56
LHC and the Cosmos Dark Matter Searches and Dark Matter Reconstruction Fawzi BOUDJEMA LAPTH, CNRS, Annecy-le-Vieux, France F. BOUDJEMA, Dark Matter and the LHC, LHC2FC, CERN, Feb 2009 – p. 1/5

LHC and the Cosmos Dark Matter Searcheslapth.cnrs.fr/pg-nomin/boudjema/talks/LHC2FC_DM_CERN.pdf · 2009. 12. 5. · LHC Dark Matter Connection: The new paradigm no mention of a connection,

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: LHC and the Cosmos Dark Matter Searcheslapth.cnrs.fr/pg-nomin/boudjema/talks/LHC2FC_DM_CERN.pdf · 2009. 12. 5. · LHC Dark Matter Connection: The new paradigm no mention of a connection,

LHC and the Cosmos

Dark Matter Searches

and

Dark Matter Reconstruction

Fawzi BOUDJEMA

LAPTH, CNRS, Annecy-le-Vieux, France

F. BOUDJEMA, Dark Matter and the LHC, LHC2FC, CERN, Feb 2009 – p. 1/54

Page 2: LHC and the Cosmos Dark Matter Searcheslapth.cnrs.fr/pg-nomin/boudjema/talks/LHC2FC_DM_CERN.pdf · 2009. 12. 5. · LHC Dark Matter Connection: The new paradigm no mention of a connection,

LHC Dark Matter Connection

F. BOUDJEMA, Dark Matter and the LHC, LHC2FC, CERN, Feb 2009 – p. 2/54

Page 3: LHC and the Cosmos Dark Matter Searcheslapth.cnrs.fr/pg-nomin/boudjema/talks/LHC2FC_DM_CERN.pdf · 2009. 12. 5. · LHC Dark Matter Connection: The new paradigm no mention of a connection,

LHC Dark Matter Connection: The new paradigm

no mention of a connection, despite a

SUSY WG

mention of LSP to be stable/neutral

because of cosmo reason

LHC: Symmetry breaking andHiggs

F. BOUDJEMA, Dark Matter and the LHC, LHC2FC, CERN, Feb 2009 – p. 3/54

Page 4: LHC and the Cosmos Dark Matter Searcheslapth.cnrs.fr/pg-nomin/boudjema/talks/LHC2FC_DM_CERN.pdf · 2009. 12. 5. · LHC Dark Matter Connection: The new paradigm no mention of a connection,

The new paradigm why? Cosmology in the era of precision

observed temperature anisotropies

(related to the density fluctuations

at the time of emission) is

10−5

F. BOUDJEMA, Dark Matter and the LHC, LHC2FC, CERN, Feb 2009 – p. 4/54

Page 5: LHC and the Cosmos Dark Matter Searcheslapth.cnrs.fr/pg-nomin/boudjema/talks/LHC2FC_DM_CERN.pdf · 2009. 12. 5. · LHC Dark Matter Connection: The new paradigm no mention of a connection,

Cosmology in the era of precision measurement 1.

Pre-WMAP and WMAP vs Pre-LEP and LEP

F. BOUDJEMA, Dark Matter and the LHC, LHC2FC, CERN, Feb 2009 – p. 5/54

Page 6: LHC and the Cosmos Dark Matter Searcheslapth.cnrs.fr/pg-nomin/boudjema/talks/LHC2FC_DM_CERN.pdf · 2009. 12. 5. · LHC Dark Matter Connection: The new paradigm no mention of a connection,

Cosmology in the era of precision measurement 2.

angular power spectrum of the CMB, pre-WMAP

and WMAP

.210

.214

.218

.222

.226

.230

.234

.238

1999

VBM (mZ)

ν - q e - q ν - e (Ellis-Fogli)

500 100 150 200 250

mt (GeV)

sin2 θ w

mW / mZ

.242

165 170 175 180mt [GeV]

