27
Low Emittance Storage Ring for Light Source Sukho Kongtawong PHY 554 Fall 2016

Low Emittance Storage Ring light sourcecase.physics.sunysb.edu/images/7/7f/Sukho_Kongtawong.pdf · 2016. 12. 15. · for Light Source Sukho Kongtawong PHY 554 Fall 2016. Content •Brightness

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Low Emittance Storage Ring light sourcecase.physics.sunysb.edu/images/7/7f/Sukho_Kongtawong.pdf · 2016. 12. 15. · for Light Source Sukho Kongtawong PHY 554 Fall 2016. Content •Brightness

Low Emittance Storage Ring for Light Source

Sukho Kongtawong

PHY 554 Fall 2016

Page 2: Low Emittance Storage Ring light sourcecase.physics.sunysb.edu/images/7/7f/Sukho_Kongtawong.pdf · 2016. 12. 15. · for Light Source Sukho Kongtawong PHY 554 Fall 2016. Content •Brightness

Content

• Brightness and emittance

• Radiative effect and emittance

• Theory• Theoretical Minimum Emittance (TME) cell

• Double-bend achromat (DBA)

• Multi-bend achromat (MBA)• MAX IV (7BA)

• Upgrading of Synchrotron Storage Rings

2

Page 3: Low Emittance Storage Ring light sourcecase.physics.sunysb.edu/images/7/7f/Sukho_Kongtawong.pdf · 2016. 12. 15. · for Light Source Sukho Kongtawong PHY 554 Fall 2016. Content •Brightness

Brightness and emittance

• All beamline experiments require high brightness of the light

𝐵∆𝜔/𝜔 =∆𝑃

∆𝐴 ∆Ω ∆𝜔/𝜔,

which depends on emittance• Example: Undulator

NSLS-II (emittance=0.55 nm-rad)

where 𝜎 = 𝜀𝛽 and 𝜎′ = 𝜀/𝛽

3PHY 554 CASE course, Stony Brook University, Fall 2016

Page 4: Low Emittance Storage Ring light sourcecase.physics.sunysb.edu/images/7/7f/Sukho_Kongtawong.pdf · 2016. 12. 15. · for Light Source Sukho Kongtawong PHY 554 Fall 2016. Content •Brightness

Radiative Effects

• Balance between Beam damping and Quantum fluctuation

• Emittance can be determined by

𝜀𝑥 = 𝐶𝑞𝛾2

𝐼5𝐼2 − 𝐼4

= 𝐶𝑞𝛾2𝐻(𝑠)/𝜌3

𝐽𝑥 1/𝜌2,

where𝐻 𝑠 = 𝛾𝐷2 + 2𝛼𝐷𝐷′ + 𝛽𝐷′2,

which can be adjusted by vary magnetic strength

4

Damping term 𝛼𝑥 =𝑈0

2𝑇0𝐸(1 − ഥ𝐷) =

𝑈0

2𝑇0𝐸𝐽𝑥

Klaus Wille, “The Physics of Particle Accelerators: An Introduction”, Oxford University press

Page 5: Low Emittance Storage Ring light sourcecase.physics.sunysb.edu/images/7/7f/Sukho_Kongtawong.pdf · 2016. 12. 15. · for Light Source Sukho Kongtawong PHY 554 Fall 2016. Content •Brightness

Radiative Effects

• Most Storage rings use identical bending radius

• Strongly focusing machines generally have 𝐽𝑥 ≈ 1

• The emittance becomes

𝜀𝑥 = 𝐶𝑞𝛾2

𝜌𝑙න

0

𝑙

𝐻 𝑠 𝑑𝑠 ,

where 𝑙 is length of bending magnets

• Optimize 𝐻 𝑠 to reduce the emittance

𝜀𝑥 = 𝐶𝑞𝛾2𝐻(𝑠)/𝜌3

𝐽𝑥 1/𝜌2,

5Klaus Wille, “The Physics of Particle Accelerators: An Introduction”, Oxford University press

