44
Load Models for Bridges Outline Dead load Live load Extreme load events Load combinations Andrzej S. Nowak University of Michigan Ann Arbor, Michigan

Load Models for Bridges Outline Dead load Live load Extreme load events Load combinations Andrzej S. Nowak University of Michigan Ann Arbor, Michigan

Embed Size (px)

Citation preview

Page 1: Load Models for Bridges Outline Dead load Live load Extreme load events Load combinations Andrzej S. Nowak University of Michigan Ann Arbor, Michigan

Load Models for Bridges

Outline Dead load Live load Extreme load events Load combinations

Andrzej S. NowakUniversity of MichiganAnn Arbor, Michigan

Page 2: Load Models for Bridges Outline Dead load Live load Extreme load events Load combinations Andrzej S. Nowak University of Michigan Ann Arbor, Michigan
Page 3: Load Models for Bridges Outline Dead load Live load Extreme load events Load combinations Andrzej S. Nowak University of Michigan Ann Arbor, Michigan
Page 4: Load Models for Bridges Outline Dead load Live load Extreme load events Load combinations Andrzej S. Nowak University of Michigan Ann Arbor, Michigan

Load Models

For each load component: Bias factor, = mean/nominal Coefficient of variation, V = /mean Cumulative distribution function

(CDF) Time variation: return period,

duration

Page 5: Load Models for Bridges Outline Dead load Live load Extreme load events Load combinations Andrzej S. Nowak University of Michigan Ann Arbor, Michigan
Page 6: Load Models for Bridges Outline Dead load Live load Extreme load events Load combinations Andrzej S. Nowak University of Michigan Ann Arbor, Michigan
Page 7: Load Models for Bridges Outline Dead load Live load Extreme load events Load combinations Andrzej S. Nowak University of Michigan Ann Arbor, Michigan

Statistical Data Base Load surveys (e.g. weigh-in-motion

truck measurement) Load distribution (load effect per

component) Simulations (e.g. Monte Carlo) Finite element analysis Boundary conditions (field tests)

Page 8: Load Models for Bridges Outline Dead load Live load Extreme load events Load combinations Andrzej S. Nowak University of Michigan Ann Arbor, Michigan

Examples of Load Parameters

Dead load for bridges = 1.03-1.05

V = 0.08-0.10 Live load parameters for bridges

(AASHTO LRFD Code) = 1.25-1.35

V = 0.12

Page 9: Load Models for Bridges Outline Dead load Live load Extreme load events Load combinations Andrzej S. Nowak University of Michigan Ann Arbor, Michigan
Page 10: Load Models for Bridges Outline Dead load Live load Extreme load events Load combinations Andrzej S. Nowak University of Michigan Ann Arbor, Michigan
Page 11: Load Models for Bridges Outline Dead load Live load Extreme load events Load combinations Andrzej S. Nowak University of Michigan Ann Arbor, Michigan
Page 12: Load Models for Bridges Outline Dead load Live load Extreme load events Load combinations Andrzej S. Nowak University of Michigan Ann Arbor, Michigan
Page 13: Load Models for Bridges Outline Dead load Live load Extreme load events Load combinations Andrzej S. Nowak University of Michigan Ann Arbor, Michigan
Page 14: Load Models for Bridges Outline Dead load Live load Extreme load events Load combinations Andrzej S. Nowak University of Michigan Ann Arbor, Michigan

No. 4 Stanley Road over I-75in Flint (S11-25032)

Page 15: Load Models for Bridges Outline Dead load Live load Extreme load events Load combinations Andrzej S. Nowak University of Michigan Ann Arbor, Michigan
Page 16: Load Models for Bridges Outline Dead load Live load Extreme load events Load combinations Andrzej S. Nowak University of Michigan Ann Arbor, Michigan
Page 17: Load Models for Bridges Outline Dead load Live load Extreme load events Load combinations Andrzej S. Nowak University of Michigan Ann Arbor, Michigan
Page 18: Load Models for Bridges Outline Dead load Live load Extreme load events Load combinations Andrzej S. Nowak University of Michigan Ann Arbor, Michigan
Page 19: Load Models for Bridges Outline Dead load Live load Extreme load events Load combinations Andrzej S. Nowak University of Michigan Ann Arbor, Michigan
Page 20: Load Models for Bridges Outline Dead load Live load Extreme load events Load combinations Andrzej S. Nowak University of Michigan Ann Arbor, Michigan

