47
Living Colors ® User Manual PT2040-1 (PR1Y691) Published 26 November 2001

Living Colors User Manual - Home | Perelman School of ......Clontech Laboratories, Inc. Protocol No. PT2040-1 4 Version No. PR1Y691 Living Colors® User Manual • Red Fluorescent

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

  • Living Colors®

    User Manual

    PT2040-1 (PR1Y691)Published 26 November 2001

  • Clontech Laboratories, Inc. www.clontech.com Protocol No. PT2040-1 2 Version No. PR1Y691

    Living Colors® User Manual

    I. Introduction 3

    II. Properties of GFP and GFP Variants 5

    III. Expression of GFP and GFP Variants 14

    IV. Detection of GFP, GFP Variants, and DsRed 19

    V.Purified Recombinant GFP and GFP Variants 28

    VI. GFP Antibodies 30

    VII. Troubleshooting Guide 32

    VIII. References 36

    IX. Related Products 42

    Appendix: Recommended Resources & Reading 46

    List of Figures

    Figure1. GenealogyofGFPproteins. 4

    Figure2. AminoacidsequencedifferencesbetweenwtGFP anditsvariants. 5

    Figure3. ExcitationandemissionspectraofwtGFPanda red-shiftedGFPexcitationvariant(GFP-S65T). 6

    Figure4. DsRed,EGFP,ECFP,andEYFPhavedistinctabsorptionandemissionspectra. 7

    Figure5. Flowcytometryanalysisofd2EGFPstability. 9

    Figure6. ComparisonoffluorescenceintensityofGFPinsonicationbufferversusGFPincelllysates. 25

    Figure7. Relativefluorescenceintensityoftwo-foldserialdilutionsofasuspensionofGFP-transformedcellsinsonicationbuffer. 27

    List of Tables

    TableI. LivingColors®FluorescentProteins:SpectralProperties 13

    TableII. PartialListofProteinsExpressedasFusionstoGFP 15–16

    TableIII. MulticoloranalysiswithLivingColors®Proteins 21

    Table of Contents

  • Protocol No. PT2040-1 www.clontech.com Clontech Laboratories, Inc. Version No. PR1Y691 �

    Living Colors® User Manual

    Thebioluminescent jellyfishAequoreavictoriaproduces lightwhenenergy istransferredfromCa2+-activatedphotoproteinaequorintogreenfluorescentpro-tein(GFP;Shimomuraetal.,1962;Morin&Hastings,1971;Wardetal.,1980).Thecloningofthewild-typeGFPgene(wtGFP;Prasheretal.,1992;Inouye&Tsuji,1994a)anditssubsequentexpressioninheterologoussystems(Chalfieetal.,1994;Inouye&Tsuji,1994a;Wang&Hazelrigg,1994)establishedGFPas a novel genetic reporter system. When expressed in either eukaryotic orprokaryoticcellsandilluminatedbyblueorUVlight,GFPyieldsabrightgreenfluorescence.Light-stimulatedGFPfluorescence is species-independentanddoesnotrequireanycofactors,substrates,oradditionalgeneproductsfromA.victoria.Additionally,detectionofGFPanditsvariantscanbeperformedinlivingcellsandtissuesaswellasfixedsamples.

    ClontechmakesGFPandGFPvariantsavailableforresearchpurposesthroughitslineofLiving Colors®Fluorescent Proteins (Figure1).LivingColorsproteinsareexcellentreportersforgeneexpressionandproteinlocalizationstudies.Fol-lowingisalistoftheLivingColorsGFPvariantscurrentlyoffered.Youwillfindthatthesevariantsarewellsuitedforfluorescencemicroscopyandflowcytometry.

    •GFPexcitationvariants: – EGFP, enhanced green fluorescent protein (GFPmut1; Cormack et

    al.,1996),anddestabilized EGFP (dEGFP;Lietal.,1998)havered-shiftedexcitationspectra.Whenexcitedwithblue light, theyfluoresce4–35-foldmorebrightlythanwtGFP.

    •GFPemissionvariants: – EYFP (enhanced yellow fluorescent protein) contains four amino acid

    substitutionsthatshifttheemissionfromgreentoyellowish-green.ThefluorescencelevelofEYFPisroughlyequivalenttothatofEGFP.

    – ECFP(enhancedcyanfluorescentprotein)containssixaminoacidsub-stitutions,oneofwhichshiftstheemissionspectrumfromgreentocyan(Heim&Tsien,1996;Miyawakietal.,1997).Itisasuitabledonormoleculeinfluorescenceresonanceenergy transfer(FRET)studiesandcanbeusedfordual-labelingfluorescencemicroscopyinconjunctionwithEYFP(Greenetal.,2000).

    •UV-OptimizedGFPvariant: – GFPuvisreportedtobe18timesbrighterthanwtGFPwhenexpressed

    inE.coliandexcitedbystandardUVlight(Cramerietal.,1996).ThisvariantcontainsadditionalaminoacidmutationswhichalsoincreasethetranslationalefficiencyoftheproteininE.coli.

    I. Introduction

  • Clontech Laboratories, Inc. www.clontech.com Protocol No. PT2040-1 4 Version No. PR1Y691

    Living Colors® User Manual

    •RedFluorescentProtein: – WealsoofferDsRed2,aredfluorescentproteinthatderivesfromacoral

    oftheDiscosomagenus,referredtoasDiscosomasp.(Ds).Becauseofitsdistinctredemission,DsRed2isaperfectcomplementtothegreen,yellow,andcyanfluorophores.WiththedevelopmentoffiltersdesignedspecificallyfordetectingEGFP,EYFP,ECFP,andDsRed,it’snowpos-sibletousethesereportersincombinationtocarryouttwo-,three-,or,even,four-coloranalyses.TheRedFluorescentProtein,DsRed,ismorecarefullydescribedinaseparateUserManual,PT3404-1,whichcanbedownloadedfromourwebsiteatwww.clontech.com.

    Inadditiontotheirchromophoremutations,theenhancedGFPvariantgenesEGFP,EYFP,andECFPcontainmorethan190silentmutationsthatcreateanopenreadingframecomprisedalmostentirelyofpreferredhumancodons(Haas,etal.,1996).Furthermore,upstreamsequencesflankingthecodingregionshavebeenconvertedtoaKozakconsensustranslationinitiationsite(Kozak,1987),andpotentiallyinhibitoryflankingsequencesintheoriginalcDNAclones(lgfp10&pGFP10.1;Chalfieetal.,1994)wereremoved.AllofthesechangesenhancethetranslationalefficiencyofthemRNA—and,consequently,theexpressionoftheGFPvariant—inmammalianandplantsystems.

    I. Introduction continued

    Figure 1. Genealogy of GFP proteins. GFPmut1(Cormacketal.,1996),thered-shiftedvariantusedtocreatethevariantsshown,isnotsoldbyClontech.

    GFPuvGFPmut1

    GFP (wt)

    EGFP

    d2EGFPd1EGFP d4EGFPEYFP ECFP

    d2EYFP d2ECFP

  • Protocol No. PT2040-1 www.clontech.com Clontech Laboratories, Inc. Version No. PR1Y691 �

    Living Colors® User Manual

    II. Properties of GFP and GFP Variants

    A. The GFP Chromophore: Structure and Biosynthesis TheGFPchromophoreconsistsofacyclic tripeptidederived fromSer-

    Tyr-Gly(aminoacids65–67)intheprimaryproteinsequence(Codyetal.,1993)andisonlyfluorescentwhenembeddedwithinthecompleteGFPprotein.Ofthecomplete238-amino-acidpolypeptide,aminoacids7–229arerequiredforfluorescence(Lietal.,1997).ThecrystalstructureofGFPhasrevealedatightlypackedβ-canenclosinganα-helixcontainingthechro-mophore(Ormöetal.,1996;Yang,F.etal.,1996).Thisstructureprovidestheproperenvironmentforthechromophoretofluoresce.NascentGFPisnotfluorescent,sincechromophoreformationoccurspost-translationally.Thechromophoreisformedbyacyclizationreactionandanoxidationstepthatrequiresmolecularoxygen(Heimetal.,1994;Davis,D.F.etal.,1995).Thesestepsareeitherautocatalyticorusefactorsthatareubiquitous,sincefluorescentGFPformsinabroadrangeoforganisms.Chromophoreforma-tionmaybetherate-limitingstepformaturationofthefluorescentprotein(Heimetal.,1994;Davis,D.F.etal.,1995).Wild-typeGFPabsorbsUVandbluelightandemitsgreenlight.

    B. GFP Excitation Variants Thered-shiftedvariantsEGFPanddEGFP(destabilizedforrapidturnover)

    containmutationsinthechromophore(Figure2)whichshiftthemaximalexcitationpeakto~490nm(Figure3).

    wt GFP:

    EGFP:

    EYFP:

    ECFP:

    Phe 64 Ser Tyr Gly Val Gln 69 . . . Ser72 . . .Tyr 145 Asn146. . . Met153. . . Val163. . . Thr203

    Leu 64 Thr Tyr Gly Val Gln 69

    Phe64 Gly Tyr Gly Leu Gln69 . . . Ala72. . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . .Tyr203

    Leu 64 Thr Trp Gly Val Gln 69. . . . . . . . . . . . . . . . . Ile146. . . . Thr153. . . . Ala163

    Figure 2. Amino acid sequence differences between wt GFP and its variants. Aminoacidsub-stitutionsareunderlined.

    The major excitation peak of the red-shifted variants encompasses theexcitationwavelengthofcommonlyusedfiltersets.Similarly,theargon-ionlaserused inmostFACSmachinesandconfocalscanning lasermicro-scopesemitsat488nm,soexcitationofthered-shiftedGFPvariantsismuchmoreefficientthanexcitationofwtGFP.Inpracticalterms,thismeansthedetectionlimitsinbothmicroscopyandFACSareconsiderablylowerwiththered-shiftedvariants.Dual-labelingexperimentscanbeperformedbyselectiveexcitationofwtGFPandred-shiftedGFP(Kainetal.,1995;Yang,T.T.etal.,1996b).ItisalsopossibletouseEGFPandGFPuvindouble-labelingexperiments.

  • Clontech Laboratories, Inc. www.clontech.com Protocol No. PT2040-1 6 Version No. PR1Y691

    Living Colors® User Manual

    II. Properties of GFP and GFP Variants continued

    • EGFP contains two amino acid substitutions: F64L and S65T(Figure2).Basedonspectralanalysis,EGFPfluoresces35-foldmoreintenselythanwtGFPwhenexcitedat488nm(Cormacketal.,1996;Yang,T.T.etal.,1996a)duetoanincreaseinitsextinctioncoefficient(Em;TableI)andahigherefficiencyofchromophoreformation.EGFPchromophoreformationismuchmoreefficientat37°CthanwtGFP;95% of the soluble EGFP protein contains the chromophore whenexpressedatthistemperature(Pattersonetal.,1997).

    C. GFP Emission Variants • Cyan Emission Variant (ECFP) TheECFPvariantcontainssixaminoacidsubstitutions(Figure2).One

    of these,Tyr-66 toTrp, shifts thechromophore’sexcitationmaximato433nm(majorpeak)and453nm(minorpeak),andtheemissionmaximato475nmwithasmallshoulderat501nm(TableI;Figure4).TheotherfivesubstitutionsenhancethebrightnessandsolubilityoftheproteininamannersimilartotheotherEGFPvariants.

    • Yellow Emission Variant (EYFP) The EYFP variant contains four different amino acid substitutions

    (Figure2)thatshiftthefluorescencefromgreen(509nm)toyellow-green(527nm;TableI;Figure4).AlthoughEYFP’sfluorescenceexcitationmaximumis513nm,itcanbeefficientlyexcitedat488nm,thestandardlaserlineforanargon-ionlaser.

    Figure 3. Excitation and emission spectra of wt GFP and a red-shifted GFP excitation variant (GFP-S65T).Excitation:dashedlines.Emission:solidlines.TheemissiondataforwtGFPwereob-tainedbyexcitingtheproteinat475nm.(TheemissionpeakforwtGFPisseveral-foldhigherwhenilluminatedat395nm).TheemissiondataforGFP-S65Twereobtainedbyexcitingtheproteinat489nm(Heimetal.,1995).EGFPandGFP-S65Thavesimilarspectra.

    400 500Wavelength (nm)

    Abs

    orba

    nce

    or R

    elat

    ive

    Fluo

    resc

    ence

    GFP-S6�T

    wt GFP

    wt GFP

    GFP-S6�T

  • Protocol No. PT2040-1 www.clontech.com Clontech Laboratories, Inc. Version No. PR1Y691 �

    Living Colors® User Manual

    II. Properties of GFP and GFP Variants continued

    Figure 4. DsRed, EGFP, ECFP, and EYFP have distinct absorption and emission spectra. Panel A.Absorbance.Panel B.Emission.Curvesarenormalized;theheightofeachcurveisnotanindicationofrelativesignalstrengthperfluorophore.EGFP,ECFP,andEYFPareallvariantsofthegreenfluorescentproteinfromAequoreavictoria,denotedasAvinthefigure.DsRedisderivedfromacoraloftheDiscosomagenusreferredtoasDiscosomasp.(Ds).(SpectraforEGFP,ECFP,andEYFPwereprovidedbyD.W.Piston,VanderbiltUniversity.)

    A

    B

    0

    20

    40

    60

    80

    100

    375325 425 475 525 550 575 600

    Wavelength (nm)

    Nor

    mal

    ized

    abs

    orba

    nce

    AvEGFP

    AvECFP

    AvEYFP DsRed

    350 400 450 500

    0

    20

    40

    60

    80

    100

    375325 425 475 525 550 575 600

    Wavelength (nm)

    Nor

    mal

    ized

    abs

    orba

    nce

    AvEGFP

    AvECFP

    AvEYFP DsRed

    350 400 450 500

  • Clontech Laboratories, Inc. www.clontech.com Protocol No. PT2040-1 � Version No. PR1Y691

    Living Colors® User Manual

    II. Properties of GFP and GFP Variants continued

    D. UV-Optimized GFP Variant GFPuv isoptimized formaximalfluorescencewhenexcitedbyUV light

    (360–400 nm) and for higher bacterial expression. The GFPuv variantis idealforexperimentsinwhichGFPexpressionwillbedetectedusingUVlightforchromophoreexcitation(e.g.,forvisualizingbacteriaoryeastcolonies).GFPuvwasdevelopedbyCramerietal.(1996).