50

100

200

300

sin2θeff

MW

GigaZ (1σ errors)

MH [GeV]

SM@GigaZ

now

Planck+SNAP will do even better (per-cent precision) like from LEP to LHC+LC

F. BOUDJEMA, Dark Matter and the LHC, LHC2FC, CERN, Feb 2009 – p. 6/54

Page 7: LHC and the Cosmos Dark Matter Searcheslapth.cnrs.fr/pg-nomin/boudjema/talks/LHC2FC_DM_CERN.pdf · 2009. 12. 5. · LHC Dark Matter Connection: The new paradigm no mention of a connection,

The need for Dark Matter

Newton’s law → v2rot./r = GN M(r)/r2

(tracer star at a distance r from centre of mass distribution )

We are not in the centre of the universe Dark Matter= New Physicswe are not made up of the same stuff as most of our universe

F. BOUDJEMA, Dark Matter and the LHC, LHC2FC, CERN, Feb 2009 – p. 7/54

Page 8: LHC and the Cosmos Dark Matter Searcheslapth.cnrs.fr/pg-nomin/boudjema/talks/LHC2FC_DM_CERN.pdf · 2009. 12. 5. · LHC Dark Matter Connection: The new paradigm no mention of a connection,

Cosmology in the era of precision measurement: from various constraints

No Big Bang

1 2 0 1 2 3

expands forever

-1

0

1

2

3

2

3

closed

recollapses eventually

Supernovae

CMB Boomerang

Maxima

Clusters

mass density

vacu

um e

nerg

y de

nsity

(cos

mol

ogica

l con

stan

t)

open

flat

SNAP Target Statistical Uncertainty

observed luminosity and

redshift exploits the

different z dependence of

matter/energy density

bullet experiment: disfavours

alternative explanations

through modification of

gravity

F. BOUDJEMA, Dark Matter and the LHC, LHC2FC, CERN, Feb 2009 – p. 8/54

Page 9: LHC and the Cosmos Dark Matter Searcheslapth.cnrs.fr/pg-nomin/boudjema/talks/LHC2FC_DM_CERN.pdf · 2009. 12. 5. · LHC Dark Matter Connection: The new paradigm no mention of a connection,

F. BOUDJEMA, Dark Matter and the LHC, LHC2FC, CERN, Feb 2009 – p. 9/54

Page 10: LHC and the Cosmos Dark Matter Searcheslapth.cnrs.fr/pg-nomin/boudjema/talks/LHC2FC_DM_CERN.pdf · 2009. 12. 5. · LHC Dark Matter Connection: The new paradigm no mention of a connection,

Matter Budget and Precision 2.

Stars23%

Baryons∼ 4%ν(Ων < 0.01)

Dark Matter

23%

73%Dark Energy

t0 = 13.7 ± 0.2 Gyr (1.5%) α−1 = 10t0(10−7%)

Ωtot = 1.02 ± 0.02(2%) ρ = Ωtot(∼ 0.1%)

ΩDM = 0.23 ± 0.04(17%) sin2 θeff = ΩDM(0.08%)We should then be able to match the present WMAP precision!...

once we discover susy dark matter

F. BOUDJEMA, Dark Matter and the LHC, LHC2FC, CERN, Feb 2009 – p. 10/54

Page 11: LHC and the Cosmos Dark Matter Searcheslapth.cnrs.fr/pg-nomin/boudjema/talks/LHC2FC_DM_CERN.pdf · 2009. 12. 5. · LHC Dark Matter Connection: The new paradigm no mention of a connection,

Matter Budget and Precision 3. Testing the cosmology

Present measurement at 2σ 0.0975 < ω = ΩDMh2 < 0.1223 (6%)

future (SNAP+Planck) → < 1%

Particle Physics ↔Cosmology through ω

• is wholly New Physics

• But will LHC, ILC see the “same” New Physics?