Examples of Bias Factors

Two bridge design codes are considered: AASHTO Standard Specifications (1996) AASHTO LRFD Code (1998)For the first one, denoted by HS20, bias factor is non-uniform, so design load in LRFD Code was changed, and the result is much better.

Page 21: Load Models for Bridges Outline Dead load Live load Extreme load events Load combinations Andrzej S. Nowak University of Michigan Ann Arbor, Michigan
Page 22: Load Models for Bridges Outline Dead load Live load Extreme load events Load combinations Andrzej S. Nowak University of Michigan Ann Arbor, Michigan
Page 23: Load Models for Bridges Outline Dead load Live load Extreme load events Load combinations Andrzej S. Nowak University of Michigan Ann Arbor, Michigan
Page 24: Load Models for Bridges Outline Dead load Live load Extreme load events Load combinations Andrzej S. Nowak University of Michigan Ann Arbor, Michigan
Page 25: Load Models for Bridges Outline Dead load Live load Extreme load events Load combinations Andrzej S. Nowak University of Michigan Ann Arbor, Michigan

Two trucks side-by-side

Page 26: Load Models for Bridges Outline Dead load Live load Extreme load events Load combinations Andrzej S. Nowak University of Michigan Ann Arbor, Michigan
Page 27: Load Models for Bridges Outline Dead load Live load Extreme load events Load combinations Andrzej S. Nowak University of Michigan Ann Arbor, Michigan

Bias Factor for Load Effect Bias factors shown previously were

for lane load (bridge live load) For components (bridge girders),

bias factor can be very different

Page 28: Load Models for Bridges Outline Dead load Live load Extreme load events Load combinations Andrzej S. Nowak University of Michigan Ann Arbor, Michigan

Girder Distribution Factors

What is the percentage of lane load per girder?

Is the actual distribution the same as specified by the design code?

What are the maximum strains? What is the load distribution factor

for one lane traffic and for two lanes

Page 29: Load Models for Bridges Outline Dead load Live load Extreme load events Load combinations Andrzej S. Nowak University of Michigan Ann Arbor, Michigan
Page 30: Load Models for Bridges Outline Dead load Live load Extreme load events Load combinations Andrzej S. Nowak University of Michigan Ann Arbor, Michigan

Code-Specified GDF -AASHTO Standard (1996)Steel and prestressed concrete girders One lane of traffic

Two lanes of traffic

S = girder spacing (m)3.36

SGDF

4.27S

GDF

Page 31: Load Models for Bridges Outline Dead load Live load Extreme load events Load combinations Andrzej S. Nowak University of Michigan Ann Arbor, Michigan
Page 32: Load Models for Bridges Outline Dead load Live load Extreme load events Load combinations Andrzej S. Nowak University of Michigan Ann Arbor, Michigan

Code-specified GDF -AASHTO LRFD (1998)

1.51

0.1

3s

g0.30.4

tanθc1Lt

K

LS

4300S

0.06GDF

1.51

0.1

3s

g0.20.6

tanθc1Lt

K

LS

2900S

0.075GDF

0.50.25

3s

g1 L

SLt

K0.25c

)AeI(nK 2

gg

One lane

Two lanes

Page 33: Load Models for Bridges Outline Dead load Live load Extreme load events Load combinations Andrzej S. Nowak University of Michigan Ann Arbor, Michigan
Page 34: Load Models for Bridges Outline Dead load Live load Extreme load events Load combinations Andrzej S. Nowak University of Michigan Ann Arbor, Michigan