    GFPuvcontainsthreeaminoacidsubstitutions(Phe-99toSer,Met-153toThr,andVal-163toAla[basedontheaminoacidnumberingofwtGFP]),noneofwhichalter thechromophoresequence.ThesemutationsmakeE.coliexpressingGFPuvfluoresce18timesbrighterthanwtGFP(Cramerietal.,1996).WhilethesemutationsdramaticallyincreasethefluorescenceofGFPuvthroughtheireffectsonproteinfoldingandchromophoreformation,theemissionandexcitationmaximaremainatthesamewavelengthsasthoseofwtGFP(Cramerietal.,1996;Figure3;TableI).However,GFPuvhasagreaterpropensitytodimerizethanwtGFP.

    GFPuvexpressedinE.coli isasoluble,fluorescentproteinevenunderconditionsinwhichthemajorityofwtGFPisexpressedinanonfluorescentformininclusionbodies.ThisGFPvariantalsoappearstohavelowertoxicitythanwtGFP;hence,theE.colicontainingGFPuvgrowtwotothreetimesfasterthanthoseexpressingwtGFP(Cramerietal.,1996).Furthermore,theGFPuvgene isasyntheticGFPgene inwhichfive rarelyusedArgcodons from thewtgenewere replacedbycodonspreferred inE.coli.Consequently,theGFPuvgeneisexpressedveryefficientlyinE.coli.

    E. Destabilized GFP Variants Inmammaliancells,destabilizedvariants(dEGFP,dECFP,anddEYFP)aredegradedmorerapidlythanwtGFP.Inordertocreatethedestabilizedvari-ants,EGFP,ECFP,andEYFPwerefusedtoaminoacidresidues422–461ofmouseornithinedecarboxylase(MODC).ThisC-terminalregionofMODCcontainsaPEST(Pro-Glu-Ser-Thr)aminoacidsequencethattargetstheproteinforrapidintracellulardegradation.Thed1,d2,andd4variantsex-hibithalf-livesof1,2,or4hours,respectively,comparedtoEGFP,ECFP,andEYFP,whichhavehalf-livesof>24hours.Half-livesweredeterminedbyflowcytometry(Figure5),fluorescencemicroscopy,andWesternblotanalysis(Lietal.,1998;July1999&April1998Clontechniques).

    Thefluorescenceintensityandspectralpropertiesofdestabilizedvariantsare identical to thoseof theoriginal chromophore,butbecauseof theirshortenedhalf-lives,destabilizedvariantscanbeusedtomoreaccuratelymeasurethekineticsofpromoteractivityorthetransientexpressionofaproteintowhichtheyarefused.

  • Protocol No. PT2040-1 www.clontech.com Clontech Laboratories, Inc. Version No. PR1Y691 9

    Living Colors® User Manual

    II. Properties of GFP and GFP Variants continued

    Time after CHX addition (hr)

    EGFP

    d2EGFP

    % F

    luor

    esce

    nt c

    ells

    0.00

    20

    40

    60

    80

    100

    1.0 2.0 3.0

    Figure 5. Flow cytometry analysis of d2EGFP stability. CHO-K1Tet-Off™cellsweretransfectedwithpTRE-EGFPorpTRE-d2EGFP.After24hr,thetransfectedcellsweretreatedwith100µg/mlcycloheximide(CHX)for0,1,2,or3hrtoinhibitproteinsynthesis.TheCHX-treatedcellswerehar-vestedwithEDTA,and1x105cellswereusedforflowcytometryanalysis.Thepercentagesofcellswithfluorescenceabovebackgroundareplottedonthey-axis.Valuesarenormalizedtofluorescencelevelsatthezerotimepoint,definedas100%.After3hr,fluorescenceintensityofthecellpopulationexpressingd2EGFPwasreducedto30%ofinitialintensity.

    F. Acquisition and Stability of GFP Fluorescence 1. Protein solubility Inbacterialexpressionsystems,muchoftheexpressedwtGFPisfound

    inan insoluble,nonfluorescent formin inclusionbodies. Incontrast,almostallEGFPandGFPuv isexpressedasasoluble,fluorescentprotein.

    2. Photobleaching GFPfluorescenceisverystableinafluorometer(Ward,pers.comm.).

    Even under the high-intensity illumination of a fluorescence micro-scope,GFP ismore resistant tophotobleaching than is fluorescein(Wang&Hazelrigg,1994;Niswenderetal.,1995).ThefluorescenceofwtGFPandEGFPisquitestablewhenilluminatedwith450–490nmlight(themajorexcitationpeakforthered-shiftedexcitationvariants,buttheminorpeakforwtGFP).SomephotobleachingoccurswhenwtGFPisilluminatednearitsmajorexcitationpeakwith340–390nmor395–440nmlight(Chalfieetal.,1994;Niswenderetal.,1995).TherateofphotobleachingofwtGFPand itsgreenvariantsalsovarieswith theorganismbeing studied; for example,GFPfluorescence isquitestableinDrosophila(Wang&Hazelrigg,1994)andzebrafish.InC.elegans,10mMNaN3acceleratesphotobleaching(Chalfieetal.,1994).StudiesofthephotobleachingcharacteristicsofGFPuvhavenotbeenperformedtodate.

  • Clontech Laboratories, Inc. www.clontech.com Protocol No. PT2040-1 10 Version No. PR1Y691

    Living Colors® User Manual

    II. Properties of GFP and GFP Variants continued

    WhenusingECFP,photobleachingdoesnotposeamajorproblem,andwerecommendusingthisvariantifphotobleachinginterfereswith your studies. (Rapid photobleaching has been a problemwithpreviouslydescribedbluevariantsofGFP.)However,ifyoudecidetofixandmountyourspecimens,commerciallyavailablemountingsolutionsthatdonotcontainantibleachingreagentscancauseseverephotobleachingwithinsecondswhentheslidesareexposedtolightduringfluorescencemicroscopy.Besuretokeepmountedslidesinthedarkat4°C.

    3. Stability to oxidation/reduction GFPneedstobeinanoxidizedstatetofluorescebecausechromo-

    phoreformationisdependentuponanoxidationofTyr-66(Heimetal.,1994).Strongreducingagents,suchas5mMNa2S2O4or2mMFeSO4,convertGFPintoanonfluorescentform,butfluorescenceisfullyrecoveredafterexposuretoatmosphericoxygen(Inouye&Tsuji,1994b).Weakerreducingagents,suchas2%β-mercaptoethanol,10mMdithiothreitol(DTT),10mMreducedglutathione,or10mML-cysteine(Inouye&Tsuji,1994b),ormoderateoxidizingagents(Ward,pers.comm.),donotaffectthefluorescenceofGFP.

    4. Stability to pH wtGFP retains fluorescence in the rangepH5.5–12; however,

    fluorescenceintensitydecreasesbetweenpH5.5andpH4,anddropssharplyabovepH12(Bokman&Ward,1981).EGFPexhib-itsareducedrangeofpHstability.Forthisvariant,fluorescenceisstablebetweenpH7.0andpH11.5,dropssharplyabovepH11.5,anddecreasesbetweenpH7.0andpH4.5,retainingabout50%offluorescenceatpH6.0(Pattersonetal.,1997;Ward,pers.comm.).BecauseGFPissosensitivetopH,itcanbeusedasanintracellularpHindicatorinlivingcells(Kneenetal.,1998).

    5.Stability to chemical reagents GFPretainsitsfluorescenceinmilddenaturants,suchas1%SDS

    or8Murea,andafterfixationwithglutaraldehydeorformaldehyde.FullydenaturedGFPisnotfluorescent.GFPissensitivetosomenailpolishesusedtosealcoverslips(Chalfieetal.,1994;Wang&Hazelrigg,1994);therefore,usemoltenagaroseorrubberce-menttosealcoverslipsonmicroscopeslides.Fluorescenceisalsoquenchedbythenematodeanestheticphenoxypropanol(Chalfieetal., 1994).GFPfluorescence is irreversiblydestroyedby1%H2O2andsulfhydryl reagentssuchas1mMDTNB (5,5'-dithio-bis-[2-nitrobenzoicacid]) (Inouye&Tsuji,1994b).Manyorganicsolventscanbeusedatmoderateconcentrationswithoutabolishingfluorescence;however,theabsorptionmaximummayshift.

  • Protocol No. PT2040-1 www.clontech.com Clontech Laboratories, Inc. Version No. PR1Y691 11

    Living Colors® User Manual

    II. Properties of GFP and GFP Variants continued

    GFPisnonfluorescentinabsoluteethanolandisunlikelytowithstandthecompletedehydrationrequiredforparaffinorplasticembedding.

    6. Protein stability in vitro: GFP is exceptionally resistant to heat (Tm=70°C), alkaline pH,

    detergents,chaotropicsalts,organicsolvents,andmostcommonpro-teases,exceptpronase(Bokman&Ward,1981;Ward,1981).SomeGFPfluorescencecanbeobservedwhennanogramamountsofproteinareresolvedonnativeor1%SDSpolyacrylamidegels(Inouye&Tsuji,1994a).

    FluorescenceislostifGFPisdenaturedbyhightemperature,pHex-tremes,orguanidiniumchloride,butcanbepartiallyrecoverediftheproteinisallowedtorenature(Bokman&Ward,1981;Ward&Bokman,1982).Athiolcompoundmaybenecessarytorenaturetheproteinintothefluorescentform(Surpin&Ward,1989).

    in vivo: GFPappearstobestablewhenexpressedinvariousorganisms;EGFP

    hasanestimatedhalf-lifeof>24hours(Lietal.,1998). 7. Temperature sensitivity of GFP chromophore formation AlthoughfluorescentGFPishighly thermostable(seeabove), itap-

    pears that the formation of the GFP chromophore is temperaturesensitive. Inyeast,GFPfluorescencewasstrongestwhen thecellsweregrownat15°C,decreasingtoabout25%ofthisvalueasthein-cubationtemperaturewasraisedto37°C(Limetal.,1995).However,GFPandGFP-fusionproteins synthesized inS. cerevisiaeat 23°Cretain fluorescence despite a later shift to 35°C (Lim et al., 1995).It has also been noted that E. coli expressing GFP show strongerfluorescencewhengrownat24°Cor30°Ccomparedto37°C(Heimetal.,1994;Ward,pers.comm.).MammaliancellsexpressingGFPhavealsobeenseentoexhibitstrongerfluorescencewhengrownat30–33°Ccomparedto37°C(Pines,1995;Ogawaetal.,1995).

    AlltheenhancedGFPvariantsshowlittledifferenceinfluorescencewhenexpressedateither25°Cor37°C.Themutationsthatincreasetheefficiencyofproteinfoldingandchromophoreformation(Cormacketal.,1996,Cramerietal.,1996)alsosuppressthethermosensitivityofchromophoreformation.

    8. Dimerization of GFP GFPisfluorescenteitherasamonomerorasadimer.Theratioof

    monomericanddimericformsdependsontheproteinconcentrationandenvironment.wtGFPdimerizesviahydrophobic interactionsatproteinconcentrationsabove5–10mg/mlandinhigh-saltconditions.

  • Clontech Laboratories, Inc. www.clontech.com Protocol No. PT2040-1 12 Version No. PR1Y691

    Living Colors® User Manual

    II. Properties of GFP and GFP Variants continued

    Dimerizationresultsina4-foldreductionintheabsorbanceat470nmanda concomitant increase inabsorbanceat 395nm (Ward, pers.comm.).GFPuvhasagreaterpropensitytodimerizethanwtGFP;the470-nmexcitationpeakissuppressedatproteinconcentrationsabout5-foldlowerthanforwtGFP(Ward,pers.comm.).InmostexperimentalsystemsusingwtGFPasareporter,themonomericformwillpredomi-nate;however,whenGFPuvisusedasthereporter,dimerizationmaybeevidentevenatmoderateexpressionlevels.

    G. Sensitivity and fluorescence intensity 1. General considerations GFPfusionproteinshavebeenfoundtogivegreatersensitivityand

    resolutionthanstainingwithfluorescentlylabeledantibodies(Wang&Hazelrigg,1994).GFPfusionsaremoreresistanttophotobleachingandexhibitlowbackgroundfluorescence(Wang&Hazelrigg,1994).

    Because GFPuv, EGFP, and dEGFP exhibit higher extinction coef-ficients thanwtGFP, theyprovide significantly increased sensitivityasreportermolecules.Furthermore,subcellularlocalizationofEGFP(e.g.,tothecytoskeleton)canproduceanevenmoreintensesignalbyconcentratingthesignaltoaspecificareawithinthecell.However,forsomeapplications,thesensitivityofGFPmaybelimitedbyautofluo-rescenceorlimitedpenetrationoflight.StudieswithwtGFPexpressedinHeLacells(Niswenderetal.,1995)haveshownthatthecytoplasmicconcentrationmustbegreaterthan~1.0µMtoobtainasignalthatistwicetheautofluorescence.Thisthresholdfordetectionislowerwiththe red-shifted excitation variant: ~100 nM for EGFP (Piston, pers.comm.).

    2. As a quantitative reporter Thesignal fromGFPand itsvariantsdoesnothaveanyenzymatic

    amplification;hence,thesensitivityofGFPwillprobablybelowerthanthatforenzymaticreporterssuchasβ-galactosidase,SEAP,andfireflyluciferase.However,GFPsignalscanbequantifiedbyflowcytometry,confocalscanninglasermicroscopy,andfluorometricassays.PurifiedGFPandGFPvariantscanbequantifiedinafluorometer-basedassayinthelow-nanogramrange.Furthermore,usingdestabilizedGFPsasreporterscanincreasesensitivitybypreventingaccumulationofGFPunderbasalornon-inducedexpression.Therefore,destabilizedGFPseffectivelyextendtheinductionwindowbyincreasingfold-induction.