• New paradigm and new precision: change in perception about this connection

• ω used to: constrain new physics (choice of LHC susy points, benchmarks)

• Now: if New Physics is found, what precision do we require on colliders and theory to

constrain cosmology? (Allanach, Belanger, FB, Pukhov JHEP 2004)

strategy/requirements on theory and collider measurements to match the present/future

precision on ω

F. BOUDJEMA, Dark Matter and the LHC, LHC2FC, CERN, Feb 2009 – p. 11/54

Page 12: LHC and the Cosmos Dark Matter Searcheslapth.cnrs.fr/pg-nomin/boudjema/talks/LHC2FC_DM_CERN.pdf · 2009. 12. 5. · LHC Dark Matter Connection: The new paradigm no mention of a connection,

Indirect Detection

F. BOUDJEMA, Dark Matter and the LHC, LHC2FC, CERN, Feb 2009 – p. 12/54

Page 13: LHC and the Cosmos Dark Matter Searcheslapth.cnrs.fr/pg-nomin/boudjema/talks/LHC2FC_DM_CERN.pdf · 2009. 12. 5. · LHC Dark Matter Connection: The new paradigm no mention of a connection,

direct and indirectDirect and Indirect Searches

p, e+ , γ, ν, . . .

χ0

1

CDMS, Edelweiss, DAMA, Genuis, ..

χ

ν

χχ → νν

Amanda, Antares, Icecube, ..

F. BOUDJEMA, Dark Matter and the LHC, LHC2FC, CERN, Feb 2009 – p. 13/54

Page 14: LHC and the Cosmos Dark Matter Searcheslapth.cnrs.fr/pg-nomin/boudjema/talks/LHC2FC_DM_CERN.pdf · 2009. 12. 5. · LHC Dark Matter Connection: The new paradigm no mention of a connection,

Underground direct detection

χm100 200 300 400 500 600 700 800 900

(pb)

S.I.

σ

-1110

-1010

-910

-810

-710

-610

-510 Edelweiss II

Zeplin II

Zeplin IV

Xenon

Genius

χm100 200 300 400 500 600 700 800 900

(pb)

S.I.

σ-1110

-1010

-910

-810

-710

-610

-510 Edelweiss II

Zeplin II

Zeplin IV

Xenon

Genius

tan β = 10 tan β = 50

• within WMAP

F. BOUDJEMA, Dark Matter and the LHC, LHC2FC, CERN, Feb 2009 – p. 14/54

Page 15: LHC and the Cosmos Dark Matter Searcheslapth.cnrs.fr/pg-nomin/boudjema/talks/LHC2FC_DM_CERN.pdf · 2009. 12. 5. · LHC Dark Matter Connection: The new paradigm no mention of a connection,

Annihilation into photons

dΦγ

dΩdEγ=

i

dN iγ

dEγσiv

1

4πm2χ

︸ ︷︷ ︸

Physique des Particules

ρ2dl︸ ︷︷ ︸

Astro

γ′s: Point to the source, independent of propagation model(s)

• continuum spectrum from χ01χ0

1 → ff , . . ., hadronisa-

tion/fragmentation (→ π0 → γ ) done through isajet/herwig

• Loop induced mono energetic photons,γγ, Zγ final states

ACT: HESS,

Magic, VERITAS,

Cangoroo, ...

Space-based:

AMS, GLAST,

Egret,...F. BOUDJEMA, Dark Matter and the LHC, LHC2FC, CERN, Feb 2009 – p. 15/54

Page 16: LHC and the Cosmos Dark Matter Searcheslapth.cnrs.fr/pg-nomin/boudjema/talks/LHC2FC_DM_CERN.pdf · 2009. 12. 5. · LHC Dark Matter Connection: The new paradigm no mention of a connection,

