82.92.43.21.6

3.12.93.23.67.5

A/3- 1

Page 19: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIIIIIIIIIIIIIIII

Attachment A

Exhibit 4

Giroud/Beech Method Stability Analysis

Page 20: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIIIIIIIIIIIIIIII

Exhibit 4. FINAL COVER STABILITY ANALYSIS USING GIROUD AND BEECH (1989) EQUATION

Date: 8-28-00

Filename: sunrise.xls

Project: SUNRISE LANDFILL Project NO: 10.99007.01

Spreadsheet to calculate maximum slope height allowed for a soil cover WITHOUT reinforcement

Equation by Giroud and Beech (1989):

H max = [Tc/(2 * cos b)] * [ 1 + (sin c * cos i)/(cos(b+c) * sin(b-i))]

Where:

H max = maximum slope height for a soil cover WITHOUT slope reinforcement, ft.

Tc = thickness of soil cover, ft.

b = side slope angle, degree.

c = internal friction angle of soil cover, degree.

i = critical interface friction angle between the final vegetative cover soil and the intermediate cover soil = 28.8 deg.

*** NO factor of safety is incorporated in the critical interface friction angle. FOS = 1.0

Tcft.

2

2

2

2

22

2

22

22

2

4

4

4

4

4

4

44

4

4

4

4

SideSlope

Horz. : 1

_

13.76.6

5.9

5.8

5.6

5.3

5.1

4.84.7

4.4

4

3

13.76.6

5.9

5.8

5.6

5.3

5.1

4.8

4.7

4.44

3

SlopeAngle

bdeg.

4.28.69.6

9.810.1

10.7

11.111.8

12.012.8

14.018.4

4.2

8.6

9.6

9.8

10.110.7

11.1

11.8

12.0

12.8

14.018.4

brad.

0.07290.1504

0.1679

0.1707

0.1767

0.18650.19360.2054

0.20960.2235

0.24500.3218

0.07290.1504

0.1679

0.17070.1767

0.1865

0.1936

0.2054

0.2096

0.22350.2450

0.3218

CoverSoil i.f.

cdeg.

28.8

28.8

28.8

28.8

28.828.8

28.8

28.8

28.828.828.8

28.8

28.8

28.8

28.828.8

28.8

28.8

28.8

28.8

28.8

28.8

28.8

28.8

CriticalInterface

crad.

0.5027

0.50270.5027

0.50270.5027

0.50270.5027

0.50270.5027

0.50270.5027

0.5027

0.5027

0.5027

0.5027

0.5027

0.5027

0.50270.5027

0.5027

0.5027

0.5027

0.5027

0.5027

ideg.

28.8

28.8

28.8

28.8

28.828.8

28.8

28.8

28.828.8

28.828.8

28.8

28.828.8

28.8

28.8

28.8

28.8

28.8

28.8

28.8

28.8

28.8

i

rad.

0.5027

0.50270.5027

0.5027

0.50270.5027

0.50270.5027

0.5027

0.50270.5027

0.5027

0.5027

0.5027

0.5027

0.5027

0.50270.5027

0.50270.5027

0.50270.5027

0.5027

0.5027

H maxft.

-0.21

-0.55

-0.65-0.67

-0.71

-0.77-0.82

-0.92

-0.95-1.08

-1.30-2.59

-0.42-1.09

-1.30-1.33-1.41

-1.55

-1.65

-1.83

-1.90

-2.15

-2.60

-5.18

<== See Note 1.

<== See Note 2.

<== See Note 1.

<== See Note 2.

Notes: 1. Negative value indicates slope height will not be a problem concerning slope stability of final cover soils.

2. Hypothetical condition

A/4-1

Page 21: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIIII Attachment A

. Exhibit 5

Laboratory Test Results

I

I

I

I

I

I

I

I

I

I

I

Page 22: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIIIIIIIIIIIIIIII

8•**v>

a 12 isTotal Normal Stress. tsf

Effective Konngl Sfess, laf

15.0

12.5

» 10-0

7-5

5.0

2.5

tn

Axrai Strain.

TYPE Of TEST;OJ with Pore Pr*s«ure*

SAMPLE TYPEi GW

DESCRIPTION: 0ra*n *ilty

with sand

SPECIFIC SR«VXTYW 2.5REMARKS: Laboratory

Sample

No.

NO.'

WATER CONTENT, X 6-5DRY DENSITY, pef 11B.7SATUfwTION, X 33.1VOID RATIO 0.50+DIAMETER, In 2..S5HEIGHT. In 6.1O

WATER CONTENT. XOKr DENSITY, pcfSATURATION. XVQIO RATIO

InHEHSHT. tn

20.2720.1168.9C.29S

2-SS6.09

Strain rote. Sn/nvinBACK PRESSURE. t=fCEu. PRESSURE, tsf

STRESS, tstexcess PORE PR., tcr

2.S 5,O 7.5 10.OUCTJHA.TE STRESS, t*fEXCESS PORE PR., tsf

5, FAILURE, tsf.5s FAILURE,

a.oaso7.07,3

13-5-7.013.5-7.02O.77,3

CLIENT:

PROJECT: Sunrise Mountain Landfill

SAMPLE LOCATION: SB-H23-B1-SS

NO.! DO-33-236-01 DOTE: 8/TS/C 3

Converse Consultants Cast

Page 23: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIIIIIIIIIIIIIIII

*

1

' TO, SO

*. «

S o 7.20

* a •o. *•e 5 3.60w —

S | o.oo

bl-3.6O

O

14. AC11ii 10.80

w aH • 7. 2O

v 91 toa. -« S 3. BO

i|-| 0.00

SXu -! ea

1•

t

Hfc *•$•*»-**•

/

/

M"f |

i

i

/Ii:

1"I" '

V

^^ 1

1

t

~*~r\

ii

;

i

: -*J

i

i

!!

5

4r

* i

-f-t-if

r f«

7 7Q

O f\n

1 en

z

iii

J

j

i..j...

z *z 8» ox

3

»

1

*

*•

4-

I

iI1

I

ii

1

i^_ » . •* <

i

i

ii

s

iiii

|

1

A1

1- I .. •

f

i

'

!

5

:

f-v-

1

l";

"l1ii

r

3 JCM

-•» Rrt

+ _

CK 4* 8* OX

6.O

a -z o

Peek StrengthTotal Effect

o=

; i i •— i j— -f — j--

tr1 it i »

~{jf*

1

If i

ft:i •

r\ \~

,-j..j-_rr

$!Tirt.

_ .

4—1"-i !

1 i r

fVC

> "s ~^ ' I

-\ "n-i--»I™

« 5

..T ji ;r I

* 1

i"IT•~ r-t-

i :

i T

f !1U i

i * ~ - r<•* * -i r i ii - __ j j _

"" t *^~ i r

; i - -*-

1fc. •»

J_

i " •

s . ; i

! * i

= T TT

V"

T

t:

t

— i —

...;.-

;

:t

s5... -

I1

11

i

.

. t

m

••.

1

,

*

MHV

....

r

*

r

MM!

1;

1t

i• «*•> •

- — [- —

i"

|

...i. ...

-f-

f

M

•]

- ^L

1

,,

<z

i"•r

T

"!-•

1

f-L,ji

..i.lU L.i i ; !j • i "t-f—i i . t

" ! " "J ~ "* ' " "

t ! !

J_ •.. -*-. .

.. j . I-5 — •

• i"1 i! .

It *f

U Jk.

..-

0 3.0 6.0 9-0 12-O 15. 0p. tsf

Stress Paths: Toto! Effective--- End -f

PI Sent*Project: Sunrise Mountain Landfill

Location: SB-823-B1-GSFilo; BE381GS Project: No-: OO-33-r23fr-Oi Fig. Na.:

s

j - -1i

i

••

--;-•I

T

1t

ext

i

1f

1Tt

1

r""""

r-t~*-»n v^-

1

i

5

t

1

ax

.•_A. •! ~ *•i I i

:i:!jv• ! :.«

s i !

'.LITi ; f

' f T •* ~— 1 *

1

0

1

j

Page 24: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

TRSTwith. Pore Pressures

-23-19PO9;21 am

Project and saaple Pat*

Date; 8/18/00Client:Project: sunrise Mountain LandfillSaiaple location: SB-B23-B1~GSSample descriptions Brows silty gravel vich sandRemarks ? Laboratory Contacted Saagple

Fig no.i 2nd page Pig no. (if applicable);Type of sample: <3rtAssumed specific gravity^ 2.50 L!J» Ki« HPlest method i &SW - Method A

Specimen. Parameters for Speclaueaj

Specimen ParameterWe. tnoist soil and tare:We. dry soil ami taresWt. of tare:Weight, gnu?iDiameter, i&:A»ea, in":Height, in:Net decrease in height.Net decrease

Moisture:

Initial£3.54079.14011.0201301.32.6506-379C.ioo

.vater volume, cc;

wee density, pcf :Dry density, pcf:Void ratio: •% Saturation:

127.4119.7

0.304253.1

Sacurared

2.846£.3636.092o.oos

20.2144-4120.1

0.2&91

Consolidated

2.B46-

6.0920.0000,000

20,2

Final550.4903Q2.23Q7«.010

120.10.2991168.9

20.2

Teat Readings Data for Speciaan So>

Deformation, dial constant- 0.001 in per input unitPrimary load ring constant* 5.7253 Iba per input utiitSecondary load ring constant- 0 IPS per input unitCrossover reading for secondary load rings 0 input xyiicsConsolidation cell pressure •* 100.80 pss. - 7.258 tsfConsolidation back pressure e 97.00 psi f 6.984 tsfConsolidation effective confining stress * 0.274 tsfStrain rate, in/min * 0.0050FAIL, STEES8 » 13.465 tef ac reading no. 33ULT. STRESS » 13. 85 tsf at reading no. 33

Project no-.-00-33-235-01 converse Consultants East Data : B23B1GS

Page 25: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIIIIIIIIIIIIIIII

t13.

34

5c7

9

U11

M

IS

Vtuu30

33.

B0it»

D..B

5.0

ia.8IS.o2B.fi

IS.O

30-fl

3S-0

ifl.a

50.Pss.oSB.B7B.D

00. O

SB.i

108.0

135.fi

ise.B175. B

201.0

SS-9

310.0.

a*as 589. e

DcS.

la "** ii»or*

a. MB

D.oin

O.OlS

0.02ft

o.tos

O.D3S

0.0*0

B.MS

D.asfl

o.rtS

0-MB

O.flTO

«.0»0

o.osee.uo4.13S

8.160

0.1TS

B.aOO

Q.ass0.399

O.JSO

0.4*1

D.5B9

*.••

U.W

11.W

CB.90

n.««

8.0

Sl.S

U9.7

U2.<

223,3

ass.i3SJ.7

3il.7

«.S99S.M

U3.esen .afrp.o

121.00 6*2.1

HB.B8 IBX.S

1S7.BB 95C.I

X7S.90 UU.t

aju.M IAIO.JJM.JS iias.s280. OB 1MX.Zaw.on ;215.»P

v.a

a.« 2.tjs

0-£ 3.IU

0.7 4.KS.7

o.» s.zol.B 5.S«9

1,1 C.BM1.3 S.713

1.6 7.7U

3.1 a.$H2.5 3.I5S

3.9 W.*M

3.3 «.««S

4.S ii.7Sfl

5.7 U SH

7 - S U • fi WB.4 13-813

Data for Speclsoea Ho. 1fun f etC g i*f

li}ttC

B-371o.aoj

0.1**

a-ifi0.071

o.ora9.KI

O.BS*

0.065

D.I73

D,lOi

0,137

O.U4

9.fit

«-27* l.»0 37.BB

O.TSi 3.71 S7.10

X.«*« t*,Sa M.M

2.1(2 ti.4S 9».4B

3.SM 33.M *t.-19

1.11B 4l,U ».i»

J.S51 S4.K »-»•

3-311 SS.ll 100.$g

»,3J2 C6.CS U.JB

•«.«> Ci.U »*-««

t.033 53.7» 99.la

5-341

8.27*

a.ua

l.Sill.SIE

1.105

Z-B15

2,3*1

2.734

2. 511

a.oaa6,2X1

O.C7!

c 37* U.IP n.u».W7 25.54 *9.BD

7.SSI 33.11 K.W

|.U« IJ.ll |$.N

3.S47 lt.« fl,S9

B.SJZ

1.1S2

1-3IS

i.7'1

2-OB*

Z.lU

s.««e

2.S3T

il.CCi w.la

14.402

25.0M

IS .MB

il.79

,SI

51

• 1C.07

3.OB

4.27S

S.Ul

8.4DS

<.»U

S-Oil

• -7W

l.SW

1.T44

2.2092.411

a.cxt2.774

3.B42

s.cac

3-iSS

•».*«*

*-«»

S^St

S.S43

5.MB

(.107

C.«B7

Project n.o.:00-33-23e-01 Converste : B23B1GS

Page 26: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIIIIIIIIIIIIIIII

6

%^e

— *

caV

mv2 2K

O /t

9.0

7 t

tpc

4 S Q

a

« * s•l)

a 3.0

a

• f KQ 1-5

Q

TOTAL EFFECTIVE

C. tsf <? CAfew*~Ju£)

*, deg 3g.£>

TAN• y t

- s

_.,.... V

m.l ' 'W

~l£.~r

irHsf•=Vr! / ' *

•TfrrVi1_it*\f^ •^"" "•

l

U tj.

'i -i i :• •"rg^

r.r."t*- ""* •~n*r' 7

W'-l-r-t . ; i

•- •{ ' . ,•fir

> * ?-»-

!l-|-i-i--dsrr-

X"T^

3z£*~"'TTTT"y? " t*4 £ 2 t

^ ' • .rj.,.,, J_

ra. 1 ,.,-

.—W-T- •

» i •— i. ^

*• i- r--; !

.-" ' jj^.-^f

..-.-V-.

. -_, ; „ .i j. .

, i

1 1 'jfvt-•><

ll l <. .fc.lll •

*-- I «c

-•r^t — •

j-,^.-

*™i .-r-y-r-T ' r"

» 2 *

TotOI

4±it|

±n;i ' .t • .i • •

«Jsii-*.rf .

— 4-r-r* i '

4-j-G-44-H--^tf-illic^_Aivr •

*7 -ft-H-I s i ••? i_*-JL

-*v • l»-l—

1444..

*qT * vrT^ "* Tt : j .

_f._--4.tT~ = '"

^r~/r~< ~. '.-••^ : :

l.c-l '~1

' i : . -p

^?H-2 • £ -

~ lrt " 1» i

4TT^

._j_-_^_»_,i^-'— -t'Tt"

X;J;S m, A

jbj

J*\- *

f Il-Jlj .1 . S —

1 . - i

_

• :"*"a ; j "

4|4t-r,->- ' ?lf

-i .' ' i_T ^ .

4J|t

««-«-.U

"^ttt' • ^1

•E3E1_ ^-, v-

n1 - J f*

^ ~TT

i T i r

Trtr• -

^0 S 10 IS 20

Axial Strain. X

TYPE OF TEST:Cu with Pi»r*r Fr^$3uf«E

SAMPLE TYPE: CM

DESCRIPTION : B ro«n c ! t Cy g rav« 1

with sand

ASSUMED SPECIFIC GRA\yITr=> 2,3

REMARKS: Laboratory Completed

Sample

rr*

r

S1

U. ,,-,.

-.*

UTT-

•*~r • ••; i

SC~.-«i._Si »HSvT•' r^V•.,«M:IO)~ (^

".

H.j••

<< ipiia«n M

.1 * T *

• - j-j-5—

1 1 -4 i

»- 4 •»• *-

::. j^/-:

•" : •— r•w r" ' •

t«.^ .

r1-': .%- . i

,i*»_ «.••,'•-

^ -J_1.?

* *\

r";luV'\rr;f,- r

j ., r?^VSsr^IZJT - -•Frj-^-r

JXg l— H-^-rr

fcj±t-^itk;:tb4"iTX-T-T'- •!*•! : ~ "~?

B aNormal Stress, tsf

*« Normal Stress. XSf

SAMPLE NO.:

Sin

h(-

StBA(

CDFA3

Euu

£

^>t5»

WATER CONTEHT, XDRY DENSITY, pcfSATURATION, XVOIO RATIO

HEIGHT. In

WATER CONTENT. ZQKT OEHW-1Y. pcfSATURATION, xVOID RATIODlAHET^R. fnHEIGHT, in

-„. ,.,.5 ' 1- - ,^ . - , ,1 i,,

•Ml 4 • »<|^i »•" rLMJ

* " »"

• ** J ' ** fc rf» — j— •— » *-»«X .

•' - 5 TT-« ' ' - .. . j-5 - -« ~-5-j- T"^ . - — . .. \ ~^-f— — -»5 • ! <- ..'. ' 'l

irt idzrii T-f_^*~ -'- 1 *-, • s . h

•- i_->~:iiX;.- i .• ' • :

T : : i y "'' ; .' i"t, T ". ' -

: . * * ( ' ' i i

-jr j"5 !: -Lu_cT. ; . ^ ~fTT

4~-" "tt"T-lw ~H"5 '

T^ _'r i~r 3 "^

10

1S.I

123-758.*

0.2612.856.01

15,712*. 3

0.255z.a*6.QO

--• i ' •• •; : •.

— -TT

H1

T"~r-i~

-T-rrRrH-7T^r• s ,'••• • •i *._, — T.

^ i ""*• 114 i

"fetl : * ,: = . !- ' i *

-«tr12

-afn rote. (n/in«n O.OOSO3< PRESSURE, tsf S.96,t PRESSJRC. tsf 7. 2OILURE STRESS. «*f 6.SSXCESS PORE PS.. t»f -l.&t1WATE STRESS, tsf 6.59XCESS PORE PR., S«f -1.3*FAILURE, tsf B.SSFAILURE. t*r a.os

CLIENT:

PROJECT: Sunrise Mounts. n Landfill

SAMPLE LOCATION: SS-A95-B2

9ROJ . NO. : OC3323&*'Ol DATE: Q/2*/OO

jo&pj Converse Consultants East

Page 27: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

[*1

!V

a.t

tm<

o--:i

iIw

1

;i0s. <3 4

s;« *i8i• <

u -0 <«•<:s ^uk

1U

•».0

a-

7. SO

5,*0

II

! 3.60

1 ""| o.oo

-1 .600,

. 7.20

S.40

i! 3.60

i ~*

J 1.30

1

I o.oo

-1.8O0

4.

2

a<j

<

i

/f

/!-(•I-1

S,i

t

• : -

s i

;

- •»*»•• »

i"*•»•»• •••-

*^-i

^— '- •

MJt hw .

— t '•

**^ JL

•-

.._

• -

..

— . .

-

11

!

S 10Z 2QX

3|

^

S

""iIr

**>•-• *+—*>*\

i>^i

• t v^ ••— <•

*

\^ir i — •

f

"

— r — -!

"f

1

1- »

t

t

ft

I

.

i

t

I_ j ..

T ~

, .: —

t

i

itj

,-i.~-

K 102 20ZFfeak StrengthTotal Effective

OB

Ot»ton e* =

• • • «

• ; ' r.S I M-tfrr

[ 1 J. j lxItliZ:

« « ^ r

-H-g^'r/i i-

-V7U'f"

HI!- f •

• t-.- » —

3 •

i

; ~r—

1 t

-?;}* i•T-

i !. • »r«— •*•••—

». ,.i~.? '

! 1-•-!-—!"* '

F*ff

__ J !

i !f 1 (H^MI r -WITL

; i ,•i J-- 1-, i i j

| J r

"TT"^""a «

Stress Paths: Total

7.20

5-0

3.60

1.SO

Q.OO

-1.800

7.20

S-*o

3.60

1.SO

O.OO

-i.aoo

aj

•»

"••• T'

1I

Ml V

I

X

4-

-

r

:

» •». —j

•|ii

\

-. .,

i_- — ~,

!

:

i

10% 202

4-. -

-4-.

X

_. ^ . »" i

t

•* —

t* «- ~V — M

i

t

.. „-

,..

3

t

,- L.,

!

it

i!

i .

1

1

'

1 i1OX 2QS

..1 -L-4-4-.

...L;.-U;-

--~ i*

"" ' i-t' <!

i :

•.-

4j

~r"

i.( -

T" "I

f

,.;..j_u..-..

-T-H~*~-

' ' - - iS

p. t«fEffective —

1 LJ_ 'rr-:-- -i» 1 — 1 -I • I —

; 5 l •

i

-,4. i-

^LL,_|.U

i } •$ s1 S

M M

"L :-fi"- i r-r--.-

' . i L

i i l"~" -j t

.-:. .] — L_{ —

i ! i 5~- ' . ' • ' ] '

^^v~i-"i — i—; i 5

.. J....k- & -J.—» M «

-. i...! 4^1"*" ;

! - i; ! »

iTl :6 10 12

-- En<i -f

Client:•

Project : Sunrise UQunt<a!n Landfill

LOGO t Too: SB-A93-82FHe: A93S2 PfOject No.: O033239-O1 Ftg. Xo.i

Page 28: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

CQHPfiEsszow TBST a-2s-i9ooCU with Pore Pressures 9:30 am

and sanpla Data

Dacea 8/34/00Client;Project: STinrise Mountain Iiandfillsample locations SB-A93-B2Sample descriptions Brpwa silty gravel with aandRemarks: laboratory Compacted Saaple

Fig no. i 2ad pase Fig no. (if applicable):Type of saaple: GMAssumed specific gravity* 2.50 LL= PL= UP PI=Test metbod: ASTM - Method A

SpMcinm Parameters for Specimen. So- 1

Specimen Parameter Initial Saturated Consolidated FinalWt. moist soil and taresWe. dry af"1 and tare:We. of tare:Weight:, grossDiameter, in.:Area, in»:Height . in:net decrease in heignt, in;Net decrease in water volume,t Moisture:Wet density, pcf:Dry density, pcf:Void ratio i% Saturation;

58.13055.43011.2201316. S2. 64*6.3626.005

cc:6.1

131.3123.70.261358.4

2.8426.3425.9960.009

15.7143.712*. 30.2557153.1

2.8426,3425.9960.0000.00015.71-43.7124.30.25S7153.1

1530.3601335.76032.750

IS. 7

Test leadings Data for Speclnen Ho. 1

Deformatioo. dial constanta 0.001 in per input unitPrimary load ring constant* 5-72S3 Uss per input unitSecondary load ring constant- 0 Ibe per input unitCrossover reading for secondary load ring* o input unitsConsolidation cell pressure = 100.00 psi • 7.200 tsfConsolidation back pressure =• 97.00 pai » 6.384 tstConsolidation effective confining stress = 0-21S tsfStrain rate, in/nin = 0-OOSOFAIL. STRESS = 6.595 tsf at reading DO. 31DLtf. STRESS - S.S9S tsf at reading no. 31

Bo.:003323€-0l Converse Consultants Baet Data file: A33B2

Page 29: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIIIIIIIIIIIIIIII

Ho. PcJ. Us*.tft-tl ia

0 3-0 O.OBQ .e.OB 0.0 »,« a.OMI 0.2U O.azC l.M ST.H 0,10* k,OM1 2.0 0.90S 4.M 22.9 0.3 0.3SB 0.173 0,«33 2.SO fl.tH 0.303 B.Uo

A la.o a.oxo o.ee -is.o o.a o.SM o<uw B.SOS «.u 17.10 e.4»3 IS 4 0.015 02.1S *a.3 «»3 O.T»4 0.13* 0.943 S.3S 17.00 8-SSl

» 23. B 8.WO 1S.90 31.* B.2 S-03O 0.1CC l.U* 7.32 17.70 B.*H 4J1S

S 32.0 0.032 31/» 12»,3 ».S 1,403, D.iTJ 1.S70 9.12 «.*0 Q.ni 0.701

< 3S.O O.CK5 32.M 131.1 0.< lv4M 0.2»» X.CM i.W 07^0 «.«3 8.7«O

7 49.0 0.04C 37.W lS4,« O.I 1.7«2 P. 3 t-»»fi 0.11 «.«O l.li* 0.07X

4 SS.O O-flSO 29.10 Ififi.C 0,0 I.*t6 0.2CC Z,*« »->* M-3B 1.2B« O.itt

1 £5.0 0.«SS 31.50 1M.3 0.9 2.B29 g.200 2.317 0.94 Jf.OO 1.302 l.OM

10 SB.O O.OCO 33.1A U9.S 5.0 3-Jj» 0.302 3-432 0.04 SS.W 1.3*7 1.0(3

11 70.0 0.090 37.90 219.9 1.3 2,«39 0.393 *.7V> 7.SO 95.10 1-378 1.337

33 «4.0 0.0*4 44.04 2S1.I 1,4 2.»20 0.432 3.293 7.53 S4.0O V.»-± 1.410

13 70.9 O.OM 44,OB 2*3.4 l.S 2.MS a.iOO 3.4U 7.3« ».S8 l.M» 1.412

U 190.0 O.lOa 44.90 3*».» 1.7 3.I2S o.*3* >.<*!, tf.SS 93.70 2.Ml 1JO

15 125. a 4-13S $4^0 332.0 2.1 3.M* fi.<40 4.UC <-35 91.0O 1.3(2 1.734X* IfO.O t.KO (Z.tt 337.3 2.7 3.«47 O.M3 l.«ie C.H M.tO 3.«3« !.««17 175.0 0.175 C4.50 S69.3 2.9 4.070 0.0(4 4,934 S.Ti M.OO 2.O99 2.03S

U 201.0 0.3A fttSO 5*3.8 3,t *.303 0.5SO S.2S3 C.C3 K.OO 3.102 2.1S1

19 2SO.« 8.250 75.59 <M-C 4J 4.731 1.1.« S.OZ9 $.93 *4.7ti 1-*<S 2.MI3B 310.4 ft-UA O3.» 47SJ S_l C.US 1.3i7 C.332 5.01 4S.4O 3*030 2.94221 3Si,o «JK3 «e.z» *n.s s.s 5.273 1.3** «-*«i *.os »i-w 4.«M .i.ew22 »•».» e^40» 30.BO SIS.3 «-7 S.43J 1.45* *-»* 4.TS 99.U -t.104 2.7JB

23 450.0 0.4SB 93.90 S37.C 7.5 5.*4S 1.S34 7,179 4.«0 70.7O ».1S* 2.033

J* $B|.o O.S09 37.1A 5S3.3 0.4 5.7U 1.H3 7.3M 4.U TJ.CI 4.5O4 2.M1

2$ 550.0 0.550 UM.OO 572.S 9.2 S.303 l.«7a 7,5n 4.S2 7«.70 4.C21 2.952

24 r«4.0 O.(04 1O3.20 590.9 aa-l «.032 1.350 7.703, 4.*S 75-70 4.7Ci 3.OU

27 700.0 o.Toa WS,J« ias.o ai.7 «.m T..HCS i.aas 1.14 -M.U* 1.002 3.1S720 7C3.8 0-7O XU.90 C4C.4 12.« C.397 l.«3O I.3SC 4.33 «3.20 S.UO 3.199

39 «5,B 0.003 334.10 KS4.4 13.4 «.4M 1.9M I.4M 1.77 73.70 5.U1 3.Z17

90 4JO.B B.JSO U6.SO H7.0 14.2 i.Ol 3.OO9 0.&07 4-34 73.10 S.2SI 3-24*XL 905.0 O.WS U3-5» C04.2 15.1 «.S9< 2.059 l.OSj 0.2* 71J«Q S.SSt 3.297

Project no.=0033236-01 Converse Consultants East Bata files

Page 30: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIIIIIIIIIIIIIIII

8 12Total Nernal Str«a». tut

Effscti-* Worn* I Stress, taf

in

5o

15.0

12-5

10.0

7.5

5.O

2..S

5 10 15Axial Strain. !

