16
AAPM 2017 – Imaging Symposium Low Dose CT: Where do we stand now? J. Webster Stayman ([email protected]) 8/2/2017 Advanced Imaging Algorithms and Instrumentation Laboratory (aiai.jhu.edu) 1 Low Dose CT Technologies: Hardware Strategies J. Webster Stayman [email protected] Department of Biomedical Engineering Johns Hopkins University Johns Hopkins University Schools of Medicine and Engineering Disclosures Current NIH Support: U01EB018758 (Stayman) R21CA219608 (Stayman) R01EB018896 (Zbijewski) R01EB017226 (Siewerdsen) Current Academic-Industry Partnerships: Carestream Health Elekta AB Medtronic Philips Healthcare Siemens Medical

Low Dose CT Technologies: Hardware Strategies

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Low Dose CT Technologies: Hardware Strategies

AAPM 2017 – Imaging SymposiumLow Dose CT: Where do we stand now?

J. Webster Stayman ([email protected]) 8/2/2017

Advanced Imaging Algorithms and Instrumentation Laboratory (aiai.jhu.edu) 1

Low Dose CT Technologies: Hardware Strategies

J. Webster Stayman

[email protected]

Department of Biomedical EngineeringJohns Hopkins University

Johns Hopkins UniversitySchools of Medicine and Engineering

Disclosures

Current NIH Support:

U01EB018758 (Stayman)

R21CA219608 (Stayman)

R01EB018896 (Zbijewski)

R01EB017226 (Siewerdsen)

Current Academic-Industry Partnerships:

Carestream Health

Elekta AB

Medtronic

Philips Healthcare

Siemens Medical

Page 2: Low Dose CT Technologies: Hardware Strategies

AAPM 2017 – Imaging SymposiumLow Dose CT: Where do we stand now?

J. Webster Stayman ([email protected]) 8/2/2017

Advanced Imaging Algorithms and Instrumentation Laboratory (aiai.jhu.edu) 2

Introduction – Hardware Targets for Better Dose Utilization

(image Credit) https://www.youtube.com/watch?v=bg0iNhw2ARw

X-ray Tube

Filtration

Detection

X-ray Tube Physics and Controllable Elements

kVp

mANumber of photons mA

Energy of photons

kVpkeV

X-ray Photons

Page 3: Low Dose CT Technologies: Hardware Strategies

AAPM 2017 – Imaging SymposiumLow Dose CT: Where do we stand now?

J. Webster Stayman ([email protected]) 8/2/2017

Advanced Imaging Algorithms and Instrumentation Laboratory (aiai.jhu.edu) 3

Noise in X-ray Projection Data

100 200 300 400 500 600 700

100

200

300

400

500

600

700 -0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

100 200 300 400 500 600 700

100

200

300

400

500

600

700

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

X-ray Projection Data Relative Noise

Modulation of X-ray Fluence as a Function of Table Position

Namasivayam S, et al. 2006 Optimization of Z-axis automatic exposure control for multidetector row CT evaluation of neck and comparison with fixed tube current technique for image quality and radiation dose AJNR Am. J. Neuroradiol. 27 2221–5

Page 4: Low Dose CT Technologies: Hardware Strategies

AAPM 2017 – Imaging SymposiumLow Dose CT: Where do we stand now?

J. Webster Stayman ([email protected]) 8/2/2017

Advanced Imaging Algorithms and Instrumentation Laboratory (aiai.jhu.edu) 4

Modulation of X-ray Fluence as a Function of Rotation Angle

Angel E, et al. 2009 Dose to Radiosensitive Organs During Routine Chest CT: Effects of Tube Current Modulation Am. J. Roentgenol. 193 1340–5

Detector

X-ray

Source

How to Optimally Modulate Tube Current

Gies M, Kalender W A, Wolf H and Suess C 1999 Dose reduction in CT by anatomically adapted tube current modulation. I. Simulation studies. Med. Phys. 26 2235–47

𝐴 = exp(−𝜇𝐿)

exp(−𝛼𝜇𝐿) = 𝐴𝛼

Attenuation due to Patient:

Attenuation-based

Current Modulation:

No Modulation ( a = 0.0 )

Optimal Modulation ( a = 1/2 )

Uniform Signal ( a = 1.0 )

Page 5: Low Dose CT Technologies: Hardware Strategies

AAPM 2017 – Imaging SymposiumLow Dose CT: Where do we stand now?