Symmetry breaking and DM: The new view

The SM Higgs naturalness problem has been behind the construction of many models

of New Physics: at LHC not enough to see the Higgs need to address electroweak

symmetry breaking

DM is New Physics, most probable that the New Physics of EWSB provides DM

candidate, especially that

All models of NP can be made to have quite easily and naturally a conserved

quantum number, Z2 parity such that all the NP particles have Z2 = −1 (odd)

and the SM part. have it even

Then the lightest New Physics particle is stable. If it is electrically neutral then can be

a candidate for DM

This conserved quantum number is not imposed just to have a DM candidate it has

been imposed for the model to survive

F. BOUDJEMA, Dark Matter and the LHC, LHC2FC, CERN, Feb 2009 – p. 16/54

Page 17: LHC and the Cosmos Dark Matter Searcheslapth.cnrs.fr/pg-nomin/boudjema/talks/LHC2FC_DM_CERN.pdf · 2009. 12. 5. · LHC Dark Matter Connection: The new paradigm no mention of a connection,

Symmetry breaking and DM

Survival

evade proton decay

indirect precision measurements (LEP legacy)

Examples:

R-parity and LSP in SUSY (majorana fermion)

KK parity and the and LKP in UED (gauge boson)

T-parity in Little Higgs with the LTP (gauge boson)

LZP (warped GUTs) (actually it’s a Z3 here) (Dirac fermion)

even modern technicolour has a DM candidate

so New Physics even if not cosmological DM has an ”invisible” signature at the

colliders

F. BOUDJEMA, Dark Matter and the LHC, LHC2FC, CERN, Feb 2009 – p. 17/54

Page 18: LHC and the Cosmos Dark Matter Searcheslapth.cnrs.fr/pg-nomin/boudjema/talks/LHC2FC_DM_CERN.pdf · 2009. 12. 5. · LHC Dark Matter Connection: The new paradigm no mention of a connection,

New Physics or DM Physics and ET miss

Is it necessarily DM candidate?stable at the scale of LHC detectors, 1ms, not age of the

Universe....F. BOUDJEMA, Dark Matter and the LHC, LHC2FC, CERN, Feb 2009 – p. 18/54

Page 19: LHC and the Cosmos Dark Matter Searcheslapth.cnrs.fr/pg-nomin/boudjema/talks/LHC2FC_DM_CERN.pdf · 2009. 12. 5. · LHC Dark Matter Connection: The new paradigm no mention of a connection,

in 1998 we were told to expect an early SUSY discovery

F. BOUDJEMA, Dark Matter and the LHC, LHC2FC, CERN, Feb 2009 – p. 19/54

Page 20: LHC and the Cosmos Dark Matter Searcheslapth.cnrs.fr/pg-nomin/boudjema/talks/LHC2FC_DM_CERN.pdf · 2009. 12. 5. · LHC Dark Matter Connection: The new paradigm no mention of a connection,

Discovery of miss Et

0

200

400

600

800

1000

1200

1400

0 500 1000 1500 2000

m0 ( GeV)

m1/

2 (G

eV)

ET miss

no leptons1l

2l OS

2l SS

3l

g~(500)

g~(1000)

g~(1500)

g~(2000)

g~(2500)

g~(3000)

q~(2500)

q~(2000)

q ~(1500)

q ~(1000)

q ~(500)

h(80)

h(95)

∫ L dt = 100 fb-1

A0 = 0 , tanβ = 2 , µ < 0

Ωh

2 = 1

Ωh

2 = 0.4

EX

TH

ISA

JET

7.32

+ C

MSJ

ET

4.5

F. BOUDJEMA, Dark Matter and the LHC, LHC2FC, CERN, Feb 2009 – p. 20/54

Page 21: LHC and the Cosmos Dark Matter Searcheslapth.cnrs.fr/pg-nomin/boudjema/talks/LHC2FC_DM_CERN.pdf · 2009. 12. 5. · LHC Dark Matter Connection: The new paradigm no mention of a connection,

But fake miss Et: Not even SM physics!