TYPE OF TEST:CD with Pore Pr«s*t»r«B

TYPE: GMDESCfZOPTZON: Brown a l t t y gravel

w i th *an<J

ASSUMED SPECIFIC GRAVXTYS5 2.S'EMARKSI

f q . NO . t

MO.:

HETCHT. In

WATEJJ CONTENT, «DRY DEMSTTY. pefSATURATION. XvoiJ) RATIO

fn

12S.O67.3

2.BS6.01

CONTENT. XDRY OENSCTY. pefSATURATION. *v/ozo RATIO

f n

128.1

H£EGMT. in

o.2i»2.856.O1

Stratr rote, fn/mJis O.OO5OSACK PRESSuftC. tsr 7.0CEU- PRESSURE. t*f 7,2r«XLJURE STRESS, tsf 12.8EXCESS PORE PR. . tsf -2.8

ULTIMATE STRESS, tsf 12-8EXCESS PORE PR-. Csf -2.S

5, FAILURE, tsf IS.8caFAILURE, t«f 3.0CLIENT:

PROJECT: Sunrise Mountain Landfill

LOCATION: S8-B3T-82-GS

P«OJ. NO.; 00-33^36-01 DATE: 8/2O/OC

Converse Consul t iost

zasent BBBZ/EZ/S8

Project: Sunrise Mountain LandfillLocation: SB-BSl-BZ-aSFil«s 6316265 Project Ho.: 00-33238-01 . No-r

Page 31: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIIIIIIIIIIIIIIII

111

£ „3 •* * 7.20• t-

o 0 3.60

||S o o-ooB0

&-i.6O

0

14..4O

r1 10-80

* S5 ? 7'20

a — _v m •0, *•« o 3.6OV 4»-»

a aIL —

S 5 °-ao

BO

3-3.60

0

W

«++

CT "5 Q

' (~~":

}

/!

rf.._..XLL

5

^ 1

j

;

U-

• 'ri

"r-

« .,*> *

^4

• r •5i

•-• '— j_.

-

..„ —

.1•

i

— — .,

* 10X 20S

3 I

I

"4

II

i

t

i. L r,H

I

{

r

I1i

ji!j

I

£

1

«.,»..

.....

iii

i

- — ! —

i

ii

i

.. L

:

i

Sj 1QJ5 2 OXp«ak StrengthTptol effect

OB

ton «xc /: ] t l

T ! 1 1- T i 'r *

j f mft «~>^mw M

i l l !i I I Uirts:i • j* i«— *-^r •» > •. J L. j. .

i 1 IX!

I L'#r

xjr"t^ •!•" "

{ . ' .! j

JJ I .• ! ' '

Hi.•i 1

: i

f • * -

rr

14. 4O

7.20

3.60

0.00

3 Rfl

C1*.*O

1O. BO

7.20

3.6O

o.oo

-3.6001

i|..

I

tl

;

, 4-

•K

4

., -

;i

I. . i .. -.

I

i

ii

f

i5•

l

-

••!.••

10X i

j

i

i\

i

K

- : ' ' J= „, 1 1tve I"T . J7JTx*- II^T ;

' ^.4-i- l : 1^i« ! • !

i •i i :

.S ' !I " i i1 i >~n r i i

.*.. tl+t ni+irmr

1

-ft

; j

i : i.. ^p. _., 'UIPI II .! .!__'.'

;

— j,....i

iT—

i

' " i i_,__.; :, -!..r_.Tm1_^._. -—.—.-.

0 3.O 6.0 9.0

Stress Pains: Toto.l Effective —

f

-

pppb^pU •*.*•

:1ft.

«i

I

|.L

i!

j1OJC

i—=

1

i

-r— •

-tnum

T

|

_ I.. :.

J ,

fi, t *; Ts i

P- ' • ••—••»* IPPI- .I. — ..fc— „

! i! ' ' ?

j. P~{- -t-

? t ! !i '

* i

" i

1i

£

MMf.

«•.

i

12.0 1S.O

- Ehtf +

Client:Project: Sunrise Mountain Lorvflf i IILocation; 58-83 1-82-CS

Fil4>c 83182GS Project 1*0-: OO-33236-01 Tig. No.: _^_

— ,

-f-

i

!

:•i

I

20*

;

r I1*

£

I

1

i

\

i

.

20*

fi

•II

*i"I

It! 5

±tI f j

>••*• ^OlW* !•*••«•

, h - , aj,,^

i ; ii r18,0

Page 32: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIIIIIIIIIIIIIIII

COMPRBSSZOX TESTCU with Pore Pressures

3-130040 am

Project sad Sample Data

Dare: B/20/00Client:Project; Sunrise Mountain LandfillSamnle location: SB-B31-B2-GSSample description.; Brown silty gravel with sandRemarks:

Fig no. : SRC* page Fig no. (if applicable. :Type of sample: GHAssumed specific gravity 2.50 U,* PL= HPTest method; ASl* - Method A

Parameters for Spoeiuea, So. 1

Specimen Parameter InitialWt. noise soil and tare: 85.930we. dry soil and tare: 81.760Wt. Of tare: 11.130Weight, gmsj 1363.9Diameter, Ins . 2.850Area, in1: 6.379Height, in; . £.008Set decrease in height, in:

decrease In water volume, cc:Moisture: 5.9density, pcf: 135.6density, pcf s 128-0

Void ratio: 0.2192% Saturation: 67.3

Saturated ConsolidatedIS13

Final3.0600-0506.700

2.8506.377fi.0070-001

17.1149.9128.10,2185195.2

2.6506.377f.0070.0000.00017.1149. 9128.1D.2186195,2

17.1

Test Readings Data for Specimen. Mo. 1

Deformation dial constant" 0.001 in per input unitPrimary load ring constants 5,7253 Ibs per iaput unitSecondary load ring constant- 0 Ibs per input unitCross over reading for secondary load riuga C) input unitsConsolidation cell pressure = 100.00 psi c 7,200 tsfConsolidation back pressure = 97.00 psi * £.984 tsfconsolidation effective confining stress * o.2i€ tefStrain rate, in/tula * 0.0050FAIL. STRESS *s 12.792 tef at reading no, 32DLT. STRESS - 12,792 taf at readLtig no. 32

Project uo,i00-33236-01 converse Consultants East Data fili: B31B2GS

Page 33: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

1

1

|•

1

1

1

1

1

1

1

1

1

1

1

1

*>.

0

12

3,

*

907

99

If211333

3/4

25

1C

371O

39as32

922334

3S2Csr»2*

39

30

31

33

»•*-

71*2

O*ic»

0.8

S-o19.0

is. »91.0

27.0

30-a•0.0

45. eS8.0

SO,*

7Q.B

•3.0

90.0100.*

IBS.Oj

1U.O

ITS -0

308.0

250.0

3»a.O

UO.g400 -B

ICO.*

sao.e5*1.0teo.ews-o790.0

757. 0

ooa,o050.0

905.0

Project

Det.in

g.lEro

a. MS0.010

0.015

0.020

o.»a*s.toefl.ewcB.B4S

0.050

B.M*0.070

O.OM

a. eaaD.OB*

8.133

0.1SS

0.17S

0.300

e.as«e.sooB.3SO

a. 400?.45B

B.SBO

B.SS*

B.S80

B.SSS

0,700

0.757

O.tWO.tWO.jOS

Ira.! I*-.,max XL*tp»<»M.

0.09 0.012.58 -51.6

33., «« 177 -S

1)0,09 2».£

SO-SO 21*-3

el.Sfl 353-i

CS.4B 374 P

T7.JO .143.7

»9.50 **t.3

05.00 4.0S.7

S3..00 533. S

1O3.0O S*-v.O

110.10 CM.*

123.00 S7S.S

133.90 709.4

VB.U ««i-S

2H.BO BV1.7

!*£.» 945.9

J7S, BB 1001 •>

109.00 10««.7

199.00 1139.3

3IS.BO 1173.7

ao9.oo iiM.c343.08 1319.5

913.90 I224.fi

21S.OO 1230.9

227,28 1*U.S

315.08 1253.8

aai.oo 12CS.922«.tq 190S.3

23S-1B U94.S

210.00 13M.B

X!3.«B 2334.0

Test RaadiztgvCuxiJ. BaX»Cor S£!-ci

% SUCM «i— '

CM COC

a. ft o.ooo e.Ziso.i o.e«70.2 3.000

B.£ i.Hl

8.3 3.M1

0.4 3.JS7

O.S 4.20C

O.T 4-3«

0.7 S.Ki

• •• i-«»

1.0 X.9S1

l.a c.SU1.3 7.B«7

1.X 7.S13

l.T »,»7S

2.1 l,9(ft

2.S 9.70C

2,9 10.3(7

S.3 10.93S

*.2 11.750

6.0 i2,J3i

5.9 13, <m

C.7 03. <W7.S 13,727

0.3 12. «7«9.2 I3.n«

10.0 22.C37

10.9 M.CI2

23..} 13.021

12.« 13.03

ii.j ia,«MIt .2 11.743

15.1 S3.793

B.1S*

0.132

f.lOt

C.10X

D.B94

«.»»

B.115

0.137

e.iMB.S4S

B.34^

e.4«SD.*H

0.***

0.914

Z.2CC

1,197

i.coc1.9Ma.aoo3. 401

a.s»s3,u:a>«53J.779

S.TW3.e9d2.037

2.CM

8.929

2.9*5

2.903.

no. i op-33236-01 Converge

Data for Spocinoa Ho. 1tlm CuncMO 6w» P **t Q taf

i«3oc 1:3 kEW,

**f Saup P3i

B,Z« I.OB S7.«B B.ait *.»ao0-»7>

S.13J

2. Taj3.332

*.otl<«.3««

5.11l'.»*

B,3*aa.x>a.2o45.9«

S.OJ1 44. »5.3*0. 34. 7S

S.S14

«.D<i.0«2

7.siaI,B«i-613

S,77«

10.173

11-7C4

32.S4X

13.753

1«-S1S

tt,»911. IKIS. 490

15.359

XS.»JS

15.424

25.415

13.457

25.577

is.sja15.700

3S.TT3

33.91

25.31

U.M1C. 03

M.55

13.25

W.M

9,32

*.*i7.11

C.90

*.34

(.M

5.Mt.TS

£.71S.54

5.54S.*1

S,*»

S.3»3.33S.3JSJS

97.70

W.20

3S,S»

«!.«

».7B

H.7BM.*B

w.toS7.79

9C.CO

9S.2B

S3. 08

B2,»B

91. DC

07.Moa.io

OB.CO

77.70

72. JB

El. 21

fk.U

<4-l»

•>.«•

I2,CO

Cl.<|0

n.,58CO.«P

«.«0

f»,16$9.40

99.10SB.«0

Consult ant E

B.SC3

1.123

I..423

1.712

2.072

2.1*7

2.»33.71*

Z.«9«

3.231

3.«00

3,990

4. Ill

4. ttC

S.MSt.n*(.SOD

7.073

7.»73

«.4B»

I.72M

l.t»B

s.att9.03:9.097

5.105

S.W3

9.1X7

J.2M

9.2S7

9.32C

J.S77

East

8.4M1,0001.335

• i-et*.1.179

z.ita2.4M

2.5«

2.734

2.97<

3. as*S.i31

3.75»

3.930

4.O1

4.0S3

i.l-H

$,4H

S.079

«.*iaC.239

C.30f

C.3IO

«-»*»

6.3SO

S-MJ '

c.?WC.3U«->ll

6.J3*

C-U2«-»«

Data filt>: B31B2GS

Page 34: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIII• ATTACHMENT B

EROSION ANALYSIS

1

I

I

I

I

I

I

I

I

I

I

Page 35: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIIIIIIIIIIIIIIII

ATTACHMENT BEROSION ANALYSIS

INTRODUCTION

An erosion analysis was performed for the Sunrise Mountain Landfill. This analysis wasdesigned to serve as the existing or baseline condition for the evaluation of BestManagement Practice (BMP) erosion controls for the site. Three methods were used in theanalysis including the Universal Soil Loss Equation (USLE), the Revised Universal SoilLoss Equation (RUSLE), and the Water Erosion Prediction Project Model (WEPP). Furtheranalysis will be performed and comparisons made to evaluate proposed BMP controls at alater date.

In accordance with subtask 3.4.3.6 (Assessment of Erosion Potential) from the Final LandfillAssessment Work Plan dated February 29, 2000, the average annual soil loss from the coverwas assessed for certain, critical sections using USLE and RULSE. WEPP was used todetermine the impact caused by erosion during individual, large storm events. Other stormevents are taken into consideration through the USLE and RUSLE's "average annual soilloss" calculation since the effects of the random fluctuations tend to average out overextended periods.

ASSUMPTIONS

Sections used in this analysis were taken from an August 1999 topographic map of theSunrise Mountain Landfill (Site). The topographic base map has the necessary data pointsfor one-foot contour intervals, although to date only the five-foot contour intervals have beenused. The data files from the electronic version of the topographic base map were loadedinto Land Development Desktop (LDD) software. The software was used to generate a 3-dimensional surface of the landfill. Sections were then cut through the computer-generatedsurface to plot the sections for the erosion analysis. The Site Plan showing the locations ofthe sections is presented in Exhibit 1 of this Attachment. The sections are presented inExhibit 2 of this Attachment.

USLE and RUSLE assume average conditions and give average annual soil loss in tons peracre per year, however, the WEPP model is used in this analysis to yield soil loss for aspecific, individual storm event. The 200-year, 6-hour storm was chosen as the storm tomodel for this event. This storm frequency corresponds to the storm used in the DesignStorm Evaluation and the Storm Water Pollution Prevention Plan (SWPPP), which havepreviously been submitted to USEPA. The Design Storm Evaluation has been approved byUSEPA. USLE and RUSLE require isoerodent maps (maps showing points of equal rainfallerosivity) to account for climate effects on erosion. The maps are meant to provide averageannual values as opposed to different frequency occurrences.

Sixteen sections were chosen for analysis to represent a range of conditions including boththe steepest slopes as well as some flatter slopes. Eight sections were selected in the sideslope between the upper deck of the Top Deck Area and the Lower Southern Flats Area, foursections were selected along the southern side slopes of the Lower Southern Flats Area andtwo sections each were chosen on the flatter portions of the Top Deck Area and Southern

B-l

Page 36: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIIIIIIIIIIIIIIII

Flats Area, respectively. These sections also roughly correspond to the sections chosen forthe stability analysis although the flatter sections were not analyzed for stability.

Only relatively short slopes were considered (all less than 1,000 feet) and no "composite" ornon-uniform sections were considered. The models utilized for this analysis all haddisclaimers regarding the use of large slopes due to the fact that overland, sheet flow tends tobecome shallow concentrated flow after a few hundred feet. In addition, the selection ofsections with a uniform slope allows for the estimate of soil loss over a wide range of generalslope conditions as opposed to specific areas. Additional areas can be analyzed if requiredfor specialized BMP conditions with the future analysis.

CONTENTS

This attachment is organized as follows:

• Exhibit 1 contains a map showing where sections were cut for analysis. Thebackground topography used is the August 1999 topographic map, whichrepresents the existing or baseline condition with respect to the erosionanalysis.

• Exhibit 2 contains maps showing profiles of the sections cut for analysis.• Exhibits 3 through 5 contain model results from USLE, RUSLE, and WEPP,

respectively. These exhibits contain more detailed discussions of each modelincluding a discussion of assumed parameters.

• Exhibit 6 contains site-specific analytical data used in the analysis.

SUMMARY OF RESULTS AND CONCLUSIONS

Table B-l provides a summary of the erosion analysis results. As specified previously,Exhibit 1 contains a map showing the location of the sections referenced in the table. Pleaserefer to Exhibits 3 through 5 of this Attachment for a more detailed description of eachanalysis method.

The USLE equation yielded average annual soil loss values higher than the RUSLE andWEPP (when WEPP was run for long-term conditions). Soil losses in the USLE analysisranged from (1.5 - 1.8) tons/acre/yr for slopes under 3 percent, however the soil lossincreased to at least 9.2 tons/acre/yr for the other slopes evaluated which ranged from 7.3 to25 percent with varying slope lengths. Based upon the other models in this analysis theseresults from the USLE appear to be conservatively high.

RUSLE, which represents an updated and improved version of USLE with additional datainput, was run on the same sections to determine average annual soil loss. Unlike the USLEanalysis, RUSLE showed that some steeper slopes with shorter lengths such as the sideslopesof the Southern Flats have soil losses under 5.5 tons/acre/yr in addition to low soil lossescalculated from flatter areas. For example, Section S4, a slope of 15.2 percent with a slopelength of 165 feet on the southern end of the southern flats was shown to have an averageannual soil loss of 12.7 tons/acre/yr by the USLE, however the RUSLE indicated an averageannual soil loss of 4.0 tons/acre/yr; which is over four times lower.

B-2

Page 37: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIIIIIIIIIIIIIIII

Table B-l

Section

SIS2S3S4S5S6ElE2E3E4E5E6E7E8E9

E10

USLE Soil Loss(tons/acre/yr)

16.213.916.212.79.21.8

48.142.450.123.927.028.934.729.61.51.5

RUSLE Soil Loss(tons/acre/yr)

5.33.94.84.03.5

0.8718.011.016.011.08.311.011.011.00.630.62

WEPP Soil Loss for 200-yr, 6-hrStorm26.717.524.520.730.28.2

86.171.972.961.942.055.151.958.85.44.8

RUSLE did, however, indicate soil losses in excess of 10 tons/acre/yr for slopes from theTop Deck area leading to the Southern Flats.

The WEPP model was compared to RUSLE and USLE in the long term condition andshowed reasonable agreement with RUSLE. The WEPP model was then used to calculatesoil loss due to a 200-year, 6-hour design storm for the sections analyzed previously usingUSLE and RUSLE. Soil losses resulting from the design storm in tons per acre calculatedfor the sections exceeded the typical average annual soil loss from RUSLE and USLE for allsections considered. These results, however, are not unexpected considering the stormfrequency. Additionally, large storm events are expected to cause erosion which may requirerepair or maintenance. For example, Section S5 which is a moderate slope at 7.3 percentwith a slope length of 821 feet was calculated to have an annual average soil loss of 3.5tons/acre/yr using RUSLE. For the 200-year, 6-hour storm considered using the WEPPmodel, however, a one-time soil loss of 30.2 tons/acre was calculated.

RECOMMENDATIONS

This existing or baseline analysis was performed so that BMP controls can be designedappropriately to control erosion in areas of the landfill which would experience excessiveerosion without such controls. It is recommended that the BMP controls be designedutilizing this analysis and that as outlined in this analysis, the post-BMP-controlled landfillcondition be evaluated utilizing the same methodology here to show improvements inerosion control afforded by the proposed BMP controls.

In addition, it is recommended that average annual soil loss values be used as the standard bywhich BMP controls be judged as opposed to intense individual storm events. Permanentdrainageways should be designed for areas of concern with respect to large storms. BMPcontrols should be utilized to handle erosion caused by average annual conditions coupled

B-3

Page 38: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

I II with an inspection and repair program that can be responsive to large events and periodic

maintenance.

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

IB-4

Page 39: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

REFERENCES

1. Ascough, James C., et al, "WEPP User Summary", United States Department ofAgriculture, NSERL Report Number 11, July 1995.

2. Flanagan, D.C., et al, "WEPP Technical Documentation", United States Department ofAgriculture, NSERL Report Number 10, July 1995.

3. Renard, K.G., G.R. Foster, G.A. Weesies, O.K. McCool, and D.C. Yoder, "Predicting SoilErosion by Water: A Guide to Conservation Planning With the Revised Universal SoilLoss Equation (RUSLE)", United States Department of Agriculture, Agriculture HandbookNumber 703, January 1997.

IIIII• 4. Wischmeier, W.H., and D. D. Smith, "Predicting Rainfall Erosion Losses - A Guide to

Conservation Planning", United States Department of Agriculture, Agriculture Handbook• Number 537, December 1978.

I

I

I

I

I

I

I

I

I

I

I

IB-5

Page 40: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIII• Attachment B

Exhibit 1

Site Plan - Erosion Analysis

I

I

I

I

I

I

I

1

I

I

I

Page 41: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIIIIIIIIIIIIII ATTACHMENT B

EXHIBIT 1• EROSION

I

Page 42: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

OVERSIZE ITEM(S)

Due to the size of this item, it has been scanned separately.

See Document #______________ for scanned image(s).2019143

Page 43: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIII1I Attachment B

Exhibit 2

™ Cross-Sections - Erosion Analysis

I

I

I

I

I

1

I

I

I

Page 44: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

OVERSIZE ITEM(S)

Due to the size of this item, it has been scanned separately.

See Document #______________ for scanned image(s).2019144

Page 45: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIIIIIIIIIIIIII ATTACHMENT B

I

I

EXHIBIT 2AEROSION

Page 46: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIII

ATTACHMENTSEXHIBIT 2BEROSION

Page 47: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIII• Attachment B

Exhibit 3

* Universal Soil Loss Equation (USLE) Analysis

I

I

I

I

I

I

I

I

I

I

I

Page 48: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIIIIIIIIIIIIIIII

EXHIBIT 3UNIVERSAL SOIL LOSS EQUATION (USLE) ANALYSIS

INTRODUCTION

The USLE is an erosion model designed to predict long-term average soil losses. Itcomputes the average annual soil loss for a given area as the product of six major factorswhose most likely values at a particular location can be expressed numerically. Erosionvariables reflected by these factors vary considerably about their means from storm to storm,but effects of the random fluctuations tend to average out over extended periods. It shouldalso be noted that the soil loss computed using the USLE is an average across the entireslope and not a maximum or minimum.

The Universal Soil Loss Equation is: A = (R)(K)(L)(S)(C)(P)

Where:

A = Soil loss in tons per acre per year,R = Rainfall and runoff factor,K = Soil erodibility factor,L = Slope length factor,S = Slope-steepness factor,C = The cover and management factor, andP = The support practice factor.

The United States Department of Agriculture's "Agricultural Handbook Number 537,Predicting Rainfall Erosion Losses, A Guide to Conservation Planning", December 1978 wasused as a guide in performing this analysis. It is hereafter referred to as the Handbook.

Exhibit 1 of this Attachment provides a map showing the sixteen sections evaluated for pre-control conditions at the Sunrise Mountain Landfill.

SELECTION OF DIFFERENT FACTORS

This section briefly discusses how each of the factors was chosen for the Sunrise MountainLandfill for the analysis.

The rainfall and runoff factor (R) was taken from a map in the Handbook for the averageannual value of the rainfall and erosion index. Based upon this map the value for R is 35.

The soil erodibility factor (K) was taken from a nomograph provided in the Handbook thattakes percent silt and very fine sand, soil structure, permeability class, percent sand, andpercent organic matter into account.

Site-specific data included in Exhibit 6 of this Attachment was taken into account in theestimation of K. Particle size data was gathered for the topmost layer of several differentareas across the site. This data was averaged to determine percent silt and very fine sand andpercent sand. These averages resulted in 13 percent silt and fine sand and 38 percent sand.

B3-1

Page 49: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIIIIIIIIIIIIIIII

Percent organic matter was set as zero. Slow to moderate permeability was assumed (0.08-0.2 inches/hour). The soil class chosen was for medium to coarse granular material. Basedupon the nomograph the value used for K is 0.11.

The slope length factor (L) and slope steepness factor (S) are combined into a topographicfactor (LS) for analysis. This factor is a function of slope percent and slope length and variesfor each of the sixteen slopes evaluated. See Table B3.1 for the LS values used for each ofthe sixteen sections analyzed. These values were derived from a figure (Figure 4) in theHandbook.

It should also be noted that soil properties were assumed to be uniform across each section.

Table B3-1Topographic Factors for Each Section

4ectfo%

SIS2S3S4S5S6ElE2E3E4E5E6E7E8E9E10

"^SJcplfc

17.918.817.215.27.32.7

20.921.225.017.119.818.822.917.02.02.2

iBorizontali<fp

185106175165821111809592488636297465333592987638

4.23.64.23.32.40.4812.511.013.06.27.07.59.07.70.400.38

The cover and management factor (C) is assumed to be 1 for all sections. This factor takesinto account any canopy provided by plants, organic residue and the like. Since the SunriseMountain Landfill has little to no vegetative cover, the 1 assumes a continuous fallowcondition.

The support practice factor (P) is also assumed to be 1 for all sections. This factor takes intoaccount terraces and contouring practices that can help minimize erosion. The pre-controlsections being evaluated do not have controls that would mimic these types of agriculturalpractices.

SOIL LOSS CALCULATIONS

Table B3.2 provides a summary the USLE calculation for each section. The table shows thesection number and columns for each of the factors considered in the USLE equation. Thefar-right column is the product of the factors, or A, the resulting average soil loss in tons peracre per year.

B3-2

Page 50: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIIIIIIIIIIIIIIII

Table B3-2USLE Calculation Table

*, Section^

SIS2S3S4S5S6ElE2E3E4E5E6E7E8E9E10

sfeTMf

35353535353535353535353535353535

|£ &J&

0.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.11

'- LS1"U

4.2364.23.32.404812511.013.06.27.07.59.07.70.400.38

*G4fiiiiiiiiiiiiiiii

•j?ffiiiiiiiiiiiiiiii

' • (tons/ac/y r)16.213.916.212.79.21.8

48.142.450.123.927.028.934.72961.51.5

CONCLUSIONS

The USLE was applied to sixteen sections across the Sunrise Mountain Landfill in anexisting or baseline condition. These sections represent a range of typical slopes andconditions found at the Sunrise Mountain Landfill.

Generally, flatter slopes (>3 percent) typical of the Upper Deck and Southern Flats areas atthe Sunrise Mountain Landfill showed low soil loss due to erosion (<3 tons/ac/yr). Steeperslopes typical of those at the southern end of the Southern Flats and the slopes between theUpper Deck and Southern Flats (>10 percent) show erosion in excess of 10 tons/ac/yr. Inaddition, intermediate slopes such as S5 which is a somewhat steeper portion of the generallyflat Southern Flats area at approximately 7.3 percent can exhibit high erosion values (9.2tons/acre/yr) if a large slope length is present without some form of erosion control to breakup the long slope length.