Page 6: Low Emittance Storage Ring light sourcecase.physics.sunysb.edu/images/7/7f/Sukho_Kongtawong.pdf · 2016. 12. 15. · for Light Source Sukho Kongtawong PHY 554 Fall 2016. Content •Brightness

Chaseman-Green Lattice DBA

• Designed by Renate Chasemanand George K. Green of BNL in mid-1970s

• Aka “double bend achromat”

• Dispersion, D = 0, 𝐷′ = 0 in straight section for IDs

• Optimize Betatron function

6Klaus Wille, “The Physics of Particle Accelerators: An Introduction”, Oxford University press

Page 7: Low Emittance Storage Ring light sourcecase.physics.sunysb.edu/images/7/7f/Sukho_Kongtawong.pdf · 2016. 12. 15. · for Light Source Sukho Kongtawong PHY 554 Fall 2016. Content •Brightness

Evolution of optical parameters in Bending

• Find evolution of 𝐷 𝑠 ,𝐷′ 𝑠 , 𝛽 𝑠 , 𝛼 𝑠 for

𝐻 𝑠 = 𝛾𝐷2 + 2𝛼𝐷𝐷′ + 𝛽𝐷′2

• For dispersion

𝐷(𝑠)

𝐷′(𝑠)1

=cos 𝑠/𝜌 𝜌 sin 𝑠/𝜌 𝜌 1 − cos 𝑠/𝜌

−sin 𝑠/𝜌 /𝜌 cos 𝑠/𝜌 sin 𝑠/𝜌0 0 1

𝐷0𝐷′01

and 𝐷0 = 0,𝐷′0 = 0 gives

𝐷 𝑠 = 𝜌 1 − cos 𝑠/𝜌 ≈𝑠2

2𝜌

𝐷′ 𝑠 = sin 𝑠/𝜌 ≈𝑠

𝜌

7Klaus Wille, “The Physics of Particle Accelerators: An Introduction”, Oxford University press

Page 8: Low Emittance Storage Ring light sourcecase.physics.sunysb.edu/images/7/7f/Sukho_Kongtawong.pdf · 2016. 12. 15. · for Light Source Sukho Kongtawong PHY 554 Fall 2016. Content •Brightness

Evolution of optical parameters in Bending

For Betatron function (transformation Matrix for drift space)

𝛽(𝑠) −𝛼(𝑠)−𝛼(𝑠) 𝛾(𝑠)

=1 𝑠0 1

𝛽0 −𝛼0−𝛼0 𝛾0

1 0𝑠 1

gives

𝛽 𝑠 = 𝛽0 − 2𝛼0𝑠 + 𝛾0𝑠2

𝛼 𝑠 = 𝛼0 + 𝛾0𝑠

𝛾 𝑠 = 𝛾0

8Klaus Wille, “The Physics of Particle Accelerators: An Introduction”, Oxford University press

Page 9: Low Emittance Storage Ring light sourcecase.physics.sunysb.edu/images/7/7f/Sukho_Kongtawong.pdf · 2016. 12. 15. · for Light Source Sukho Kongtawong PHY 554 Fall 2016. Content •Brightness

Emittance

Hence

𝐻 𝑠 =1

𝜌2𝛾04𝑠4 − 𝛼0𝑠

3 + 𝛽0𝑠2

𝜀𝑥 = 𝐶𝑞𝛾2

𝜌𝑙න

0

𝑙

𝐻 𝑠 𝑑𝑠

Finally,

𝜀𝑥 = 𝐶𝑞𝛾2Θ3

𝛾0𝑙

20−𝛼04+𝛽03𝑙

where Θ = 𝑙/𝜌

9Klaus Wille, “The Physics of Particle Accelerators: An Introduction”, Oxford University press

Page 10: Low Emittance Storage Ring light sourcecase.physics.sunysb.edu/images/7/7f/Sukho_Kongtawong.pdf · 2016. 12. 15. · for Light Source Sukho Kongtawong PHY 554 Fall 2016. Content •Brightness