Miss Et pointing along jets

All machine garbage ends up in Et miss trigger

F. BOUDJEMA, Dark Matter and the LHC, LHC2FC, CERN, Feb 2009 – p. 21/54

Page 22: LHC and the Cosmos Dark Matter Searcheslapth.cnrs.fr/pg-nomin/boudjema/talks/LHC2FC_DM_CERN.pdf · 2009. 12. 5. · LHC Dark Matter Connection: The new paradigm no mention of a connection,

ATLAS TDR (same with CMS)

ATLAS TDR 98(mSUGRA point, PreWMAP)

F. BOUDJEMA, Dark Matter and the LHC, LHC2FC, CERN, Feb 2009 – p. 22/54

Page 23: LHC and the Cosmos Dark Matter Searcheslapth.cnrs.fr/pg-nomin/boudjema/talks/LHC2FC_DM_CERN.pdf · 2009. 12. 5. · LHC Dark Matter Connection: The new paradigm no mention of a connection,

ATLAS TDR (same with CMS)

ATLAS TDR 98(mSUGRA point, PreWMAP)

ATLAS 2006

F. BOUDJEMA, Dark Matter and the LHC, LHC2FC, CERN, Feb 2009 – p. 22/54

Page 24: LHC and the Cosmos Dark Matter Searcheslapth.cnrs.fr/pg-nomin/boudjema/talks/LHC2FC_DM_CERN.pdf · 2009. 12. 5. · LHC Dark Matter Connection: The new paradigm no mention of a connection,

ATLAS TDR (same with CMS)

ATLAS TDR 98(mSUGRA point, PreWMAP)

ATLAS 2006

What happened? Real Et miss from neutrinosComplex multi-body final states: can not rely on MC alone. Needdata and MC. Improve NLO multilegs, matching,...

F. BOUDJEMA, Dark Matter and the LHC, LHC2FC, CERN, Feb 2009 – p. 22/54

Page 25: LHC and the Cosmos Dark Matter Searcheslapth.cnrs.fr/pg-nomin/boudjema/talks/LHC2FC_DM_CERN.pdf · 2009. 12. 5. · LHC Dark Matter Connection: The new paradigm no mention of a connection,

F. BOUDJEMA, Dark Matter and the LHC, LHC2FC, CERN, Feb 2009 – p. 23/54

Page 26: LHC and the Cosmos Dark Matter Searcheslapth.cnrs.fr/pg-nomin/boudjema/talks/LHC2FC_DM_CERN.pdf · 2009. 12. 5. · LHC Dark Matter Connection: The new paradigm no mention of a connection,

Next step: Properties of DM, example SPIN?? Couplings

F. BOUDJEMA, Dark Matter and the LHC, LHC2FC, CERN, Feb 2009 – p. 24/54

Page 27: LHC and the Cosmos Dark Matter Searcheslapth.cnrs.fr/pg-nomin/boudjema/talks/LHC2FC_DM_CERN.pdf · 2009. 12. 5. · LHC Dark Matter Connection: The new paradigm no mention of a connection,

Synergy Collider-Cosmology-Astrophysics

What does it take to prove it is a DM candidate

the right relic density

has to confirm the rate of Dark Matter Direct Detection

has to confirm Indirect Detection rates: annihilations into anti-matter, photons,

neutrinos

But all three items carry substantial assumptions or drastic differences in the

modelling of astrophysics

one is assuming detection is assured in DD and Ind. Detection

Important to extract as precise as possible the microscopic properties of DM,

interaction

constrain the cosmological models

constrain the astrophysics models: DM distribution, clumping, perhaps propagation

may even use some hints from astrophysics to input at colliders

F. BOUDJEMA, Dark Matter and the LHC, LHC2FC, CERN, Feb 2009 – p. 25/54

Page 28: LHC and the Cosmos Dark Matter Searcheslapth.cnrs.fr/pg-nomin/boudjema/talks/LHC2FC_DM_CERN.pdf · 2009. 12. 5. · LHC Dark Matter Connection: The new paradigm no mention of a connection,