B3-3

Page 51: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIIII Attachment B

Exhibit 4

I Revised Universal Soil Loss Equation (RUSLE) Analysis

I

I

I

I

I

I

I

I

I

I

I

Page 52: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIIIIIIIIIIIIIIII

EXHIBIT 4REVISED UNIVERSAL SOIL LOSS EQUATION (RUSLE) ANALYSIS

INTRODUCTION

The RUSLE is an update of Agricultural Handbook No. 537, which established the USLE,and contains a computer program to facilitate analysis. RUSLE also contains additional datathat was not available when Handbook No. 537 was published. The original USLE has beenretained in form, however, the technology for evaluation of the separate factors has beenimproved. As with USLE, RUSLE computes the soil loss for a given site as the product ofsix major factors whose most likely values at a particular location can be expressednumerically. Erosion variables reflected by these factors vary considerably about theirmeans from storm to storm, but effects of the random fluctuations tend to average out overextended periods. It should also be noted that the soil loss computed using the RUSLE is anaverage across the entire slope and not a maximum or minimum.

The Revised Universal Soil Loss Equation is: A = (R)(K)(L)(S)(C)(P)

Where:

A = Soil loss in tons per acre per year,R = Rainfall and runoff factor,K = Soil erodibility factor,L = Slope length factor,S = Slope-steepness factor,C = The cover and management factor, andP = The support practice factor.

The United Agricultural Research Service's "Guide to Conservation Planning with theRevised Universal Soil Loss Equation (RUSLE)", January 1997 was used as a guide inperforming this analysis. It is hereafter referred to as the Guide.

Exhibit 1 of this Attachment provides a map showing the sixteen sections evaluated for pre-control conditions at the Sunrise Mountain Landfill.

Since RUSLE includes a computer program to assist in the calculation of soil loss, allsections were analyzed using this program. The program is not geared towards providingoutput; therefore a discussion of the various assumptions made and a summary table of theresults is provided. Version 1.06a of the program was used.

SELECTION OF DIFFERENT FACTORS

This section briefly discusses each of the factors chosen for the analysis. In addition, a briefdescription of the differences between USLE and RUSLE for the factors is provided.

Since development of USLE, RUSLE expanded the rainfall and runoff factor (R) databasefor the western United States and a correction was developed for ponded water. RUSLEallows the user to specify certain cities for the selection of R. The City of Las Vegas waschosen within the program. Based upon the expanded database provided with RUSLE the

B4-1

Page 53: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIIIIIIIIIIIIIIII

value for R selected as corresponding to the City of Las Vegas was 8. No corrections wereapplied for ponding.

Since development of USLE, RUSLE has added factors allowing for the adjustment of thesoil erodibility factor (K) for freeze-thaw, certain volcanic soils, and rocks in the soil.

As was considered for the USLE analysis, site-specific data included in Exhibit 6 of thisAttachment was taken into consideration in the estimation of K for the RUSLE analysis;however, data was entered into the program as opposed to used with a nomograph. The datawas averaged to determine percent silt and very fine sand and percent rock. These averagesresulted in 13 percent silt and fine sand. Percent organic matter was set as zero. Slow tomoderate permeability was assumed (0.08-0.2 inches/hour). The soil class chosen was formedium to coarse granular material. Percent clay was set to a nominal value of 2 percentsince little clay has been encountered on-site. Based upon these assumptions, RUSLEcomputed a value of 0.145 for K which was applied to all sections.

The slope length factor (L) and slope steepness factor (S) are combined into a topographicfactor (LS) for analysis. Since development of USLE, RUSLE has revised the topographicfactor algorithms to reflect the ratio of rill to interrill erosion. The LS factor is a function ofslope percent and slope length and varies for each of the sixteen slopes evaluated. Onlysections with uniform slopes were considered. Table B4.1 indicates the slope and horizontallength of each section considered as well as the LS factor computed by the program. Nocorrection was applied for rill or interrill erosion since no features mimicking rills exist inthe existing or baseline condition. It should also be noted that soil properties were assumedto be uniform across each section. LS values using RUSLE were consistently different thanthose calculated using Figure 4 from the USLE Handbook. The difference in LS betweenUSLE and RUSLE, however, was not nearly as great as the difference for the R factor.

Table B4-1Topographic Factors for Each Section

Section

SIS2S3S4S5S6ElE2E3E4E5E6E7E8E9E10

Slope' (%)*

17.918.817.215.27.32.3

20.921.225.017.119.818.822.917.02.02.2

hTHofeontalff'Leiigth1(ft)i

185106175165821880809592488636297465333592987638

'if , LS-1*'"iij'yil^l;

4.603.364.173.453.020.7515.109.8713.709.837.209.109.379.210.540.54

B4-2

Page 54: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIIIIIIIIIIIIIIII

The cover and management factor (C) is assumed to be 1 for all sections. Since developmentof USLE, RUSLE has altered the cover and management factor to account for several otherfactors. Using RUSLE, this factor takes into account surface cover, crop canopy, surfaceroughness, and soil moisture under certain conditions. Although the computation of the Cfactor is more complex in RUSLE than in USLE, the value of 1 was retained since none ofthe management factors mentioned in RUSLE were present in the existing or baselinecondition at the Sunrise Mountain Landfill. This factor was manually entered into theprogram.

The support practice factor (P) is also assumed to be 1 for all sections. Since development ofUSLE, RUSLE has expanded the support practice factor to consider conditions forrangelands and stripcropping. This factor takes into practices that can help minimizeerosion. As in the USLE analysis, the existing or baseline sections being evaluated still donot have controls that would mimic the expanded types of practices included within RUST P.that could move the support practice factor below 1. This factor was manually entered intothe program.

SOIL LOSS CALCULATIONS

Table B4.2 provides a summary of the RUSLE-determined soil loss for each section. Thetable shows the section number and then columns for each of the factors considered in theRUSLE equation. The far-right column is the product of the factors, or A, the resultingaverage soil loss along the slope in tons per acre per year.

Table B4-2RUSLE Calculation Summary Table

Sectioiil:, !4-44wf 4

SIS2S3S4S5S6ElE2E3E4E5E6E7E8E9E10

i R^>^ ?^> tH *

8888888888888888

i BVi!%|IO*

0.1450.1450.1450.1450.1450.1450.1450.1450.1450.1450.1450.1450.1450.1450.1450.145

4.603.364.173.453.020.7515.109.8713.709.837.209.109.379.210.540.54

til1111111111111111

lir 1 ' ^ii

iiiiiiiiiiiiiiii

5.33.94.84.03.50.8718.011.016.011.08.311.011.011.00.630.62

B4-3

Page 55: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIIIIIIIIIIIIIIII

CONCLUSIONS

The RUSLE was applied to sixteen sections across the Sunrise Mountain Landfill in anexisting or baseline condition. These sections represent a range of typical slopes andconditions found at the Sunrise Mountain Landfill.

The most striking result of the RUSLE analysis is how much lower the results are than forUSLE. This is mostly due to the refined and much lower R coefficient. Unlike the USLEresults, half of the sections considered with RUSLE resulted in soil losses under 5.3tons/acre/yr. This difference not only showed low soil losses for flatter areas in the SouthernFlats and Top Deck, but also for slopes on the southern edge of the Southern Flats. Onlyslopes leading from the top deck down to the southern flats showed consistent soil losses inexcess of 10 tons/acre/yr in the existing or baseline condition.

B4-4

Page 56: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIII• Attachment B

Exhibits

• Water Erosion Prediction Project (WEPP) Model Analysis

I

I

I

I

I

I

I

I

I

I

I

I

Page 57: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIIIIIIIIIIIIIIII

EXHIBIT 5WATER EROSION PREDICTION PROJECT MODEL (WEPP) ANALYSIS

INTRODUCTION

WEPP is an erosion prediction model, which contains a set of computer programs. Themodel includes variables for rainfall intensity, soil qualities, plant growth parameters, residuedecomposition parameters, management parameters, slope effect parameters, and soilerodibility parameters. Unlike USLE and RUSLE, WEPP can be run in a single storm modeas well as long-term average soil loss. The major inputs to the WEPP model are a climatedata file, slope data files, a soil data file, and a crop/management file.

WEPP can be run in either hillslope or watershed mode. The sixteen sections beingconsidered represent isolated "hillslopes" as opposed to an entire watershed; therefore thehillslope method was utilized to evaluate all sections considered including the flatter slopes.Subtask 3.4.3.6 (Assessment of Erosion Potential) of the Final Landfill Assessment WorkPlan dated February 29, 2000 states that WEPP be used to determine the impact caused byerosion during individual, large storm events. The 200-year, 6-hour storm was chosen as thestorm to model for the WEPP analysis. This storm frequency corresponds to the storm usedin the Design Storm Evaluation and Storm Water Pollution Prevention Plan (SWPPP)analyses which have previously been submitted.

The "WEPP User Summary Manual" published by the USDA and USDI, July 1995 was usedas a guide in performing this analysis. It is hereafter referred to as the Manual.

Exhibit 1 of this Attachment provides a map showing the sixteen sections evaluated for pre-control conditions at the Sunrise Mountain Landfill.

Since WEPP is a computer program, all sections were analyzed using the program. Programoutputs are included at the end of this exhibit for each section analyzed. The sectiondesignation is written in the upper-right corner of the first page of each model output alongwith the filename. WEPP for Windows, Beta Version 3.0 was used.

Comparison Against USLE and RUSLE

Since the WEPP model was only intended in the Work Plan to be used for the evaluation of"large storm events", but is capable of analyzing long-term scenarios, and since it is beingused with other models a brief comparison analysis was performed to provide validation ofresults for the existing or baseline condition.

The climate data generator in WEPP was used to generate 100 years of typical climate datafor Las Vegas and Sections SI, E3, and E9 were run through all 100 years of the data todetermine average annual soil loss in tons/acre/yr. The soil, slope and crop/managementfiles used are identical to those used for the large storm event analysis described later in thisExhibit.

B5-1

Page 58: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIIIIIII

The average annual soil loss across sections SI, E3, and E9 using the WEPP model were 3.6,12.3, and 0.1 tons/acre/yr, respectively. These values are much lower than the soil lossescalculated using the USLE. They are slightly lower than RUSLE, but relatively comparable.

DISCUSSION OF MODEL INPUTS

This section briefly discusses model input parameters. Since the model contains four mainareas for parameter entry, the discussion in this section is divided into the same four areas asfollows: climate input, slope input, soil input, and crop/management input.

Climate Input

As previously mentioned, WEPP was run considering the 200-year, 6-hour storm used in thepreviously submitted Design Storm Evaluation and SWPPP. The parameters required forstorm input were as follows:

• Storm duration (hours): assumed to be 6 hours,• Storm amount (inches): assumed to be 4.25 inches,• Maximum intensity (inches/hour): assumed to be 11.4 inches/hour, and• Percent duration to peak intensity (%): assumed to be 50 percent based on Design

Storm Evaluation.

Slope Input

The sections analyzed using USLE and RUSLE were analyzed utilizing WEPP; however,WEPP input also allows the user to enter a series of lengths and slopes corresponding to eachlength to create hillslope profiles for analysis. As with the USLE and RUSLE, the soil typewas assumed to remain uniform within each section considered. II

• Table B5.1 lists the lengths and corresponding slopes for each section analyzed.

I

I

I

I

I

I

IB5-2

Page 59: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIIIIIIIIIIIIIIII

Table B5-1Lengths and Corresponding Slopes Assumed for Each Section

Section* ' ••SIS2S3S4S5S6ElE2E3E4E5E6E7E8E9

E10

Slope 1(%)-^;*'17.918.817.215.27.32.720.921.225.017.119.818.822.917.02.02.2

•*•' ' Length 1 (ft)^N/185106175165821771809592488636297465333592987638

Soil Input

A soil profile was input into WEPP for each section considered. Each section input to themodel consisted of a 6-inch top layer and underlying 18-inch layer. Five overall soilparameters are required as inputs to the model that are representative of the entire assumedsoil profile. Each layer then requires the input of 6 additional parameters. The soil inputswere as follows for each section:

Five Overall Soil Parameters

Albedo: 0.125 - Suggested model values for bare, dry soil (5 - 20%),Initial Saturation Level (%): 50 - Initial value, suggested model value is 70%, lowered for

drier conditions,Initial Erodibility (lb*s/in4): 0.223 - Equivalent to a sandy loam from Mercury, NV listed in

the Manual (Table 7.10.2),Rill Erodibility (s/ft): 4.6 e"04- Equivalent to a sandy loam from Mercury, NV listed in the

Manual (Table 7.10.2),Critical Shear (lb/ft2): 0.136 - Equivalent to a sandy loam from Mercury, NV listed in the

Manual (Table 7.10.2), andEffective Hydraulic Conductivity (in/h): 0.1 - Equivalent to 7xlO"5 cm/sec, generally set to

match RUSLE/USLE permeability class and results.

B5-3

Page 60: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIIIIIIIIIIIIIIII

Six Required Soil Parameters for Each Layer

Top Layer Second LayerDepth (in) 6 18Sand(%) 38 60Clay (%) 2 5Organic (%) 0.1 0.1Cation Exchange Capacity (meq/lOOg) 15 15Rock(%) 47 20

A two-layer profile was assumed in the analysis roughly paralleling a 6-inch erosion layerunderlain by an 18-inch layer. As was done in the USLE analysis, particle size data gatheredfor the topmost layer of several different areas across the site was used to determine typicalsoil parameters for use in this analysis. This data is included in Exhibit 6 of this Attachment.This data was averaged to determine percent sand (38%) and gravel/rock (47%). For thelayer below the topmost layer, more sand and clay were assumed with less gravel. Anominal value was assumed for organic matter since no vegetation is assumed. A cationexchange capacity of 15 meq/lOOg was assumed.

Crop/Management Input

A single crop/management file was used for every section considered. Thecrop/management file consists of many parameters that must be zeroed out or adjusted toapproximate the Sunrise Mountain Landfill existing or baseline scenario since there is novegetative growth or agricultural processes to consider. Twenty-one parameters are input tocreate the initial conditions which makeup the crop/management file. The samecrop/management file was used for each section. The 21 parameters and their input valuesare show in Table B5.2 with a brief comment section.

B5-4

Page 61: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIIIIIIIIIIIIIIII

Table B5-2Crop/Management Parameters

Parameter ^ V'-^WflW^*^**^ •Initial plant type

Bulk density after last tillage (g/cm3)

Initial canopy cover (%)Days since last tillage (days)Days since last harvest (days)Initial frost depth (in)Initial interrill cover (%)Initial residue cropping system typeCumulative rainfall since last tillage (in)

Initial ridge height after last tillage (in)Initial rill cover (%)Initial roughness after last tillage (in)Rill spacing (in)Rill width type

Initial snow depth (in)Initial depth of thaw (in)Depth of secondary tillage layer (in)

Depth of primary tillage layer (in)

Initial rill width (in)Initial total dead root mass (Ib/ac)Initial submerged residue mass (Ib/ac)

Assumed Value • W *! VCorn, Jefferson County IA,Low Production0

02000200000Fallow25

0.100.10Temporary

007.90

3.94

000

rmnmpnte^aWtftMa^K^S^ist^a.^fe

Default Crop Type, set to fallowcondition by other parameters chosenInput as zero so that the model assumesthat the soil is at its consolidated bulkdensityAssume no vegetationSet high to minimize effectsSet high to minimize effectsMinimum value for the modelAssume no vegetationSet to fallow (bare) conditionAssumes approximately 4.5 inches ofrain per year during this 2000-day periodMinimum value for the modelAssume no vegetationMinimum value for the modelMinimum value for the modelThis is the typical value and indicatesthat rills are destroyed by tillageMinimum value for the modelMinimum value for the modelDefault value, not used since tillage isnever assumed to occurDefault value, not used since tillage isnever assumed to occurMinimum value for the modelAssume no vegetationAssume no vegetation

SOIL LOSS CALCULATIONS

Table B5.3 provides a summary the WEPP calculation for each section. The table shows thesection number and maximum soil loss in tons/acre for the 200-year, 6-hour storm. Note thatas with USLE and RUSLE the soil loss shown is an average over the section considered forthe storm event. Model outputs are included at the end of this exhibit.

B5-5

Page 62: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIIIIIIIIIIIIIIII

Table B5-3WEPP Calculation Table

*8tsiS2S3S4S5S6ElE2E3E4E5E6E7E8E9E10

26.717.524.520.730.28.286.171.972.961.942.055.151.958.85.44.8

CONCLUSIONS

WEPP was initially run to determine average annual soil loss values to compare results fromit against results from USLE and RUSLE. The comparison showed that WEPP results werecomparable to RUSLE, but lower than USLE.

WEPP was applied to sixteen sections across the Sunrise Mountain Landfill in an existing orbaseline condition for a 200-year, 6-hour storm. Average soil loss in tons/acre for the largestorm event was calculated. Model outputs are included at the end of this exhibit.

In all cases the results for the WEPP analysis showed that the soil loss for the 200-year, 24-hour storm exceeded the average soil that would be lost in a typical year based oncalculations using the USLE or RUSLE. This is not unexpected, however, considering thestorm frequency being considered.

B5-6

Page 63: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIIIIIIIIIIIIIIII

loss_0.txt RfeSlWEPP

<5etf ion 51

Single storm

USDA WATER EROSION PREDICTION PROJECT

HILLSLOPE PROFILE AND WATERSHED MODELVERSION 99.500

May 18, 1999

TO REPORT PROBLEMS OR TO BE PUT ON THE MAILINGLIST FOR FUTURE WEPP MODEL RELEASES, PLEASE CONTACT:

WEPP TECHNICAL SUPPORTUSDA-AGRICULTURAL RESEARCH SERVICENATIONAL SOIL EROSION RESEARCH LABORATORY1196 BUILDING SOIL, PURDUE UNIVERSITYWEST LAFAYETTE, IN 47907-1196 USA

PHONE: (765) 494-8673FAX: (765) 494-5948

email: [email protected]: http://topsoil.nserl.purdue.edu/weppmain/wepp.html

HILLSLOPE INPUT DATA FILES - VERSION 99.500May 18, 1999

MANAGEMENT: pO.manMAN. PRACTICE: description 1

description 2description 3

SLOPE: pO.slpCLIMATE: pO.cliStation: LAS VEGAS WB AP NV CLIGEN VERSION 4.20

SOIL: pO.solPLANE 1 Landfill silty/gravelly sand

I. SINGLE STORM HYDROLOGY

infiltration, rainfall excess, and runoff hydrograph for event of 1 6 1

hydrology summary

rainfall amount 107.90 (mm)rainfall duration 360.00 (min)normalized peak intensity 16.09normalized time to peak 0.50

rainfalltime intensity(rain) (mm/hr)

0.00 9.40172.25 208.72

Page 1

Page 64: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIIIIIIIIIIIIIIII

loss_0.txt

180.00 208.72187.75 9.40360.00 0.00

****************************************************

******************

hillslope 1******************

***************************

overland flow element 1***************************

infiltration input parameters

effective saturated conductivity 2.26 (mm/h)effective matric potential 30.37 (mm)effective porosity 0.37 (mm/mm)saturation 50.00 (%)canopy cover 0.00 (%)surface cover 0.00 (%)

input runoff parameters

plane length 56.37 (m)discharge exponent 1.50average slope of profile 0.18chezy coefficient 4.39 (m**0.5/s)

output runoff parameters

equivalent sat. hydr. cond. 2.26 (mm/hr)equivalent matr. potential 30.37 (mm)average pore fraction 0.38 (m/m)average saturation fraction 0.11 (m/m)

runoff output

runoff volume 71.37 (mm)peak runoff rate 203.84 (mm/hr)effective runoff duration 21.01 (min)effective length 56.37 (meters)

output runoff hydrograph for hillslope 1

cumul.index time rate depth

(min) (mm/h) (mm)

1 0.00 0.00 0.002 5.00 0.00 0.003 10.00 0.00 0.004 15.00 0.00 0.005 20.00 0.00 0.00

Page 2

Page 65: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

loss O.txt

67891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768

25.0030.0035.0040.0045.0050.0055.0060.0061.5865.0070.0075.0080.0085.0090.0095.00100.00105.00110.00115.00120.00125.00130.00135.00140.00145.00150.00155.00160.00165.00170.00172.25175.00180.00185.00187.75190.00195.00200.00205.00210.00215.00220.00225.00230.00235.00240.00245.00250.00255.00260.00265.00270.00275.00280.00285.00290.00295.00300.00305.00310.00315.00320.00

0.000.000.000.000.000.000.000.000.000.000.000.120.370.791.391.882.132.362.552.722.883.023.153.263.373.473.573.663.743.823.893.92

117.33203.40203.46203.8485.2512.624.984.324.354.404.444.494.534.574.604.644.684.714.744.774.814.834.864.894.924.954.975.005.025.045.07

0.000.000.000.000.000.000.000.000.000.000.000.000.010.030.070.170.300.470.660.861.081.311.561.822.082.362.652.943.243.553.864.184.337.1120.4837.4346.7852.1956.2757.0057.3957.7558.1158.4858.8659.2359.6159.9960.3860.7761.1661.5561.9562.3562.7563.1563.5663.9764.3864.7965.2165.6266.04

Page 3

Page 66: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIIIIIIIIIIIIIIII

loss O.txt

6970717273

325.00330.00335.00340.00341.00

5.095.115.135.155.16

66.4666.8967.3167.7468.17

runoff hydrograph summary for hillslope 1

107.90 (mm)36.53 (mm)71.37 (mm)

208.7219.93293.424.16

203.84

360.0061.5821.0156.37

(mm/h)(mm/h)(min)(mm/h)(mm/h)

(min)(min)(min)(meters)

rainfall volumeinfiltration volumerunoff volume

peak rainfall intensityeffective rainfall intensityeffective rainfall durationfinal infiltration ratepeak runoff rate

duration of rainfalltime to first pondingeffective runoff durationeffective length

II. ON SITE EFFECTS ON SITE EFFECTS ON SITE EFFECTS

A. AREA OF NET SOIL LOSS

** Soil Loss (Avg. of Net Detachment Areas) = 5.976 kg/m2 **** Maximum Soil Loss = 10.718 kg/m2 at 56.37 meters **

** Interrill Contribution = 0.061 kg/m2 for OFE # 1

Area of Soil Loss Soil Loss MAX MAX Loss MIN MIN LossNet Loss MEAN STDEV Loss Point Loss Point

(m) (kg/m2) (kg/m2) (kg/m2) (m) (kg/m2) (m)

0.00- 56.37 5.976 3.272 10.718 56.37 0.061 1.69

C. SOIL LOSS/DEPOSITION ALONG SLOPE PROFILE

Profile distances are from top to bottom of hillslope

distance(m)

0.561.131.692.252.823.383.95

soil flowloss elem(kg/m2)

0000000

.061

.061

.061

.061

.061

.061

.076

1111111

distance(m)

19202021212223

.73

.29

.86

.42

.99

.55

.11

soil flowloss elem(kg/m2)

4.6914.8164.9395.0615.1815.3005.417

1111111

distance(m)

38.39.40.40.41.41.42.

90460359157228

soil flowloss elem(kg/m2)

8.2508.3398.4278.5148.6008.6868.771

1111111

Page 4

Page 67: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIIIIIIIIIIIIIIII

loss_0.txt

7.7.

4.515.075.646.206.76

.33

.898.469.029.58

10.1510.7111.2711.8412.4012.9713.5314.0914.6615.2215.7816.3516.9117.4818.0418.6019.17

0.2640.4940.7130.9251.1291.3261.5171.7031.8842.0602.2322.3992.5632.7242.8813.0353.1863.3343.4803.6233.7643.9024.0394.1734.3054.4354.564

111111111111111111111111111

23.6824.2424.8025.3725.9326.5027.0627.6228.1928.7529.3129.8830.4431.0131.5732.1332.7033.2633.8234.3934.9535.5236.0836.6437.2137.7738.33

5.5335.6475.7605.8725.9836.0936.2016.3086.4146.5196.6236.7266.8286.9297.0297.1287.2267.3237.4197.5157.6107.7037.7967.8897.9808.0718.161

111111111111111111111111111

42.8443.4143.9744.5445.1045.6646.2346.7947.3547.9248.4849.0549.6150.1750.7451.3051.8652.4352.9953.5654.1254.6855.2555.8156.37

8.8568.9409.0239.1069.1889.2699.3509.4319.5109.5909.6689.7479.8249.9019.978

10.05410.13010.20510.27910.35410.42710.50110.57310.64610.718

1111111111111111111111111

note: (+) soil loss - detachment (-) soil loss - deposition

III. OFF SITE EFFECTS OFF SITE EFFECTS OFF SITE EFFECTS

A. SEDIMENT LEAVING PROFILE for jun 1 1 336.913 kg/m

B. SEDIMENT CHARACTERISTICS AND ENRICHMENT

Sediment particle information leaving profile

Class

12345

Diameter Specific(mm)

0.0020.0100.0300.3000.200

Gravity

2.602.651.801.602.65

Particle Composition

% Sand

0.00.00.0

73.5100.0

% Silt

0.0100.095.23.10.0

% Clay

100.00.04.823.40.0

% O.M.