J. Webster Stayman ([email protected]) 8/2/2017

Advanced Imaging Algorithms and Instrumentation Laboratory (aiai.jhu.edu) 5

Dose Reduction in Patient Studies

Fuchs T, Kachelrieß M and Kalender W A 2000 Technical advances in multi-slice spiral CT Eur. J. Radiol. 36 69–73

Constant Current – 327 mAs Tube Current Modulation – 166 mAs

What about Tube Voltage? - kVp

0 50 100 1500

1

2

3

4

5

6

7x 10

4

Tube Output

5 cm Water

0 50 100 1500

0.01

0.02

0.03

0.04

0.05

Tube Output

10 cm Water

20 cm Water

30 cm Water

40 cm Water

Energy-dependent Attenuation

Beam-Hardening Effects

Dependence on Patient Size

kEv

kEv

Page 6: Low Dose CT Technologies: Hardware Strategies

AAPM 2017 – Imaging SymposiumLow Dose CT: Where do we stand now?

J. Webster Stayman ([email protected]) 8/2/2017

Advanced Imaging Algorithms and Instrumentation Laboratory (aiai.jhu.edu) 6

Automatic kVp Selection

Yu L, Li H, Fletcher J G and McCollough C H 2009 Automatic selection of tube potential for radiation dose reduction in CT: A general strategy Med. Phys. 37 234–43

0 50 100 1500

0.01

0.02

0.03

0.04

0.05

60 kVp

80 kVp

100 kVp

120 kVp

Photon Energy (kEv)

Optimal kVp Selection

Yu L, Li H, Fletcher J G and McCollough C H 2009 Automatic selection of tube potential for radiation dose reduction in CT: A general strategy Med. Phys. 37 234–43

Optimization of kVp can be a bit more complex (than mA modulation)Dependent on patient sizeCompeting IQ metrics – contrast and noiseDependent on imaging task

General Non-Contrast Exams Contrast-enhanced Exams CT Angiography

Page 7: Low Dose CT Technologies: Hardware Strategies

AAPM 2017 – Imaging SymposiumLow Dose CT: Where do we stand now?

J. Webster Stayman ([email protected]) 8/2/2017

Advanced Imaging Algorithms and Instrumentation Laboratory (aiai.jhu.edu) 7

Tube Voltage Optimization in Patient Studies

Chae I H, Kim Y, Lee S W, Park J E, Shim S S and Lee J H 2014 Standard chest CT using combined automated tube potential selection and iterative reconstruction: Image quality and radiation dose reduction Clin. Imaging 38 641–7

120 kVp, 284 mGy/cm 100 kVp, 165 mGy/cm

Filtration

X-ray tube

Collimator box in place

Generally there is room in front of the x-ray tube port for x-ray filtersChange x-ray beam characteristics through selective attenuation of x-rays

Page 8: Low Dose CT Technologies: Hardware Strategies

AAPM 2017 – Imaging SymposiumLow Dose CT: Where do we stand now?

J. Webster Stayman ([email protected]) 8/2/2017

Advanced Imaging Algorithms and Instrumentation Laboratory (aiai.jhu.edu) 8

Spectral Filtration

Gordic S, et al. 2014 Ultralow-dose chest computed tomography for pulmonary nodule detection: first performance evaluation of single energyscanning with spectral shaping. Invest. Radiol. 49 465–73

(more on Sn filters) Messerli M, et al. S 2017 Ultralow dose CT for pulmonary nodule detection with chest x-ray equivalent dose – a prospectiveintra-individual comparative study Eur. Radiol. 27 3290–9

(0.06 mSv)100 kVp+ Sn Filter

1 1

2

3

4

2

3

4

3

4

4

3 3

3

33

4

4

4 4

5

5

5

5 5

Spatial Filtration

Detector

X-ray

Source

Patient

Relative Noise

(Optimal Bowtie Design) Harpen M D 1999 A simple theorem relating noise and patient dose in computed tomographyMed. Phys. 26 2231–4

Bowtie

Filter

Page 9: Low Dose CT Technologies: Hardware Strategies

AAPM 2017 – Imaging SymposiumLow Dose CT: Where do we stand now?

J. Webster Stayman ([email protected]) 8/2/2017

Advanced Imaging Algorithms and Instrumentation Laboratory (aiai.jhu.edu) 9

Bowtie Filters

0 5 10 15 20 25

mGy

Xu J, Sisniega A, Zbijewski W, Dang H, Stayman J W, Wang X, Foos D H, Aygun N, Koliatsos V and Siewerdsen J H 2016 Evaluation of detector readout gain mode and bowtie filters for cone-beam CT imaging of the head. Phys. Med. Biol. 61 5973–92

(centering) Toth T L, Ge Z and Daly M P 2007 The influence of patient centering on CT dose and image noise Med. Phys. 34 3093

Reduced Peripheral Dose Reduced Scatter

Example of Bowtie Use in Head Imaging

Xu J, Sisniega A, Zbijewski W, Dang H, Stayman J W, Wang X, Foos D H, Aygun N, Koliatsos V and Siewerdsen J H 2016 Evaluation of detector readout gain mode and bowtie filters for cone-beam CT imaging of the head. Phys. Med. Biol. 61 5973–92

Page 10: Low Dose CT Technologies: Hardware Strategies

AAPM 2017 – Imaging SymposiumLow Dose CT: Where do we stand now?