  • Protocol No. PT2040-1 www.clontech.com Clontech Laboratories, Inc. Version No. PR1Y691 1�

    Living Colors® User Manual

    II. Properties of GFP and GFP Variants continued

    TABLE I. LIVInG COLORS® FLUORESCEnT PROTEInS: SPECTRAL PROPERTIES

    Protein Excitation Emission Em (cm–1M–1) Quantum Yield (%) Maxima (nm) Maxima (nm)

    wtGFP 395(470) 509(540) 9,500a ~80a

    EGFPd 488 507 55,000b ~60b

    ECFPd 433(453) 475(501) 26,000b ~40b

    EYFPd,e 513 527 84,000b ~61b

    GFPuv 395 509

    DsRede 558 583 75,000c ~70c

    aPattersonetal.,1997bDavePiston,pers.comm.c Bairdetal.,2000;SlightlylowervaluesarereportedbyPattersonetal.,2001.dThedestabilizedvariant(dEGFP,dECFP,ordEYFP)hasidenticalexcitationandemission

    maxima,butashorterhalf-life.eEYFPandDsRedcanalsobeexcitedat488nm.SeeFigure4.

  • Clontech Laboratories, Inc. www.clontech.com Protocol No. PT2040-1 14 Version No. PR1Y691

    Living Colors® User Manual

    III. Expression of GFP and GFP Variants continued

    A. Suitable Host Organisms and Cells GFP fluorescence is species-independent. Fluorescence has been

    reportedfrommanydifferenttypesofGFP-expressinghosts.BelowisapartiallistingoforganismsthatcanexpressfluorescentGFP;amoreex-tensivelistingwithreferencescanbefoundatwww.clontech.com/gfp.

    1. Microbes Agrobacteriumtumefaciens Myxococcusxanthus Anabaena Polysphondyliumpallidum Bacillussubtilis Pseudomonas Bartonellahenselae Rhizobiummeloliti Candidaalbicans Saccharomycescerevisiae Caulobactercrescentus Salmonella Dictyostelium Schizosaccharomycespombe Escherichiacoli Ustilagomaydis Helicobacterpylori Yersinia Mycobacterium

    2. Invertebrates Aedesaegypti Caenorhabditiselegans Diamondbackmoth Drosophilamelanogaster Lytechinuspictus

    3. Vertebrates Fish, avian,andmammaliancell lines (specific cell lines listedon

    web) Mouse Xenopus Zebrafish

    4. Plants Arabidopsisthaliana(thalecress) Citrussinensis(L.)Osbeckcv.Hamlin(anembryogenicsweet-orange

    cellline,H89) Glycinemax(soybean) Hordeumvulgar(barley) Nicotianabenthamiana&Nicotianaclevelandii(tobacco) Onion Zeamays(maize)

  • Protocol No. PT2040-1 www.clontech.com Clontech Laboratories, Inc. Version No. PR1Y691 1�

    Living Colors® User Manual

    III. Expression of GFP and GFP Variants continued

    B. Expression of GFP Fusion Proteins GFPhasbeenexpressedasafusiontomanydifferentproteins(TableII).

    Inmanycases,chimericgenesencodingeitherN-orC-terminalfusionstoGFPretainthenormalbiologicalactivityoftheheterologouspartner,aswellasmaintainingfluorescentpropertiessimilartonativeGFP(Flachetal.,1994;Wang&Hazelrigg,1994;Marshalletal.,1995;Stearns,1995).TheuseofGFPanditsvariantsinthiscapacityprovidesa“fluorescenttag”ontheprotein,whichallowsforinvivolocalizationofthefusionprotein.GFPfusionscanprovideenhancedsensitivityandresolutionincomparisontostandardantibodystainingtechniques(Wang&Hazelrigg,1994),andtheGFPtageliminatestheneedforfixation,cellpermeabilization,andanti-bodyincubationstepsnormallyrequiredwhenusingantibodiestaggedwithchemicalfluorophores.Lastly,useoftheGFPtagpermitskineticstudiesofproteinlocalizationandtrafficking(Flachetal.,1994;Wang&Hazelrigg,1994).

    TABLE II. PARTIAL LIST OF PROTEInS EXPRESSED AS FUSIOnS TO GFP

    Host Cell orProtein Organism Localization References

    CotE Bacillussubtilis Forespore Webbetal.,1995

    DacF,SpoIVA Bacillussubtilis Prespore/mothercell Lewis&Errington,1996

    Coronin D.discoideum Phagocyticcups Maniaketal.,1995

    Myosin D.discoideum Mooresetal.,1996

    YopEcytotoxin Yersinia Jacobietal.,1995

    HistoneH2B Yeast Nucleus Flachetal.,1994; Schlenstedtetal.,1995

    Tubulin Yeast Microtubules Stearns,1995

    Nuf2p Yeast Spindle-polebody Silver,1995;Kahanaetal.,1995

    Mitochondrialmatrix Yeast Mitochondria Cox,1995 targetingsignal

    Npl3p Yeast Nucleus Corbettetal.,1995

    Nucleoplasmin Yeast Nucleus Limetal.,1995

    Cap2p Yeast Waddleetal.,1996

    Swi6p Yeast Sidorvaetal.,1995

  • Clontech Laboratories, Inc. www.clontech.com Protocol No. PT2040-1 16 Version No. PR1Y691

    Living Colors® User Manual

    III. Expression of GFP and GFP Variants continued

    TABLE II continued. PARTIAL LIST OF PROTEInS EXPRESSED AS FUSIOnS TO GFP

    Host Cell orProtein Organism Localization References

    HMG-R Yeast Hamptonetal.,1996

    Bud10p Yeast Halmeetal.,1996

    Pmp47 Yeast Peroxisome Dyeretal.,1996

    Act1p,Sac6p,Abp1pYeast Cytoskeleton Doyleetal.,1996

    p93dis1 Fissionyeast Spindle-polebody& microtubules Nabeshimaetal.,1995

    Exu Drosophila Oocytes Wang&Hazelrigg,1994

    Mei-S332 Drosophila Centromere Kerrebrocketal.,1995

    Tau Drosophila Microtubules Brand,1995

    β-galactosidase Drosophila cellmovement Shigaetal.,1996

    Streptavidin Insectcells Oker-Blometal.,1996

    ObTMVmovement protein Tobacco Filaments Beachy,1995; Heinleinetal.,1995

    PotatovirusX coatprotein Potatoplant Viralinfection SantaCruzetal.,1996

    GST Zebrafish Cytoplasmic(?) Petersetal.,1995

    11β-HSD2 Mammaliancells Endoplasmicreticulum Náray-Fejes-Tóthetal.,1996

    MAP4 Mammaliancells Microtubules Olsonetal.,1995

    Mitochondrial targetingsignal Mammaliancells Mitochondria Rizzutoetal.,1995

    Cyclins Mammaliancells Nucleus,micro- tubules,orvesicles Pines,1995

    PML Mammaliancells Ogawaetal.,1995

    Humanglucocor- Mammaliancells Ogawaetal.,1995 ticoidreceptor Careyetal.,1996

    Ratglucocorticoid Mammaliancells Rizzutoetal.,1995 receptor Htunetal.,1996

    ChromograninB HeLacells Secreted Kaetheretal.,1995

    HIVp17protein HeLacells Nucleus Bianetal.,1995

    NMDAR1 HEK293cells Membrane Marshalletal.,1995

    CENP-B Humancells Nucleus Sullivanetal.,1995

  • Protocol No. PT2040-1 www.clontech.com Clontech Laboratories, Inc. Version No. PR1Y691 1�

    Living Colors® User Manual

    C. GFP Expression in Mammalian Cells Appropriatevectorsmaybetransfectedintomammaliancellsbyavariety

    oftechniques,includingthoseusingcalciumphosphate(Chen&Okayama,1988),DEAE-dextran (Rosenthal,1987),various liposome-based trans-fectionreagents(Sambrooketal.,1989),andelectroporation(Ausubeletal.,1994).Anycalciumphosphatetransfectionproceduremaybeused,but we recommend using the CalPhosTM Mammalian Transfection Kit(#K2051-1)forhighcalciumphosphate-mediatedtransfectionefficiencieswithan incubationofonly2–3hours.Likewise,any liposome-mediatedtransfectionproceduremaybeused,butwerecommendusingCLONfectinTM(#8020-1)forhigh,reproducibletransfectionefficienciesinavarietyofcelltypes.Forfurtherinformationoncellculturetechniques,werecommendCultureofAnimalCells,ThirdEdition,R.I.Freshney(1993,Wiley-Liss).

    The efficiency of a mammalian transfection procedure is primarilydependentonthehostcellline.Therefore,whenworkingwithacelllineforthefirsttime,itisadvisabletocomparetheefficienciesofseveraltransfec-tionprotocols.ThiscanbestbeaccomplishedusingoneoftheGFPvectorswhichhastheCMVimmediateearlypromoterforhigh-levelexpressioninmostcelllines.

    In most cases, GFP expression may be detected by fluorescencemicroscopy,FACSanalysis,orfluorometerassays24–72hourspost-trans-fection,dependingonthehostcelllineused.Ifyouusedelectroporation,waituntil48hourspost-transfectiontoassayorbeginselectiontoallowcells to recover from the electroporation procedure. To visualize GFP-expressingcellsbyfluorescencemicroscopy,growthecellsonasterileglasscoverslipplacedina60-mmcultureplate.Alternatively,aninvertedfluorescencemicroscopemaybeusedfordirectobservationoffluorescentcellsinthecultureplate.

    D. GFP Expression in Plants

    InArabidopsis,werecommendusingEGFPinsteadofwtGFP,becausethewtcodingsequencecontainsaregionrecognizedinArabidopsisasacrypticplantintron(bases400–483).Thisintronissplicedout,resultinginanonfunctionalprotein(Haseloff&Amos,1995).HaseloffandAmosreportsuccessfulexpressioninArabidopsisofamodifiedversionofGFPinwhichthecrypticintronsequenceshavebeenaltered.ThecrypticintronhasalsobeenremovedbythechangestocodonusageinEGFP,ECFP,andEYFP.A modified GFP gene with the same codon usage as EGFP has beenusedtoexpressGFPinmanyplantsystemsusingavarietyoftransfectiontechniques (Chiuet al., 1996).FunctionalwtGFPhasbeen transientlyexpressedinseveralotherplantspecies,indicatingthatthecrypticintronisunrecognizableinotherplantspecies.

    III. Expression of GFP and GFP Variants continued

  • Clontech Laboratories, Inc. www.clontech.com Protocol No. PT2040-1 1� Version No. PR1Y691

    Living Colors® User Manual

    E. GFP Expression in YeastwtGFPandGFPuvallexpresswellinyeast.Forexpressioninyeast,theGFPvariantcontainedinClontech’svectorsmustfirstbeisolated(byPCRorbyexcision from theplasmid)and inserted intoanappropriateyeastexpressionvector.Note thatGFPgeneswithhumancodonusage(i.e.,enhancedvariantssuchasEGFP)arenotefficientlyexpressedinyeast(Cormacketal.,1997).Alsonote thatS.cerevisiaestrainscarrying theade2mitochondrialmutationaccumulatearedpigment,whichgivesthecellsanautofluorescencethatinterfereswithdetectionofGFP(Smirnovetal.,1967;Weismanetal.,1987).OurYeastProtocolsHandbook(PT3024-1)containsadditionalinformationonyeastgrowthandmaintenance,preparationofyeastcompetentcells,andtransformationofyeastcells.Toobtainacopy,pleasevisitourwebsiteatwww.clontech.com.Additionally,werecommendGuidetoYeastGeneticsandMolecularBiol-ogy,C.GuthrieandG.R.Finkeds.(Vol.194inMethodsinEnzymology,1991,AcademicPress).

    III. Expression of GFP and GFP Variants continued

  • Protocol No. PT2040-1 www.clontech.com Clontech Laboratories, Inc. Version No. PR1Y691 19

    Living Colors® User Manual

    A. Microscopy 1. Conventional microscopy a. Filter sets Althoughyoucanachieveexcellentresultsusingstandardfiltersets,

    suchasFITCfilterstodetectEGFP,andrhodamineorpropidiumiodidefilterstodetectDsRed,optimizedfiltersetsfordetectingGFP,GFPvariants,andDsRedhavebeendevelopedbyOmegaOpticalInc.andChromaTechnologyCorp.Ontheirwebsites(www.omega-filters.com;www.chroma.com),youwillfinddetailedinformationabouthow todetectLivingColors®FluorescentProteins.Opticalproperties,recommendeduses,andsampledataareallcarefullydescribedsothatyoucanchoosethefiltersthatbestsuityourneeds.With researchers increasingly interested in multi-color analysis,eachcompanyhasdoneextensivetestingtofindtheoptimalfiltercombinationsforseparatingcyan,green,yellow,andredfluores-cence.Youcanreadaboutthetestresults,includingsuggestionsforexperimentaldesignanddatacollection,andviewcolorimagesbyvisitingeachofthesewebsites.

    Ifyoushouldusefluoresceinisothiocyanate(FITC)filters,keepinmindthatthesefiltersetsusuallytransmitexcitationlightat450–500nm—wellabovethemajorexcitationpeak(395nm)ofwtGFP.Thesefilters,therefore,produceafluorescentsignalfromwtGFPthat is several-fold less than would be obtained with filters thattransmitat395nm.However,itisnotadvisabletoexciteat395nmbecauseatthiswavelength,GFPrapidlyphotoisomerizesandlosesthefluorescentsignal.

    IncontrasttowtGFP,EGFPhasasingle,strong,red-shiftedexcitationpeakat488nm,makingitwellsuitedfordetectionincommonlyusedequipmentwhichutilizeFITCoptics.Becauselivingcellstoleratelongerwavelengthsbetterduetothelowerenergies,thefluorescentsignalobtainedbyilluminatingEGFPat~488nmismorestableandlesstoxicthanthatofwtGFP.

    b. Light source Theemissionintensityfromalightsourcecanvarywithwavelength.