3.70.00.20.90.0

DetachedSedimentFraction

0.0070.4910.0490.0760.377

FractionIn FlowExiting

0.0070.4910.0490.0760.377

SSA enrichment ratio leaving profile for jun 1 1 = 1.00

Page 5

Page 68: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

ioss_i.txt

Single storm

USDA WATER EROSION PREDICTION PROJECT

HILLSLOPE PROFILE AND WATERSHED MODELVERSION 99.500

May 18, 1999

TO REPORT PROBLEMS OR TO BE PUT ON THE MAILINGLIST FOR FUTURE WEPP MODEL RELEASES, PLEASE CONTACT:

WEPP TECHNICAL SUPPORTUSDA-AGRICULTURAL RESEARCH SERVICENATIONAL SOIL EROSION RESEARCH LABORATORY1196 BUILDING SOIL, PURDUE UNIVERSITYWEST LAFAYETTE, IN 47907-1196 USA

PHONE: (765) 494-8673FAX: (765) 494-5948

email: [email protected]: http: //topsoil.nserl.purdue.edu/weppmain/wepp.html

HILLSLOPE INPUT DATA FILES - VERSION 99.500May 18, 1999

MANAGEMENT: pi.manMAN. PRACTICE: description 1

description 2description 3

SLOPE: pi.sipCLIMATE: pl.cliStation: LAS VEGAS WB AP NV CLIGEN VERSION 4.20

SOIL: pi.solPLANE 1 Landfill silty/gravelly sand

I. SINGLE STORM HYDROLOGY

infiltration, rainfall excess, and runoff hydrograph for event of 1 6 1

hydrology summary

rainfall amount 107.90 (mm)rainfall duration 360.00 (min)normalized peak intensity 16.09normalized time to peak 0.50

rainfalltime intensity(min) (mm/hr)

0.00 9.40172.25 208.72

Page 1

Page 69: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

loss_l.txt

180.00 208.72187.75 9.40360.00 0.00

****************************************************

******************

hillslope 1******************

***************************

overland flow element 1***************************

infiltration input parameters

effective saturated conductivity 2.26 (mm/h)effective matric potential 30.37 (mm)effective porosity 0.37 (mm/mm)saturation 50.00 (%)canopy cover 0.00 (%)surface cover 0.00 (%)

input runoff parameters

plane length 32.30 (m)discharge exponent 1.50average slope of profile 0.19chezy coefficient 4.39 (m**0.5/s)

output runoff parameters

equivalent sat. hydr. cond. 2.26 (mm/hr)equivalent matr. potential 30.37 (mm)average pore fraction 0.38 (m/m)average saturation fraction 0.11 (m/m)

runoff output

runoff volume 71.37 (mm)peak runoff rate 203.65 (mm/hr)effective runoff duration 21.03 (min)effective length 32.30 (meters)

output runoff hydrograph for hillslope 1

cumul.index time rate depth

(min) (mm/h) (mm)

1 0.00 0.00 0.002 5.00 0.00 0.003 10.00 0.00 0.004 15.00 0.00 0.005 20.00 0.00 0.00

Page 2

Page 70: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIIIIIIIIIIIIIIII

loss_l.txt

6789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566

25.0030.0035.0040.0045.0050.0055.0060.0061.5865.0070.0075.0080.0085.0090.0095.00100.00105.00110.00115.00120.00125.00130.00135.00140.00145.00150.00155.00160.00165.00170.00172.25175.00180.00185.00187.75190.00195.00200.00205.00210.00215.00220.00225.00230.00235.00240.00245.00250.00255.00260.00265.00270.00275.00280.00285.00290.00295.00300.00305.00306.00

0.000.000.000.000.000.000.000.000.000.010.010.210.661.371.762.032.262.462.642.802.943.083.203.313.423.523.613.693.773.853.923.95

194.19203.65203.49203.5054.296.004.274.334.374.424.464.504.544.584.624.664.694.734.764.794.824.854.884.914.934.964.985.015.03

0.000.000.000.000.000.000.000.000.000.000.000.000.010.050.130.260.420.600.791.011.231.471.721.982.262.542.833.123.433.744.064.384.539.0725.6542.6251.9656.7859.2959.7260.0860.4460.8161.1861.5561.9362.3162.6963.0863.4763.8664.2664.6565.0565.4665.8666.2766.6867.0967.5167.92

Page 3

Page 71: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIIIIIIIIIIIIIIII

loss_l.txt

runoff hydrograph summary for hillslope 1

rainfall volumeinfiltration volumerunoff volume

peak rainfall intensityeffective rainfall intensityeffective rainfall durationfinal infiltration ratepeak runoff rate

duration of rainfalltime to first pondingeffective runoff durationeffective length

107.90 (mm)36.53 (mm)71.37 (mm)

208.72 (mm/h)19.93 (mm/h)293.42 (min)4.16 (mm/h)

203.65 (mm/h)

360.00 (min)61.58 (min)21.03 (min)32.30 (meters)

II. ON SITE EFFECTS ON SITE EFFECTS ON SITE EFFECTS

A. AREA OF NET SOIL LOSS

** Soil Loss (Avg. of Net Detachment Areas) = 3.934 kg/m2 **** Maximum Soil Loss = 7.429 kg/m2 at 32.30 meters **

** Interrill Contribution = 0,062 kg/m2 for OFE # 1

Area of Soil Loss Soil Loss MAX MAX Loss MIN MIN LossNet Loss MEAN STDEV Loss Point Loss Point

(m) (kg/m2) (kg/m2) (kg/m2) (m) (kg/m2) (m)

0.00- 32.30 3.934 2.328 7.429 32.30 0.062 1.29

C. SOIL LOSS/DEPOSITION ALONG SLOPE PROFILE

Profile distances are from top to bottom of hillslope

distance soil flow distance soil flow distance soil flow(m) loss elem (m) loss elem (m) loss elem

(kg/m2) (kg/m2) (kg/m2)

0.320.650.971.291.621.942.262.582.913.233.553.884.204.52

0.0620.0620.0620.0620.0620.0620.0620.0620.0620.1190.2640.4050.5420.675

11111111111111

11.3111.6311.9512.2712.6012.9213.2413.5713.8914.2114.5414.8615.1815.50

2.9253.0153.1043.1923.2803.3663.4513.5353.6193.7013.7833.8643.9444.024

11111111111111

22.2922.6122.9323.2623.5823.9024.2324.5524.8725.2025.5225.8426.1626.49

5.5465.6125.6785.7445.8095.8745.9386.0026.0666.1296.1926.2546.3166.378

11111111111111

Page 4

Page 72: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIIIIIIIIIIIIIIII

loss_l.txt

4.855.175.495.816.146.466.78.11.43.75

8.088.408.729.049.379.69

10.0110.3410.6610.98

7.7.7.

0.8050.9311.0541.1751.2921.4081.5211.6321.7411.8481.9542.0572.1592.2602.3592.4562.5522.6472.7412.834

11111111111111111111

15.8316.1516.4716.8017.1217.4417 .7718.0918.4118.7419.0619.3819.7020.0320.3520.6721.0021.3221.6421.97

note: (+) soil loss - detachment

26.8127.1327.4627.7828.1028.4328.7529.0729.3929.7230.0430.3630.6931.0131.3331.6631.9832.30

(-) soil loss - deposition

4.1024.1804.2584.3344.4104.4854.5604.6344.7074.7804.8534.9244.9955.0665.1365.2055.2745.3435.4115.478

11111111111111111111

6.4396.5006.5616.6216.6816.7406.7996.8586.9176.9757.0327.0907.1477.2047.2617.3177.3737.429

111111111111111111

III. OFF SITE EFFECTS OFF SITE EFFECTS OFF SITE EFFECTS

A. SEDIMENT LEAVING PROFILE for jun 1 1 127.080 kg/m

B. SEDIMENT CHARACTERISTICS AND ENRICHMENT

Sediment particle information leaving profile

Class

12345

Diameter Specific(mm)

0.0020.0100.0300.3000.200

Gravity

2.602.651.801.602.65

Particle Composition

% Sand

0.00.00.073.5100.0

% Silt

0.0100.095.23.10.0

% Clay

100.00.04.823.40.0

% O.M.

3.70.00.20.90.0

DetachedSedimentFraction

0.0070.4910.0490.0760.377

FractionIn FlowExiting

0.0070.4910.0490.0760.377

SSA enrichment ratio leaving profile for jun 1 1 = 1.00

Page 5

Page 73: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

I

I

I

_

•|

I

I

I

I

I

I

I

I

loss_l.txt

Single storm

USDA WATER EROSION PREDICTION PROJECT

HILLSLOPE PROFILE AND WATERSHED MODELVERSION 99.500

VERSION 99.500May 18, 1999 •

III«

_

TO REPORT PROBLEMS OR TO BE PUT ON THE MAILINGLIST FOR FUTURE WEPP MODEL RELEASES, PLEASE CONTACT:

WEPP TECHNICAL SUPPORTUSDA-AGRICULTURAL RESEARCH SERVICENATIONAL SOIL EROSION RESEARCH LABORATORY1196 BUILDING SOIL, PURDUE UNIVERSITYWEST LAFAYETTE, IN 47907-1196 USA

PHONE: (765) 494-8673FAX: (765) 494-5948

email: [email protected]: http://topsoil.nserl.purdue.edu/weppmain/wepp.html

HILLSLOPE INPUT DATA FILES - VERSION 99.500May 18, 1999

MANAGEMENT : pi . manMAN. PRACTICE: description 1

description 2description 3

SLOPE: pi. sipCLIMATE: pl.cliStation: LAS VEGAS WB AP NV CLIGEN VERSION 4.20

SOIL: pi. solPLANE 1 Landfill silty/gravelly sand

I. SINGLE STORM HYDROLOGY

infiltration, rainfall excess, and runoff hydrograph for event of 1 6 1

hydrology summary

rainfall amount 107.90 (mm)rainfall duration 360.00 (min)normalized peak intensity 16.09normalized time to peak 0.50

rainfalltime intensity(min) (mm/hr)

0.00 9.40172.25 208.72

Page 1

Page 74: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIIIIIIIIIIIIIIII

loss_l.txt

180.00 208.72187.75 9.40360.00 0.00

****************************************************

******************

hillslope 1******************

***************************overland flow element 1***************************

infiltration input parameters

effective saturated conductivity 2.26 (mm/h)effective matric potential 30.37 (mm)effective porosity 0.37 (mm/mm)saturation 50.00 (%)canopy cover 0.00 (%)surface cover 0.00 (%)

input runoff parameters

plane length 53.33 (m)discharge exponent 1.50average slope of profile 0.17chezy coefficient 4.39 (m**0.5/s)

output runoff parameters

equivalent sat. hydr. cond. 2.26 (mm/hr)equivalent matr. potential 30.37 (mm)average pore fraction 0.38 (m/m)average saturation fraction 0.11 (m/m)

runoff output

runoff volume 71.37 (mm)peak runoff rate 203.87 (mm/hr)effective runoff duration 21.00 (min)effective length 53.33 (meters)

output runoff hydrograph for hillslope 1

cumul.index time rate depth

(min) (mm/h) (mm)

1 0.00 0.00 0.002 5.00 0.00 0.003 10.00 0.00 0.004 15.00 0.00 0.005 20.00 0.00 0.00

Page 2

Page 75: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIIIIIIIIIIIIIIII

loss_l.txt

67891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768

25.0030.0035.0040.0045.0050.0055.0060.0061.5865.0070.0075.0080.0085.0090.0095.00100.00105.00110.00115.00120.00125.00130.00135.00140.00145.00150.00155.00160.00165.00170.00172.25175.00180.00185.00187.75190.00195.00200.00205.00210.00215.00220.00225.00230.00235.00240.00245.00250.00255.00260.00265.00270.00275.00280.00285.00290.00295.00300.00305.00310.00315.00320.00

0.000.000.000.000.000.000.000.000.000.000.000.120.390.821.441.892.152.372.562.732.883.023.153.273.383.483.573.663.743.823.893.94

121.03203.41203.46203.8783.3412.014.854.304.354.404.444.494.534.574.614.644.684.714.744.784.814.844.874.894.924.954.975.005.025.045.07

0.000.000.000.000.000.000.000.000.000.000.000.000.010.030.080.170.310.480.670.871.091.331.571.832.102.372.662.953.253.563.884.204.357.2120.7337.6947.0352.4156.3857.0857.4757.8358.1958.5658.9359.3159.6960.0760.4560.8461.2361.6362.0262.4262.8363.2363.6464.0564.4664.8765.2965.7066.12

Page 3

Page 76: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIIIIIIIIIIIIIIII

loss l.txt

69707172

325.00330.00335.00336.00

5.095.115.135.14

66.5466.9767.3967.82

runoff hydrograph summary for hillslope 1

107.90 (mm)36.53 (mm)71.37 (mm)

208.7219.93293.424.16

203.87

360.0061.5821.0053.33

(mm/h)(mm/h)(min)(mm/h)(mm/h)

(min)(min)(min)(meters)

rainfall volumeinfiltration volumerunoff volume

peak rainfall intensityeffective rainfall intensityeffective rainfall durationfinal infiltration ratepeak runoff rate

duration of rainfalltime to first pondingeffective runoff durationeffective length

II. ON SITE EFFECTS ON SITE EFFECTS ON SITE EFFECTS

A. AREA OF NET SOIL LOSS

** Soil Loss (Avg. of Net Detachment Areas) = 5.502 kg/m2 **** Maximum Soil Loss = 9.958 kg/m2 at 53.33 meters **

** Interrill Contribution = 0.060 kg/m2 for OFE # 1

Area of Soil Loss Soil Loss MAX MAX Loss MIN MIN LossNet Loss MEAN STDEV Loss Point Loss Point

(m) (kg/m2) (kg/m2) (kg/m2) (m) (kg/m2) (m)

0.00- 53.33 5.502 3.062 9.958 53.33 0.060 2.13

C. SOIL LOSS/DEPOSITION ALONG SLOPE PROFILE

Profile distances are from top to bottom of hillslope

distance(m)

0.531.071.602.132.673.203.734.27

soil flowloss elem(kg/m2)

0.0600.0600.0600.0600.0600.0600.0600.133

11111111

distance(m)

1819192020212122

.67

.20

.73

.26

.80

.33

.86

.40

soil flowloss elem(kg/m2)

44444445

.281

.398

.514

.628

.741

.853

.963

.072

11111111

distance(m)

3637373838394040

.80

.33

.86

.40

.93

.46

.00

.53

soil flowloss elem(kg/m2)

7.6317.7147.7977.8797.9618.0428.1228.202

11111111

Page 4

Page 77: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIIIIIIIIIIIIIIII

loss l.txt I4.805.335.876.406.937.478.008.539.079.60

10.1310.6711.2011.7312.2712.8013.3313.8714.4014.9315.4716.0016.5317.0717.6018.13

0.3430.5490.7470.9381.1221.3021.4761.6451.8101.9712.1282.2822.4332.5802.7252.8673.0063.1433.2773.4103.5403.6683.7943.9184.0414.161

11111111111111111111111111

22.9323.4624.0024.5325.0625.6026.1326.6627.2027.7328.2628.8029.3329.8630.4030.9331.4632.0032.5333.0633.6034.1334.6635.2035.7336.26

5.1805.2875.3925.4965.5995.7015.8025.9026.0006.0986.1956.2916.3866.4806.5736.6666.7576.8486.9387.0277.1167.2037.2907.3767.4627.547

11111111111111111111111111

41.0641.6042.1342.6643.2043.7344.2644.8045.3345.8646.4046.9347.4648.0048.5349.0649.6050.1350.6651.2051.7352.2652.8053.33

8.2818.3598.4378.5158.5928.6688.7448.8198.8948.9689.0429.1159.1889.2609.3329.4039.4749.5459.6159.6849.7539.8229.8909.958

111111111111111111111111

note: (+) soil loss - detachment (-) soil loss - deposition

III. OFF SITE EFFECTS OFF SITE EFFECTS OFF SITE EFFECTS

A. SEDIMENT LEAVING PROFILE for jun 1 1 293.413 kg/m

B. SEDIMENT CHARACTERISTICS AND ENRICHMENT

Sediment particle information leaving profile

Class

12345

Diameter Specific(mm)

0.0020.0100.0300.3000.200

Gravity

2.602.651.801.602.65

Particle Composition

% Sand

0.00.00.073.5100.0

% Silt

0.0100.095.23.10.0

% Clay

100.00.04.823.40.0

% O.M.

3.70.00.20.90.0

DetachedSedimentFraction

0.0070.4910.0490.0760.377

FractionIn FlowExiting

0.0070.4910.0490.0760.377

SSA enrichment ratio leaving profile for jun 1 1 = 1.00

Page 5

Page 78: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIIIIIIIIIIIIIIII

ioss_i.txt

Single storm

USDA WATER EROSION PREDICTION PROJECT

HILLSLOPE PROFILE AND WATERSHED MODELVERSION 99.500

May 18, 1999

TO REPORT PROBLEMS OR TO BE PUT ON THE MAILINGLIST FOR FUTURE WEPP MODEL RELEASES, PLEASE CONTACT:

WEPP TECHNICAL SUPPORTUSDA-AGRICULTURAL RESEARCH SERVICENATIONAL SOIL EROSION RESEARCH LABORATORY1196 BUILDING SOIL, PURDUE UNIVERSITYWEST LAFAYETTE, IN 47907-1196 USA

PHONE: (765) 494-8673FAX: (765) 494-5948

email: [email protected]: http: / /topsoil. nserl. purdue. edu/weppmain/wepp.html

HILLSLOPE INPUT DATA FILES - VERSION 99.500May 18, 1999

MANAGEMENT: pi.manMAN. PRACTICE: description 1

description 2description 3

SLOPE: pi.sipCLIMATE: pl.cliStation: LAS VEGAS WB AP NV CLIGEN VERSION 4.20

SOIL: pi.solPLANE 1 Landfill silty/gravelly sand

I. SINGLE STORM HYDROLOGY

fikstvew

infiltration, rainfall excess, and runoff hydrograph for event of 1 6 1

hydrology summary

rainfall amount 107.90 (mm)rainfall duration 360.00 (min)normalized peak intensity 16.09normalized time to peak 0.50

rainfalltime intensity(min) (mm/hr)

0.00 9.40172.25 208.72

Page 1

Page 79: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIII

loss I.txt

I

I

I

I

I

I

I

I

I

I

I

I

180.00187.75360.00

208.729.400.00

****************************************************

******************

hillslope 1******************

***************************

overland flow element 1***************************

infiltration input parameters

effective saturated conductivity 2.26 (mm/h)effective matric potential 30.37 (mm)effective porosity 0.37 (mm/mm)saturation 50.00 (%)canopy cover 0.00 (%)surface cover 0.00 (%)

input runoff parameters

plane length 50.28 (m)discharge exponent 1.50average slope of profile 0.15chezy coefficient 4.39 (m**0.5/s)

output runoff parameters

equivalent sat. hydr. cond. 2.26 (mm/hr)equivalent matr. potential 30.37 (mm)average pore fraction 0.38 (m/m)average saturation fraction 0.11 (m/m)

runoff output

runoff volume 71.37 (mm)peak runoff rate 203.87 (mm/hr)effective runoff duration 21.00 (min)effective length 50.28 (meters)

output runoff hydrograph for hillslope 1

cumul.index time rate depth

(min) (mm/h) (ram)

1 0.00 0.00 0.002 5.00 0.00 0.003 10.00 0.00 0.004 15.00 0.00 0.005 20.00 0.00 0.00

Page 2

Page 80: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIIIIIIIIIIIIIIII

loss l.txt

67891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768

25.0030.0035.0040.0045.0050.0055.0060.0061.5865.0070.0075.0080.0085.0090.0095.00100.00105.00110.00115.00120.00125.00130.00135.00140.00145.00150.00155.00160.00165.00170.00172.25175.00180.00185.00187.75190.00195.00200.00205.00210.00215.00220.00225.00230.00235.00240.00245.00250.00255.00260.00265.00270.00275.00280.00285.00290.00295.00300.00305.00310.00315.00320.00

0.000.000.000.000.000.000.000.000.000.000.000.120.380.821.441.892.152.362.562.732.883.023.153.273.383.483.573.663.743.823.893.94

120.72203.41203.46203.8783.5012.064.864.304.354.404.444.494.534.574.614.644.684.714.744.784.814.844.874.894.924.954.975.005.025.045.07

0.000.000.000.000.000.000.000.000.000.000.000.000.010.030.080.170.310.480.670.871.091.321.571.832.102.372.662.953.253.563.884.204.347.2120.7137.6647.0152.3956.3757.0857.4657.8258.1858.5558.9359.3059.6860.0660.4560.8461.2361.6262.0262.4262.8263.2263.6364.0464.4564.8665.2865.7066.11

Page 3

Page 81: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIIIIIIIIII

loss l.txt

69707172

325.00330.00335.00336.00

5.095.115.135.14

66.5466.9667.3867.81

runoff hydrograph summary for hillslope 1

107.90 (mm)36.53 (mm)71.37 (mm)

rainfall volumeinfiltration volumerunoff volume

peak rainfall intensityeffective rainfall intensityeffective rainfall durationfinal infiltration ratepeak runoff rate

duration of rainfalltime to first pondingeffective runoff durationeffective length

II. ON SITE EFFECTS ON SITE EFFECTS ON SITE EFFECTS

A. AREA OF NET SOIL LOSS

** Soil Loss (Avg. of Net Detachment Areas) = 4.642 kg/m2 **** Maximum Soil Loss = 8.566 kg/m2 at 50.28 meters **

** Interrill Contribution = 0.056 kg/m2 for OFE # 1

208.7219.93293.424.16

203.87

360.0061.5821.0050.28

(mm/h)(mm/h)(min)(mm/h)(mm/h)

(min)(min)(min)(meters)

Area ofNet Loss

(m)

Soil LossMEAN

(kg/m2)

Soil LossSTDEV(kg/m2)

MAXLoss

(kg/m2)

MAX LossPoint(m)

MIN MIN LossLoss Point(kg/m2) (m)

0.00- 50.28 4.642 2.676 8.566 50.28 0.056 2.01

C. SOIL LOSS/DEPOSITION ALONG SLOPE PROFILE

Profile distances are from top to bottom of hillslope

IIIII

distance soil flow distance soil flow distance soil flow(m) loss elem (m) loss elem (m) loss elem

(kg/m2) (kg/m2) (kg/m2)

0.501.011.512.012.513.023.524.02

0.0560.0560.0560.0560.0560.0560.0560.056

17.6018.1018.6019.1119.6120.1120.6221.12

3.541.645.748.849.949

4.0484.1464.243

3.3.3.3.

11111111

Page 4

34.6935.2035.7036.2036.7137.2137.7138.21

6.5086.5826.6556.7286.8006.8726.9437.013

11111111

Page 82: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIIIIIIIIIIIIIIII

loss_l.txt

4.535.035.536.036.547.047.548.058.559.059.5510.0610.5611.0611.5612.0712.5713.0713.5814.0814.5815.0815.5916.0916.5917.10

0.0790.2370.4120.5800.7430.9021.0561.2061.3521.4951.6341.7701.9042.0342.1622.2882.4112.5332.6522.7692.8842.9983.1103.2203.3283.435

11111111111111111111111111

21.6222.1222.6323.1323.6324.24.25.25.26.26.27.27.28.28.29.29.30.30.31.31.32.32.33.33.34.

146414641565156516661667176717681868196919

4.3384.4324.5264.6184.7094.8004.8894.9775.0655.1515.2375.3225.4065.4905.5725.6545.7355.8155.8955.9746.0526.1306.2076.2836.3596.434

11111111111111111111111111

383939404041414242434344444545464647474848494950

.72

.22

.72

.23

.73

.23

.73

.24

.74

.24

.74

.25

.75

.25

.76

.26

.76

.26

.77

.27

.77

.28

.78

.28

777777777777778888888888

.083

.153

.222

.290

.358

.426

.493

.559

.625

.691

.756

.821

.885

.949

.012

.076

.138

.200

.262

.324

.385

.446

.506

.566

111111111111111111111111

note: (+) soil loss - detachment (-) soil loss - deposition

III. OFF SITE EFFECTS OFF SITE EFFECTS OFF SITE EFFECTS

A. SEDIMENT LEAVING PROFILE for jun 1 1 233.412 kg/m

B. SEDIMENT CHARACTERISTICS AND ENRICHMENT

Sediment particle information leaving profile

Class

12345

Diameter Specific(rnm)

0.0020.0100.0300.3000.200

Gravity

2.602.651.801.602.65

Particle Composition

% Sand

0.00.00.073.5100.0

% Silt

0.0100.095.23.10.0

% Clay

100.00.04.823.40.0

% O.M.