Minimum Emittance

Differentiate respects to initial condition

𝜕𝜀𝑥𝜕𝛽0

= 0 and𝜕𝜀𝑥𝜕𝛼0

= 0

give

−1 + 𝛼0

2

𝛽02

𝑙2

20+1

3= 0 and

𝛼0𝛽0

𝑙

10−1

4= 0

So

𝛽0 =12

5𝑙 , 𝛼0= 15

10Klaus Wille, “The Physics of Particle Accelerators: An Introduction”, Oxford University press

Page 11: Low Emittance Storage Ring light sourcecase.physics.sunysb.edu/images/7/7f/Sukho_Kongtawong.pdf · 2016. 12. 15. · for Light Source Sukho Kongtawong PHY 554 Fall 2016. Content •Brightness

TME cell

Minimum Emittance

For Chasman-Green lattice (double bend achromat)

𝜀𝑥 nm−rad = 94.7 Θ3 𝐸2 GeV

Note that if it’s not Achromat lattice

when 𝐷 ≠ 0 and 𝐷′ ≠ 0

𝜀𝑥 nm−rad =31.65

𝐽𝑥Θ3 𝐸2 GeV

This is the theoretical minimum emittance (TME)

11

Double Bend Achromat lattice (DBA)

𝐷𝑥

Dieter Einfeld (2014), “Multi-bend Achromat Lattices for Storage Ring Light Sources”, Synchrotron Radiation News

Page 12: Low Emittance Storage Ring light sourcecase.physics.sunysb.edu/images/7/7f/Sukho_Kongtawong.pdf · 2016. 12. 15. · for Light Source Sukho Kongtawong PHY 554 Fall 2016. Content •Brightness

Multi Bend Achromat (MBA)

• D. Einfeld et al. proposed the use of MBA in 1993.

• From

𝜀𝑥 = 𝐶𝑞𝛾2

𝐽𝑥Θ3𝐹,

where 𝐹 is factor depends on Betatron function

• Θ = 2𝜋/𝑁, N is number of bending

• Hence

𝜀𝑥 ∝𝐸2

𝑁3

• Increase 𝑁 -> reduce Θ -> reduce 𝜀𝑥

12Thapakron Pulampong, “Ultra-low Emittance Lattice Design for Advanced Synchrotron Light Sources”, thesis submitted at the University of Oxford

Page 13: Low Emittance Storage Ring light sourcecase.physics.sunysb.edu/images/7/7f/Sukho_Kongtawong.pdf · 2016. 12. 15. · for Light Source Sukho Kongtawong PHY 554 Fall 2016. Content •Brightness

MBA

• Stronger focusing

• High Chromaticity (negative)

13

Require (expensive ) strong Sextupole strength -> reduce Dynamics Aperture -> difficult to inject

MAX IV (emittance ~200 - 330 pm-rad)

Dieter Einfeld (2014), “Multi-bend Achromat Lattices for Storage Ring Light Sources”, Synchrotron Radiation News

Page 14: Low Emittance Storage Ring light sourcecase.physics.sunysb.edu/images/7/7f/Sukho_Kongtawong.pdf · 2016. 12. 15. · for Light Source Sukho Kongtawong PHY 554 Fall 2016. Content •Brightness

MBA

• More bending -> reduce space for IDs

• Require combine magnet -> increase 𝐽𝑥 which reduce 𝜀𝑥

𝛼𝐸 =𝑈02𝑇0𝐸

(2 + ഥ𝐷) =𝑈02𝑇0𝐸

𝐽𝐸

𝛼𝑥 =𝑈02𝑇0𝐸

(1 − ഥ𝐷) =𝑈02𝑇0𝐸

𝐽𝑥

Hence 𝐽𝑥 + 𝐽𝐸 = 3 constant

• Increase 𝐽𝑥 will reduce 𝐽𝐸 -> increase energy spread

14PHY 554 CASE course, Stony Brook University, Fall 2016

Page 15: Low Emittance Storage Ring light sourcecase.physics.sunysb.edu/images/7/7f/Sukho_Kongtawong.pdf · 2016. 12. 15. · for Light Source Sukho Kongtawong PHY 554 Fall 2016. Content •Brightness