Collider Inputs

SUSY Parameters

Annihilation N Interaction

Relic Density Indirect Detection Direct Detection

Astrophysical and Cosmological Inputs

F. BOUDJEMA, Dark Matter and the LHC, LHC2FC, CERN, Feb 2009 – p. 26/54

Page 29: LHC and the Cosmos Dark Matter Searcheslapth.cnrs.fr/pg-nomin/boudjema/talks/LHC2FC_DM_CERN.pdf · 2009. 12. 5. · LHC Dark Matter Connection: The new paradigm no mention of a connection,

Example 1: Relic Density

F. BOUDJEMA, Dark Matter and the LHC, LHC2FC, CERN, Feb 2009 – p. 27/54

Page 30: LHC and the Cosmos Dark Matter Searcheslapth.cnrs.fr/pg-nomin/boudjema/talks/LHC2FC_DM_CERN.pdf · 2009. 12. 5. · LHC Dark Matter Connection: The new paradigm no mention of a connection,

Constraining relic density parameter space:SUSY unconstrained

Orders of magnitude, DM cross sections orders ofmagnitude also (same for direct and indirect detection)

F. BOUDJEMA, Dark Matter and the LHC, LHC2FC, CERN, Feb 2009 – p. 28/54

Page 31: LHC and the Cosmos Dark Matter Searcheslapth.cnrs.fr/pg-nomin/boudjema/talks/LHC2FC_DM_CERN.pdf · 2009. 12. 5. · LHC Dark Matter Connection: The new paradigm no mention of a connection,

formation of DM: Very basics of decoupling

At first all particles in thermal equilibrium, frequent

collisions and particles are trapped in the cosmic soup

universe cools and expands: interaction rate too small or

not efficient to maintain Equil.

(stable) particles can not find each other: freeze out and

get free and leave the soup, their number density is

locked giving the observed relic density

from then on total number (n × a3) = cste

Condition for equilibrium: mean free path smaller than

distance traveled: lm.f.p < vt lm.f.p = 1/nσ

t ∼ 1/H or Equilbrium: Γ = nσv > H

freeze ou/decoupling occurs at T = TD = TF : Γ = H and Ωχ01h2 ∝ 1/σχ0

1F. BOUDJEMA, Dark Matter and the LHC, LHC2FC, CERN, Feb 2009 – p. 29/54

Page 32: LHC and the Cosmos Dark Matter Searcheslapth.cnrs.fr/pg-nomin/boudjema/talks/LHC2FC_DM_CERN.pdf · 2009. 12. 5. · LHC Dark Matter Connection: The new paradigm no mention of a connection,

Relic Density: Boltzman transport equation

1 10 100 1000

0.0001

0.001

0.01

Freeze-out

Tf ∼ 20GeVt ∼ 10

−8s

Boltzmann

Suppre

ssio

n

Exp

(-m/T

)

based on L[f ] = C[f ]

dilution due to expansion

dn/dt = −3Hn− < σv > (n2 − n2eq)

χ01χ0

1 → X

X → χ01χ0

1

• at early times Γ ≫ H → n ∼ neq

• T ∼ m X not enough energy to give

X → χ01χ0

1 n drops and so does Γ

Tf ≃ m/25

Ωχ01h2

∝ 1/σχ01

F. BOUDJEMA, Dark Matter and the LHC, LHC2FC, CERN, Feb 2009 – p. 30/54

Page 33: LHC and the Cosmos Dark Matter Searcheslapth.cnrs.fr/pg-nomin/boudjema/talks/LHC2FC_DM_CERN.pdf · 2009. 12. 5. · LHC Dark Matter Connection: The new paradigm no mention of a connection,

All in all...