3.70.00.20.90.0

DetachedSedimentFraction

0.0070.4910.0490.0760.377

FractionIn FlowExiting

0.0070.4910.0490.0760.377

SSA enrichment ratio leaving profile for jun 1 1 = 1.00

Page 5

Page 83: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

ioss_i.txt

Single storm

USDA WATER EROSION PREDICTION PROJECT

HILLSLOPE PROFILE AND WATERSHED MODELVERSION 99.500

May 18, 1999

TO REPORT PROBLEMS OR TO BE PUT ON THE MAILINGLIST FOR FUTURE WEPP MODEL RELEASES, PLEASE CONTACT:

WEPP TECHNICAL SUPPORTUSDA-AGRICULTURAL RESEARCH SERVICENATIONAL SOIL EROSION RESEARCH LABORATORY1196 BUILDING SOIL, PURDUE UNIVERSITYWEST LAFAYETTE, IN 47907-1196 USA

PHONE: (765) 494-8673FAX: (765) 494-5948

email: [email protected]: http://topsoil.nserl.purdue.edu/weppmain/wepp.html

HILLSLOPE INPUT DATA FILES - VERSION 99.500May 18, 1999

MANAGEMENT: pi.manMAN. PRACTICE: description 1

description 2description 3

SLOPE: pi.sipCLIMATE: pl.cliStation: LAS VEGAS WB AP NV CLIGEN VERSION 4.20

SOIL: pi.solPLANE 1 Landfill silty/gravelly sand

I. SINGLE STORM HYDROLOGY

infiltration, rainfall excess, and runoff hydrograph for event of 1 6 1

hydrology summary

rainfall amount 107.90 (mm)rainfall duration 360.00 (min)normalized peak intensity 16.09normalized time to peak 0.50

rainfalltime intensity(min) (mm/hr)

0.00 9.40172.25 208.72

Page 1

Page 84: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIIIII1IIIIIII1II

loss_l.txt

180.00 208.72187.75 9.40360.00 0.00

****************************************************

******************

hillslope 1******************

***************************overland flow element 1***************************

infiltration input parameters

effective saturated conductivity 2.26 (mm/h)effective matric potential 30.37 (mm)effective porosity 0.37 (mm/mm)saturation 50.00 (%)canopy cover 0.00 (%)surface cover 0.00 (%)

input runoff parameters

plane length 250.19 (m)discharge exponent 1.50average slope of profile 0.07chezy coefficient 4.39 (m**0.5/s)

output runoff parameters

equivalent sat. hydr. cond. 2.26 (mm/hr)equivalent matr. potential 30.37 (mm)average pore fraction 0.38 (m/m)average saturation fraction 0.11 (m/m)

runoff output

runoff volume 71.10 (mm)peak runoff rate 204.26 (mm/hr)effective runoff duration 20.89 (min)effective length 250.19 (meters)

output runoff hydrograph for hillslope 1

cumul.index time rate depth

(min) (mm/h) (mm)

1 0.00 0.00 0.002 5.00 0.00 0.003 10.00 0.00 0.004 15.00 0.00 0.005 20.00 0.00 0.00

Page 2

Page 85: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIIIIIIIIIIIIIIII

loss_l.txt

67891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768

25.0030.0035.0040.0045.0050.0055.0060.0061.5865.0070.0075.0080.0085.0090.0095.00100.00105.00110.00115.00120.00125.00130.00135.00140.00145.00150.00155.00160.00165.00170.00172.25175.00180.00185.00187.75190.00195.00200.00205.00210.00215.00220.00225.00230.00235.00240.00245.00250.00255.00260.00265.00270.00275.00280.00285.00290.00295.00300.00305.00310.00315.00320.00

0.000.000.000.000.000.000.000.000.000.000.000.000.000.010.070.150.270.420.600.811.051.331.631.972.342.753.113.263.383.493.593.6324.3583.77160.66204.26162.9894.8253.0930.1318.1511.878.476.565.474.854.554.524.564.604.644.684.724.754.784.814.844.874.904.934.964.985.01

0.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.010.030.060.100.160.240.340.460.610.791.001.251.511.792.072.372.503.157.6517.8426.2133.0843.8349.9953.4655.4756.7257.5758.1958.6959.1259.5159.8960.2760.6561.0461.4361.8262.2162.6163.0163.4163.8264.2264.6365.0465.46

Page 3

Page 86: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIIIIIIIIIIIIIIII

loss l.txt

6970717273

325.00330.00335.00340.00341.00

5.035.055.085.105.09

65.8866.2966.7167.1467.56

runoff hydrograph summary for hillslope 1

107.90 (mm)36.80 (mm)71.10 (mm)

208.7220.44280.004.16

204.26

360.0061.5820.89250.19

(mm/h)(mm/h)(min)(mm/h)(mm/h)

(min)(min)(min)(meters)

rainfall volumeinfiltration volumerunoff volume

peak rainfall intensityeffective rainfall intensityeffective rainfall durationfinal infiltration ratepeak runoff rate

duration of rainfalltime to first pondingeffective runoff durationeffective length

II. ON SITE EFFECTS ON SITE EFFECTS ON SITE EFFECTS

A. AREA OF NET SOIL LOSS

** Soil Loss (Avg. of Net Detachment Areas) = 6.771 kg/m2 **** Maximum Soil Loss = 10.538 kg/m2 at 250.19 meters **

** Interrill Contribution = 0.041 kg/m2 for OFE # 1

Area of Soil Loss Soil Loss MAX MAX Loss MIN MIN LossNet Loss MEAN STDEV Loss Point Loss Point

(m) (kg/m2) (kg/m2) (kg/m2) (m) (kg/m2) (m)

0.00- 250.19 6.771 3.237 10.538 250.19 0.041 7.51

C. SOIL LOSS/DEPOSITION ALONG SLOPE PROFILE

Profile distances are from top to bottom of hillslope

distance soil flow(m) loss elem

(kg/m2)

distance soil flow distance soil flow(m) loss elem (m) loss elem

(kg/m2) (kg/m2)

2.505.007.51

10.0112.5115.0117.51

0.0410.0410.0410.0410.0410.0410.055

1111111

87.5790.0792.5795.0797.57

100.07102.58

6.1016.2296.3546.4756.5936.7086.820

1111111

172.63175.13177.63180.13182.64185.14187.64

9.1049.1639.2229.2799.3359.3909.445

1111111

Page 4

Page 87: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIIIIIIIIIIIIIIII

loss_l.txt

20.0122.5225.0227.5230.0232.5235.0337.5340.0342.5345.0347.5450.0452.5455.0457.5460.0462.5565.0567.5570.0572.5575.0677.5680.0682.5685.06

0.3280.6811.0171.3351.6381.9272.2032.4672.7192.9613.1933.4153.6303.8364.0354.2274.4124.5914.7644.9325.0945.2515.4035.5515.6955.8345.969

111111111111111111111111111

105.08107.58110.08112.58115.09117.59120.09122.59125.09127.60130.10132.60135.10137.60140.10142.61145.11147.61150.11152.61155.12157.62160.12162.62165.12167.63170.13

6.9297.0367.1397.2417.3407.4367.5317.6237.7137.8017.8877.9728.0548.1358.2138.2918.3668.4408.5138.5848.6538.7228.7888.8548.9188.9819.043

111111111111111111111111111

190.14192.64195.15197.65200.15202.65205.15207.66210.16212.66215.16217.66220.16222.67225.17227.67230.17232.67235.18237.68240.18242.68245.18247.69250.19

9.4989.5509.6029.6529.7029.7509.7989.8459.8929.9379.98210.02610.06910.11210.15410.19510.23610.27610.31510.35310.39210.42910.46610.50210.538

1111111111111111111111111

note: (+) soil loss - detachment (-) soil loss - deposition

III. OFF SITE EFFECTS OFF SITE EFFECTS OFF SITE EFFECTS

A. SEDIMENT LEAVING PROFILE for jun 1 1 1694.023 kg/m

B. SEDIMENT CHARACTERISTICS AND ENRICHMENT

Sediment particle information leaving profile

Class

12345

Diameter Specific(mm)

0.0020.0100.0300.3000.200

Gravity

2.602.651.801.602.65

Particle Composition

% Sand

0.00.00.073.5100.0

% Silt

0.0100.095.23.10.0

% Clay

100.00.04.823.40.0

% O.M.

3.70.00.20.90.0

DetachedSedimentFraction

0.0070.4910.0490.0760.377

FractionIn FlowExiting

0.0070.4910.0490.0760.377

SSA enrichment ratio leaving profile for jun 1 1 = 1.00

Page 5

Page 88: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

loss l.txt fi'/

Single storm

USDA WATER EROSION PREDICTION PROJECT

HILLSLOPE PROFILE AND WATERSHED MODELVERSION 99.500

May 18, 1999

TO REPORT PROBLEMS OR TO BE PUT ON THE MAILINGLIST FOR FUTURE WEPP MODEL RELEASES, PLEASE CONTACT:

WEPP TECHNICAL SUPPORTUSDA-AGRICULTURAL RESEARCH SERVICENATIONAL SOIL EROSION RESEARCH LABORATORY1196 BUILDING SOIL, PURDUE UNIVERSITYWEST LAFAYETTE, IN 47907-1196 USA

PHONE: (765) 494-8673FAX: (765) 494-5948

email: [email protected]: http: / /topsoil. nserl. purdue. edu/weppmain/wepp. html

HILLSLOPE INPUT DATA FILES - VERSIONMay 18, 1999

99.500

MANAGEMENT:MAN. PRACTICE;

SLOPECLIMATEStation

SOILPLANE 1

: pi.man; description 1description 2description 3pi.sippl.cliLAS VEGAS WB AP NVpi.solLandfill

CLIGEN VERSION 4.20

silty/gravelly sand

I. SINGLE STORM HYDROLOGY

infiltration, rainfall excess, and runoff hydrograph for event of 1 6 1

hydrology summary

rainfall amountrainfall durationnormalized peak intensitynormalized time to peak

rainfalltime intensity(min) (mm/hr)

107.90 (mm)360.00 (min)16.090.50

0.00172.25

9.40208.72

Page 1

Page 89: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

loss_l.txt

180.00 208.72187.75 9.40360.00 0.00

****************************************************

******************hillslope 1

******************

***************************overland flow element 1***************************

infiltration input parameters

effective saturated conductivity 2.26 (mm/h)effective matric potential 30.37 (mm)effective porosity 0.37 (mm/mm)saturation 50.00 (%)canopy cover 0.00 (%)surface cover 0.00 (%)

input runoff parameters

plane length 268.17 (m)discharge exponent 1.50average slope of profile 0.02chezy coefficient 4.39 (m**0.5/s)

output runoff parameters

equivalent sat. hydr. cond. 2.26 (mm/hr)equivalent matr. potential 30.37 (mm)average pore fraction 0.38 (m/m)average saturation fraction 0.11 (m/m)

runoff output

runoff volume 70.74 (mm)peak runoff rate 117.63 (mm/hr)effective runoff duration 36.08 (min)effective length 268.17 (meters)

output runoff hydrograph for hillslope 1

cumul.index time rate depth

(min) (mm/h) (mm)

1 0.00 0.00 0.002 5.00 0.00 0.003 10.00 0.00 0.004 15.00 0.00 0.005 20.00 0.00 0.00

Page 2

Page 90: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

loss_l.txt

67891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768

25.0030.0035.0040.0045.0050.0055.0060.0061.5865.0070.0075.0080.0085.0090.0095.00100.00105.00110.00115.00120.00125.00130.00135.00140.00145.00150.00155.00160.00165.00170.00172.25175.00180.00185.00187.75190.00195.00200.00205.00210.00215.00220.00225.00230.00235.00240.00245.00250.00255.00260.00265.00270.00275.00280.00285.00290.00295.00300.00305.00310.00315.00320.00

0.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.010.040.090.170.260.370.500.640.810.991.181.401.631.872.142.422.5514.2847.8890.96117.63116.43112.6887.9760.2741.0828.4820.3515.2611.749.387.766.585.825.294.944.724.644.654.694.724.764.794.824.854.884.914.93

0.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.010.020.040.060.100.150.210.280.370.480.610.750.921.111.201.594.189.9614.7519.1328.6837.0443.2147.4450.3452.3753.8554.9855.8656.5757.1757.6958.1558.5858.9859.3759.7660.1460.5460.9361.3361.7362.1362.5462.94

Page 3

Page 91: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIIIIIIIIIIIIIIII

loss_l.txt

69707172737475767778798081828384

325.00330.00335.00340.00345.00350.00355.00360.00361.00362.00363.00364.00365.00366.00367.00368.00

4.964.995.015.035.065.085.105.125.034.934.844.764.674.584.494.41

63.3563.7764.1864.6065.0265.4465.8666.2866.7166.7966.8866.9667.0467.1267.1967.27

runoff hydrograph summary for hillslope 1

rainfall volumeinfiltration volumeruno f f volume

peak rainfall intensityeffective rainfall intensityeffective rainfall durationfinal infiltration ratepeak runoff rate

duration of rainfalltime to first pondingeffective runoff durationeffective length

107.90 (mm)37.16 (mm)70.74 (mm)

208.72 (mm/h)20.85 (mm/h)270.004.16

117.63

(min)(mm/h)(mm/h)

360.00 (min)61.58 (min)36.08 (min)268.17 (meters)

II. ON SITE EFFECTS ON SITE EFFECTS ON SITE EFFECTS

A. AREA OF NET SOIL LOSS

** Soil Loss (Avg. of Net Detachment Areas) = 1.498 kg/m2 **** Maximum Soil Loss = 3.357 kg/m2 at 268.17 meters **

** Interrill Contribution = 0.027 kg/m2 for OFE # 1

Area of Soil Loss Soil Loss MAX MAX Loss MIN MIN LossNet Loss MEAN STDEV Loss Point Loss Point

(m) (kg/m2) (kg/m2) (kg/m2) (m) (kg/m2) (m)

0.00- 268.17 1.498 1.319 3.357 268.17 0.027 45.59

C. SOIL LOSS/DEPOSITION ALONG SLOPE PROFILE

Profile distances are from top to bottom of hillslope

distance soil flow distance soil flow distance soil flow

Page 4

Page 92: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIIIIIIIIIIIIIIII

loss l.txt

(m)

2.685.368.05

10.7313.4116.0918.7721.4524.1426.8229.5032.1834.8637.5440.2342.9145.5948.2750.9553.6356.3259.0061.6864.3667.0469.7272.4175.0977.7780.4583.1385.8188.5091.18

loss elem(kg/m2)

0.0270.0270.0270.0270.0270.0270.0270.0270.0270.0270.0270.0270.0270.0270.0270.0270.0270.0270.0270.0270.0270.0270.0270.0270.0270.0270.0270.0270.0270.0270.0270.0270.0270.027

1111111111111111111111111111111111

(m)

93.8696.5499.22

101.90104.59107.27109.95112.63115.31117.99120.68123.36126.04128.72131.40134.08136.77139.45142.13144.81147.49150.17152.86155.54158.22160.90163.58166.26168.95171.63174.31176.99179.67182.35

loss elem(kg/m2)

0.0600.1670.2740.3800.4840.5870.6870.7860.8820.9761.0671.1561.2431.3281.4101.4901.5681.6441.7171.7881.8571.9231.9882.0502.1112.1692.2252.2802.3332.3832.4332.4802.5262.570

1111111111111111111111111111111111

(m)

185.04187.72190.40193.08195.76198.44201.13203.81206.49209.17211.85214.53217.22219.90222.58225.26227.94230.62233.31235.99238.67241.35244.03246.71249.40252.08254.76257.44260.12262.80265.49268.17

loss elem(kg/m2)

2.6122.6532.6932.7312.7672.8032.8362.8692.9002.9312.9602.9883.0143.0403.0653.0883.1113.1333.1543.1743.1933.2123.2293.2463.2623.2783.2933.3073.3203.3333.3453.357

11111111111111111111111111111111

note: (+) soil loss - detachment (-) soil loss - deposition

III. OFF SITE EFFECTS OFF SITE EFFECTS OFF SITE EFFECTS

A. SEDIMENT LEAVING PROFILE for jun 1 1 401.842 kg/m

B. SEDIMENT CHARACTERISTICS AND ENRICHMENT

Sediment particle information leaving profile

Class

12345

Diameter Specific(mm)

0.0020.0100.0300.3000.200

Gravity

2.602.651.801.602.65

Particle Composition

% Sand

0.00.00.0

73.5100.0

% Silt

0.0100.095.23.10.0

% Clay

100.00.04.823.40.0

% O.M.

3.70.00.20.90.0

DetachedSedimentFraction

0.0070.4910.0490.0760.377

FractionIn FlowExiting

0.0070.4910.0490.0760.377

Page 5

Page 93: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIIIIIIIIIIIIIIII

loss l.txt

SSA enrichment ratio leaving profile for jun 1 1 = 1.00

Page 6

Page 94: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

I

I

I

I

I

I

I

I

I

I

I

I

I

ioss_i.txt ;ye

-fan <f/

I

I

I

I

I

Single storm

USDA WATER EROSION PREDICTION PROJECT

HILLSLOPE PROFILE AND WATERSHED MODELVERSION 99.500

May 18, 1999

TO REPORT PROBLEMS OR TO BE PUT ON THE MAILINGLIST FOR FUTURE WEPP MODEL RELEASES, PLEASE CONTACT:

WEPP TECHNICAL SUPPORTUSDA-AGRICULTURAL RESEARCH SERVICENATIONAL SOIL EROSION RESEARCH LABORATORY1196 BUILDING SOIL, PURDUE UNIVERSITYWEST LAFAYETTE, IN 47907-1196 USA

PHONE: (765) 494-8673FAX: (765) 494-5948

email: [email protected]: http: //topsoil. nserl.purdue.edu/weppmain/wepp. html

HILLSLOPE INPUT DATA FILES - VERSION 99.500May 18, 1999

MANAGEMENT : pi . manMAN. PRACTICE: description 1

description 2description 3

SLOPE: pi. sipCLIMATE: pl.cliStation: LAS VEGAS WB AP NV CLIGEN VERSION 4.20

SOIL: pi. solPLANE 1 Landfill silty/gravelly sand

I. SINGLE STORM HYDROLOGY

infiltration, rainfall excess, and runoff hydrograph for event of 1 6 1

hydrology summary

rainfall amount 107.90 (mm)rainfall duration 360.00 (min)normalized peak intensity 16.09normalized time to peak 0.50

rainfalltime intensity(min) (mm/hr)

0.00 9.40172.25 208.72

Page 1

Page 95: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIIIIIIIIIIIIIIII

loss_l.txt

180.00 208.72187.75 9.40360.00 0.00

****************************************************

******************

hillslope 1******************

***************************overland flow element 1***************************

infiltration input parameters

effective saturated conductivity 2.26 (mm/h)effective matric potential 30.37 (mm)effective porosity 0.37 (mm/mm)saturation 50.00 (%)canopy cover 0.00 (%)surface cover 0.00 (%)

input runoff parameters

plane length 246.53 (m)discharge exponent 1.50average slope of profile 0.21chezy coefficient 4.39 (m**0.5/s)

output runoff parameters

equivalent sat. hydr. cond. 2.26 (mm/hr)equivalent matr. potential 30.37 (mm)average pore fraction 0.38 (m/m)average saturation fraction 0.11 (m/m)

runoff output

runoff volume 71.37 (mm)peak runoff rate 203.48 (mm/hr)effective runoff duration 21.04 (min)effective length 246.53 (meters)

output runoff hydrograph for hillslope 1

cumul.index time rate depth

(min) (mm/h) (mm)

1 0.00 0.00 0.002 5.00 0.00 0.003 10.00 0.00 0.004 15.00 0.00 0.005 20.00 0.00 0.00

Page 2

Page 96: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIIIIIIIIIIIIIIII

loss l.txt

67891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768

25.0030.0035.0040.0045.0050.0055.0060.0061.5865.0070.0075.0080.0085.0090.0095.00100.00105.00110.00115.00120.00125.00130.00135.00140.00145.00150.00155.00160.00165.00170.00172.25175.00180.00185.00187.75190.00195.00200.00205.00210.00215.00220.00225.00230.00235.00240.00245.00250.00255.00260.00265.00270.00275.00280.00285.00290.00295.00300.00305.00310.00315.00320.00

0.000.000.000.000.000.000.000.000.000.000.000.030.090.200.340.540.791.081.431.842.292.612.802.963.103.233.363.473.573.663.743.7736.69134.20203.47203.48147.3865.9229.1014.518.616.044.894.444.464.494.534.574.614.644.684.714.754.78 •4.814.844.874.904.924.954.975.005.02

0.000.000.000.000.000.000.000.000.000.000.000.000.000.010.020.040.080.130.210.320.450.620.831.051.291.551.812.092.372.662.963.273.414.3411.4625.5334.8741.4450.3354.2856.1057.0657.6858.1358.5258.8959.2659.6460.0260.4060.7961.1761.5761.9662.3662.7663.1663.5663.9764.3864.7965.2065.62

Page 3

Page 97: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIIIIIIIIIIIIIIII

loss_l.txt

697071727374

325.00330.00335.00340.00345.00346.00

5.055.075.095.115.135.14

66.0466.4666.8867.3067.7368.15

runoff hydrograph summary for hillslope 1

rainfall volumeinfiltration volumerunoff volume

peak rainfall intensityeffective rainfall intensityeffective rainfall durationfinal infiltration ratepeak runoff rate

duration of rainfalltime to first pondingeffective runoff durationeffective length

107.90 (mm)36.53 (mm)71.37 (mm)

208.72 (mm/h)19.93 (mm/h)293.42 (min)4.16 (mm/h)

203.48 (mm/h)

360.00 (min)61.58 (min)21.04 (min)246.53 (meters)

II. ON SITE EFFECTS ON SITE EFFECTS ON SITE EFFECTS

A. AREA OF NET SOIL LOSS

** Soil Loss (Avg. of Net Detachment Areas) = 19.311 kg/m2 **** Maximum Soil Loss = 29.940 kg/m2 at 246.53 meters **

** Interrill Contribution = 0.065 kg/m2 for OFE # 1

Area of Soil Loss Soil Loss MAX MAX Loss MIN MIN LossNet Loss MEAN STDEV Loss Point Loss Point

(m) (kg/m2) (kg/m2) (kg/m2) (m) (kg/m2) (m)

0.00- 246.53 19.311 8.272 29.940 246.53 0.065 2.47

C. SOIL LOSS/DEPOSITION ALONG SLOPE PROFILE

Profile distances are from top to bottom of hillslope

distance soil flow distance soil flow distance soil flow(m) loss elem (m) loss elem (m) loss elem

(kg/m2) (kg/m2) (kg/m2)

2.474.937.409.86

12.3314.79

0.0650.0650.4611.4962.4363.293

111111

86.2988.7591.2293.6896.1598.61

16.99717.30617.60917.90618.19718.484

111111

170.11172.57175.04177.50179.97182.43

25.10525.28925.47125.65125.82926.004

111111

Page 4

Page 98: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIIIIIIIIIIIIIIII

loss_l.txt

17.2619.7222.1924.6527.1229.5832.0534.5136.9839.4441.9144.3846.8449.3151.7754.2456.7059.1761.6364.1066.5669.0371.4973.9676.4278.8981.3683.82

4.0864.8275.5246.1846.8127.4117.9858.5369.0669.57810.07210.55011.01311.46211.89912.32312.73613.13913.53113.91414.28714.65215.00915.35815.70016.03416.36216.683

1111111111111111111111111111

101.08103.106.108.110.113.115.118.120.123.125.128.130.133.135.138.140.142.145.147.150.152.155.157.160.162.165.167.

540147944087338027732066135906529945923885317824711864

18.76519.04219.31419.58119.84420.10220.35720.60720.85421.09621.33521.57121.80322.03122.25622.47822.69722.91323.12623.33623.54323.74723.94924.14824.34424.53824.72924.918

1111111111111111111111111111

184187189192194197199202204207209212214216219221224226229231234236239241244246

.90

.36

.83

.29

.76

.22

.69

.16

.62

.09

.55

.02

.48

.95

.41

.88

.34

.81

.27

.74

.20

.67

.13

.60

.07

.53

2626262626272727272727272828282828282829292929292929

.178

.349

.518

.686

.851

.015

.177

.337

.495

.651

.806

.959

.110

.260

.408

.555

.700

.844

.985

.126

.265

.403

.539

.674

.808

.940

11111111111111111111111111

note: ( + ) soil loss - detachment (-) soil loss - deposition

III. OFF SITE EFFECTS OFF SITE EFFECTS OFF SITE EFFECTS

A. SEDIMENT LEAVING PROFILE for jun 1 1 4760.657 kg/m

B. SEDIMENT CHARACTERISTICS AND ENRICHMENT

Sediment particle information leaving profile

Class

12345

Diameter Specific(mm)

0.0020.0100.0300.3000.200

Gravity

2.602.651.801.602.65

Particle Composition

% Sand

0.00.00.073.5100.0

% Silt

0.0100.095.23.10.0

% Clay

100.00.04.823.40.0

% O.M.

3.70.00.20.90.0

DetachedSedimentFraction

0.0070.4910.0490.0760.377

FractionIn FlowExiting

0.0070.4910.0490.0760.377

SSA enrichment ratio leaving profile for jun 1 1 = 1.00

Page 5

Page 99: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

loss_l.txt

Section df<2

Single storm

USDA WATER EROSION PREDICTION PROJECT

HILLSLOPE PROFILE AND WATERSHED MODELVERSION 99.500

May 18, 1999

TO REPORT PROBLEMS OR TO BE PUT ON THE MAILINGLIST FOR FUTURE WEPP MODEL RELEASES, PLEASE CONTACT:

WEPP TECHNICAL SUPPORTUSDA-AGRICULTURAL RESEARCH SERVICENATIONAL SOIL EROSION RESEARCH LABORATORY1196 BUILDING SOIL, PURDUE UNIVERSITYWEST LAFAYETTE, IN 47907-1196 USA

PHONE: (765) 494-8673FAX: (765) 494-5948

email: [email protected]: http://topsoil.nserl.purdue.edu/weppmain/wepp .html

HILLSLOPE INPUT DATA FILES - VERSIONMay 18, 1999

99.500

MANAGEMENT:MAN. PRACTICE:

SLOPE:CLIMATE;Station:

SOIL:PLANE 1

pi.mandescription 1description 2description 3pi.sippl.cliLAS VEGAS WB AP NVpi.solLandfill

CLIGEN VERSION 4.20

silty/gravelly sand

I. SINGLE STORM HYDROLOGY

infiltration, rainfall excess, and runoff hydrograph for event of 1 6 1

hydrology summary

rainfall amountrainfall durationnormalized peak intensitynormalized time to peak

107.90 (mm)360.00 (min)16.090.50

rainfalltime(min)

intensity(mm/hr)

0.00172.25

9.40208.72

Page 1

Page 100: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIIIIIIIIIIIIIIII

loss l.txt

180.00187.75360.00

208.729.400.00

****************************************************

******************

hillslope 1******************

***************************

overland flow element 1***************************

infiltration input parameters

effective saturated conductivity 2.26 (mm/h)effective matric potential 30.37 (mm)effective porosity 0.37 (mm/mm)saturation 50.00 (%)canopy cover 0.00 (%)surface cover 0.00 (%)

input runoff parameters

plane length 180.40 (m)discharge exponent 1.50average slope of profile 0.21chezy coefficient 4.39 (m**0.5/s)

output runoff parameters

equivalent sat. hydr. cond. 2.26 (mm/hr)equivalent matr. potential 30.37 (mm)average pore fraction 0.38 (m/m)average saturation fraction 0.11 (m/m)

runoff output

runoff volume 71.37 (mm)peak runoff rate 203.51 (mm/hr)effective runoff duration 21.04 (min)effective length 180.40 (meters)

output runoff hydrograph for hillslope 1

cumul.index time rate depth

(min) (mm/h) (mm)

1 0.00 0.00 0.002 5.00 0.00 0.003 10.00 0.00 0.004 15.00 0.00 0.005 20.00 0.00 0.00

Page 2

Page 101: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIIIIIIIIIIII1III

loss l.txt

67891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768

25.0030.0035.0040.0045.0050.0055.0060.0061.5865.0070.0075.0080.0085.0090.0095.00100.00105.00110.00115.00120.00125.00130.00135.00140.00145.00150.00155.00160.00165.00170.00172.25175.00180.00185.00187.75190.00195.00200.00205.00210.00215.00220.00225.00230.00235.00240.00245.00250.00255.00260.00265.00270.00275.00280.00285.00290.00295.00300.00305.00310.00315.00320.00

0.000.000.000.000.000.000.000.000.000.000.000.040.130.270.470.741.081.491.972.382.592.772.943.083.203.323.423.533.623.703.783.8347.23177.32203.45203.51135.9449.4319.019.315.924.674.394.434.474.514.554.594.634.674.704.734.774.804.834.864.884.914.944.964.995.015.04

0.000.000.000.000.000.000.000.000.000.000.000.000.000.010.030.060.110.180.290.430.620.821.051.291.541.802.072.352.642.943.243.553.704.8714.2230.0939.4345.7853.5156.3657.5458.1758.6158.9959.3659.7360.1060.4860.8661.2561.6462.0362.4262.8163.2163.6164.0264.4264.8365.2465.6566.0766.49

Page 3

Page 102: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIIIIIIIIIIIIIIII

loss l.txt

69707172

325.00330.00335.00336.00

5.065.085.105.11

66.9167.3367.7568.17

runoff hydrograph summary for hillslope 1

107.90 (mm)36.53 (mm)71.37 (mm)

208.7219.93293.424.16

203.51

360.0061.5821.04180.40

(mm/h)(mm/h)(min)(mm/h)(mm/h)

(min)(min)(min)(meters)

rainfall volumeinfiltration volumerunoff volume

peak rainfall intensityeffective rainfall intensityeffective rainfall durationfinal infiltration ratepeak runoff rate

duration of rainfalltime to first pondingeffective runoff durationeffective length

II. ON SITE EFFECTS ON SITE EFFECTS ON SITE EFFECTS

A. AREA OF NET SOIL LOSS

** Soil Loss (Avg. of Net Detachment Areas) = 16.112 kg/m2 **** Maximum Soil Loss = 25.758 kg/m2 at 180.40 meters **

** Interrill Contribution = 0.066 kg/m2 for OFE t 1

Area of Soil Loss Soil Loss MAX MAX Loss MIN MIN LossNet Loss MEAN STDEV Loss Point Loss Point

(m) (kg/m2) (kg/m2) (kg/m2) (m) (kg/m2) (m)

0.00- 180.40 16.112 7.255 25.758 180.40 0.066 1.80

C. SOIL LOSS/DEPOSITION ALONG SLOPE PROFILE

Profile distances are from top to bottom of hillslope

distance soil flow(m) loss elem

(kg/m2)

distance soil flow distance soil flow(m) loss elem (m) loss elem

(kg/m2) (kg/m2)

1.3.