    Becausetheintensityoftheexcitationlightdirectlyaffectsthebright-nessofareporter,itisimportanttocomparetheexcitationspectraofyourchosenreporterswiththeemissionspectrumofthelightsource.Conventionalfluorescencemicroscopesareequippedwitheitheramercury-orxenon-arc lamp.Both lampsaresuitable forexcitingfluorescentproteins.Butbeawarethat,whereasthelightintensityfromaxenonlampdeviatesverylittleacrosstheblue,green,yel-low,andredregions,theemissionfromamercurylamphassharppeaksinthecyanandredregions.Therefore,fluorophoresexcited

    IV. Detection of GFP, GFP Variants, and DsRed

  • Clontech Laboratories, Inc. www.clontech.com Protocol No. PT2040-1 20 Version No. PR1Y691

    Living Colors® User Manual

    IV. Detection of GFP, GFP Variants, and DsRed continued

    bycyanandredlightmayappearbrighterwhenexcitedbyamercurylamp.Checkthemanufacturers’specificationsfordetailsaboutyourlamp(s).

    c. Detection systems Inconventionalmicroscopy,fluorescenceisusuallydetectedwith

    eitheraphotographic(35-mm)ordigitalcamera(whichfrequentlyharborsacooledcharge-coupleddevice,aCCD).Oneadvantageofa35-mmcameraisthatitcanrecordthe“true”color(asseenbyeyethroughthemicroscope)ofasinglefluorescentproteinaswellasthemixedcolorofcolocalizedfluorescentproteins.Butrecordinganimagewitha35-mmcameramayrequirealonger-than-averageexposuretime,effectivelyphotobleachingthesample.Digitalcameras,ontheotherhand,areusuallymoresensitivethan35-mmcamerasbut(unlessyouuseacolordigitalcamera)requireimageanalysissoftwaretoproduce“pseudo-colored”data.

    d. Multicolor analysis Withthedevelopmentofoptimizedfiltersetsandtheintroduction

    ofourredfluorescentprotein,DsRed,it’snowpossibletoseparateasmanyasthreefluorescentreporters(cyan,yellow,andred)bymicroscopy. Some investigators have even distinguished all fourcolors(cyan,green,yellow,andred)usingflowcytometry(Hawleyetal.,2001).Infact,manyexamplesofmulticoloranalysiscannowbefoundintheliterature(afewofwhicharelistedinTableIII),andwerecommendyousurveytheliteratureforhelpindecidingwhichcombinationwillworkbestforyou.Here,weofferthefollowingrec-ommendationsfortwo-coloranalysis:

    • Fordual-labelingexperiments,werecommendusingDsRed2withEGFP.OneadvantageofusingDsRed2withEGFPisthatanoverlayoftheproteins’emissionsappearsyellow,soyoucandistinguishbetweentheindividualproteinsandtheoverlap.

    • ECFPandEYFPcanalsobeusedtogethertocarryoutdouble-labelingexperiments(Greenetal.,2000;Ellenbergetal.,1999;July1999Clontechniques).WetestedtheopticalseparationofECFPandEYFPwithconventionalfluorescencemicroscopy.Inonestudy,weexaminedHeLacellsexpressingECFPandEYFP,targetedtothemitochondriaandnucleus,respectively(Greenetal.,2000).Tovisualizethefluorescence,weusedaZeissAxioskopequippedwitha100Wmercuryarclampandfilter sets for detecting ECFP (Omega Optical’s XF114) andEYFP(OmegaOptical’sXF104). Imageswerecapturedwitha35-mmcamera.Using thissetup, the twocolorsarewellseparated; no bleed-through was evident. During the initialexposure,(i.e.,duringthefirst~15sec),theseproteinsdisplay

  • Protocol No. PT2040-1 www.clontech.com Clontech Laboratories, Inc. Version No. PR1Y691 21

    Living Colors® User Manual

    IV. Detection of GFP, GFP Variants, and DsRed continued

    similarintensities;however,becauseECFPphotobleachesfaster than EYFP, unequal intensities become obvious afterseveralmoresecondsofillumination.

    TABLE III. MULTI-COLOR AnALYSIS wITH LIVInG COLORS® PROTEInS

    Type of Analysis Application Recommended References* Combination

    Two-color Microscopy DsRed+EGFP(GFP) October1999Clontechniques Handler&Harrell,2001

    ECFP+EYFP Greenetal.,2000 Stuurmanetal.,2000 October1999Clontechniques

    Three-color Microscopy DsRed+ECFP+EYFP Bloembergetal.,2000 October1999Clontechniques

    Four-color Flowcytometry DsRed+EGFP+EYFP Hawleyetal.,2001 +ECFP July2001Clontechniques

    *Also,seePattersonetal.,(2001).

    2. Laser-scanning microscopy Ifyouareusingalaser-scanningconfocalfluorescencemicroscope,

    yourexcitationsourcewillusuallybeanargon-ionorkrypton-ionlaser,orboth.Withthe488-nmlineoftheargonlaser,youcanexciteEGFP,EYFP,andDsRed.Butyou’llneedthe458-nmlinefromanargonlaseror413-nmlinefromakryptonlasertoproducestrongemissionsfromECFP(Hawleyetal.,2001;Ellenbergetal.,1999).Thekrypton-ionlasermayalsobeusedtoexciteDsRed; its568-nmline isclosetoDsRed’s excitation maximum (Hawley et al., 2001). With so manylaser configurations now available, we recommend you consult themanufacturer(s)toobtainmoredetailedinformationaboutaparticularsetup.Comparethelaserspecificationswiththeexcitationspectraofthefluorescentproteinsyouplantouse.

    3. Multi-photon laser-scanning microscopy Multi-photonexcitationmicroscopyhaswontheapprovalofmanyre-

    searcherswhoseekotheralternativesforresolvingfluorescentlylabeledproteinsinvivo.Itsadvantageshavebeenwidelyreported(Piston,D.W.,1999;Potter,S.M.,1996;Marchant,J.S.,2001).Chiefamongthemis theability toexcitefluorophoreswith low-energy infrared light. IRlightnotonlypenetratestissuemoreeffectivelythanvisiblelight,italsominimizesphotobleachingandcauseslessphotodamage.Inprinciple,allLivingColorsFluorescentProteins,includingDsRed(Jakobsetal.,2000),aresuitableforuseinmulti-photonapplications.

  • Clontech Laboratories, Inc. www.clontech.com Protocol No. PT2040-1 22 Version No. PR1Y691

    Living Colors® User Manual

    IV. Detection of GFP, GFP Variants, and DsRed continued

    4. Fluorescence Microscopy Theprotocolprovidedbelowisonepossiblemicroscopyprocedure.

    Otherequallysuitableandmoredetailedmicroscopyproceduresmaybefoundelsewhere(e.g.,Ausubeletal.,1995etseq.)

    Materialsrequired: • 70%Ethanol • Dulbecco’sPhosphatebufferedsaline(DPBS;pH7.4) • DPBS/4%paraformaldehyde(pH7.4–7.6)

    Add4gofparaformaldehydeto80mlofDPBS.Heattodissolve.Oncethesolutionhascooled,readjustthepHifnecessary,thendilutetoafinalvolumeof100ml.Storeat–20°C.

    • Rubbercement,moltenagarose,orcommercialmountingmedium(e.g.,ProLong®AntifadeKit,MolecularProbes)

    Fluorescencemicroscopyprocedure Inatissueculturehood: a.Sterilizeaglasscoverslipwith70%ethanol. b.Placethecoverslipinasteriletissueculturedish. c.Plateand transfect cells in the tissue-culturedish containing the

    coverslip. note: Somecelltypesmaynotadheretotheglasscoverslip.Inthesecases,you

    mayneedtopre-treattheglasscoverslipwithasubstratethatpromotescelladhesion(e.g.,lamin,orpoly-d-lysine,orboth).Asanalternativetoglasscoverslips,youmighttryculturingcellsdirectlyonBDFalconTMCultureSlides.

    c.At theendofthecultureperiod,removethetissueculturemediaandwashoncewithDPBS.

    d.Fixingcells i.AftercellshavebeenwashedwithDPBS,add freshlymade

    DPBS/4%paraformaldehydedirectlytothecoverslip. ii.Incubatecellsinsolutionatroomtemperaturefor30min. iii.WashcellstwicewithDPBS.AllowcellstosoakinDPBSfor

    10minduringeachwash. e.Mountingthecoverslipontoaglassmicroscopeslide i.Carefully remove the coverslip from the plate with forceps.

    Paycloseattentiontowhichsideofthecoverslipcontainsthecells.

    ii.Placeatinydropofcommercialmountingsolution(e.g., Pro-Long®AntifadeKit,MolecularProbes)ontheslide,andallowthecoversliptoslowlycontactthesolutionandtoliedownontheslide,cellsidedown.

  • Protocol No. PT2040-1 www.clontech.com Clontech Laboratories, Inc. Version No. PR1Y691 2�

    Living Colors® User Manual

    iii.Carefully aspirate the excess solution around the edge ofthecoverslipusingaPasteurpipetteconnectedtoavacuumpump.

    iv.Ifdesired,sealthecoversliptothemicroscopeslideusingmoltenagarose,rubbercement,orblacknailpolish.

    v.Allowtodry.Thedryingtimemayvarydependingonthemount-ingsolutionused.

    vi.Examine slides by fluorescence microscopy. Once fixed,cellscanbestoredinthedarkat4°C.

    B. Flow Cytometry 1. Multicolor analysis and cell sorting SeveralinvestigatorshavesortedGFP-expressingcellsbyflowcytometry

    (Cheng&Kain,1995;Roppetal.,1995;Yu&vandenEngh,1995).FACSanalyseshavebeencarriedoutwithplantprotoplasts,yeast,E.coli,andmammaliancellsexpressingGFP(Atkins&Izant,1995;Feyetal.,1995;Sheenetal.,1995;Chengetal.,1996).MaximalemissionisachievedwhenEGFPisexcitedat488nm,whichcorrespondsperfectlytothe488-nmlineofargon-ionlasersusedinmanyflowcytometers.Infact,thisvariantwasselectedspecificallyonthebasisofitsincreasedfluorescenceinflowcytometryassays.

    SinceEGFP,EYFP,andDsRedcanallbeexcitedbyasingle laserexcitationwavelength(488nm),two-color(EGFP/EYFP;Lybargeretal.,1998)andthree-color(Hawleyetal.,2001)flowcytometricanalysesarepossible.ECFPandEYFParenot recommended fordual-coloranalysiswithflowcytometrybecausetheargonlaser,usedforexcita-tioninmostflowcytometers,doesnotefficientlyexciteECFP.ToexciteECFP,yourflowcytometermustbeequippedwithakryptonlasertunedto413nm(Ellenbergeretal.,1998&1999)oranargonlasertunedto458nm(Hawleyetal.,2001).

    EGFPandDsRedareperhapsthebestcombinationforcellsortingandtwo-coloranalysisbyflowcytometry.Theseproteinscanbeco-excitedbythe488nmlineoftheargonlaserandtheiremissionscanbecon-venientlyrecordedthroughtheFL-1(green)andFL-2(red)channels.Theanalysiscanbefurtherrefinedbyusingoptimizedfilterssetsandbyadjustingthecompensationsettings.

    IV. Detection of GFP, GFP Variants, and DsRed continued

  • Clontech Laboratories, Inc. www.clontech.com Protocol No. PT2040-1 24 Version No. PR1Y691

    Living Colors® User Manual

    IV. Detection of GFP, GFP Variants, and DsRed continued

    2. Detecting fluorescent proteins in ethanol-treated cells Whenexpressedasaqueoussolubleproducts,fluorescentproteins

    mayleakfromethanol-treatedcells;ethanolpermeabilizestheplasmamembrane.Toavoidthisproblem,wesuggestyouuseparaformalde-hydeifyouplantofixfluorescentprotein-expressingcells.Otherwise,ifyouwishtomeasuretransfectionefficiency,butplantofixcellswithethanol,werecommendusingEGFP-F,ECFP-Mem,orEYFP-Mem,describedbelow.

    Insomecases,youmaynoticeagradualincreaseinbackgroundfluo-rescence inethanol-treatedcellsduringflowcytometry.ArinsewithPBSsupplementedwith1%BSAafterethanolfixation,orlongfixationtimes(18–24hr),eliminatesthisproblem(D.Ucker,pers.comm.).

    a.EGFP-Fispost-translationallyfarnesylated,soitremainsattachedtotheinnerfaceoftheplasmamembraneevenduringtreatmentwithethanol.EGFP-Fcontainsashort,C-terminalfarnesylationsignalfromc-Ha-Ras(Aronheimetal.,1994;Hancocketal.1991).ThesignaltargetsEGFP-FtotheplasmamembranewithoutalteringtheintrinsicfluorescentpropertiesoftheEGFPchromophore(Jiang&Hunter,1998).

    b.ECFP-Mem&EYFP-MemareN-terminalfusionsthatcontaintheN-terminal20aminoacidsofneuromodulin(GAP-43;Moriyoshietal.,1996).Duringpost-translationalprocessing,apalmitoylgroupisaddedtotheneuromodulindomainofthefusionprotein.Themodi-ficationtargetsthefluorescentproteinprimarilytotheinnerfaceoftheplasmamembrane.Asmallamountofthefusiondoesbindothercellularmembranes.

  • Protocol No. PT2040-1 www.clontech.com Clontech Laboratories, Inc. Version No. PR1Y691 2�

    Living Colors® User Manual

    IV. Detection of GFP, GFP Variants, and DsRed continued

    C. Quantitative Fluorometric AssayRecombinantGFP(orEGFP)canbeusedinfluorometricassaystoconfirmandmeasureGFPexpression.Aftergeneratingastandardcurveusingknownamountsofrecombinantprotein,comparethefluorescenceintensitiesofyourexperimentalsamplestothestandardcurvetodeterminetheamountofGFPexpressedinthesample.AdetailedmethodforquantitationofwtGFPlevelsusingtheTD-700fluorometerisavailablefromTurnerDesigns,Inc(www.turnerdesigns.com).