Dynamic Load

Roughness of the road surface (pavement)

Bridge as a dynamic system (natural frequency of vibration)

Dynamic parameters of the vehicle (suspension system, shock absorbers)

Page 35: Load Models for Bridges Outline Dead load Live load Extreme load events Load combinations Andrzej S. Nowak University of Michigan Ann Arbor, Michigan

Dynamic Load Factor (DLF)

Static strain or deflection (at crawling speed)

Maximum strain or deflection (normal speed)

Dynamic strain or deflection = maximum - static

DLF = dynamic / static

Page 36: Load Models for Bridges Outline Dead load Live load Extreme load events Load combinations Andrzej S. Nowak University of Michigan Ann Arbor, Michigan
Page 37: Load Models for Bridges Outline Dead load Live load Extreme load events Load combinations Andrzej S. Nowak University of Michigan Ann Arbor, Michigan

Code Specified Dynamic Load Factor

AASHTO Standard (1996)

  

AASHTO LRFD (1998) 0.33 of truck effect, no dynamic load for the uniform loading

3.012528.3

50

L

I

Page 38: Load Models for Bridges Outline Dead load Live load Extreme load events Load combinations Andrzej S. Nowak University of Michigan Ann Arbor, Michigan
Page 39: Load Models for Bridges Outline Dead load Live load Extreme load events Load combinations Andrzej S. Nowak University of Michigan Ann Arbor, Michigan

0 20 40 60 80 100 1200.0

0.2

0.4

0.6

0.8

1.0

Static StrainDynamic Strain

Strain

Dyn

amic

Loa

d F

acto

r

Page 40: Load Models for Bridges Outline Dead load Live load Extreme load events Load combinations Andrzej S. Nowak University of Michigan Ann Arbor, Michigan

  

  

 

0 50 100 150 2000.0

0.2

0.4

0.6

0.8

1.0

Static StrainDynamic Strain

Strain

Dyn

amic

Loa

d F

acto

r

0 50 100 150 2000.0

0.2

0.4

0.6

0.8

1.0

Static StrainDynamic Strain

Strain

Dyn

amic

Loa

d F

acto

r

0 20 40 60 80 100 1200.0

0.2

0.4

0.6

0.8

1.0

Static StrainDynamic Strain

Strain

Dyn

amic

Loa

d F

acto

r

0 50 100 150 200 250 300 350 4000.0

0.2

0.4

0.6

0.8

1.0

Static StrainDynamic Strain

Strain

Dyn

amic

Loa

d F

acto

r

0 20 40 60 80 100 1200.0

0.2

0.4

0.6

0.8

1.0

Static StrainDynamic Strain

Strain

Dyn

amic

Loa

d F

acto

r

0 20 40 60 80 100 1200.0

0.2

0.4

0.6

0.8

1.0

Static StrainDynamic Strain

Strain

Dyn

amic

Loa

d F

acto

r

Page 41: Load Models for Bridges Outline Dead load Live load Extreme load events Load combinations Andrzej S. Nowak University of Michigan Ann Arbor, Michigan

Load Combinations Load combination factors can be

determined by considering the reduced probability for a simultaneous occurrence of time-varying load components

So called Turkstra’s rule can be applied

Page 42: Load Models for Bridges Outline Dead load Live load Extreme load events Load combinations Andrzej S. Nowak University of Michigan Ann Arbor, Michigan

Turkstra’s Rule Consider a combination of uncorrelated,

time-varying load components Q = A + B + C

For each load component consider two values: maximum and average. Then,

Qmax = maximum of the following:(Amax + Bave + Cave)

(Aave + Bmax + Cave)

(Aave + Bave + Cmax)

Page 43: Load Models for Bridges Outline Dead load Live load Extreme load events Load combinations Andrzej S. Nowak University of Michigan Ann Arbor, Michigan
Page 44: Load Models for Bridges Outline Dead load Live load Extreme load events Load combinations Andrzej S. Nowak University of Michigan Ann Arbor, Michigan