8061

5.417.229.02

10.8212.6314.43

0.0660.0660.1320.8091.5722.2712.9203.529

11111111

63.1464.9566.7568.5570.3672.1673.9775.77

13.86914.14014.40714.66914.92715.18115.43015.676

11111111

124.48126.28128.09129.89131.69133.50135.30137.11

21.18221.35321.52221.68921.85522.01922.18122.342

11111111

Page 4

Page 103: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIIIIIIIIIIItIIII

loss l.txt

16.2418.0419.8421.6523.4525.2627.0628.8630.6732.4734.2836.0837.8839.6941.4943.3045.1046.9048.7150.5152.3254.1255.9257.7359.5361.34

4.1054.6515.1725.6716.1506.6127.0577.4877.9048.3098.7029.0849.4569.819

10.17210.51810.85511.18511.50811.82412.13312.43612.73413.02613.31213.593

11111111111111111111111111

77.5779.3881.1882.9984.7986.5988.4090.2092.0193.8195.6197.4299.22101.03102.83104.63106.44108.24110.05111.85113.65115.46117.26119.07120.87122.67

15.91816.15716.39116.62316.85117.07617.29717.51617.73217.94518.15418.36218.56618.76818.96719.16419.35919.55119.74119.92820.11420.29720.47820.65720.83421.009

11111111111111111111111111

138.91140.71142.52144.32146.13147.93149.73151.54153.34155.15156.95158.75160.56162.36164.17165.97167.77169.58171.38173.19174.99176.80178.60180.40

22.50022.65822.81322.96723.12023.27123.42023.56823.71523.86024.00424.14624.28824.42724.56624.70324.83924.97425.10825.24025.37125.50125.63025.758

111111111111111111111111

note: (+) soil loss - detachment (-) soil loss - deposition

III. OFF SITE EFFECTS OFF SITE EFFECTS OFF SITE EFFECTS

A. SEDIMENT LEAVING PROFILE for jun 1 1 2906.626 kg/m

B. SEDIMENT CHARACTERISTICS AND ENRICHMENT

Sediment particle information leaving profile

Class

12345

Diameter Specific(mm)

0.0020.0100.0300.3000.200

Gravity

2.602.651.801.602.65

Particle Composition

% Sand

0.00.00.073.5100.0

% Silt

0.0100.095.23.10.0

% Clay

100.00.04.823.40.0

% O.M.

3.70.00.20.90.0

DetachedSedimentFraction

0.0070.4910.0490.0760.377

FractionIn FlowExiting

0.0070.4910.0490.0760.377

SSA enrichment ratio leaving profile for jun 1 1 = 1.00

Page 5

Page 104: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

loss l.txt

Single storm

USDA WATER EROSION PREDICTION PROJECT

HILLSLOPE PROFILE AND WATERSHED MODELVERSION 99.500

May 18, 1999

TO REPORT PROBLEMS OR TO BE PUT ON THE MAILINGLIST FOR FUTURE WEPP MODEL RELEASES, PLEASE CONTACT:

WEPP TECHNICAL SUPPORTUSDA-AGRICULTURAL RESEARCH SERVICENATIONAL SOIL EROSION RESEARCH LABORATORY1196 BUILDING SOIL, PURDUE UNIVERSITYWEST LAFAYETTE, IN 47907-1196 USA

PHONE: (765) 494-8673FAX: (765) 494-5948

email: [email protected]: http://topsoil.nser!.purdue.edu/weppmain/wepp. html

HILLSLOPE INPUT DATA FILES - VERSIONMay 18, 1999

99.500

MANAGEMENT:MAN. PRACTICE:

SLOPE:CLIMATE:Station:

SOIL:

pi.mandescription 1description 2description 3pi.sippl.cliLAS VEGAS WB AP NV

pi.solCLIGEN VERSION 4.20

PLANE 1 Landfill

I. SINGLE STORM HYDROLOGY

silty/gravelly sand

infiltration, rainfall excess, and runoff hydrograph for event of 1 6 1

hydrology summary

rainfall amountrainfall durationnormalized peak intensitynormalized time to peak

107.90 (mm)360.00 (min)16.090.50

rainfalltime(min)

intensity(mm/hr)

0.00172.25

9.40208.72

Page 1

Page 105: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIIIIIIIIIIIIIIII

loss_l.txt

180.00 208.72187.75 9.40360.00 0.00

****************************************************

******************

hillslope 1******************

***************************

overland flow element 1***************************

infiltration input parameters

effective saturated conductivity 2.26 (mm/h)effective matric potential 30.37 (mm)effective porosity 0.37 (mm/mm)saturation 50.00 (%)canopy cover 0.00 (%)surface cover 0.00 (%)

input runoff parameters

plane length 148.71 (m)discharge exponent 1.50average slope of profile 0.25chezy coefficient 4.39 (m**0.5/s)

output runoff parameters

equivalent sat. hydr. cond. 2.26 (mm/hr)equivalent matr. potential 30.37 (mm)average pore fraction 0.38 (m/m)average saturation fraction 0.11 (m/m)

runoff output

runoff volume 71.37 (mm)peak runoff rate 203.87 (mm/hr)effective runoff duration 21.00 (min)effective length 148.71 (meters)

output runoff hydrograph for hillslope 1

cumul.index time rate depth

(min) (mm/h) (mm)

1 0.00 0.00 0.002 5.00 0.00 0.003 10.00 0.00 0.004 15.00 0.00 0.005 20.00 0.00 0.00

Page 2

Page 106: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIIIIIIIIIIIIIIII

loss l.txt

67891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768

25.0030.0035.0040.0045.0050.0055.0060.0061.5865.0070.0075.0080.0085.0090.0095.00100.00105.00110.00115.00120.00125.00130.00135.00140.00145.00150.00155.00160.00165.00170.00172.25175.00180.00185.00187.75190.00195.00200.00205.00210.00215.00220.00225.00230.00235.00240.00245.00250.00255.00260.00265.00270.00275.00280.00285.00290.00295.00300.00305.00310.00315.00320.00

0.000.000.000.000.000.000.000.000.000.000.000.050.170.360.620.981.431.972.302.522.702.863.003.143.263.373.483.573.663.743.823.8759.18203.55203.87203.54124.6736.7212.876.604.714.364.404.454.494.534.574.614.654.684.724.754.784.814.844.874.904.924.954.975.005.025.05

0.000.000.000.000.000.000.000.000.000.000.000.000.000.010.030.070.140.240.380.560.760.981.211.451.711.982.252.542.833.133.443.763.905.3516.3033.2742.6248.7755.4957.5658.3758.8459.2259.5859.9560.3260.7061.0861.4661.8562.2462.6363.0263.4263.8264.2264.6265.0365.4465.8566.2766.6867.10

Page 3

Page 107: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIIIIIIIIIIIIIIII

6970

325.00326.00

5.075.08

loss_l.txt

67.5267.94

runoff hydrograph summary for hillslope 1

rainfall volumeinfiltration volumerunoff volume

peak rainfall intensityeffective rainfall intensityeffective rainfall durationfinal infiltration ratepeak runoff rate

duration of rainfalltime to first pondingeffective runoff durationeffective length

107.90 (mm)36.53 (mm)71.37 (mm)

208.72 (mm/h)19.93293.42

(mm/h)(min)

4.16 (mm/h)203.87 (mm/h)

360.00 (min)61.58 (min)21.00 (min)148.71 (meters)

II. ON SITE EFFECTS ON SITE EFFECTS ON SITE EFFECTS

A. AREA OF NET SOIL LOSS

** Soil Loss (Avg. of Net Detachment Areas) = 16.351 kg/m2 **** Maximum Soil Loss = 26.560 kg/m2 at 148.71 meters **

** Interrill Contribution = 0.070 kg/m2 for OFE # 1

Area of Soil Loss Soil Loss MAX MAX Loss MIN MIN LossNet Loss MEAN STDEV Loss Point Loss Point

(m) (kg/m2) (kg/m2) (kg/m2) (m) (kg/m2) (m)

0.00- 148.71 16.351 7.489 26.560 148.71 0.070 1.49

C. SOIL LOSS/DEPOSITION ALONG SLOPE PROFILE

Profile distances are from top to bottom of hillslope

distance soil flow distance soil flow distance soil flow(m) loss elem (m) loss elem (m) loss elem

(kg/m2) (kg/m2) (kg/m2)

1.492.974.465.957.448.9210.4111.9013.3814.87

0.0700.0700.1760.8841.6242.3032.9363.5304.0934.628

1111111111

52.0553.5455.0256.5158.0059.4860.9762.4663.9565.43

13.87914.15814.43314.70314.97015.23215.49115.74615.99716.245

1111111111

102.61104.10105.58107.07108.56110.05111.53113.02114.51115.99

21.56021.74421.92622.10722.28622.46322.63822.81222.98423.155

1111111111

Page 4

Page 108: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIIIIIIIIIIIIIIII

loss_l.txt

16.3617.8519.3320.8222.3123.7925.2826.7728.2629.7431.2332.7234.2035.6937.1838.6640.1541.6443.1344.6146.1047.5949.0750.56

5.1405.6326.1056.5617.0037.4307.8468.2498.6429.0249.3979.762

10.11810.46610.80711.14111.46811.78912.10412.41312.71613.01413.30713.596

111111111111111111111111

66.9268.4169.8971.3872.8774.3675.8477.3378.8280.3081.7983.2884.7786.2587.7489.2390.7192.2093.6995.1796.6698.1599.64

101.12

16.49016.73116.97017.20517.43717.66717.89318.11718.33818.55718.77318.98619.19719.40619.61219.81720.01820.21820.41620.61120.80520.99721.18621.374

111111111111111111111111

117.48118.97120.46121.94123.43124.92126.40127.89129.38130.87132.35133.84135.33136.81138.30139.79141.28142.76144.25145.74147.22148.71

23.32423.49223.65823.82223.98624.14724.30824.46724.62424.78124.93625.08925.24225.39325.54325.69225.83925.98626.13126.27526.41826.560

1111111111111111111111

note: (+) soil loss - detachment (-) soil loss - deposition

III. OFF SITE EFFECTS OFF SITE EFFECTS OFF SITE EFFECTS

A. SEDIMENT LEAVING PROFILE for jun 1 1 2431.581 kg/m

B. SEDIMENT CHARACTERISTICS AND ENRICHMENT

Sediment particle information leaving profile

Class

12345

Diameter Specific(mm)

0.0020.0100.0300.3000.200

Gravity

2.602.651.801.602.65

Particle Composition

% Sand

0.00.00.073.5100.0

% Silt

0.0100.095.23.10.0

% Clay

100.00.04.823.40.0

% O.M.

3.70.00.20.90.0

DetachedSedimentFraction

0.0070.4910.0490.0760.377

FractionIn FlowExiting

0.0070.4910.0490.0760.377

SSA enrichment ratio leaving profile for jun 1 1 = 1.00

Page 5

Page 109: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIIIIIIIII

Fife et-uZp?

I

I

loss_l.txt

Single storm

USDA WATER EROSION PREDICTION PROJECT

HILLSLOPE PROFILE AND WATERSHED MODELVERSION 99.500

May 18, 1999

TO REPORT PROBLEMS OR TO BE PUT ON THE MAILINGLIST FOR FUTURE WEPP MODEL RELEASES, PLEASE CONTACT:

WEPP TECHNICAL SUPPORTUSDA-AGRICULTURAL RESEARCH SERVICENATIONAL SOIL EROSION RESEARCH LABORATORY1196 BUILDING SOIL, PURDUE UNIVERSITYWEST LAFAYETTE, IN 47907-1196 USA

PHONE: (765) 494-8673FAX: (765) 494-5948

email: [email protected]: http://topsoil.nserl.purdue.edu/weppmain/wepp.html

HILLSLOPE INPUT DATA FILES - VERSION 99.500May 18, 1999

MANAGEMENT: pi.manMAN. PRACTICE: description 1

description 2description 3

SLOPE: pi.sipCLIMATE: pl.cliStation: LAS VEGAS WB AP NV CLIGEN VERSION 4.20

SOIL: pi.solPLANE 1 Landfill silty/gravelly sand

I. SINGLE STORM HYDROLOGY

| intiltration, raintaii excess, ana runort nyarograpn ror event or i t> i

hydrology summary I

I

I

rainfall amount 107.90 (mm)rainfall duration 360.00 (min)normalized peak intensity 16,09normalized time to peak 0,50

rainfalltime intensity(min) (mm/hr)

0.00 9.40172.25 208.72

Page 1

Page 110: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIIIIIIIIIIIIIIII

loss l.txt

180.00 208.72187.75 9.40360.00 0.00

****************************************************

******************

hillslope 1******************

***************************

overland flow element 1***************************

infiltration input parameters

effective saturated conductivity 2.26 (mm/h)effective matric potential 30.37 (mm)effective porosity 0.37 (mm/mm)saturation 50.00 (%)canopy cover 0.00 (%)surface cover 0.00 (%)

input runoff parameters

plane length 193.81 (m)discharge exponent 1.50average slope of profile 0.17chezy coefficient 4.39 (m**0.5/s)

output runoff parameters

equivalent sat. hydr. cond. 2.26 (mm/hr)equivalent matr. potential 30.37 (mm)average pore fraction 0.38 (m/m)average saturation fraction 0.11 (m/m)

runoff output

runoff volume 71.37 (mm)peak runoff rate 203.50 (mm/hr)effective runoff duration 21.04 (min)effective length 193.81 (meters)

output runoff hydrograph for hillslope 1

cumul.index time rate depth

(min) (mm/h) (mm)

1 0.00 0.00 0.002 5.00 0.00 0.003 10.00 0.00 0.004 15.00 0.00 0.005 20.00 0.00 0.00

Page 2

Page 111: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIIIIIIIIIIIIIIII

loss l.txt

67891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768

25.0030.0035.0040.0045.0050.0055.0060.0061.5865.0070.0075.0080.0085.0090.0095.00100.00105.00110.00115.00120.00125.00130.00135.00140.00145.00150.00155.00160.00165.00170.00172.25175.00180.00185.00187.75190.00195.00200.00205.00210.00215.00220.00225.00230.00235.00240.00245.00250.00255.00260.00265.00270.00275.00280.00285.00290.00295.00300.00305.00310.00315.00320.00

0.000.000.000.000.000.000.000.000.000.000.000.030.110.230.400.620.911.251.652.112.502.702.873.023.153.263.393.493.583.673.763.8040.94151.76203.50203.49142.5758.5224.2611.917.235.304.534.424.464.504.544.584.624.654.694.724.764.794.824.854.884.904.934.964.985.015.03

0.000.000.000.000.000.000.000.000.000.000.000.000.000.010.020.050.090.150.240.360.520.710.931.161.411.661.932.212.492.793.093.403.544.5712.6027.4036.7443.2251.6055.0456.5557.3557.8758.2858.6559.0259.4059.7760.1560.5460.9261.3161.7162.1062.5062.9063.3063.7164.1164.5264.9365.3565.77

Page 3

Page 112: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIIIIIIIIIIIIIIII

loss l.txt

6970717273

325.00330.00335.00340.00341.00

5.055.085.105.125.13

66.1866.6067.0367.4567.88

runoff hydrograph summary for hillslope 1

rainfall volumeinfiltration volumerunoff volume

peak rainfall intensityeffective rainfall intensityeffective rainfall durationfinal infiltration ratepeak runoff rate

duration of rainfalltime to first pondingeffective runoff durationeffective length

107.90 (mm)36.53 (mm)71.37 (mm)

208.72 (mm/h)19.93 (mm/h)293.424.16

203.50

(min)(mm/h)(mm/h)

360.00 (min)61.58 (min)21.04 (min)193.81 (meters)

II. ON SITE EFFECTS ON SITE EFFECTS ON SITE EFFECTS

A. AREA OF NET SOIL LOSS

** Soil Loss (Avg. of Net Detachment Areas) = 13.877 kg/m2 **** Maximum Soil Loss = 22.048 kg/m2 at 193.81 meters **

** Interrill Contribution = 0.060 kg/m2 for OFE # 1

Area of Soil Loss Soil Loss MAX MAX Loss MIN MIN LossNet Loss MEAN STDEV Loss Point Loss Point

(m) (kg/m2) (kg/m2) (kg/m2) (m) (kg/m2) (m)

0.00- 193.81 13.877 6.275 22.048 193.81 0.060 1.94

C. SOIL LOSS/DEPOSITION ALONG SLOPE PROFILE

Profile distances are from top to bottom of hillslope

distance soil flow distance soil flow distance soil flow(m) loss elem (m) loss elem (m) loss elem

(kg/m2) (kg/m2) (kg/m2)

.94

.88

.817.759.69

11.6313.57

0.0600.0600.0600.3441.0341.6722.265

1111111

67.8369.7771.7173.6575.5977.5279.46

12.04212.27812.51012.73712.96113.18013.396

1111111

133.73135.67137.61139.54141.48143.42145.36

18.28318.42518.56718.70618.84418.98019.115

1111111

Page 4

Page 113: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

loss_l.txt

15.5017.4419.3821.3223.2625.2027.1329.0731.0132.9534.8936.8238.7640.7042.6444.5846.5148.4550.3952.3354.2756.2158.1460.0862.0263.9665.90

2.8193.3433.8394.3114.7625.1955.6116.0126.3986.7727.1347.4857.8268.1578.4808.7949.1009.3989.6899.974

10.25210.52410.79011.05111.30611.55611.802

111111111111111111111111111

81.4083.3485.2887.2289.1591.0993.0394.9796.9198.84100.78102.72104.66106.60108.53110.47112.41114.35116.29118.23120.16122.10124.04125.98127.92129.85131.79

13.60813.81714.02214.22414.42214.61814.81115.00015.18715.37115.55215.73115.90716.08116.25216.42116.58716.75216.91417.07417.23217.38817.54117.69317.84317.99218.138

111111111111111111111111111

147.30149.23151.17153.11155.05156.99158.93160.86162.80164.74166.68168.62170.55172.49174.43176.37178.31180.24182.18184.12186.06188.00189.94191.87193.81

19.24819.38019.51019.63819.76619.89120.01620.13920.26120.38120.50120.61920.73520.85120.96521.07921.19021.30121.41121.52021.62821.73421.84021.94422.048

1111111111111111111111111

note: (+) soil loss - detachment (-) soil loss - deposition

III. OFF SITE EFFECTS OFF SITE EFFECTS OFF SITE EFFECTS

A. SEDIMENT LEAVING PROFILE for jun 1 1 2689.469 kg/m

B. SEDIMENT CHARACTERISTICS AND ENRICHMENT

Sediment particle information leaving profile

Class

12345

Diameter Specific(mm)

0.0020.0100.0300.3000.200

Gravity

2.602.651.801.602.65

Particle Composition

% Sand

0.00.00.073.5100.0

% Silt

0.0100.095.23.10.0

% Clay

100.00.04.823.40.0

% O.M.

3.70.00.20.90.0

DetachedSedimentFraction

0.0070.4910.0490.0760.377

FractionIn FlowExiting

0.0070.4910.0490.0760.377

SSA enrichment ratio leaving profile for jun 1 1 = 1.00

Page 5

Page 114: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIII

Sector) &5

Single storm

USDA WATER EROSION PREDICTION PROJECT

HILLSLOPE PROFILE AND WATERSHED MODELVERSION 99.500

May 18, 1999

TO REPORT PROBLEMS OR TO BE PUT ON THE MAILINGLIST FOR FUTURE WEPP MODEL RELEASES, PLEASE CONTACT:

WEPP TECHNICAL SUPPORTUSDA-AGRICULTURAL RESEARCH SERVICENATIONAL SOIL EROSION RESEARCH LABORATORY1196 BUILDING SOIL, PURDUE UNIVERSITYWEST LAFAYETTE, IN 47907-1196 USA

PHONE: (765) 494-8673FAX: (765) 494-5948

emai1: wepp§ecn.purdue.eduURL: http://topsoil.nserl.purdue.edu/weppmain/wepp.html

HILLSLOPE INPUT DATA FILES - VERSION 99.500May 18, 1999

MANAGEMENT: pi.manMAN. PRACTICE: description 1

description 2description 3

SLOPE: pi.sipCLIMATE: pl.cliStation: LAS VEGAS WB AP NV CLIGEN VERSION 4.20

SOIL: pi.solPLANE 1 Landfill silty/gravelly sand

I. SINGLE STORM HYDROLOGY

infiltration, rainfall excess, and runoff hydrograph for event of 1 6 1

hydrology summary

rainfall amount 107.90 (mm)rainfall duration 360.00 (min)normalized peak intensity 16.09normalized time to peak 0.50

rainfalltime intensity(min) (mm/hr)

0.00 9.40172.25 208.72

Page 1

Page 115: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIIIIIIIIIIIIIIII

loss l.txt

180.00 208.72187.75 9.40360.00 0.00

****************************************************

******************

hillslope 1******************

***************************

overland flow element 1***************************

infiltration input parameters

effective saturated conductivity 2.26 (mm/h)effective matric potential 30.37 (mm)effective porosity 0.37 (mm/mm)saturation 50.00 (%)canopy cover 0.00 (%)surface cover 0.00 (%)

input runoff parameters

plane length 90.51 (m)discharge exponent 1.50average slope of profile 0.20chezy coefficient 4.39 (m**0.5/s)

output runoff parameters

equivalent sat. hydr. cond. 2.26 (mm/hr)equivalent matr. potential 30.37 (mm)average pore fraction 0.38 (m/m)average saturation fraction 0.11 (m/m)

runoff output

runoff volume 71.37 (mm)peak runoff rate 204.38 (mm/hr)effective runoff duration 20.95 (min)effective length 90.51 (meters)

output runoff hydrograph for hillslope 1

cumul.index time rate depth

(min) (mm/h) (mm)

1 0.00 0.00 0.002 5.00 0.00 0.003 10.00 0.00 0.004 15.00 0.00 0.005 20.00 0.00 0.00

Page 2

Page 116: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIIIIIIIIIIIIIIII

loss l.txt

67891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768

25.0030.0035.0040.0045.0050.0055.0060.0061.5865.0070.0075.0080.0085.0090.0095.00100.00105.00110.00115.00120.00125.00130.00135.00140.00145.00150.00155.00160.00165.00170.00172.25175.00180.00185.00187.75190.00195.00200.00205.00210.00215.00220.00225.00230.00235.00240.00245.00250.00255.00260.00265.00270.00275.00280.00285.00290.00295.00300.00305.00310.00315.00320.00

0.000.000.000.000.000.000.000.000.000.000.000.080.240.520.911.431.982.232.452.642.802.953.093.213.333.433.533.623.703.783.863.9081.46203.40204.38203.63107.0822.737.754.714.354.384.434.474.514.554.594.634.664.704.734.764.794.824.854.884.914.944.964.995.015.035.06

0.000.000.000.000.000.000.000.000.000.000.000.000.000.020.050.110.210.350.520.720.931.161.401.651.912.182.472.763.053.363.673.994.136.0917.9634.9544.3250.1355.5456.8157.3357.7158.0758.4458.8159.1859.5659.9460.3360.7161.1061.5061.8962.2962.6963.0963.5063.9164.3264.7365.1465.5665.98

Page 3

Page 117: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIIIIIIIIIIIIIIII

loss_l.txt

6970717273

325.00330.00335.00340.00341.00

5.085.105.125.145.15

66.4066.8267.2567.6768.10

runoff hydrograph summary for hillslope 1

107.90 (mm)36.53 (mm)71.37 (mm)

208.7219.93293.424.16

204.38

360.0061.5820.9590.51

(mm/h)(mm/h)(min)(mm/h)(mm/h)

(min)(min)(min)(meters)

rainfall volumeinfiltration volumerunoff volume

peak rainfall intensityeffective rainfall intensityeffective rainfall durationfinal infiltration ratepeak runoff rate

duration of rainfalltime to first pondingeffective runoff durationeffective length

II. ON SITE EFFECTS ON SITE EFFECTS ON SITE EFFECTS

A. AREA OF NET SOIL LOSS

** Soil Loss (Avg. of Net Detachment Areas) = 9.426 kg/m2 **** Maximum Soil Loss = 16.069 kg/m2 at 90.51 meters **

** Interrill Contribution = 0.064 kg/m2 for OFE # 1

Area of Soil Loss Soil Loss MAX MAX Loss MIN MIN LossNet Loss MEAN STDEV Loss Point Loss Point

(m) (kg/m2) (kg/m2) (kg/m2) (m) (kg/m2) (m)

0.00- 90.51 9.426 4.733 16.069 90.51 0.064 1.81

C. SOIL LOSS/DEPOSITION ALONG SLOPE PROFILE

Profile distances are from top to bottom of hillslope

distance(m)

0.911.812.723.624.535.436.34

soil flowloss elem(kg/m2)

0.0640.0640.0640.0640.1440.5210.903

1111111

distance(m)

31323334353637

.68

.58

.49

.39

.30

.20

.11

soil flowloss elem(kg/m2)

7.7287.9068.0828.2558.4268.5948.761

1111111

distance(m)

62636465666667

.45

.35

.26

.16

.07

.97

.88

soil flowloss elem(kg/m2)

12121213131313

.718

.840

.961

.080

.199

.317

.433

1111111

Page 4

Page 118: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIIIIIIIIIIIIIIII

loss_l.txt

1.2651.6081.9362.2512.5532.8453.1283.4013.6663.9254.1764.4214.6604.8945.1225.3465.5655.7795.9906.1976.3996.5996.7956.9877.1777.3637.547

111111111111111111111111111

7.248.159.059.96

10.8611.7712.6713.5814.4815.3916.2917.2018.1019.0119.9120.8221.7222.6323.5324.4425.3426.2527.1528.0628.9629.8730.77

note: (+) soil loss - detachment

38.0138.9239.8240.7341.6342.5443.4444.3545.2546.1647.0647.9748.8749.7850.6851.5952.4953.4054.3055.2156.1157.0257.9258.8359.7360.6461.54

8.9259.0879.2479.4059.5619.7159.867

10.01810.16710.31410.45910.60310.74610.88711.02611.16411.30111.43611.57011.70211.83311.96312.09212.22012.34612.47112.595

111111111111111111111111111

68.7869.6970.5971.5072.4173.3174.2275.1276.0376.9377.8478.7479.6580.5581.4682.3683.2784.1785.0885.9886.8987.7988.7089.6090.51

13.54913.66413.77813.89014.00214.11314.22414.33314.44114.54914.65514.76114.86614.97115.07415.17715.27915.38015.48115.58115.68015.77815.87615.97316.069

1111111111111111111111111

(-) soil loss - deposition

III. OFF SITE EFFECTS OFF SITE EFFECTS OFF SITE EFFECTS

A. SEDIMENT LEAVING PROFILE for jun 1 1

B. SEDIMENT CHARACTERISTICS AND ENRICHMENT

Sediment particle information leaving profile

853.097 kg/m

Class

12345

Diameter Specific(ram)

0.0020.0100.0300.3000.200

Gravity

2.602.651.801.602.65

Particle Composition

% Sand

0.00.00.073.5100.0

% Silt

0.0100.095.23.10.0

% Clay

100.00.04.823.40.0

% O.M.