    Whengeneratingthestandardcurve,therecombinantproteinshouldbedilutedinthesamebufferastheexperimentalsamples.Insomeexpressionsystems,GFPcanbedetecteddirectlyinthefluorometer(simplysuspendcellsinanisotonicbuffersuchasPBS);inothercases,cellswillneedtobedisruptedinordertooptimallydetectGFPfluorescence.

    Figure6showsacomparisonofthefluorescenceintensityofGFPdetectedinsonicationbufferand inaclearedbacterial cell lysate.These resultsillustratethatthesensitivityandthelinearrangeofdetectionofGFParerelativelyunaffectedbythecelllysatebackground.

    Figure 6. Comparison of fluorescence intensity of GFP in sonication buffer versus GFP in cell lysates.LBwasinoculatedwithacultureofuntransformedJM109cellsandincubatedovernightat30°C.Celllysateswerepreparedasdescribedintheprotocol.SerialdilutionsofrGFPwerepreparedinbothsonicationbufferandJM109celllysate.FluorescenceintensitywasmeasuredinamodifiedHoeferPharmaciaBiotech,Inc.DyNAQuant200Fluorometerusinganexcitationfilterof365nmandanemissionfilterof510nm.(RFU=relativefluorescenceunits)

    100

    1

    2

    4

    2

    Log GFP (ng)

    GFP in 6.2� mg JM109 lysate

    GFP in sonication buffer

    Log

    RFU

    � 4

  • Clontech Laboratories, Inc. www.clontech.com Protocol No. PT2040-1 26 Version No. PR1Y691

    Living Colors® User Manual

    IV. Detection of GFP, GFP Variants, and DsRed continued

    ThefollowingprocedureshavebeendevelopedusingourRecombinantGFPProtein(rGFP#8360-2).Useanexcitationfilterof365nmandanemissionfilterof510nmwhenassayingwtGFPorGFPuv,andanexcitationfilterof450–490nmandanemissionfilterof510nmwhenassayingEGFP.

    1.Materialsrequired • Sonicationbuffer(pH8.0) 50 mM NaH2PO4 10 mM Tris-HCl(pH8.0) 200 mM NaCl AdjustpHto8.0.Storeatroomtemperature. • PBS(pH7.4) 2.GeneratingaGFPstandardcurve: a.PrepareserialdilutionsofrGFPinsonicationbuffer,deionizedH2O,

    or10mMTris-HCl(pH8.0). note: Samplescanbestoredat–20°C. b.Assaydilutionsinafluorometer. c.Plotthelogoftherelativefluorescenceunits(RFU)asafunctionof

    thelogoffold-dilutionofeachsamplesuchasthestandardcurveshowninFigure7.

    3.Measuringfluorescenceintensityofbacterialsamples: a.Pellet20mlofbacterialcellculture. b.Removethesupernatantandfreezepelletat–70°C. c.Washpelletoncewith1.6mlofPBS. d.Resuspendpelletin1.6mlofsonicationbuffer. e.Prepare2-foldserialdilutionsinsonicationbuffer. f.Assaydilutionsinafluorometer. g.Compareresultswiththoseofthestandardcurvetodeterminethe

    amountofGFPproteinexpressedintheexperimentalsamples. 4.Preparationofbacterialcelllysates: a.Pellet100mlofbacterialcellcultureandremovethesupernatant. note:Cellpelletsmaybestoredat–70°Cforlateruse. b.Washpellettwicewith4mlofPBS. c.Resuspendpelletin4mlofsonicationbuffer. d.Freeze/thawsampleinadryice/ethanolbathfivetimes. e.Vortexsamplefor1min,thenincubateonicefor1min. f.RepeatStepetwomoretimes. g.Runsamplethroughan18-gaugeneedleseveraltimes.

  • Protocol No. PT2040-1 www.clontech.com Clontech Laboratories, Inc. Version No. PR1Y691 2�

    Living Colors® User Manual

    Figure 7. Relative fluorescence intensity of two-fold serial dilutions of a suspension of GFP-transformed cells in sonication buffer. LBwasinoculatedwithJM109cellstransformedwithaplasmidencodingwtGFPandincubatedovernightat30°C.Fluorescenceintensitywasmeasuredbyreading5-µlsamplesof2-folddilutionsinamodifiedHoeferPharmaciaBiotech,Inc.DyNAQuant200Fluorometerusinganexcitationfilterof365nmandanemissionfilterof510nm.

    00

    1

    2

    1

    Log Fold Dilution

    DR60�14pr.bw/GFP.fi.sb

    Log

    RFU

    2

    h.Transfercelllysatetoa1.5-mlmicrocentrifugetubeandcentrifugeat12,000rpmfor5minat4°C.

    i.Collectthesupernatantanddeterminetheproteinconcentrationus-ingastandardassay(e.g.,Bradford,Lowry,etc.;Scopes,1987).

    j.Assaythedilutionsinafluorometer. k.Comparetheresultswiththestandardcurvetodeterminetheamount

    ofGFPexpressedintheexperimentalsamples.

    IV. Detection of GFP, GFP Variants, and DsRed continued

  • Clontech Laboratories, Inc. www.clontech.com Protocol No. PT2040-1 2� Version No. PR1Y691

    Living Colors® User Manual

    A. General InformationOurRecombinantGreenFluorescentProtein(rGFP;#8360-2),RecombinantEGFP(rEGFP;#8365-1),andRecombinantGFPuv(rGFPuv;#8366-1)arepurifiedfromtransformedE.coliusingamethodwhichensuresoptimalpurityoftherecombinantproteinandmaintenanceofGFPfluorescence.Allproteinsare27-kDamonomerswith239aminoacids.TheexcitationandfluorescenceemissionspectrafortherGFPisidenticaltoGFPpurifiedfromAequoreavictoria(Chalfieetal.,1994).Thepurifiedproteinsretaintheirfluorescencecapabilityundermanyharshconditions (Section II.F)andaresuitableascontrolreagentsforGFPexpressionstudiesusingtheLivingColorslineofGFPreportervectors.Applications of purified rGFP and rGFP variant proteins include useas standards for SDS or two-dimensional PAGE, isoelectric focusing,Westernblotanalysis,calibrationoffluorometersandFACSmachines,fluo-rescencemicroscopy,andmicroinjectionofGFPintocellsandtissues.

    B. rGFP and rGFP Variants as Standards in western BlotsWhenusedasastandardforWesternblottingapplicationsinconjunctionwiththeLivingColorsA.v.PeptideAntibody(#8367-1,-2),therecombinantproteinscanbeusedtocorrelateGFPexpressionlevelstofluorescenceintensityortodifferentiateproblemswithdetectionofGFPfluorescencefromexpressionofGFPprotein.Useastandardprocedurefordiscontinuouspolyacrylamidegelelectropho-resis(PAGE)toresolvetheproteinsonaone-dimensionalgel(Laemmli,1970).Ifanotherelectrophoresissystemisemployed,thesampleprepara-tionshouldbemodifiedaccordingly.Justpriortouse,allowrGFPproteintothawatroomtemperature,mixgentlyuntilsolution isclear,andthenplacetubeonice.Onaminigelapparatus,25–75µgof lysateproteinper lane is typicallyneededforsatisfactoryseparation(i.e.,discretebandingthroughout themolecularweightrange)ofaproteinmixturederivedfromawholecellortissuehomogenate.IfrGFPistobeusedasaninternalstandardinaCoo-massieblue-stainedminigel,werecommendloading500ngofrGFPperlane.IfrGFPisaddedtoatotalcell/tissuelysateorothercrudesample,theamountoftotalproteinloadedperlanemustbeoptimizedfortheparticularapplication.ForWesternblottingapplications,werecommendloading40–400pgofrGFP(orrGFPvariant)perlaneforastrongpositivesignal.Generally,rGFPwillnotfluoresceonanSDSgeloraWesternblot.

    V. Purified Recombinant GFP and GFP Variants

  • Protocol No. PT2040-1 www.clontech.com Clontech Laboratories, Inc. Version No. PR1Y691 29

    Living Colors® User Manual

    C. rGFP and rGFP Variants as a Control for Fluorescence MicroscopyThefollowingtwoprotocolsareforuseofrGFPorrGFPvariantsasacon-trolonmicroscopeslidesinfluorescencemicroscopy.ThepurifiedproteinsmaybeusedtooptimizelampandfiltersetconditionsfordetectionofGFPfluorescence,orasaqualitativemeanstocorrelateGFPfluorescencewiththeamountofproteinintransfectedcells.

    1. Unfixed samples Usethismethodforlivecellfluorescenceorothercaseswhereafixa-

    tionstepisnotdesired. a.Perform1:10serialdilutionsofthe1.0mg/mlrGFPorrGFPvariant

    stocksolutionwith10mMTris-HCl(pH8.0)toyieldconcentrationsof0.1mg/mland0.01mg/ml.

    notes: • Thesedilutionsshouldsufficeasapositivecontrol.The1.0mg/mlsolutionwill

    giveaverybrightfluorescentsignalbymicroscopy. • Thediluted samples canbealiquotedandstored frozenat –70°C for up to

    1yrwithnolossoffluorescenceintensity.Avoidrepeatedfreeze-thawcycleswiththesamealiquot.

    b.Using a micropipette, spot 1–2 µl of diluted protein onto themicroscopeslide.Ifusingaslidethatcontainsamountedcoverslip,positionthespotseveralmillimetersawayfromthesamplesuchthatasecondcoverslipcanbeaddedovertheproteinspot.

    c.Allow the protein to air-dry for a few seconds, and mark thepositionofthespotontheothersideoftheslidetoaidinfocusing.

    d.Add a coverslip over the spot using a 90% glycerol solution in100mMTris-HCl(pH7.5).

    e.Fluorescencefromthespotisbestviewedatlowmagnification,usingeithera10Xor20Xobjectivelens.

    2. Fixed samples Insomecasesitmaybenecessarytofixtherecombinantproteinto

    themicroscopeslidepriortomicroscopy.Thiscanbedonebydippingthesectionofthemicroscopeslidecontainingtheair-driedproteinspot(afterStep1.cabove)into100%methanolfor1min.AllowtheslidetodrycompletelyandplaceacoverslipoverthesampleasinStep1.dabove.

    V. Purified Recombinant GFP and GFP Variants continued

  • Clontech Laboratories, Inc. www.clontech.com Protocol No. PT2040-1 �0 Version No. PR1Y691

    Living Colors® User Manual

    A. Applications for GFP Antibodies WeofferthreeGFP-specificantibodies:

    • Living Colors®A.v. PeptideAntibody (#8367-1, -2) detects all GFPvariants.TheA.v.PeptideAntibody,whichisalsoavailableconjugatedtohorseradishperoxidase(HRP),isrecommendedforWesternanaly-sis.

    • LivingColors®A.v.(JL-8)MonoclonalAntibody(#8371-1,-2),amousemonoclonal(subclassIgG2a),recognizesallLivingColorsGFPvari-ants,includingourenhancedanddestabilizedproteins,fusionstotheseproteins,andpurifiedrecombinantGFP.TheJL-8MonoclonalisidealforWesternandELISAapplications.

    • LivingColors®Full-LengthA.v.PolyclonalAntibody(#8372-1,-2)wasspecifically developed and tested for immunoprecipitating GFP andGFPvariants. ItalsodetectsdestabilizedvariantsandfusionstoallLivingColorsGFPproteins.

    WealsoofferDsRed-specificantibodies: • Living Colors® D.s. Peptide Antibody (#8370-1, -2) recognizes wt

    DsRedandDsRedvariants suchasDsRed1-E5andDsRed2.TheantibodyalsobindsDsRedfusionswhentheproteinofinterestisfusedtotheN-terminusofDsRedoroneof itsvariants.BecausetheD.s.PeptideepitopeoftenbecomeshiddenwhenproteinsarefusedtotheC-terminus of DsRed, you may have difficulty detecting C-terminalfusionswiththisantibody.Raisedinrabbitsandaffinity-purified,thispolyclonalantibodyisrecommendedforuseinWesternblottingandimmunoprecipitation.TheD.s.PeptideAntibodydoesnotcross-reactwithanyAequoreavictoriaGFPvariants.

    • LivingColors®DsRedMonoclonalAntibody(#8374-1,-2)recognizesdenaturedformsofwild-typeDsRedanditsvariants,includingDsRed1,DsRed2,andDsRed1-E5.RecommendedforWesternblottingapplica-tionsonly,thisantibody(mouseIgG)bindsDsRed1andDsRed2evenwhen theproteinsareexpressedas fusions tootherproteins.BothN-andC-terminalfusionsarerecognized.

    VI. GFP Antibodies

  • Protocol No. PT2040-1 www.clontech.com Clontech Laboratories, Inc. Version No. PR1Y691 �1

    Living Colors® User Manual

    VI. GFP Antibodies continued

    B. Immunoprecipitation with the Living Colors A.v. Peptide Antibody 1. Solutions Required • PBS • Lysisbuffer PBScontaining0.5%TritonX-100,5mMEDTA,andthefollow-

    ingproteaseinhibitors(allavailablefromSigma):PMSF,0.1mM;pepstatinA,10µM;leupeptin,10µM;aprotinin,25µg/ml.

    • LivingColorsPeptideAntibody • ProteinAorProteinGagarosebeads(PierceorBioRad) Use20–30µlofbeadspersample.Spindownbeadstoremove

    theethanol,thenwashbeadstwiceinPBS.Aspiratethesuperna-tantfromthepelletofbeads.

    2. Procedure a.Spindown~1x106cells(orcellsfromone100-mmdish)andwash

    twiceinPBS.Resuspendin1.2mloflysisbuffer. b. Incubateat4°Cfor30minwithcontinuousgentleinversion. c. Clearthelysatebycentrifuginginamicrocentrifugeat12,000rpm

    for20minat4°C. d. Transfer1mlofsupernatanttoa1.5-mlmicrocentrifugetube. e. Add5µgofLivingColorsA.v.PeptideAntibodytothesupernatant.