MAX IV

15

528 m circumference

The world’s first MBA storage ring, Lund, Sweden

Page 16: Low Emittance Storage Ring light sourcecase.physics.sunysb.edu/images/7/7f/Sukho_Kongtawong.pdf · 2016. 12. 15. · for Light Source Sukho Kongtawong PHY 554 Fall 2016. Content •Brightness

MAX IV

Consists of

• 3 GeV LINAC (300 m)• 10 Hz for full energy injection

• XFEL

• 1.5 GeV 96 m circumference• Soft x-ray and UV users

• 3 GeV: 528 m circumference• Hard x-ray users

16

Page 17: Low Emittance Storage Ring light sourcecase.physics.sunysb.edu/images/7/7f/Sukho_Kongtawong.pdf · 2016. 12. 15. · for Light Source Sukho Kongtawong PHY 554 Fall 2016. Content •Brightness

MAX IV

Parameters NSLS-II MAX IV

Energy (GeV) 3 3

Circumference (m) 792 528

Current (mA) 500 500

No. of Straight Section 15 (9.3 m) / 15 (6.6 m) 20

Horizontal Emittance (nm rad) 0.55 ~0.2 - 0.33

Vertical Emittance (pm) 8 2 - 8

17

Comparison between• NSLS-II• MAX IV

Page 18: Low Emittance Storage Ring light sourcecase.physics.sunysb.edu/images/7/7f/Sukho_Kongtawong.pdf · 2016. 12. 15. · for Light Source Sukho Kongtawong PHY 554 Fall 2016. Content •Brightness

MAX IV: Magnets

• In order to reach low emittance with small circumference• Compact magnet

• Reduce magnets gap -> Strong magnetic field

• Shorter

• Integrated units• BM, QM pole are machined out of

a pair of iron blocks

• Each unit holding all the magnets of a complete cell

18

Top and bottom parts of multiple function magnet of MAX IVCredit: Danfysik

Page 19: Low Emittance Storage Ring light sourcecase.physics.sunysb.edu/images/7/7f/Sukho_Kongtawong.pdf · 2016. 12. 15. · for Light Source Sukho Kongtawong PHY 554 Fall 2016. Content •Brightness

Magnets

19Two complete 7-bend achromats at MAX IVSeparated function magnets (NSLS-II)

Page 20: Low Emittance Storage Ring light sourcecase.physics.sunysb.edu/images/7/7f/Sukho_Kongtawong.pdf · 2016. 12. 15. · for Light Source Sukho Kongtawong PHY 554 Fall 2016. Content •Brightness

MAX IV: Chamber

• Compact magnet design lead to narrow low-conductance vacuum chambers• Distributed pumping and heat load

• Heat load problem• Use copper as a chamber

• Water cooling

• Pumping problem• Provide by non-evaporable getter (NEG)

coating at the inner surface

• Reduce number of pumps and absorbers

20

Page 21: Low Emittance Storage Ring light sourcecase.physics.sunysb.edu/images/7/7f/Sukho_Kongtawong.pdf · 2016. 12. 15. · for Light Source Sukho Kongtawong PHY 554 Fall 2016. Content •Brightness

Advance Photon Source (APS) upgrading

21Stuart Henderson, “APS Upgrade Overview and Status”, APS Users Organization/Partner User Council Joint Meeting July 9, 2014

Page 22: Low Emittance Storage Ring light sourcecase.physics.sunysb.edu/images/7/7f/Sukho_Kongtawong.pdf · 2016. 12. 15. · for Light Source Sukho Kongtawong PHY 554 Fall 2016. Content •Brightness

Advance Photon Source (APS) upgrading

• 1104 m circumference

• Upgrade• APS-U MBA

• 67 pm-rad

• 100 fold increase in brightness and coherent flux

22

DBA MBA

Stuart Henderson, “APS Upgrade Overview and Status”, APS Users Organization/Partner User Council Joint Meeting July 9, 2014