3.70.00.20.90.0

DetachedSedimentFraction

0.0070.4910.0490.0760.377

FractionIn FlowExiting

0.0070.4910.0490.0760.377

SSA enrichment ratio leaving profile for jun 1 1 = 1.00

Page 5

Page 119: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIIIIIIIIIIIIIIII

ioss_2.txt

Single storm

USDA WATER EROSION PREDICTION PROJECT

HILLSLOPE PROFILE AND WATERSHED MODELVERSION 99.500

May 18, 1999

TO REPORT PROBLEMS OR TO BE PUT ON THE MAILINGLIST FOR FUTURE WEPP MODEL RELEASES, PLEASE CONTACT:

WEPP TECHNICAL SUPPORTUSDA-AGRICULTURAL RESEARCH SERVICENATIONAL SOIL EROSION RESEARCH LABORATORY1196 BUILDING SOIL, PURDUE UNIVERSITYWEST LAFAYETTE, IN 47907-1196 USA

PHONE: (765) 494-8673FAX: (765) 494-5948

emai1: [email protected]: http: / /topsoil.nserl.purdue. edu/weppmain/wepp.html

HILLSLOPE INPUT DATA FILES - VERSION 99.500May 18, 1999

MANAGEMENT: p2.manMAN. PRACTICE: description 1

description 2description 3

SLOPE: p2.slpCLIMATE: p2.cliStation: LAS VEGAS WB AP NV CLIGEN VERSION 4.20

SOIL: p2.solPLANE 1 Landfill silty/gravelly sand

I. SINGLE STORM HYDROLOGY

infiltration, rainfall excess, and runoff hydrograph for event of 1 6 1

hydrology summary

rainfall amount 107.90 (mm)rainfall duration 360,00 (min)normalized peak intensity 16.09normalized time to peak 0.50

rainfalltime intensity(min) (mm/hr)

0.00 9.40172.25 208.72

Page 1

Page 120: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIIIIIIIIIIIIIIII

loss 2.txt

180.00 208.72187.75 9.40360.00 0.00

****************************************************

hillslope 1

***************************overland flow element 1***************************

infiltration input parameters

effective saturated conductivity 2.26 (mm/h)effective matric potential 30.37 (mm)effective porosity 0.37 (mm/mm)saturation 50.00 (%)canopy cover 0.00 (%)surface cover 0.00 (%)

input runoff parameters

plane length 235.00 (m)discharge exponent 1.50average slope of profile 0.03chezy coefficient 4.39 (m**0.5/s)

output runoff parameters

equivalent sat. hydr. cond. 2.26 (mm/hr)equivalent matr. potential 30.37 (mm)average pore fraction 0.38 (m/m)average saturation fraction 0.11 (m/m)

runoff output

runoff volume 70.77 (mm)peak runoff rate 141.94 (mm/hr)effective runoff duration 29.91 (min)effective length 235.00 (meters)

output runoff hydrograph for hillslope 1

cumul.index time rate depth

(min) (mm/h) (mm)

1 0.00 0.00 0.002 5.00 0.00 0.003 10.00 0.00 0.004 15.00 0.00 0.005 20.00 0.00 0.00

Page 2

Page 121: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIII

loss 2.txt

67891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768

25.0030.0035.0040.0045.0050.0055.0060.0061.5865.0070.0075.0080.0085.0090.0095.00100.00105.00110.00115.00120.00125.00130.00135.00140.00145.00150.00155.00160.00165.00170.00172.25175.00180.00185.00187.75190.00195.00200.00205.00210.00215.00220.00225.00230.00235.00240.00245.00250.00255.00260.00265.00270.00275.00280.00285.00290.00295.00300.00305.00310.00315.00320.00

0.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.010.060.130.220.340.480.640.821.021.241.491.752.042.352.673.023.1817.7157.74109.62141.94139.81116.6776.0449.2831.9121.7315.3311.368.847.206.135.424.974.704.584.614.654.694.724.764.794.824.854.884.914.934.96

0.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.010.030.050.080.130.190.270.360.470.610.770.951.161.401.511.995.1312.1117.8823.1533.8441.8747.0950.4852.7154.2655.3756.2156.8857.4357.9158.3558.7559.1459.5259.9160.3060.6961.0861.4861.8862.2862.6963.1063.51

Page 3

Page 122: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIIIIIIIIIIIIIIII

loss 2.txt

697071727374757677

325.00330.00335.00340.00345.00350.00355.00360.00361.00

4.995.015.035.065.085.105.125.155.03

63.9264.3364.7565.1765.5966.0166.4366.8667.29

runoff hydrograph summary for hillslope 1

107.90 (mm)37.13 (mm)70.77 (mm)

208.7220.85270.004.16

141.94

360.0061.5829.91

235.00

(mm/h)(mm/h)(min)(mm/h)(mm/h)

(min)(min)(min)(meters)

rainfall volumeinfiltration volumerunoff volume

peak rainfall intensityeffective rainfall intensityeffective rainfall durationfinal infiltration ratepeak runoff rate

duration of rainfalltime to first pondingeffective runoff durationeffective length

II. ON SITE EFFECTS ON SITE EFFECTS ON SITE EFFECTS

A. AREA OF NET SOIL LOSS

** Soil Loss (Avg. of Net Detachment Areas) = 1.833 kg/m2 **** Maximum Soil Loss = 3.733 kg/m2 at 235.00 meters **

** Interrill Contribution = 0.029 kg/m2 for OFE # 1

Area of Soil Loss Soil Loss MAX MAX Loss MIN MIN LossNet Loss MEAN STDEV Loss Point Loss Point

(m) (kg/m2) (kg/m2) (kg/m2) (m) (kg/m2) (m)

0.00- 235.00 1.833 1.430 3.733 235.00 0.029 32.90

C. SOIL LOSS/DEPOSITION ALONG SLOPE PROFILE

Profile distances are from top to bottom of hillslope

distance soil flow distance soil flow distance soil flow(m) loss elem (m) loss elem (m) loss elem

(kg/m2) (kg/m2) (kg/m2)

2.354.707.05

0.029 10.029 10.029 1

82.2584.6086.95

0.801 10.901 I0.999 1

162.15164.50166.85

3.015 13.051 13.086 1

Page 4

Page 123: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIIIIIIIIIIIIIIII

loss 2.txt

9.4011.7514.1016.4518.8021.1523.5025.8528.2030.5532.9035.2537.6039.9542.3044.6547.0049.3551.7054.0556.4058.7561.1063.4565.8068.1570.5072.8575.2077.5579.90

0.0290.0290.0290.0290.0290.0290.0290.0290.0290.0290.0290.0290.0290.0290.0290.0290.0290.0290.0290.0290.0290.0290.0290.0290.0480.1520.2660.3770.4860.5940.698

1111111111111111111111111111111

89.3091.6594.0096.3598.70101.05103.40105.75108.10110.45112.80115.15117.50119.85122.20124.55126.90129.25131.60133.95136.30138.65141.00143.35145.70148.05150.40152.75155.10157.45159.80

1.0941.1871.2781.3661.4521.5351.6161.6951.7711.8461.9181.9882.0562.1222,1852.2472.3082.3662.4222.4772.5302.5812.6312.6802.7262.7722.8152.8582.8992.9392,978

1111111111111111111111111111111

note: ( + ) soil loss - detachment

169.20171.55173.90176.25178.60180.95183.30185.65188.00190.35192.70195.05197.40199.75202.10204.45206.80209.15211.50213.85216.20218.55220.90223.25225.60227.95230.30232.65235.00

(-) soil loss - deposition

3.1203.1533.1853.2163.2463.2743.3023.3293.3563.3813.4053.4293.4523.4743.4963.5173.5373.5563.5753.5943.6113.6283.6453.6613.6763.6913.7063.7203.733

11111111111111111111111111111

III. OFF SITE EFFECTS OFF SITE EFFECTS OFF SITE EFFECTS

A. SEDIMENT LEAVING PROFILE for jun 1 1 430.642 kg/m

B. SEDIMENT CHARACTERISTICS AND ENRICHMENT

Sediment particle information leaving profile

Class

12345

Diameter Specific(mm)

0.0020.0100.0300.3000.200

Gravity

2.602.651.801.602.65

Particle Composition

% Sand

0.00.00.073.5100.0

% Silt

0.0100.095.23.10.0

% Clay

100.00.04.823.40.0

% O.M.

3.70.00.20.90.0

DetachedSedimentFraction

0.0070.4910.0490.0760.377

FractionIn FlowExiting

0.0070.4910.0490.0760.377

SSA enrichment ratio leaving profile for jun 1 1 = 1.00

Page 5

Page 124: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIIIIIIIIIIIIIIII

loss_l.txt

/Section

Single storm

USDA WATER EROSION PREDICTION PROJECT

HILLSLOPE PROFILE AND WATERSHED MODELVERSION 99.500

May 18, 1999

TO REPORT PROBLEMS OR TO BE PUT ON THE MAILINGLIST FOR FUTURE WEPP MODEL RELEASES, PLEASE CONTACT:

WEPP TECHNICAL SUPPORTUSDA-AGRICULTURAL RESEARCH SERVICENATIONAL SOIL EROSION RESEARCH LABORATORY1196 BUILDING SOIL, PURDUE UNIVERSITYWEST LAFAYETTE, IN 47907-1196 USA

PHONE: (765) 494-8673FAX: (765) 494-5948

email: [email protected]: http://topsoil.nserl.purdue.edu/weppmain/wepp.html

HILLSLOPE INPUT DATA FILES - VERSION 99.500May 18, 1999

MANAGEMENT: pi.manMAN. PRACTICE: description 1

description 2description 3

SLOPE: pi.sipCLIMATE: pl.cliStation: LAS VEGAS WB AP NV CLIGEN VERSION 4.20

SOIL: pi.solPLANE 1 Landfill silty/gravelly sand

I. SINGLE STORM HYDROLOGY

infiltration, rainfall excess, and runoff hydrograph for event of 1 6 1

hydrology summary

rainfall amount 107.90 (mm)rainfall duration 360.00 (min)normalized peak intensity 16.09normalized time to peak 0.50

rainfalltime intensity(min) (mm/hr)

0.00 9.40172.25 208.72

Page 1

Page 125: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIIIIIIIIIIIIIIII

loss_l.txt I180.00187.75360.00

208.729.400.00

******************hillslope 1

******************

************* t*******overland flow element 1***************************

infiltration input parameters

effective saturated conductivity 2.26 (mm/h)effective matric potential 30.37 (mm)effective porosity 0.37 (mm/mm)saturation 50.00 (%)canopy cover 0.00 (%)surface cover 0.00 (%)

input runoff parameters

plane lengthdischarge exponentaverage slope of profilechezy coefficient

output runoff parameters

101.48 (m)1.500.234.39 (m**0.5/s)

equivalent sat. hydr. cond.equivalent matr. potentialaverage pore fraction

2.26 (mm/hr)30.37 (mm)0.38 (m/m)

average saturation fraction 0.11 (m/m)

runoff output

runoff volumepeak runoff rateeffective runoff durationeffective length

71.37 (mm)204.31 (mm/hr)20.96 (min)101.48 (meters)

output runoff hydrograph for hillslope 1

index

12345

time(min)

0.005.0010.0015.0020.00

rate(mm/h)

0.000.000.000.000.00

cumul.depth(mm)

0.000.000.000.000.00

Page 2

Page 126: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIIIIIIIIIIIIIIII

loss l.txt

67891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768

25.0030.0035.0040.0045.0050.0055.0060.0061.5865.0070.0075.0080.0085.0090.0095.00100.00105.00110.00115.00120.00125.00130.00135.00140.00145.00150.00155.00160.00165.00170.00172.25175.00180.00185.00187.75190.00195.00200.00205.00210.00215.00220.00225.00230.00235.00240.00245.00250.00255.00260.00265.00270.00275.00280.00285.00290.00295.00300.00305.00310.00315.00320.00

0.000.000.000.000.000.000.000.000.000.000.000.070.230.500.881.381.962.222.432.632.792.943.083.203.323.423.523.613.703.783.863.9078.62203.60204.31203.61109.1224.048.174.844.344.384.424.474.514.554.594.634.664.704.734.764.794.824.854.884.914.934.964.985.015.035.06

0.000.000.000.000.000.000.000.000.000.000.000.000.000.020.050.100.200.340.510.700.921.141.381.631.892.172.452.743.033.343.653.974.116.01

17.7734.7644.1349.9855.5356.8757.4157.7958.1658.5258.8959.2759.6460.0360.4160.8061.1961.5861.9762.3762.7763.1863.5863.9964.4064.8165.2365.6466.06

Page 3

Page 127: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

loss l.txt

6970717273

325.00330.00335.00340.00341.00

5.085.105.125.145.15

66.4866.9067.3367.7568.18

runoff hydrograph summary for hillslope 1

rainfall volumeinfiltration volumerunoff volume

peak rainfall intensityeffective rainfall intensityeffective rainfall durationfinal infiltration ratepeak runoff rate

duration of rainfalltime to first pondingeffective runoff durationeffective length

107.90 (mm)36.53 (mm)71.37 (mm)

208.72 (mm/h)19.93 (mm/h)293.424.16

204.31

(min)(mm/h)(mm/h)

360.00 (min)61.58 (min)20.96 (min)101.48 (meters)

II. ON SITE EFFECTS ON SITE EFFECTS ON SITE EFFECTS

A. AREA OF NET SOIL LOSS

** Soil Loss (Avg. of Net Detachment Areas) = 11.638 kg/m2 **** Maximum Soil Loss = 19.541 kg/m2 at 101.48 meters **

** Interrill Contribution = 0.068 kg/m2 for OFE # 1

Area of Soil Loss Soil Loss MAX MAX Loss MIN MIN LossNet Loss MEAN STDEV Loss Point Loss Point

(m) (kg/m2) (kg/m2) (kg/m2) (m) (kg/m2) (m)

0.00- 101.48 11.638 5.656 19.541 101.48 0.068 2.03

C. SOIL LOSS/DEPOSITION ALONG SLOPE PROFILE

Profile distances are from top to bottom of hillslope

distance soil flow(m) loss elem

(kg/m2)

distance soil flow(m) loss elem

(kg/m2)

distance soil flow(m) loss elem

(kg/m2)

010304060709

7.10

0.0680.0680.0680.1340.5921.0811.537

1111111

35.5236.5337.5538.5639.5840.5941.61

9.6449.85510.06310.26910.47210.67210.869

70.0271.0372.0573.0674.0875.0976.11

15.56415.70915.85215.99416.13516.27416.413

1111111

Page 4

Page 128: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIIIIIIIIIIIIIIII

loss l.txt

1.9682.3772.7673.1413.5013.8484.1834.5084.8235.1305.4285.7196.0036.2806.5516.8177.0777.3317.5817.8268.0678.3048.5368.7658.9909.2119.429

111111111111111111111111111

8.129.1310.1511.1612.1813.1914.2115.2216.2417.2518.2719.2820.3021.3122.3223.3424.3525.3726.3827.4028.4129.4330.4431.4632.4733.4934.50

note: ( + ) soil loss - detachment

42.6243.6444.6545.6646.6847.6948.7149.7250.7451.7552.7753.7854.8055.8156.8357.8458.8659.8760.8961.9062.9263.9364.9565.9666.9767.9969.00

11.06311.25611.44511.63311.81812.00112.18212.36012.53712.71112.88413.05513.22413.39113.55713.72013.88214.04314.20214.35914.51514.66914.82114.97315.12315.27115.418

111111111111111111111111111

77.1278.1479.1580.1781.1882.2083.2184.2385.2486.2687.2788.2889.3090.3191.3392.3493.3694.3795.3996.4097.4298.4399.45100.46101.48

16.55016.68616.82116.95517.08817.22017.35017.48017.60917.73617.86317.98818.11318.23718.36018.48218.60318.72318.84218.96119.07919.19519.31119.42619.541

111III1111111111111111111

(-) soil loss - deposition

III. OFF SITE EFFECTS OFF SITE EFFECTS OFF SITE EFFECTS

A. SEDIMENT LEAVING PROFILE for jun 1 1 1181.012 kg/m

B. SEDIMENT CHARACTERISTICS AND ENRICHMENT

Sediment particle information leaving profile

Class

1234rj

Diameter(mm)

0.0020.0100.0300.3000.200

SpecificGravity

2.602.651.801.602.65

Particle Composition

% Sand

0.00.00.073.5100.0

% Silt

0.0100.095.23.10.0

% Clay

100.00.04.823.40.0

% O.M.

3.70.00.20.90.0

DetachedSedimentFraction

0.0070.4910.0490.0760.377

FractionIn FlowExiting

0.0070.4910.0490.0760.377

SSA enrichment ratio leaving profile for jun 1 1 = 1.00

Page 5

Page 129: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

I T 1 t. 4- Iloss_l.txt P'/^^^>ll£:PD I' * itztjO us&ir •Sej^janfJ?I

IIIIIIIIIIIIIIIII

Sect-j on 6?Single storm

USDA WATER EROSION PREDICTION PROJECT

HILLSLOPE PROFILE AND WATERSHED MODELVERSION 99.500

May 18, 1999

TO REPORT PROBLEMS OR TO BE PUT ON THE MAILINGLIST FOR FUTURE WEPP MODEL RELEASES, PLEASE CONTACT:

WEPP TECHNICAL SUPPORTUSDA-AGRICULTURAL RESEARCH SERVICENATIONAL SOIL EROSION RESEARCH LABORATORY1196 BUILDING SOIL, PURDUE UNIVERSITYWEST LAFAYETTE, IN 47907-1196 USA

PHONE: (765) 494-8673FAX: (765) 494-5948

email: [email protected]: http: //topsoil .nserl .purdue.edu/weppmain/wepp.html

HILLSLOPE INPUT DATA FILES - VERSION 99.500May 18, 1999

MANAGEMENT: pi.manMAN. PRACTICE: description 1

description 2description 3

SLOPE: pi.sipCLIMATE: pl.cliStation: LAS VEGAS WB AP NV CLIGEN VERSION 4.20

SOIL: pi.solPLANE 1 Landfill silty/gravelly sand

I. SINGLE STORM HYDROLOGY

infiltration, rainfall excess, and runoff hydrograph for event of 1 6 1

hydrology summary

rainfall amount 107.90 (mm)rainfall duration 360.00 (min)normalized peak intensity 16.09normalized time to peak 0.50

rainfalltime intensity(min) (mm/hr)

0.00 9.40172.25 208.72

Page 1

Page 130: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIIIIIIIIIIIIIIII

loss l.txt I180.00 208.72187.75 9.40360.00 0.00

****************************************************

******************hillslope 1

******************

***************************

overland flow element 1***************************

infiltration input parameters

effective saturated conductivity 2.26 (mm/h)effective matric potential 30.37 (mm)effective porosity 0.37 (mm/mm)saturation 50.00 (%)canopy cover 0.00 (%)surface cover 0.00 (%)

input runoff parameters

plane length 180.40 (m)discharge exponent 1.50average slope of profile 0.17chezy coefficient 4.39 (m**0.5/s)

output runoff parameters

equivalent sat. hydr. cond. 2.26 (mm/hr)equivalent matr. potential 30.37 (mm)average pore fraction 0.38 (m/m)average saturation fraction 0.11 (m/m)

runoff output

runoff volume 71.37 (mm)peak runoff rate 203.50 (mm/hr)effective runoff duration 21.04 (min)effective length 180.40 (meters)

output runoff hydrograph for hillslope 1

cumul.index time rate depth

(min) (mm/h) (mm)

1 0.00 0.00 0.002 5.00 0.00 0.003 10.00 0.00 0.004 15.00 0.00 0.005 20.00 0.00 0.00

Page 2

Page 131: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

loss l.txt• Ti-iOQ 1 <--vi-

IIIIIIIIIIIIIIIIII

67891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768

25.0030.0035.0040.0045.0050.0055.0060.0061.5865.0070.0075.0080.0085.0090.0095.00100.00105.00110.00115.00120.00125.00130.00135.00140.00145.00150.00155.00160.00165.00170.00172.25175.00180.00185.00187.75190.00195.00200.00205.00210.00215.00220.00225.00230.00235.00240.00245.00250.00255.00260.00265.00270.00275.00280.00285.00290.00295.00300.00305.00310.00315.00320.00

0.000.000.000.000.000.000.000.000.000.000.000.040.110.240.420.670.971.341.772.262.542.722.893.043.173.313.423.523.613.703.783.8043.23161.18203.48203.50140.0954.9722.1210.836.675.024.424.444.464.514.554.594.624.664.694.734.764.794.824.854.884.914.934.964.985.015.03

0.000.000.000.000.000.000.000.000.000.000.000.000.000.010.020.050.100.160.260.390.560.760.981.211.461.721.992.272.562.853.163.473.614.6913.2128.4037.7444.1752.3055.5156.8957.6158.1058.4958.8659.2359.6159.9960.3760.7561.1461.5361.9262.3162.7163.1163.5263.9264.3364.7465.1565.5765.98

Page 3

Page 132: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIIIIIIIIIIIIIIII

loss l.txt

6970717273

325.00330.00335.00340.00341.00

5.065.085.105.125.13

66.4066.8267.2467.6768.09

runoff hydrograph summary for hillslope 1

rainfall volumeinfiltration volumerunoff volume

peak rainfall intensityeffective rainfall intensityeffective rainfall durationfinal infiltration ratepeak runoff rate

duration of rainfalltime to first pondingeffective runoff durationeffective length

107.90 (mm)36.53 (mm)71.37 (mm)

208.72 (mm/h)19.93 (mm/h)293.42 (min)4.16 (mm/h)

203.50 (mm/h)

360.00 (min)61.58 (min)21.04 (min)180.40 (meters)

II. ON SITE EFFECTS ON SITE EFFECTS ON SITE EFFECTS

A. AREA OF NET SOIL LOSS

** Soil Loss (Avg. of Net Detachment Areas) = 13.190 kg/m2 **** Maximum Soil Loss = 21.119 kg/m2 at 180.40 meters **

** Interrill Contribution = 0.059 kg/m2 for OFE # 1

Area of Soil Loss Soil Loss MAX MAX Loss MIN MIN LossNet Loss MEAN STDEV Loss Point Loss Point

(m) (kg/m2) (kg/m2) (kg/m2) (m) (kg/m2) (m)

0.00- 180.40 13.190 6.043 21.119 180.40 0.059 1.80

C. SOIL LOSS/DEPOSITION ALONG SLOPE PROFILE

Profile distances are from top to bottom of hillslope

distance soil flow(m) loss elem

(kg/m2)

distance soil flow distance soil flow(m) loss elem (m) loss elem

(kg/m2) (kg/m2)

.80

.61

.41

.229.0210.8212.63

0.0590.0590.0590.2330.8621.4662.029

1111111

63.1464.9566.7568.5570.3672.1673.97

11.38211.60911.83312.05212.26812.48012.688

1111111

124.48126.28128.09129.89131.69133.50135.30

17.43117.57117.70817.84517.97918.11218.244

1111111

Page 4

Page 133: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIIIIIIIIIIIIIIII

loss l.txt

14.4316.2418.0419.8421.6523.4525.2627.0628.8630.6732.4734.2836.0837.8839.6941.4943.3045.1046.9048.7150.5152.3254.1255.9257.7359.5361.34

2.5563.0533.5253.9754.4054.8175.2145.5975.9666.3236.6697.0057.3327.6497.9588.2598.5528.8389.1189.3919.6599.920

10.17610.42710.67210.91311.150

111111111111111111111111111

75.7777.5779.3881.1882.9984.7986.5988.4090.2092.0193.8195.6197.4299.22101.03102.83104.63106.44108.24110.05111.85113.65115.46117.26119.07120.87122.67

12.89313.09513.29313.48813.68113.87014.05714.24014.42114.60014.77614.94915.12015.28815.45515.61915.78115.94016.09816.25416.40716.55916.70916.85717.00317.14817.290

111111111111111111111111111

137.11138.91140.71142.52144.32146.13147.93149.73151.54153.34155.15156.95158.75160.56162.36164.17165.97167.77169.58171.38173.19174.99176.80178.60180.40

18.37418.50218.63018.75618.88019.00319.12519.24619.36519.48319.60019.71619.83019.94320.05620.16720.27720.38620.49320.60020.70620.81120.91421.01721.119

1111111111111111111111111

note: (+) soil loss - detachment (-) soil loss - deposition

III. OFF SITE EFFECTS OFF SITE EFFECTS OFF SITE EFFECTS

A. SEDIMENT LEAVING PROFILE for jun 1 1 2379.473 kg/m

B. SEDIMENT CHARACTERISTICS AND ENRICHMENT

Sediment particle information leaving profile

Class

12345

Diameter Specific(mm)

0.0020.0100.0300.3000.200

Gravity

2.602.651.801.602.65

Particle Composition

% Sand

0.00.00.073.5100.0

% Silt

0.0100.095.23.10.0

% Clay

100.00.04.823.40.0

% O.M.