    Incubateat4°Cfor2–3hrwithcontinuousgentleinversion. f. Addtheantibody/lysatemixturetothepelletofProteinA(orProtein

    G)agarosebeads. g. Vortexandincubateat4°Cfor2hrwithcontinuousgentleinver-

    sion. h. Washthebeads5timeswithPBS.Foreachwash,add1mlofPBS

    andincubatefor2minwithcontinuousgentleinversion.Aspiratethesupernatantfromthepelletofbeads.

    3. Sample analysis: a. Washthebeadswith1mlofLysisBuffer. b. Repeatthiswashprocedurefourtimes. c. Add30µlof2XSDS-PAGEsamplebuffertobeads. d. Vortex,thenboilfor2min. e. Repeatstepd. f. Centrifuge inamicrocentrifugeat12,000rpmfor1minat room

    temperature. g. Electrophorese10–20µlofsupernatantonanSDS-polyacrylamide

    gel(a12%gelwillresolveGFPat27kDa).AnalyzetheresolvedproteinsonaWesternblot,bysilverorCoomassiebluestaining,orbyautoradiography.

  • Clontech Laboratories, Inc. www.clontech.com Protocol No. PT2040-1 �2 Version No. PR1Y691

    Living Colors® User Manual

    VII. Troubleshooting Guide

    A. Potential Difficulties in Using GFP Fluorescence • VariabilityintheintensityofGFPfluorescencehasbeennoted.Thismay

    bedueinparttotherelativelyslowformationoftheGFPchromophoreandtherequirementformolecularoxygen(Heimetal.,1994).

    • The slow rate of chromophore formation and the apparent stabilityofwtGFPmayprecludetheuseofGFPasareportertomonitorfastchangesinpromoteractivity(Heimetal.,1994,Davis,I.etal.,1995).ThislimitationisreducedbyuseofEGFPanddestabilizedGFPs,whichacquirefluorescencefasterthanwtGFP(Heimetal.,1994).

    • ThewtGFPcodingsequencescontainacrypticplantintron(betweennucleotides400and483)thatisefficientlysplicedoutinArabidopsisandresultsinanonfunctionalprotein(Haseloff&Amos,1995).FunctionalwtGFPhasbeentransientlyexpressedinseveralotherplantspeciesindicatingthatthecrypticintronmaynotberecognizedorrecognizedlessefficientlyinthesespecies.EGFP,ECFP,andEYFPdonotcontainthecrypticintronandcanbeusedforexpressioninplants.

    • SomepeoplehaveputGFPexpressionconstructsintotheirsystemandfailedtodetectfluorescence.Therecanbenumerousreasonsforfailure,includinguseofaninappropriatefilterset,expressionofGFPbelowthelimitofdetection,andfailureofGFPtoformthechromophore.RecombinantGFPProteinandaGFP-specificantibody,suchastheLivingColorsA.v.PeptideAntibody,maybeusedtotroubleshootGFPexpressioninthesecases.SinceGFPuvandEGFPfluorescebrighterthanwtGFP,theyarebetteralternativesforexpressionofGFP.

    • GFPtargetedtoalowpHenvironmentmaylosefluorescence. • Ethanol-fixed cells will lose fluorescence because the soluble fluo-

    rescentproteinleaksthroughthepermeabilizedplasmamembranes.Use pEGFP-F, pECFP-Mem, or pEYFP-Mem Vectors to avoid thisproblem.

    B. Requirements for GFP Chromophore Formation • FormationofthechromophoreinwtGFPappearstobetemperature

    sensitive;however,themutationsinEGFP,EYFP,ECFP,andGFPuvsuppressthisthermosensitivity.Insomecases,E.coli,yeast,andmam-maliancellsexpressingwtGFPhaveshownstrongerfluorescencewhengrownatlowertemperatures(Heimetal.,1994;Ward,pers.comm.;Limetal.,1995;Pines,1995;Ogawaetal.,1995).Hence,incubationatalowertemperaturemayincreasethefluorescencesignalobtainedwhenusingwtGFP.

    • GFPchromophoreformationrequiresmolecularoxygen(Heimetal.,1994;Davis,D.F.etal.,1995);therefore,cellsmustbegrownunderaerobicconditions.

  • Protocol No. PT2040-1 www.clontech.com Clontech Laboratories, Inc. Version No. PR1Y691 ��

    Living Colors® User Manual

    VII. Troubleshooting Guide continued

    C. Photobleaching or Photodestruction of Chromophore • Exciteat470nmforwtGFP,360–400nmforGFPuv,and488nmfor

    thered-shiftedGFPexcitationvariants.Excitationatthe395-nmpeakforwtGFPmayresultinrapidlossofsignal.ForGFPuv,usethelongestpossibleexcitationwavelength tominimize the rateofphotobleach-ing.

    •Atungsten-QTHorargonlightsourceispreferable.MercuryandxenonlampsproducesignificantUVradiationwhichwillrapidlydestroythechromophoreunlessstronglyblockedbyappropriatefilters.

    D. Autofluorescence • Somesamplesmayhaveasignificantbackgroundautofluorescence,

    e.g.,wormguts(Chalfieetal.,1994;Niswenderetal.,1995).Aband-passemissionfiltermaymaketheautofluorescenceappearthesamecolorasGFP;usingalong-passemissionfiltermayallowthecoloroftheGFPandautofluorescencetobedistinguished.UseofDAPIfiltersmay also allow autofluorescence to be distinguished (Brand, 1995;Pines,1995).

    • Mostautofluorescenceinmammaliancellsisduetoflavincoenzymes(FAD and FMN;Aubin, 1979) which have absorption and emissionmaximaat450and515nmrespectively.ThesevaluesareverysimilartothoseforwtGFPandthered-shiftedGFPvariants,soautofluores-cencemayobscuretheGFPsignal.TheuseofDAPIfilterswhenusing450/515nmlightforexcitationmaymakeautofluorescenceappearbluewhiletheGFPsignalremainsgreen.Inaddition,somegrowthmediacancauseautofluorescence.Whenpossible,performmicroscopyinaclearbuffersuchasPBS,ormediumlackingphenolred.Also,whenselecting forGFPexpression inmammaliancells,youmaywant toexcludethehighestexpressingclones,whichwillexhibitmoreback-groundfluorescenceinculture(D.Piston,pers.comm.).

    • Some cell types can produce a speckled autofluorescence patternwhichislikelyduetomitochondriallyboundNADH(Aubin,1979).Thisproblemisminimizedwithexcitatorylightaround488nm,asopposedtoUVexcitation(Niswenderetal.,1995).Therefore,werecommendusingEGFPforexpressioninthesesystems.

    • Formammaliancells,autofluorescencecanincreasewithtimeincul-ture.Forexample,whenCHOorSCIcellswereremovedfromfrozenstocksandreintroducedintoculture,theobservedautofluorescence(emissionat520nm)increasedwithtimeuntilaplateauwasreachedaround48hours(Aubin,1979).Therefore,insomecasesitmaybepreferabletoworkwithfreshlyplatedcells.

  • Clontech Laboratories, Inc. www.clontech.com Protocol No. PT2040-1 �4 Version No. PR1Y691

    Living Colors® User Manual

    VII. Troubleshooting Guide continued

    • Alwaysuseamock-transfectedcontroltogaugetheextentofautofluo-rescence.

    • For fixed cells, autofluorescence can be reduced by washing with0.1%sodiumborohydrideinPBSfor30minafterfixation.

    E. Considerations for Mammalian Expression • Useanenhancedfluorescentvariant(ECFP,EGFP,orEYFP)instead

    ofwtGFP.Thebrighterfluorescenceandimprovedtranslationofthesevariantsmakesthemeasiertodetect.

    •VerifyyourGFPvariantplasmidconstructandconcentrationwitharestrictiondigest.Verifythatallsubcloningstepshavebeendonecor-rectly,keepinginmindspecificrestrictionsitesinsomevectorswhichareinactivatedbymethylation.OurEGFPSequencingPrimersmaybeusedtoverifysequencejunctions.

    • Besurethevectoriscompatiblewithyourcelltype.FindoutiftheCMVpromoterhasbeenusedpreviously for transientexpression inyourcells.

    •Useanotherassaytoestimatetransfectionefficiency.Transfectwithasecondreporterplasmidthatcontainsthesamepromoterelement.Forexample,usepEGFPLuc(#6169-1)orpHygEGFP(#6014-1).WithpEGFPLuc (#6169-1), you can determine transfection efficiency byfluorescencemicroscopyandobtainquantitativedatausingastandardluciferaseassay.

    •ExpressionofGFPproteincanbeverifiedbyWesternanalysisusingeithertheLivingColorA.v.PeptideAntibody(#8367-1,-2)ortheLivingColorsFull-LengthA.v.PolyclonalAntibody(#8373-1,-2).

    F. Optimizing Microscope/FACS Applications • Ingeneral,optimalvisualdetectionofGFPfluorescencebymicroscopy

    isachievedinadarkenedroom,afteryoureyeshaveadjusted. •ChoosethefiltersetthatisoptimalfortheGFPvariantthatyouareus-

    ing.Ingeneral,conditionsusedforfluoresceinshouldgivesomesignalwithallvariantsexceptGFPuv.Autofluorescencemaybeaprobleminsomecelltypesororganisms.FormoreinformationonthefiltersetsrecommendedforGFPanditsvariants,seeSectionIV.

    •Tocheckthemicroscopesetup,spotasmallvolumeofpurifiedrecom-binantGFPprotein(e.g.,rGFP,rEGFP,orrGFPuv)onamicroscopeslide.Asacrudesubstitute,anysourceoffluoresceincanbeused,suchasafluorescein-conjugatedantibodyoravidin-fluorescein.

    • GFPfluorescenceisverysensitivetosomenailpolishesusedtosealcoverslips(Chalfieetal.,1994;Wang&Hazelrigg,1994).Inplaceofnailpolishformountingcoverslips,werecommendmoltenagarose,rubbercement,orcommercialmountingsolution.

  • Protocol No. PT2040-1 www.clontech.com Clontech Laboratories, Inc. Version No. PR1Y691 ��

    Living Colors® User Manual

    VII. Troubleshooting Guide continued

    • ExcitingGFPintenselyforextendedperiodsmaygeneratefreeradicalsthataretoxictothecell.Thisproblemcanbeminimizedbyexcitationat450–490nm.

    G. Anomalous Band in some GFP Plasmid Preparations Wehaveoccasionallyobservedabandrunningatapproximately500bp

    insome(butnotall)plasmidpreparationsoftheGFPvectorsthathavethebackbonecarryingthekanamycinresistancegeneandthef1origin(i.e.,pEGFP-1,pEGFP-N1,-N2,-N3,-C1,-C2,-C3,pEYFP-C1,-N1,pEYFP-1,andpECFP-N1,-C1,and-1).ThepresenceandlevelofthisbandvariesgreatlyfromoneplasmidDNApreparationtoanother.Wehavenotthoroughlycharacterizedthisband;however,itappearstobeasmallcircularDNA,possiblysingle-stranded,generatedasabyproductofplasmidreplication.Asfaraswecanascertain,thisbanddoesnotinterferewithligatinginsertsintothevectors,doesnotaffecttransformationortransfectionefficiencies,anddoesnothaveanydeleteriouseffectonmammaliancells.However,ifyouwishtoavoidthepresenceofthisbandinyourplasmidpreps,tryanynon-alkalinebacteriallysisprocedure(Sayersetal.,1996)orgel-purifythemajorbandafteralkalinelysis.

  • Clontech Laboratories, Inc. www.clontech.com Protocol No. PT2040-1 �6 Version No. PR1Y691