J. Webster Stayman ([email protected]) 8/2/2017

Advanced Imaging Algorithms and Instrumentation Laboratory (aiai.jhu.edu) 10

Traditional CT Detectors

ADC

Noise

Scintillator

Photodiode

Features:Indirect detection (Scintillator)Integrating detectorImplicit energy weighting (light kEv)Readout noise

X-ray photon

Light photons

Amp

Pixel Pixel Pixel

Measurements

Photon-counting CT Detectors

Measurements

Features:Direct detection (CdTe, CZT, Silicon)Possibly energy discriminatingNo implicit energy weightingNo readout noise

X-ray photon

Amp

Pixel Pixel Pixel

Direct Interaction

0 0.5 1 1.5 2 2.5 3 3.5 4 4.50

10

20

30

40

50

60

Time

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Photon

Counting

500

1000

1500

0

Energy

Integrating

Sig

na

l

(CZT Detector) Shikhaliev P M 2008 Computed tomography with energy-resolved detection: a feasibility study Phys. Med. Biol. 53 1475–95(Silicon Detector) Bornefalk H and Danielsson M 2010 Photon-counting spectral computed tomography using silicon strip detectors: a feasibility

study Phys. Med. Biol. 55 1999–2022

Page 11: Low Dose CT Technologies: Hardware Strategies

AAPM 2017 – Imaging SymposiumLow Dose CT: Where do we stand now?

J. Webster Stayman ([email protected]) 8/2/2017

Advanced Imaging Algorithms and Instrumentation Laboratory (aiai.jhu.edu) 11

Comparison of Different Energy Weightings

Giersch J, Niederlöhner D and Anton G 2004 The influence of energy weighting on X-ray imaging quality Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 531 68–74

Energy-Integrating (~E) Photon-Counting (constant) Energy-Weighted (1/E3)

Breast

Fat H20

CNR 1.0 H20/BreastEnhancement: 1.0 Fat/Breast

1.2 H20/Breast1.2 Fat/Breast

1.5 H20/Breast1.4 Fat/Breast

Energy Weighting is Dependent on Task

Shikhaliev P M 2008b Energy-resolved computed tomography: first experimental results Phys. Med. Biol. 53 5595–613(more optimal weighting) Schmidt T G 2009 Optimal “image-based” weighting for energy-resolved CT Med. Phys. 36 3018–27

Water

CaCO3

Wax

Iodine

Energy-Integrating Energy-Weighted

Page 12: Low Dose CT Technologies: Hardware Strategies

AAPM 2017 – Imaging SymposiumLow Dose CT: Where do we stand now?

J. Webster Stayman ([email protected]) 8/2/2017

Advanced Imaging Algorithms and Instrumentation Laboratory (aiai.jhu.edu) 12

Photon-Counting CT as an Emerging Technology

Many challenges with photon counting in physical CT systems

Taguchi K and Iwanczyk J S 2013 Vision 20/20: Single photon counting x-ray detectors in medical imaging Med. Phys. 40 100901

Not yet wide-spread, starting to see (pre)clinical comparisons and evaluations

Yu Z, Leng S, Jorgensen S M, Li Z, Gutjahr R, Chen B, Halaweish A F, Kappler S, Yu L, Ritman E L and McCollough C H 2016 Evaluation of conventional imaging performance in a research whole-body CT system with a photon-counting detector array Phys. Med. Biol. 61 1572–95

Pourmorteza A, Symons R, Sandfort V, Mallek M, Fuld M K, Henderson G, Jones E C, Malayeri A A, Folio L R and Bluemke D A 2016 Abdominal Imaging with Contrast-enhanced Photon-counting CT: First Human Experience Radiology 279 239–45

More potential for dose reduction in specific applications (contrast-enhanced imaging)

Schlomka J P, Roessl E, Dorscheid R, Dill S, Martens G, Istel T, Bäumer C, Herrmann C, Steadman R, ZeitlerG, Livne A and Proksa R 2008 Experimental feasibility of multi-energy photon-counting K-edge imaging in pre-clinical computed tomography Phys. Med. Biol. 53 4031–47

Spatial Filtering Revisited

Detector

X-ray

SourceBowtie

Filter

Patient Patient

Idealized Cylindrical Patient Miscentered Patient Patient Inhomogeneity

Page 13: Low Dose CT Technologies: Hardware Strategies

AAPM 2017 – Imaging SymposiumLow Dose CT: Where do we stand now?