3.70.00.20.90.0

DetachedSedimentFraction

0.0070.4910.0490.0760.377

FractionIn FlowExiting

0.0070.4910.0490.0760.377

SSA enrichment ratio leaving profile for jun 1 1 = 1.00

Page 5

Page 134: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIIIIIIIIIIIIIIII

loss_l.txt

6*1 (JBW

Single storm

USDA WATER EROSION PREDICTION PROJECT

HILLSLOPE PROFILE AND WATERSHED MODELVERSION 99.500

May 18, 1999

TO REPORT PROBLEMS OR TO BE PUT ON THE MAILINGLIST FOR FUTURE WEPP MODEL RELEASES, PLEASE CONTACT:

WEPP TECHNICAL SUPPORTUSDA-AGRICULTURAL RESEARCH SERVICENATIONAL SOIL EROSION RESEARCH LABORATORY1196 BUILDING SOIL, PURDUE UNIVERSITYWEST LAFAYETTE, IN 47907-1196 USA

PHONE: (765) 494-8673FAX: (765) 494-5948

email: [email protected]: http://topsoil.nserl.purdue.edu/weppmain/wepp.html

HILLSLOPE INPUT DATA FILES - VERSION 99.500May 18, 1999

MANAGEMENT: pi.manMAN. PRACTICE: description 1

description 2description 3

SLOPE: pi.sipCLIMATE: pl.cliStation: LAS VEGAS WB AP NV CLIGEN VERSION 4.20

SOIL: pi.solPLANE 1 Landfill silty/gravelly sand

I. SINGLE STORM HYDROLOGY

infiltration, rainfall excess, and runoff hydrograph for event of 1 6 1

hydrology summary

rainfall amount 107.90 (mm)rainfall duration 360.00 (min)normalized peak intensity 16.09normalized time to peak 0.50

rainfalltime intensity(min) (mm/hr)

0.00 9.40172.25 208.72

Page 1

Page 135: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIIIIIIIIIIIIIIII

loss_l.txt

180.00 208.72187.75 9.40360.00 0.00

****************************************************

******************

hillslope 1******************

***************************

overland flow element 1***************************

infiltration input parameters

effective saturated conductivity 2.26 (mm/h)effective matric potential 30.37 (mm)effective porosity 0.37 (mm/mm)saturation 50.00 (%)canopy cover 0.00 (%)surface cover 0.00 (%)

input runoff parameters

plane length 300.77 (m)discharge exponent 1.50average slope of profile 0.02chezy coefficient 4.39 (m**0.5/s)

output runoff parameters

equivalent sat. hydr. cond. 2.26 (mm/hr)equivalent matr. potential 30.37 (mm)average pore fraction 0.38 (m/m)average saturation fraction 0.11 (m/m)

runoff output

runoff volume 70.72 (mm)peak runoff rate 99.91 (mm/hr)effective runoff duration 42.47 (min)effective length 300.77 (meters)

output runoff hydrograph for hillslope 1

cumul.index time rate depth

(min) (mm/h) (mm)

1 0.00 0.00 0.002 5.00 0.00 0.003 10.00 0.00 0.004 15.00 0.00 0.005 20.00 0.00 0.00

Page 2

Page 136: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIIIIIIIIIIIIIIII

loss l.txt

67891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768

25.0030.0035.0040.0045.0050.0055.0060.0061.5865.0070.0075.0080.0085.0090.0095.00100.00105.00110.00115.00120.00125.00130.00135.00140.00145.00150.00155.00160.00165.00170.00172.25175.00180.00185.00187.75190.00195.00200.00205.00210.00215.00220.00225.00230.00235.00240.00245.00250.00255.00260.00265.00270.00275.00280.00285.00290.00295.00300.00305.00310.00315.00320.00

0.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.030.070.130.210.300.410.530.660.810.971.151.341.541.761.992.1011.8439.7777.0599.9199.1296.9293.3969.7749.9635.8226.1319.5515.0411.929.738.187.066.255.665.244.954.764.664.684.724.754.784.824.854.884.91

0.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.010.010.030.050.080.120.170.230.300.390.490.620.750.910.991.313.468.3212.3916.1124.2832.2139.0144.0047.5750.1552.0653.5054.6255.5256.2756.9057.4657.9558.4158.8359.2459.6360.0260.4160.8061.2061.6062.0162.41

Page 3

Page 137: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIIIIIIIIIIIIIIII

loss l.txt

6970717273747576777879808182838485868788899091

325.00330.00335.00340.00345.00350.00355.00360.00361.00362.00363.00364.00365.00366.00367.00368.00369.00370.00371.00372.00373.00374.00375.00

4.934.964.995.015.045.065.085.105.024.944.864.784.704.624.554.474.404.324.254.184.114.043.97

62.8263.2363.6464.0564.4764.8965.3165.7366.1666.2466.3266.4166.4966.5766.6466.7266.8066.8766.9467.0167.0867.1567.22

runoff hydrograph summary for hillslope 1

rainfall volumeinfiltration volumerunoff volume

peak rainfall intensityeffective rainfall intensityeffective rainfall durationfinal infiltration ratepeak runoff rate

duration of rainfalltime to first pondingeffective runoff durationeffective length

107.90 (mm)37.18 (mm)70.72 (mm)

208.7220.85

(mm/h)(mm/h)

270.00 (min)4.1699.91

(mm/h)(mm/h)

360.00 (min)61.58 (min)42.47 (min)300.77 (meters)

II. ON SITE EFFECTS ON SITE EFFECTS ON SITE EFFECTS

A. AREA OF NET SOIL LOSS

** Soil Loss (Avg. of Net Detachment Areas) = 1.201 kg/m2 **** Maximum Soil Loss = 3.058 kg/m2 at 300.77 meters **

** Interrill Contribution = 0.026 kg/m2 for OFE f 1

Area of Soil Loss Soil Loss MAX MAX Loss MIN MIN LossNet Loss MEAN STDEV Loss Point Loss Point

(m) (kg/m2) (kg/m2) (kg/m2) (m) (kg/m2) (m)

0.00- 300.77 1.201 1.202 3.058 300.77 0.026 63.16

Page 4

Page 138: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIIIIIIIIIIIIIIII

loss l.txt

C. SOIL LOSS/DEPOSITION ALONG SLOPE PROFILE

Profile distances are from top to bottom of hillslope

distance(m)

3.016.029.0212.0315.0418.0521.0524.0627.0730.0833.0936.0939.1042.1145.1248.1251.1354.1457.1560.1563.1666.1769.1872.1975.1978.2081.2184.2287.2290.2393.2496.2599.26102.26

soil flowloss elem(kg/m2)

0.0260.0260.0260.0260.0260.0260.0260.0260.0260.0260.0260.0260.0260.0260.0260.0260.0260.0260.0260.0260.0260.0260.0260.0260.0260.0260.0260.0260.0260.0260.0260.0260.0260.026

1111111111111111111111111111111111

distance(m)

105108111114117120123126129132135138141144147150153156159162165168171174177180183186189192195198

.27

.28

.29

.29

.30

.31

.32

.32

.33

.34

.35

.36

.36

.37

.38

.39

.39

.40

.41

.42

.43

.43

.44

.45

.46

.46

.47

.48

.49

.50

.50

.51201.52204.53

soil flowloss elem(kg/m2)

0.0260.0260.0260.0260.0260.0260.0260.0380.1270.2300.3320.4330.5320.6290.7250.8180.9090.9991.0861.1711.2531.3341.4121.4881.5621.6331.7021.7691.8341.8971.9572.0162.0722.127

1111111111111111111111111111111111

distance(m)

207210213216219222225228231234237240243246249252255258261264267270273276279282285288291294297300

.53

.54

.55

.56

.56

.57

.58

.59

.60

.60

.61

.62

.63

.63

.64

.65

.66

.67

.67

.68

.69

.70

.70

.71

.72

.73

.73

.74

.75

.76

.77

.77

soil flowloss elem(kg/m2)

22222222222222222222222222233333

.179

.229

.278

.325

.370

.413

.454

.494

.532

.569

.604

.637

.669

.700

.729

.757

.784

.810

.834

.857

.879

.900

.920

.939

.957

.974

.990

.005

.020

.033

.046

.058

11111111111111111111111111111111

note: (+) soil loss - detachment (-) soil loss - deposition

III. OFF SITE EFFECTS OFF SITE EFFECTS OFF SITE EFFECTS

A. SEDIMENT LEAVING PROFILE for jun 1 1 361.265 kg/m

B. SEDIMENT CHARACTERISTICS AND ENRICHMENT

Sediment particle information leaving profile

Particle Composition Detached FractionClass Diameter Specific Sediment In Flow

(mm) Gravity % Sand % Silt % Clay % O.M. Fraction Exiting

Page 5

Page 139: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIIIIIIIIIIIIIIII

loss l.txt

12345

0.0020.0100.0300.3000.200

2.602.651.801.602.65

0.00.00.0

73.5100.0

0.0100.095.23.10.0

100.00.04.8

23.40.0

3.70.00.20.90.0

0.0070.4910.0490.0760.377

0.0070.4910.0490.0760.377

SSA enrichment ratio leaving profile for jun 1 1 = 1.00

Page 6

Page 140: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIIIIIIIIIIII

loss 1.txt

Single storm

USDA WATER EROSION PREDICTION PROJECT

HILLSLOPE PROFILE AND WATERSHED MODELVERSION 99.500

May 18, 1999

TO REPORT PROBLEMS OR TO BE PUT ON THE MAILINGLIST FOR FUTURE WEPP MODEL RELEASES, PLEASE CONTACT:

WEPP TECHNICAL SUPPORTUSDA-AGRICULTURAL RESEARCH SERVICENATIONAL SOIL EROSION RESEARCH LABORATORY1196 BUILDING SOIL, PURDUE UNIVERSITYWEST LAFAYETTE, IN 47907-1196 USA

PHONE: (765) 494-8673FAX: (765) 494-5948

emai1: [email protected]: http: / /topsoil. nserl.purdue. edu/weppmain/wepp.html

HILLSLOPE INPUT DATA FILES - VERSION 99.500May 18, 1999

MANAGEMENT: pi.manMAN. PRACTICE: description 1

description 2description 3

SLOPE: pi.sipCLIMATE: pl.cliStation: LAS VEGAS WB AP NV CLIGEN VERSION 4.20

SOIL: pi.solPLANE 1 Landfill silty/gravelly sand

I. SINGLE STORM HYDROLOGY

infiltration, rainfall excess, and runoff hydrograph for event of 1 6 1

hydrology summary

rainfall amount 107.90 (mm)rainfall duration 360.00 (min)normalized peak intensity 16.09normalized time to peak 0.50

rainfalltime intensity(min) (mm/hr)

1 0.00 9.40 I172.25 208.72 |

I

IPage 1

Page 141: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIIIIIIIIIIIIIIII

loss 1.txt

180.00 208.72187.75 9.40360.00 0.00

****************************************************

******************hillslope 1

***************************overland flow element 1***************************

infiltration input parameters

effective saturated conductivity 2.26 (mm/h)effective matric potential 30.37 (mm)effective porosity 0.37 (mm/mm)saturation 50.00 (%)canopy cover 0.00 (%)surface cover 0.00 (%)

input runoff parameters

plane length 194.42 (m)discharge exponent 1.50average slope of profile 0.02chezy coefficient 4.39 (m**0.5/s)

output runoff parameters

equivalent sat. hydr. cond. 2.26 (mm/hr)equivalent matr. potential 30.37 (mm)average pore fraction 0.38 (m/m)average saturation fraction 0.11 (m/m)

runoff output

runoff volume 70.73 (mm)peak runoff rate 153.17 (mm/hr)effective runoff duration 27.71 (min)effective length 194.42 (meters)

output runoff hydrograph for hillslope 1

cumul.index time rate depth

(min) (mm/h) (mm)

1 0.00 0.00 0.002 5.00 0.00 0.003 10.00 0.00 0.004 15.00 0.00 0.005 20.00 0.00 0.00

Page 2

Page 142: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIIIIIIIIIIIIIIII

loss_l.txt

67891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768

25.0030.0035.0040.0045.0050.0055.0060.0061.5865.0070.0075.0080.0085.0090.0095.00100.00105.00110.00115.00120.00125.00130.00135.00140.00145.00150.00155.00160.00165.00170.00172.25175.00180.00185.00187.75190.00195.00200.00205.00210.00215.00220.00225.00230.00235.00240.00245.00250.00255.00260.00265.00270.00275.00280.00285.00290.00295.00300.00305.00310.00315.00320.00

0.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.010.050.120.220.350.500.670.861.081.321.591.882.192.522.873.253.4318.9162.15118.36153.17150.53112.8771.3544.9828.8719.2913.5710.097.916.535.645.084.744.584.594.634.674.704.744.774.804.834.864.894.924.944.97

0.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.010.020.050.080.130.200.280.380.500.640.811.011.231.491.612.135.5013.0319.2624.9435.9243.5948.4451.5253.5254.8955.8856.6357.2357.7458.1858.5958.9859.3659.7560.1360.5260.9261.3161.7162.1162.5262.9263.3363.74

Page 3

Page 143: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIIIIIIIIIIIIIIII

loss l.txt

697071727374757677

325.00330.00335.00340.00345.00350.00355.00360.00361.00

5.005.025.045.075.095.115.135.155.03

64.1664.5764.9965.4165.8366.2566.6867.1167.53

runoff hydrograph summary for hillslope 1

rainfall volumeinfiltration volumerunoff volume

peak rainfall intensityeffective rainfall intensityeffective rainfall durationfinal infiltration ratepeak runoff rate

duration of rainfalltime to first pondingeffective runoff durationeffective length

107.90 (mm)37.17 (mm)70.73 (mm)

208.72 (mm/h)20.85 (mm/h)270.00 (min)4.16 (mm/h)

153.17 (mm/h)

360.00 (min)61.58 (min)27.71 (min)194.42 (meters)

II. ON SITE EFFECTS ON SITE EFFECTS ON SITE EFFECTS

A. AREA OF NET SOIL LOSS

** Soil Loss (Avg. of Net Detachment Areas) = 1.066 kg/m2 **** Maximum Soil Loss = 2.687 kg/m2 at 194.42 meters **

** Interrill Contribution = 0.027 kg/m2 for OFE # 1

Area of Soil Loss Soil Loss MAX MAX Loss MIN MIN LossNet Loss MEAN STDEV Loss Point Loss Point

(m) (kg/m2) (kg/m2) (kg/m2) (m) (kg/m2) (m)

0.00- 194.42 1.066 1.011 2.687 194.42 0.027 36.94

C. SOIL LOSS/DEPOSITION ALONG SLOPE PROFILE

Profile distances are from top to bottom of hillslope

distance soil flow distance soil flow distance soil flow(m) loss elem (m) loss elem (m) loss elem

(kg/m2) (kg/m2) (kg/m2)

1.943.895.83

0.027 10.027 10.027 1

68.0569.9971.94

0.027 10.027 10.027 1

134.15136.09138.04

1.845 11.884 11.923 1

Page 4

Page 144: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIIIIIIIIIIIIIIII

loss l.txt

7.789.7211.6713.6115.5517.5019.4421.3923.3325.2727.2229.1631.1133.0535.0036.9438.8840.8342.7744.7246.6648.6150.5552.4954.4456.3858.3360.2762.2164.1666.10

0.0270.0270.0270.0270.0270.0270.0270.0270.0270.0270.0270.0270.0270.0270.0270.0270.0270.0270.0270.0270.0270.0270.0270.0270.0270.0270.0270.0270.0270.0270.027

1111111111111111111111111111111

73.8875.8277.7779.7181.6683.6085.5587.4989.4391.3893.3295.2797.2199.15101.10103.04104.99106.93108.88110.82112.76114.71116.65118.60120.54122.49124.43126.37128.32130.26132.21

note: ( + ) soil loss - detachment

139.98141.93143.87145.82147.76149.70151.65153.59155.54157.48159.43161.37163.31165.26167.20169.15171.09173.03174.98176.92178.87180.81182.76184.70186.64188.59190.53192.48194.42

(-) soil loss - deposition

0.0430.1140.1890.2620.3350.4070.4780.5470.6160.6830.7490.8130.8770.9390.9991.0591.1171.1741.2301.2841.3371.3891.4401.4901.5381.5851.6311.6761.7201.7621.804

1111111111111111111111111111111

1.9601.9972.0322.0672.1012.1342.1662.1972.2272.2572.2852.3132.3412.3672.3932.4182.4422.4662.4892.5112.5332.5542.5752.5952.6142.6332.6512.6692.687

11111111111111111111111111111

III. OFF SITE EFFECTS OFF SITE EFFECTS OFF SITE EFFECTS

A. SEDIMENT LEAVING PROFILE for jun 1 1

B. SEDIMENT CHARACTERISTICS AND ENRICHMENT

Sediment particle information leaving profile

207.274 kg/m

Class

12345

Diameter Specific(mm)

0.0020.0100.0300.3000.200

Gravity

2.602.651.801.602.65

Particle Composition

% Sand

0.00.00.073.5100.0

% Silt

0.0100.095.23.10.0

% Clay

100.00.04.823.40.0

% O.M.

3.70.00.20.90.0

DetachedSedimentFraction

0.0070.4910.0490.0760.377

FractionIn FlowExiting

0.0070.4910.0490.0760.377

SSA enrichment ratio leaving profile for jun 1 1 = 1.00

Page 5

Page 145: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IIIIII• Attachment B

Exhibit 6

I Laboratory Test Results

I

I

I

I

I

I

I

I

I

I

I

Page 146: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

GRAIN SIZE DISTRIBUTION GRAPH

UJz

UJoa:UJ0.

100%

70%

50%

30%

20%

0%1000.000

_cto

cin 5 s

T-T—?—rii'i! i i ~n—rrrrrM r f 1 1 ' f • i i t l !E il M i,14 i l ' i , i t---^ . . j ...j p.

100.000

j, j j i j i i - 1 i i iii_t__!!liLLJ_l.J.__yijl_LTS

f ! i N

10.000 1.000 0.100

'A' I 'A1—I-A-

0.010 0.001 0.000

GRAIN SIZE - mm

% GRAVEL =

% SAND =

% SILT & CLAY =

HYDROMETER TEST SUMMARY44% D85=31.0 D1S

;

37% D6{) = 6.9 D10 -

18% DM = 1 . 7 (V

D30=0.1 C c ^

Project No.: 00-33236-01Project Name: Sunrise Mountain Landfill

Date: 24-Aug-OOSample Location: SB-A

Material Description: Silty Gravel with Sand

GRAIN SIZE DISTRIBUTION TEST REPORT with HYDROMETER

CONVERSE CONSULTANTS Drawing No.

Page 147: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

GRAIN SIZE DISTRIBUTION GRAPH

a:UJz

UJoOLUJQ.

100%

90%

80%

70%

60%

c* *

3 I

I!

V

•41 i i A1000000 100000 10000 0100 0010 0001 0000

GRAIN SIZE - mm

% GRAVEL =

% SAND =

% SILT & CLAY =

HYDROMETER TEST SUMMARY48% D8S = 34 5 D15

37% D60 = 9 1 D10 ••

15% D 6 0 = 3 5 Cu'

D30 = 0 2 Cc

Project No.: 00-33236-01Project Name: Sunrise Mountain Landfill

Date: 24-Aug-OOSample Location: SB-B

Material Description. Silty Gravel with Sand

GRAIN SIZE DISTRIBUTION TEST REPORT with HYDROMETER

CONVERSE CONSULTANTS Drawing No.

Page 148: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

GRAIN SIZE DISTRIBUTION GRAPH

££UJZ

UJoa.UJa.

100% q-

90%

_E

u>•E » s g

1000.000 100.000 10.000 1.000 0.100 0.010 0.001 0.000

GRAIN SIZE - mm

% GRAVEL =

% SAND =

% SILT & CLAY =

HYDROMETER TEST SUMMARY43%

41%

16%

D85 = 41.5

D60 = 5.7

Dso = 2.4

D30 = 0.2

0,6 =

DIO =

Ce =

Project No.: 00-33236-01Project Name: Sunrise Mountain Landfill

Date: 24-Aug-OOSample Location: SB-C

Material Description: Silty Gravel with Sand

GRAIN SIZE DISTRIBUTION TEST REPORT with HYDROMETER

CONVERSE CONSULTANTS Drawing No.

Page 149: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

GRAIN SIZE DISTRIBUTION GRAPH

UJzLLf-

UJO£UJa.

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

1000.000 100.000 10.000 1.000 0.100 0.010 0.001 0.000

GRAIN SIZE - mm

% GRAVEL =

% SAND =

% SILT & CLAY =

HYDROMETER TEST SUMMARY43% D85 = 22.0 D1S

39% D60 = 5.5 D10;

18% Dso=1.8 Cu<

D30 = 0.2 Cc :

Project No.: 00-33236-01Project Name: Sunrise Mountain Landfill

Date: 24-Aug-OOSample Location: SB-D

Material Description: Silty Gravel with Sand

GRAIN SIZE DISTRIBUTION TEST REPORT with HYDROMETER

CONVERSE CONSULTANTS Drawing No.

Page 150: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

11111111

1•

1111111

GRAIN SIZE DISTRIBUTION GRAPHc

,00*

!

UJ•z.

•zIII

O IonUJ

1000000

cto i

T

|!i1

1

ll1

\\ ffi'\

i !

i|t

1 h

i f

I! f

ii

100000

i

LH\i

'ir.

,1.ff

f'

!•

1

t. I

'

'

i

i

vV\iij .pii

1 '

I ,

.-,-

• !•! -illil !

•• 1

i

1' 1 1 1,' i

1 ' 1 I 1

!1M] j 1'' ' i

i]l_' i-.

llIII 1nl 1 i

10000

•f

_j_

_

_ _ !i

1i1

- |

I I

o0 0

%

i i,

14 J

!

1

1i|

j

1 i

il 1 1

i"!11 ! i ,

r •

1

1 l^\1 i

: |lh Ii

1

%

s.\

In

_

\-

W-*.t1^-p.

1000 0100 0010 0001 0000

GRAIN SIZE - mm

HYDROMETER TEST SUMMARY% GRAVEL =

% SAND =

% SILT & CLAY =

60%

27%

13%

D85 = 46 3 D15 = 0.1

D60=17.4 D10 =

D50 = 12.3 Cu =

D30 = 0.3 Cc =

Project No.: 00-33236-01Project Name: Sunrise Mountain Landfill

Date: 24-Aug-OOSample Location: SB-E

Material Description: Silty Gravel with Sand

GRAIN SIZE DISTRIBUTION TEST REPORT with HYDROMETER

CONVERSE CONSULTANTS

11

Drawing No.

Page 151: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

GRAIN SIZE DISTRIBUTION GRAPHc

c c - o— ~ ^t o °(O in ^ Tt — CM

«. " * * *

|

UJzU. 50% • • - • -

HZ

UJ

r

1 1i

1 11 1iii

\

1

i1 1, i

• ri i

0% M I ' ' '1000000 100000

% GRAVEL =

% SAND =

% SILT & CLAY =

t

L

-i.

]

i

\

i

: ii -C h ' , , ' ) > ! -• i M > i1 i i

L_U-L|-i-H-Jh --pT! t ^P\+i-i- ' \; \T ;P

LJJJJ4- il --nl f r- U-U\ . il ,

; ^' ' L THs.1 — :rr'~(- n !f\1 ii i l Nj l II !

'!' i i ! > ' * | iI

- - i i , '!', ,I ' ' i 1

1

\'

1

•**

-

t—i

-

>\,. A

-

A

10000 1000 0100 0010 0001

GRAIN SIZE - mm

HYDROMETER TEST SUMMARY51% D 8 6 =215 D 1 5 =01

37% D60 = 8 2 D10 =

13% D 5 0 = 4 9 Cu =

D30 = 0 3 Cc =

Project No.: 00-33236-01Project Name: Sunrise Mountain Landfill

Date: 24-Aug-OOSample Location: SB-F

Material Description: Silty Gravel with Sand

GRAIN SIZE DISTRIBUTION TEST REPORT with HYDROMETER

CONVERSE CONSULTANTS

o cmo

Drawing No.

Page 152: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

IGRAIN SIZE DISTRIBUTION GRAPH

£ £ | 0 §» „ g .j CM

100 |,

UJZ

Z

o "UJ

I t

iii

ii

i

i

i

CM ;

:

,

1 '

i; • ji i

inij_, \

1000000 100000

% GRAVEL =

% SAND =

% SILT & CLAY =

u

\: '<\ ;fy ji

t Mi . M" ii-Mi IIr i'i1 |

ii- i, H'I* i

i_i V' '

I

i ' I I

It]

i •i i

-i 4

I1 ;

1 1

!

1

' 'i

iI ll

1

l!

• 1

ii

i :'^ tii i1"K

i i.. .1,

1, i

t I

i! 1' 1 ! ! i

i|rij

1 1

iix\\

1i

V" 'ill " " y1 i i ;

! 'I '

1,

--

ySv

*X,10000 1000 0100 0010 0001

GRAIN SIZE - mm

HYDROMETER TEST SUMMARY35% D 8 6 =176 D1S =

48% D60 = 2 9 D10 =

17% D 5 0 = 0 7 Cu =

D30 = 0.2 Cc =

Project No.: 00-33236-01Project Name: Sunrise Mountain Landfill

Date: 24-Aug-OOSample Location: SB-H

Material Description: Silty Sand with Gravel

GRAIN SIZE DISTRIBUTION TEST REPORT with HYDROMETER

CONVERSE CONSULTANTS

0000

Drawing No.

Page 153: Ltr: Slope stability & erosion analysis, w/attchsMr. Steve Wall-EPA Mr. Mark Morse - BLM Mr. Dave Emme - NDEP Mr. John Schlegel - Clark County Comprehensive Planning Mr. Clare Schmutz

111111•

111111•

1111

GRAIN SIZE DISTRIBUTION GRAPHc

c c -u> w S

100% ryy

|l

LU

H IZ !

o "a:UJ

0% H-'-L

^~

I ' '^\i I ' '\*m t

\ ' !\ "' ' f \ l t n t

' \ t i i I |:M i i• V I !; \ i j' f\ ! i ' '' !-\ I II

i- V I i ' ' i' ' * \l hE V \\

I * * i

' t \\: ! K; i \^ : , !^H i i i , ;

i i i 1 1 1 1 . i

F Mi! •c i 'ii .1 t f n ''il ' f ' i' [ f1 ; '

II— l- B • 1

I j f

r ' ' , i , •i r i i' * . i

j_ ' I •,-\ f— - ' ", ' M— •• , '

LTiJ, 1 v •1 000 000 1 00 000 1 0 000

oo oa ° a* * *

; :l ' 'i ' i: 1 ' ' I I 1

' l \' 1 t i

jj L ill J_L . . - ..

i l l ! 1

j! j ili i ii • '1 1 i !l

.... - - j ,-|1 | , '

Ia 1 I I ;V 'M iN "INJ IV L | ] i _i

INJJI1'

1 | ipm

i ^ i N,i ' ' I Vr - p i t \i i \

. i ' : : : . )i i i> i . 1 1 11 i |i l

11 1

i

-4

-

x

i

-

^ —L™" "™

1000 0100 0010 0001 0.000

GRAIN SIZE - mm

HYDROMETER TEST SUMMARY% GRAVEL = 53%

% SAND = 35%

% SILT & CLAY = 11%

D85=26.1 0,6=0.1

D60=10.0 D10 =

DSQ = 5.8 GU =

D30 = 0.4 Cc =

Project No.: 00-33236-01Project Name: Sunrise Mountain Landfill

Date: 24-Aug-OOSample Location: SB-I

Material Description: Silty Gravel with Sand

GRAIN SIZE DISTRIBUTION TEST REPORT with HYDROMETER

CONVERSE CONSULTANTS

11

Drawing No.