Ωχ01h2 ≃ 109

MP

xf√

g⋆

1<σ

χ01

v>

Ωχ01h2 ∼ 0.1 →< σχ0

1v >∼ 1pb

order of magnitude of LHC cross sections

< σχ01v >= πα2/m2

Ωχ01h2 ∼ (m/TeV )2 → m ∼ G

−1/2

F ∼ 300GeV

but with the precision on the relic that we have now (6%) and themany possibilities from the particle physics perspectives, needmore than orders of magnitudes calculations.

F. BOUDJEMA, Dark Matter and the LHC, LHC2FC, CERN, Feb 2009 – p. 31/54

Page 34: LHC and the Cosmos Dark Matter Searcheslapth.cnrs.fr/pg-nomin/boudjema/talks/LHC2FC_DM_CERN.pdf · 2009. 12. 5. · LHC Dark Matter Connection: The new paradigm no mention of a connection,

Relic Density: Loopholes and Assumptions

At early times Universe is radiation dominated: H(T ) ∝ T 2

Expansion rate can be enhanced by some scalar field (kination), extra dimension

H2 = 8πG/3 ρ(1 + ρ/ρ5), anisotropic cosmology,...

Entropy conservation (entropy increase will reduce the relic abundance

Wimps (super Wimps) can be produced non thermally, or in addition produced in

decays of some field (inflaton,....)

F. BOUDJEMA, Dark Matter and the LHC, LHC2FC, CERN, Feb 2009 – p. 32/54

Page 35: LHC and the Cosmos Dark Matter Searcheslapth.cnrs.fr/pg-nomin/boudjema/talks/LHC2FC_DM_CERN.pdf · 2009. 12. 5. · LHC Dark Matter Connection: The new paradigm no mention of a connection,

Almost Wimps: Swimps, Fen et al;

WIMP

superWIMP

Assuming that each WIMP

decay produces one one

sWimp, the inherited density

is simply

ΩsWimp =msWimp

Wimp

ΩWimp

beware though: If couplings

very weak, decays may be very

late and would directly impact

on BBN, CMB, diffuse γ flux

(energy released in visible de-

cay products serious stopper!)

F. BOUDJEMA, Dark Matter and the LHC, LHC2FC, CERN, Feb 2009 – p. 33/54

Page 36: LHC and the Cosmos Dark Matter Searcheslapth.cnrs.fr/pg-nomin/boudjema/talks/LHC2FC_DM_CERN.pdf · 2009. 12. 5. · LHC Dark Matter Connection: The new paradigm no mention of a connection,

History of the Universe,

WIMP density depends on the history of the Universe before BBN (0.8MeV)

(abundance of light elements), large time scale between freeze-out and BBN

for BBN to hold it is enough that the earliest and highest temperature during the

radiation era TRH > 4MeV

TRH > is to be understood as the temp. which after a period of rapid

inflationary expansion the Universe reheats (defrosts) and the expanding plasma

reaches full thermal equilibriumF. BOUDJEMA, Dark Matter and the LHC, LHC2FC, CERN, Feb 2009 – p. 34/54

Page 37: LHC and the Cosmos Dark Matter Searcheslapth.cnrs.fr/pg-nomin/boudjema/talks/LHC2FC_DM_CERN.pdf · 2009. 12. 5. · LHC Dark Matter Connection: The new paradigm no mention of a connection,

History of the Universe, TRH >

Density may decreased by reducing rate of thermal production, possibility to have tiny

TRH < Tf.o or by production of radiation after freeze-out

increased by injecting Wimps from decays or/and increasing the expansion rate

Open up more possibilities, constrain Physics at the Planck scale??