    Living Colors® User Manual

    VIII. References

    Andersen,J.B.,Sternberg,C.,Poulsen,L.K.,Bjorn,S.P.,Givskov,M.&Molin,S.(1998)Newunstablevariantsofgreenfluorescentproteinforstudiesoftransientgeneepxressioninbacteria.Appl.Environ.Microbiol.64:2240–2246.Aronheim,A.,Engelberg,D.,Li,N.,al-Alawi,N.,Schlessinger,A.&Karin,M. (1994)MembranetargetingofthenucleotideexcahngefactorSosissufficientforactivatingtheRassignalingpathway.Cell78:949–961.Atkins,D.&Izant,J.G.(1995)ExpressionandanalysisofthegreenfluorescentproteingeneinthefissionyeastSchizosaccharomycespombe.Curr.Genet.28:585–588.Aubin,J.E.,(1979)Autofluorescenceofviableculturedmammaliancells.J.Histochem.Cytochem.27:36–43.Ausubel,F.M.,Brent,R.,Kingston,R.E.,Moore,D.D.,Seidman,J.G.,Smith,J.A.&Struhl,K.(1994)InCurrentProtocolsinMolecularBiology(JohnWileyandSons,NY).Baird,G.S.,Zacharias,D.A.&Tsien,R.Y.(2000)Biochemistry,mutagenesis,andoligomerizationofDsRed,aredfluorescentproteinfromcoral.Proc.Natl.Acad.Sci.USA97:11984–11989.Beachy,R.(1995)PresentationatFluorescentProteinsandApplicationsMeeting,PaloAlto,CA.Bian,J.,Lin,X.&Tang,J.(1995)NuclearlocalizationofHIV-1matrixproteinP17:TheuseofA.victoriaGFPinproteintaggingandtracing.FASEBJ.9:A1279#132.Bloemberg,G.V.,Wijfjes,A.H.,Lamers,G.E.,Stuurman,N.&Lugtenberg,B.J.(2000)SimultaneousimagingofPseudomonasfluorescencWCS365populationsexpressingthreedifferentautofluores-centproteinsintherhizosphere:newperspectivesforstudyingmicrobialcommunities.Mol.PlantMicrobeInteract.13:1170–1176.Bokman,S.H.&Ward,W.W.(1981)RenaturationofAequoreagreen-fluorescentprotein.Biochem.Biophys.Res.Comm.101:1372–1380.Brand,A.(1995)GFPinDrosophila.TrendsGenet. 11:324–325.Carey,K.L.,Richards,S.A.,Lounsbury,K.M.&Macara,I.G.(1996)Evidenceusingagreenfluo-rescentprotein-glucocorticoidreceptorthattheRAN/TC4GTPasemediatesanessentialfunctionindependentofnuclearproteinimport.J.CellBiol.133(5):985–996.Chalfie,M.&Kain,S.,Eds.(1998)GreenFluorescentProtein:Properties,Applications,andProtocols(Wiley-Liss,NewYork)Chalfie,M.,Tu,Y.,Euskirchen,G.,Ward,W.W.&Prasher,D.C.(1994)Greenfluorescentproteinasamarkerforgeneexpression.Science263:802–805.Chen,C.&Okayama,H.(1988)Calciumphosphate-mediatedgenetransfer:ahighlyefficienttrans-fectionsystemforstablytransformingcellswithplasmidDNA.BioTechniques6:632–638.Cheng,L.&Kain,S.(1995)AnalysisofGFPandRSGFPexpressioninmammaliancellsbyflowcytometry.ClontechniquesX(4):20.Cheng,L.,Fu,J.,Tsukamoto,A.&Hawley,R.G.(1996)Useofgreenfluorescentproteinvariantstomonitorgenetransferandexpressioninmammaliancells.NatureBiotechnol.14:606–609.Chiu,W.-L.,Niwa,Y.,Zeng,W.,Harano,T.,Kobayashi,H.,&Sheen,J.(1996)EngineeredGFPasavitalreporterinplants.Curr.Biol.6(3):325–330.Cody,C.W.,Prasher,D.C.,Westler,W.M.,Prendergast,F.G.&Ward,W.W.(1993)Chemicalstructure of the hexapeptide chromophore ofAequorea green-fluorescent protein. Biochemistry32:1212–1218.Corbett,A.H.,Koepp,D.M.,Schlenstedt,G.,Lee,M.S.,Hopper,A.K.&Silver,P.A.(1995)Rna1p,aRan/TC4GTPaseactivatingprotein,isrequiredfornuclearimport.J.CellBiol.130(5):1017–1026.Cormack,B.P.,Valdivia,R.&Falkow,S.(1996)FACS-optimizedmutantsofthegreenfluorescentprotein(GFP).Gene173:33–38.Cormack,B.P.,Bertram,G.,Egerton,M.,Gow,N.A.,Falkow,S.,&Brown,A.J. (1997)Yeast-enhancedgreenfluorescentprotein(yEGFP):areporterofgeneexpressioninCandidaalbicans.Microbiology143(Pt2):303–311.

  • Protocol No. PT2040-1 www.clontech.com Clontech Laboratories, Inc. Version No. PR1Y691 ��

    Living Colors® User Manual

    VIII. References continued

    Cox,J.(1995)PresentationatFluorescentProteinsandApplicationsMeeting,PaloAlto,CA.Crameri,A.,Whitehorn,E.A.,Tate,E.&Stemmer,W.P.C.(1996)ImprovedgreenfluorescentproteinbymolecularevolutionusingDNAshuffling.NatureBiotechnol.14:315–319.Davis,D.F.,Ward,W.W.&Cutler,M.W.(1995)Posttranslationalchromophoreformationinre-combinantGFPfromE.colirequiresoxygen.Proceedingsofthe8thinternationalsymposiumonbioluminescenceandchemiluminescence.Davis,I.,Girdham,C.H.&O’Farrell,P.H.(1995)AnuclearGFPthatmarksnucleiinlivingDrosophilaembryos;maternalsupplyovercomesadelay in theappearanceofzygoticfluorescence.Devel.Biol.170:726–729.Doyle,T.&Botstein,D.(1996)Movementofyeastcorticalactincytoskeletonvisualizedinvivo.Proc.Natl.Acad.Sci.USA93:3886–3891.Dyer,J.M.,McNew,J.A.&Goodman,J.M.(1996)Thesortingsequenceoftheperoxisomalintegralmem-braneproteinPMP47iscontainedwithinashorthydrophilicloop.J.CellBiol.133(2):269–280.Ellenberg,J.,Lippincott-Scwartz,J.&Presley,J.F.(1999)Dual-colorimagingwithGFPvariants.TrendsCellBiol.9:52–56.Ellenberg,J.,Lippincott-Scwartz,J.&Presley,J.F.(1998)Two-colorgreenfluorescentproteintime-lapseimaging.Biotechniques25:838–846.Fey,P.,Compton,K.&Cox,E.C.(1995)GreenfluorescentproteinproductioninthecellularslimemoldsPolysphondyliumpallidumandDictyosteliumdiscoideum.Gene165:127–130.Flach, J., Bossie, M., Vogel, J., Corbett, A., Jinks, T., Willins, D. A. & Silver, P. A. (1994) AyeastRNA-bindingproteinshuttlesbetween thenucleusand thecytoplasm.Mol.Cell.Biol.14:8399–8407.Four-colorflowcytometricdetectionofretrovirallyexpressedRed,Yellow,Green,andCyanFluo-rescentProteins.(2001)ClontechniquesXVI(3):21–22.Freshney,R.I.(1993)CultureofAnimalCells,ThirdEdition(Wiley-Liss,NY).Green,G.,Kain,S.R.&Angres,B.(2000)Dualcolordetectionofcyanandyellowderivativesofgreen fluorescent proteinusing conventional fluorescencemicroscopyand35-mmphotography.Meth.Enzymol.327:89–94.Guthrie,C.&Fink,G.R.(1991)Guidetoyeastgeneticsandmolecularbiology.InMethodsinEn-zymology(AcademicPress,SanDiego), Vol.194,pp.1–932.Haas,J.,Park,E.-C.&Seed,B.(1996)CodonusagelimitationintheexpressionofHIV-1envelopeglycoprotein.Curr.Biol.6(3):315–324.Halme,A.,Michelitch,M.,Mitchell,E.L.&Chant,J.(1996)Bud10pdirectsaxialcellpolarizationinbuddingyeastandresemblesatransmembranereceptor.Curr.Biol.6(5):570–579.Hampton,R.Y.,Koning,A.,Wright,R.&Rine,J.(1996)Invivoexaminationofmembraneproteinlo-calizationanddegradationwithgreenfluorescentprotein.Proc.Natl.Acad.Sci.USA93:828–833.Hancock,J.F.,Cadwallader,K.,Paterson,H.&Marshall,C.J. (1991)ACAAXoraCAALmo-tif and a second signal are sufficient for plasma membrane targeting of ras proteins. EMBO J.13:4033–4039.Handler,A.M.&Harrell,R.A.2nd. (2001)Polyubiquitin-regulatedDsRedmarker for transgenicinsects.Biotechniques31:820–828.Haseloff,J.&Amos,B.(1995)GFPinplants.TrendsGenet.11:328–329.Hawley,T.S.,Telford,W.G.,Ramezani,A.&Hawley,R.G.(2001)Four-colorflowcytometricde-tectionof retrovirallyexpressedred,yellow,green,andcyanfluorescentproteins.Biotechniques30:1028–1034.Heim,R.,Prasher,D.C.&Tsien,R.Y.(1994)Wavelengthmutationsandposttranslationalautoxida-tionofgreenfluorescentprotein.Proc.Natl.Acad.Sci.USA91:12501–12504.Heim,R.,Cubitt,A.B.&Tsien,R.Y.(1995)Improvedgreenfluorescence.Nature373:663–664.Heim,R.&Tsien,R.Y.(1996)Engineeringgreenfluorescentproteinforimprovedbrightness,longerwavelengthsandfluorescenceresonanceenergytransfer.Curr.Biol.6:178–182.

  • Clontech Laboratories, Inc. www.clontech.com Protocol No. PT2040-1 �� Version No. PR1Y691

    Living Colors® User Manual

    VIII. References continued

    Heinlein,M.,Epel,B.L.,Padgett,H.S.&Beachy,R.N.(1995)Interactionoftobamovirusmovementproteinswiththeplantcytoskeleton.Science270:1983–1985.Htun,H.,Barsony,J.,Renyi,I.,Gould,D.&Hager,G.L.(1996)Visualizationofglucocorticoidreceptortranslocationandintranuclearorganizationinlivingcellswithagreenfluorescentproteinchimera.Proc.Natl.Acad.Sci.USA93:4845–4850.Inouye,S.&Tsuji,F.I.(1994a)Aequoreagreenfluorescentprotein:Expressionofthegeneandfluorescentcharacteristicsoftherecombinantprotein.FEBSLetters341:277–280.Inouye,S.&Tsuji,F.I.(1994b)EvidenceforredoxformsoftheAequoreagreenfluorescentprotein.FEBSLetters351:211–214.Jacobi,C.A.,Roggenkamp,A.,Rakin,A.&Heesemann,J.(1995)YersiniaenterocoliticaYopE-GFPhybridproteinexpressioninvitroandinvivo.PosterpresentationatFluorescentProteinsandApplicationsMeeting,PaloAlto,CA.Jakobs S., Subramaniam, V., Schonle,A., Jovin,T. M. & Hell, S. W. (2000) EFGP and DsRedexpressingculturesofEscherichiacoliimagedbyconfocal,two-photonandfluorescencelifetimemicroscopy.FEBSLett.479:131–135.Jiang,W.&Hunter,T.(1998)Analysisofcell-cycleprofilesintransfectedcellsusingamembrane-targetedGFP.BioTechniques24:349–350.Kaether,C.&Gerdes,H.-H.(1995)Visualizationofproteintransportalongthesecretorypathwayusinggreenfluorescentprotein.FEBSLetters369:267–271.Kahana,J.A.,Schnapp,B.J.&Silver,P.A.(1995)Kineticsofspindlepolebodyseparationinbud-dingyeast.Proc.Natl.Acad.Sci.USA92(21):9707–9711.Kain,S.R.,Mai,K.&Sinai,P.(1994)Humanmultipletissuewesternblots:anewimmunologicaltoolfortheanalysisoftissue-specificproteinexpression.BioTechniques17:982–987.Kain,S.R.,Adams,M.,Kondepudi,A.,Yang,T.T.,Ward,W.W.&Kitts,P.(1995)Thegreenfluorescentproteinasareporterofgeneexpressionandproteinlocalization.BioTechniques19:650–655.Kerrebrock,A. W., Moore, D. P., Wu, J. S. & Orr-Weaver,T. L. (1995) Mei-S332, a Drosophilaproteinrequiredforsister-chromatidcohesion,canlocalizetomeioticcentromereregions.Cell83:247–256.Kneen,M.,Farinas,J.,Li,Y.&Verkman,A.S.(1998)GreenfluorescentproteinasanoninvasiveintracellularpHindicator.Biophys.J.74:1591–1599.Kozak,M.(1987)Ananalysisof5’-noncodingsequencesfrom699vertebratemessengerRNAs.NucleicAcidsRes.15:8125–8148.Laemmli,U.K.(1970)Cleavageofstructuralproteinsduringtheassemblyoftheheadofbacterio-phageT4.Nature227:680–685.Lewis,P.J.&Errington,J.(1996)Useofgreenfluorescentproteinfordetectionofcell-specificgeneexpressionandsubcellularproteinlocalizationduringsporulationinBacillussubtilis.Microbiology142:733–740.Li,X.,Zhang,G.,Ngo,N.,Zhao,X.,Kain,S.R.&Huang,C.-C.(1997)DeletionsoftheAequoreavictoriagreenfluorescentproteindefinetheminimaldomainrequiredforfluorescence.J.Biol.Chem.272:28545–28549.Li, X., Zhao, X., Fang,Y., Jiang, X., Duong,T., Huang, C.-C. & Kain, S. R. (1998) Generationof destabilized enhanced green fluorescent protein as a transcription reporter. J. Biol. Chem.273:34970–34975.Lim,C.R.,Kimata,Y.,Oka,M.,Nomaguchi,K.&Kohno,K.(1995)Thermosensitivityofgreenfluores-centproteinfluorescenceutilizedtorevealnovelnuclear-likecompartmentsinamutantnucleoporinNsp1.J.Biochem.118:13–17.LivingColorsDestabilizedECFP&EYFPVectors.(July1999)ClontechniquesXIV(3):14–15.LivingColorsRedFluorescentProtein.(October1999)ClontechniquesXIV(4):2–6.LivingColorsDestabilizedEGFPVectors.(April1998)ClontechniquesXIII(2):16–17.