J. Webster Stayman ([email protected]) 8/2/2017

Advanced Imaging Algorithms and Instrumentation Laboratory (aiai.jhu.edu) 13

Hsieh S S and Pelc N J 2013 The feasibility of a piecewise-linear dynamic bowtie filter. Med. Phys. 40 31910Stayman J W, et al. 2016 Fluence-field modulated x-ray CT using multiple aperture devices SPIE Medical Imaging 97830XSzczykutowicz T P and Hermus J 2015 Fluid dynamic bowtie attenuators Proc. SPIE 9412 94120X

Dynamic Bowtie FiltersSplit-Wedge Filter Sequential Binary (MAD) Filters (Stayman)

Piecewise Linear Filter (Hsieh/Pelc) Fluid-filled Filter (Szczykutowicz/Hermus)

Dynamic Bowtie – Dynamic Range Reduction

Hsieh S S and Pelc N J 2013 The feasibility of a piecewise-linear dynamic bowtie filter. Med. Phys. 40 31910

PediatricAbdomen

AdultThorax

AdultShoulder

Patient Anatomy Sinogram Noise Map Dose Map Sinogram Noise Map Dose MapStatic Reference Bowtie Filter Piecewise Linear Dynamic Bowtie Filter

Page 14: Low Dose CT Technologies: Hardware Strategies

AAPM 2017 – Imaging SymposiumLow Dose CT: Where do we stand now?

J. Webster Stayman ([email protected]) 8/2/2017

Advanced Imaging Algorithms and Instrumentation Laboratory (aiai.jhu.edu) 14

Adapting to Miscentered Patients with Dynamic Bowties

Mao A, Shyr W, Gang G, Stayman J W, 2018 Dynamic beam filtering for miscentered patients SPIE Medical Imaging, in prep.

Detector

Rotationstage

16cmCTDI

MAD Stages

Collimator

Source

23

415

Noise in Reconstructed ImagesMiscentering:

Sparse CT Data AcquisitionsSiemens ADMIRE120 kVp 210 mAs100% data

Siemens ADMIRE120 kVp 21 mAs100% data

SparseCT120 kVp 210 mAs10.4% data

Koesters T, Knoll F, Sodickson A, Sodickson D K and Otazo R 2017 SparseCT: interrupted-beam acquisition and sparse reconstruction for radiation dose reduction SPIE Medical Imaging p 101320Q

Page 15: Low Dose CT Technologies: Hardware Strategies

AAPM 2017 – Imaging SymposiumLow Dose CT: Where do we stand now?

J. Webster Stayman ([email protected]) 8/2/2017

Advanced Imaging Algorithms and Instrumentation Laboratory (aiai.jhu.edu) 15

Tube Current Revisited (with new reconstruction algorithms)

Gang G J, Siewerdsen J H and Webster Stayman J 2017 Task-driven optimization of CT tube current modulation and regularization in model-based iterative reconstruction Phys. Med. Biol. 62 4777–97

Unmodulated0°

180°

270° 90°

Minimum Variance* (FBP)0°

180°

90°270°

Task-optimized Strategy

90°

180°

270°

Abdominal Phantom

Discussion

Presented traditional and emerging hardware modifications to CT

Tube current modulation, tube voltage optimization

Spatial and spectral filtration

Photon counting and energy-discriminating detectors

General trend of increasing adaptation to the patient – “Personalized Imaging”

Collect the data you need for the given task

Allow lower fidelity data when possible and avoid exposing beyond what is needed

Increasing coupling between data acquisition and reconstruction

Energy-weighting

Sparse data / compressed sensing

New reconstruction algorithms may change optimality for traditional adaptations

Page 16: Low Dose CT Technologies: Hardware Strategies

AAPM 2017 – Imaging SymposiumLow Dose CT: Where do we stand now?

J. Webster Stayman ([email protected]) 8/2/2017

Advanced Imaging Algorithms and Instrumentation Laboratory (aiai.jhu.edu) 16

Thank You / References

Automatic Exposure Control / Tube Current Modulation

(Namasivayam et al 2006)

(Angel et al 2009)

(Gies et al 1999)

(Fuchs et al 2000)

Automatic Tube Voltage Selection

(Yu et al 2009)

(Chae et al 2014)

Spectral Filters

(Gordic et al 2014)

(Messerli et al 2017)

Bowtie Filters

(Harpen 1999)

(Xu et al 2016)

(Toth et al 2007)

Photon-Counting Detectors

(Shikhaliev 2008a)

(Bornefalk and Danielsson 2010)

(Giersch et al 2004)

(Shikhaliev 2008b)

(Schmidt 2009)

(Taguchi and Iwanczyk 2013)

(Yu et al 2016)

(Pourmorteza et al 2016)

(Schlomka et al 2008)

Dynamic Bowtie Filters

(Hsieh and Pelc 2013)

(Szczykutowicz and Hermus 2015)

(Stayman et al 2016)

(Mao et al 2018)

Joint Hardware/Software Solutions

(Koesters et al 2017)

(Gang et al 2017)