Page 23: Low Emittance Storage Ring light sourcecase.physics.sunysb.edu/images/7/7f/Sukho_Kongtawong.pdf · 2016. 12. 15. · for Light Source Sukho Kongtawong PHY 554 Fall 2016. Content •Brightness

23

Credit: “Status of the Diamond Light Source upgrade”, R. Bartolini, et al.,EuCARD2 topical workshopBarcelona, 23 April 2015

Page 24: Low Emittance Storage Ring light sourcecase.physics.sunysb.edu/images/7/7f/Sukho_Kongtawong.pdf · 2016. 12. 15. · for Light Source Sukho Kongtawong PHY 554 Fall 2016. Content •Brightness

Summary

• Theoretical Minimum Emittance (TME) consider only on emittance• Difficult to reach

• In reality, other parameters need to be considered• Non-linear term e.g. dynamics aperture

• Space for IDs

• Costs e.g. high-tech magnets

• MBA can reduce emittance because reduce the bending angle

• Many Synchrotrons around the world plan to upgrade to MBA

24

Page 25: Low Emittance Storage Ring light sourcecase.physics.sunysb.edu/images/7/7f/Sukho_Kongtawong.pdf · 2016. 12. 15. · for Light Source Sukho Kongtawong PHY 554 Fall 2016. Content •Brightness

Reference

• PHY 554 CASE course, Stony Brook University, Fall 2016

• Klaus Wille, “The Physics of Particle Accelerators: An Introduction”, Oxford University press

• Dieter Einfeld (2014), “Multi-bend Achromat Lattices for Storage Ring Light Sources”, Synchrotron Radiation News, 27:6, 4-7, DOI: 10.1080/08940886.2014.970929

• Pedro F. Tavares, “The MAX IV storage ring project”, Journal of Synchrotron Radiation ISSN, 1600-5775

• Thapakron Pulampong, “Ultra-low Emittance Lattice Design for Advanced Synchrotron Light Sources”, thesis submitted at the University of Oxford

• R. Bartolini. A. Alekou, M. Apollonio, et al., “Status of the Diamond Light Source upgrade”, EuCARD2 topical workshop Barcelona, 23 April 2015

• Stuart Henderson, “APS Upgrade Overview and Status”, APS Users Organization/Partner User Council Joint Meeting July 9, 2014

25

Page 26: Low Emittance Storage Ring light sourcecase.physics.sunysb.edu/images/7/7f/Sukho_Kongtawong.pdf · 2016. 12. 15. · for Light Source Sukho Kongtawong PHY 554 Fall 2016. Content •Brightness

Extra Slide: Chromaticity

26

• Chromaticity leads to tune shifted

𝜉 ≡∆𝑄

∆𝑝/𝑝= ර𝑘 𝑠 𝛽 𝑠 𝑑𝑠

• Sextupole magnets• Compensate the Chromaticity

𝑘sext = 𝑚 𝐷∆𝑝

𝑝Where 𝑚 is sextupole strength

Page 27: Low Emittance Storage Ring light sourcecase.physics.sunysb.edu/images/7/7f/Sukho_Kongtawong.pdf · 2016. 12. 15. · for Light Source Sukho Kongtawong PHY 554 Fall 2016. Content •Brightness

Extra Slide: NEG coating

• Non evaporable getters (NEG), based on the principle of metallic surface sorption of gas molecules, are mostly porous alloys or powder mixtures of Al, Zr, Ti, V and Fe. They help to establish and maintain vacuums by soaking up or bonding to gas molecules that remain within a partial vacuum.

• They are important tools for improving the performance of many vacuum systems.

• the NEG coating can be applied even to spaces that are narrow and hard to pump out, which makes it very popular in particle accelerators where this is an issue.

• The NEG acts as a getter or getter pump that is able to reduce the pressure to less than 10−7 Pa.

27