  • Protocol No. PT2040-1 www.clontech.com Clontech Laboratories, Inc. Version No. PR1Y691 �9

    Living Colors® User Manual

    VIII. References continued

    Lybarger,L.,Dempsey,D.,Patterson,G.H.,Piston,D.W.,Kain,S.R.&Chervenak,R. (1998)Dual-colorflowcytometricdetectionoffluorescentproteinsusingsingle-laser(488-nm)excitation.Cytometry31:147–152.Maniak,M.,Rauchenberger,R.,Albrecht,R.,Murphy,J.&Gerisch,G(1995)Coronininvolvedinphagocytosis:dynamicsofparticle-inducedrelocalizationvisualizedbyagreenfluorescentproteintag.Cell83:915–924.Marchant,J.S.,Stutzmann,G.E.,Leissring,M.A.,LaFerla,F.M.&Parker, I. (2001)Multipho-ton-evokedcolorchangeofDsRedasanopticalhighlighter forcellularandsubcellular labeling.Nat.Biotechnol.19:645-649.Marshall,J.,Molloy,R.,Moss,G.W.J.,Howe,J.R.&Hughes,T.E. (1995)The jellyfishgreenfluorescent protein: a new tool for studying ion channel expression and function. Neuron 14:211–215.Mitra,R.D.,Silva,C.M.&Youvan,D.C.(1996)Fluorescenceresonanceenergytransferbetweenblue-emittingandred-shiftedexcitationderivativesofthegreenfluorescentprotein.Gene173(1):13–17.Moores,S.L.,Sabry,J.H.&Spudich,J.A.(1996)MyosindynamicsinliveDictyosteliumcells.Proc.Natl.Acad.Sci.USA93:443–446.Morin,J.G.&Hastings,J.W.(1971)Energytransferinabioluminescentsystem.J.Cell.Physiol.77:313–318.Moriyoshi,K.,Richards,L.J.,Akazawa,C.,O'Leary,D.D.&Nakanishi,S.(1996)Labelingneuralcellsusingadenoviralgenetransferofmembrane-targetedGFP.Neuron16:255–260.Miyawaki,A.,Llopis,J.,Heim,R.,McCaffery,J.,Adams,J.,Ikura,M.&Tsien,R.(1997)FluorescentindicatorsforCa2+basedongreenfluorescentproteinsandcalmodulin.Nature 388:882–887.Náray-Fejes-Tóth,A.&Fejes-Tóth,G.(1996)Subcellularlocalizationofthetype211b-hydroxysteroiddehydrogenase.J.Biol.Chem.271(26):15436–15442.Nabeshima,K.,Kurooka,H.,Takeuchi,M.,Kinoshita,K.,Nakaseko,Y.&Yanagida,M.(1995)p93dis,whichisrequiredforsisterchromatidseparation,isanovelmicrotubuleandspindlepolebody-as-sociatingproteinphosphorylatedattheCdc2targetsites.GenesDevel.9:1572–1585.Niswender,K.D.,Blackman,S.M.,Rohde,L.,Magnuson,M.A.&Piston,D.W.(1995)Quantitativeimagingofgreenfluorescentproteininculturedcells:comparisonofmicroscopictechniques,useinfusionproteinsanddetectionlimits.J.Microbiol.180(2):109–116.Ogawa,H.,Inouye,S.,Tsuji,F.I.,Yasuda,K.&Umesono,K.(1995)Localization,trafficking,andtemperature-dependenceoftheAequoreagreenfluorescentproteininculturedvertebratecells.Proc.Natl.Acad.Sci.USA92:11899–11903.Oker-Blom,C.,Orellana,A.&Keinanen,K.(1996)HighlyefficientproductionofGFPanditsderiva-tivesininsectcellsforvisualinvitroapplications.FEBSLetters389:238–243.Olson,K.R.,McIntosh,J.R.&Olmsted,J.B.(1995)AnalysisofMAP4functioninlivingcellsusinggreenfluorescentprotein(GFP)chimeras.J.Cell.Biochem.130:639–650.Ormö,M.,Cubitt,A.B.,Kallio,K.,Gross,L.A.,Tsien,R.Y.&Remington,S.J.(1996)CrystalstructureoftheAequoreavictoriagreenfluorescentprotein.Science273:1392–1395.Patterson,G.H.,Knobel,S.M.,Sharif,W.D.,Kain,S.R.,&Piston,D.W.(1997)Useofthegreenfluorescentproteinanditsmutantsinquantitativefluorescencemicroscopy.Biophys. J. 73:2782–2790.Patterson,G.,Day,R.N.&Piston,D. (2001)Fluorescentprotein spectra. J.CellScience 114: 837–838.Peters,K.G.,Rao,P.S.,Bell,B.S.&Kindman,L.A.(1995)Greenfluorescent fusionproteins:Powerful tools for monitoring protein expression in live zebrafish embryos. Devel. Biol. 171:252–257.

  • Clontech Laboratories, Inc. www.clontech.com Protocol No. PT2040-1 40 Version No. PR1Y691

    Living Colors® User Manual

    VIII. References continued

    Pines,J.(1995)GFPinmammaliancells.TrendsGenet.11:326–327.Piston,D.W.(1999)Imaginglivingcellsandtissuesbytwo-photonexcitationmicroscopy.TrendsCellBiol.9:66-69.Potter,S.M.,Wang,C.M.,Garrity,P.A.&Fraser,S.E.(1996)Intravitalimagingofgreenfluorescentproteinusingtwo-photonlaser-scanningmicroscopy.Gene173:25–31.Prasher,D.C.,Eckenrode,V.K.,Ward,W.W.,Prendergast,F.G.&Cormier,M.J.(1992)PrimarystructureoftheAequoreavictoriagreenfluorescentprotein.Gene111:229–233.Reddi,P.P.,Flickinger,C.J.&Herr,J.C.(1999)Roundspermatid-specifictranscriptionofthemouseSP-10geneismediatedbya294-basepairproximalpromoter.Biol.Reprod.61:1256–1266.Reddi,P.P.,Kallio,M.&Herr,J.C.(1999)Greenfluorescentproteinasareporter forpromoteranalysisoftestis-specificgenesintransgenicmice.MethodsEnzymol.302:272–284.Rizzuto,R.,Brini,M.,Pizzo,P.,Murgia,M.&Pozzan,T.(1995)Chimericgreenfluorescentproteinasatoolforvisualizingsubcellularorganellesinlivingcells.Curr.Biol.5:635–642.Rizzuto,R.,Brini,M.,DeGiorgi,F.,Rossi,R.,Heim,R.,Tsien,R.Y.&Pozzan,T.(1996)Doublelabelling of subcellular structures with organelle-targeted GFP mutants in vivo. Curr. Biol. 6(2):183–188.Ropp,J.D.,etal. (1995)Aequoreagreenfluorescentprotein (GFP)analysisbyflowcytometry.Cytometry21:309–317.Ropp,J.D.etal.(1996)Aequoreagreenfluorescentprotein:Simultaneousanalysisofwild-typeandblue-fluorescingmutantbyflowcytometry.Cytometry24:284–288.Rosenthal,N.(1987)Identificationofregulatoryelementsofclonedgeneswithfunctionalassays.MethodsEnzymol.152:704–709.Sambrook,J.,Fritsch,E.F.&Maniatis,T. (1989)MolecularCloning:ALaboratoryManual(ColdSpringHarborLaboratory,ColdSpringHarbor,NY).SantaCruz,S.,Chapman,S.,Roberts,A.G.,Roberts,I.M.,Prior,D.A.M.&Oparka,K.J.(1996)Assemblyandmovementofaplantviruscarryingagreenfluorescentproteinovercoat.Proc.Natl.Acad.Sci.USA93:6286–6290.Sayers,J.R.,Evans,D.&Thomson,J.B.(1996)IdentificationanderadicationofadenaturedDNAisolatedduringalkalinelysis-basedplasmidpurificationprocedures.Anal.Biochem.241:186–189.Scopes,R.K.(1987)ProteinPurification:PrinciplesandPractice,SecondEdition(Springer-VerlagInc.,NY).Schlenstedt,G.,Saavedra,C.,Loeb,J.D.J.,Cole,C.N.&Silver,P.A.(1995)TheGTP-boundformoftheyeastRan/TC4homologueblocksnuclearproteinimportandappearanceofpoly(A)+RNAinthecytoplasm.Proc.Natl.Acad.Sci.USA92:225–229.Sheen,J.,Hwang,S.,Niwa,Y.,Kobayashi,H.&Galbraith,D.W.(1995)Green-fluorescentproteinasanewvitalmarkerinplantcells.PlantJ.8(5):777–784.Shiga,Y.,Tanaka-Matakatsu,M.&Hayashi,S.(1996)AnuclearGFP/b-galactosidasefusionproteinasamarkerformorphogenesisinlivingDrosophila.Develop.GrowthDiffer.38:99–106.Shimomura,O.,Johnson,F.H.&Saiga,Y.(1962)Extraction,purificationandpropertiesofaequo-rin,abioluminescentproteinfromtheluminoushydromedusan,Aequorea.J.Cell.Comp.Physiol.59:223–227.Sidorova,J.M.,Mikesell,G.E.&Breeden,L.L.(1995)Cellcycle-regulatedphosphorylationofSwi6controlsitsnuclearlocalization.Mol.Biol.Cell6:1641–1658.Silver,P.(1995)PresentationatFluorescentProteinsandApplicationsMeeting,PaloAlto,CA.Smirnov,M.N.,Smirnov,V.N.,Budowsky,E.I.,Inge-Vechtomov,S.G.&Serebrjakov,N.G.(1967)Redpigmentofadenine-deficientyeastSaccharomycescerevisiae.Biochem.Biophys.Res.Com-mun.27:299–304.Stearns,T.(1995)Thegreenrevolution.Curr.Biol.5:262–264.

  • Protocol No. PT2040-1 www.clontech.com Clontech Laboratories, Inc. Version No. PR1Y691 41

    Living Colors® User Manual

    Stuurman,N.,Bras,C.P.,Schlaman,H.R.,Wijfjes,A.H.,Bloemberg,G.&Spaink,H.P.(2000)Useofgreenfluorescentproteincolorvariantsexpressedonstablebroad-host-rangevectorstovisualizerhizobiainteractingwithplants.Mol.PlantMicrobeInteract.13:1163–1169.Sullivan,K.F.,Hahn,K.&Shelby,R.D.(1995)BioluminescentlabelingofhumancentromereDNAsequencesinvivo.PosterpresentationatFluorescentProteinsandApplicationsMeeting,PaloAlto,CA.Surpin,M.A.&Ward,W.W.(1989)ReversibledenaturationofAequoreagreenfluorescentpro-tein—thiolrequirement.Photochem.Photobiol.49:WPM-B2Waddle,J.A.,Karpova,T.S.,Waterston,R.H.&Cooper,J.A.(1996)Movementofcorticalactinpatchesinyeast.J.CellBiol.132(5):861–870.Verkusha,V.V.,Otsuna,H.,Awasaki,T.,Oda,H.,Tsukita,S.&Ito,K.(2001)AnenhancedmutantofredfluorescentproteinDsRedfordoublelabelinganddevelopmentaltimerofneuronalfiberbundleformation.J.Biol.Chem.276:29621–29624.Wang,S.&Hazelrigg,T.(1994)ImplicationsforbcdmRNAlocalizationfromspatialdistributionofexuproteininDrosophilaoogenesis.Nature369:400–403.Ward,W.W.,Cody,C.W.,Hart,R.C.&Cormier,M.J.(1980)Spectrophotometricidentityoftheenergy transfer chromophores in Renilla andAequorea green-fluorescent proteins. Photochem.Photobiol.31:611–615.Ward,W.W.(1981)PropertiesoftheCoelenterategreen-fluorescentproteins.InBioluminescenceandChemiluminescence:BasicChemistryandAnalyticalapplications.Eds.DeLuca,M.&McElroy,W.D.(AcademicPress,Inc.,NY),pp.235–242.Ward, W. W. & Bokman, S. H. (1982) Reversible denaturation of Aequorea green-fluorescentprotein: physical separation and characterization of the renatured protein. Biochemistry 21:4535–4540.Webb,C.D.,Decatur,A.,Teleman,A.&Losick,R.(1995)Useofgreenfluorescentproteinforvi-sualizationofcell-specificgeneexpressionandsubcellularproteinlocalizationduringsporulationinBacillussubtilis.J.Bacteriol.177(20):5906–5911.Weisman, L. S., Bacallao, R. & Wickner, W. (1987) Multiple methods of visualizing the yeastvacuolepermitevaluationofitsmorphologyandinheritanceduringthecellcycle.J.CellBiol.105:1539–1547.Yang,F.,Moss,L.G.&Phillips,G.N.(1996)Themolecularstructureofgreenfluorescentprotein.NatureBiotechnol.14:1246–1251.Yang, T. T., Cheng, L. & Kain, S. R. (1996a) Optimized codon usage and chromophore muta-tionsprovideenhancedsensitivitywith thegreenfluorescentprotein.NucleicAcidsRes.24(22):4592–4593.Yang,T.T.,Kain,S.R.,Kitts,P.,Kondepudi,A.,Yang,M.M.&Youvan,D.C.(1996b)Dualcolormicroscopic imageryof cellsexpressing thegreenfluorescentproteinanda red-shiftedvariant.Gene173:19–23.Yang,T.T.,Sinai,P.,Green,G.,Kitts,P.A.,Chen,Y.T.,Lybarger,L.,Chervenak,R.,Patterson,G.H.,Piston,D.W.,&Kain,S.R.(1998)Improvedfluorescenceanddualcolordetectionwithenhancedblueandgreenvariantsofthegreenfluorescentprotein.J.Biol.Chem.273:8212–8216.Yu,J.&vandenEngh,G.(1995)Flow-sortandgrowthofsinglebacterialcellstransformedwithcosmidandplasmidvectorsthatincludethegeneforgreen-fluorescentproteinasavisiblemarker.Abstractsofpaperspresentedatthe1995meetingon“GenomeMappingandSequencing”,ColdSpringHarbor.p.293.

    VIII. References continued

  • Clontech Laboratories, Inc. www.clontech.com Protocol No. PT2040-1 42 Version No. PR1Y691

    Living Colors® User Manual

    IX. Related Products

    ForthelatestandmostcompletelistingofallClontechproducts,pleasevisitwww.clontech.com

    WeofferavarietyofvectorsforexpressionofGFPanditsvariants.TheVectorInformationPacket thataccompaniesanypurchasedvectorprovidesamap,multiplecloningsite(MCS),completesequence,andadditionalinformationaboutthevector.Muchofthisinformationisalsoavailableatourwebsite.

    Bacterial Expression VectorsProteincanbeoverexpressedinbacteriausingthesevectors.Thecodingse-quencecanbeexcisedusingrestrictionsitesintheflankingMCSregions;orthecodingsequencecanbeamplifiedbyPCR.• pEGFPVector 6077-1• pEYFPVector 6004-1• pECFPVector 6075-1• pGFPVector 6097-1• pGFPuvVector 6079-1

    Mammalian Expression Vector• pCMS-EGFP 6101-1

    n-Terminal Protein Fusion Vectors• pECFP-N1 6900-1• pEYFP-N1 6006-1• pEGFP-N1/2/3 * 6085-1,6081-1,6080-1

    C-Terminal Protein Fusion Vectors• pECFP-C1 6076-1• pEYFP-C1 6005-1• pEGFP-C1/2/3 * 6084-1,6083-1,6082-1 *EachvectorhastheMCSinoneofthreepossiblereadingframes

    Promoterless Mammalian Expression VectorsUsedformonitoringtheactivityofpromotersorpromoter/enhancercombinationsinsertedintotheMCSupstreamofthegeneencodingtheGFPvariant.• pECF