F. BOUDJEMA, Dark Matter and the LHC, LHC2FC, CERN, Feb 2009 – p. 35/54

Page 38: LHC and the Cosmos Dark Matter Searcheslapth.cnrs.fr/pg-nomin/boudjema/talks/LHC2FC_DM_CERN.pdf · 2009. 12. 5. · LHC Dark Matter Connection: The new paradigm no mention of a connection,

Non Standard Cosmo

Prototype: A scalar field decaying not long before BBN Giudice, Kolb; Gelmini and

Gondolo, ....

dρφ

dt= −3Hρφ − Γφρφ

dn

dt= −3Hn − 〈σv〉 (n2 − n2

eq) +b

mφΓφρφ

ds

dt= −3Hs +

Γφρφ

T

where mφ, Γφ, and ρφ are respectively the mass, the decay width and the energy density ofthe scalar field, and b is the average number of neutralinos produced per φ decay. Noticethat b and mφ enter into these equations only through the ratio b/mφ

(eta = b (100TeV/mφ) and not separately. Finally, the Hubble parameter, H, receivescontributions from the scalar field, Standard Model particles, and supersymmetric particles,

H2 =8π

3M2P

(ρφ + ρSM + ρχ) .

TRH = 10MeV (mφ/100TeV )3/2(MP /Λ) Γφ ∼ m3φ/Λ2

F. BOUDJEMA, Dark Matter and the LHC, LHC2FC, CERN, Feb 2009 – p. 36/54

Page 39: LHC and the Cosmos Dark Matter Searcheslapth.cnrs.fr/pg-nomin/boudjema/talks/LHC2FC_DM_CERN.pdf · 2009. 12. 5. · LHC Dark Matter Connection: The new paradigm no mention of a connection,

Non Standard Cosmo, Figs Gelmini and Gondolo

0.0010.010.1110100Temperature (GeV)

1e-24

1e-22

1e-20

1e-18

1e-16

1e-14

1e-12

1e-10

1e-08

1e-06

1e-04

1e-02

Y=

n χ/s

StandardEqulibriumT

RH =10 MeV

TRH

=100 MeV

TRH

=1 GeV

TRH

=10 GeV

mSUGRA parametersM1/2 = m0 = 600GeV, A0 = 0, tan β = 10, and µ > 0,

→ mχ = 246 GeV → Tf.o = 10GeV . Ωstdh2 ≃ 3.6

η = 0

F. BOUDJEMA, Dark Matter and the LHC, LHC2FC, CERN, Feb 2009 – p. 37/54

Page 40: LHC and the Cosmos Dark Matter Searcheslapth.cnrs.fr/pg-nomin/boudjema/talks/LHC2FC_DM_CERN.pdf · 2009. 12. 5. · LHC Dark Matter Connection: The new paradigm no mention of a connection,

Non Standard Cosmo

0.0010.010.1110100Temperature (GeV)

1e-16

1e-14

1e-12

1e-10

1e-08

1e-06

1e-04

1e-02

Y=

n χ/s

StandardEqulibriumη = 0η=1e-8η =1e-6η =1e-4η =1e-2

TRH

F. BOUDJEMA, Dark Matter and the LHC, LHC2FC, CERN, Feb 2009 – p. 38/54

Page 41: LHC and the Cosmos Dark Matter Searcheslapth.cnrs.fr/pg-nomin/boudjema/talks/LHC2FC_DM_CERN.pdf · 2009. 12. 5. · LHC Dark Matter Connection: The new paradigm no mention of a connection,

Non Standard Cosmo

0.001 0.01 0.1 1 10 100Reheating Temperature (GeV)

1e-06

0.0001

0.01

1

100

10000

Ωh2

η = 0

η = 10-10

η = 10-8

η = 10-6

η = 10-4

η = 10-2

Note that different cosmological

models may look standard!

F. BOUDJEMA, Dark Matter and the LHC, LHC2FC, CERN, Feb 2009 – p. 39/54

Page 42: LHC and the Cosmos Dark Matter Searcheslapth.cnrs.fr/pg-nomin/boudjema/talks/LHC2FC_DM_CERN.pdf · 2009. 12. 5. · LHC Dark Matter Connection: The new paradigm no mention of a connection,

Important Message

The bulk region can be correct, good news for parameter extraction at LHC

Large Wino cross sections that are good for Indirect Detection not ruled out

F. BOUDJEMA, Dark Matter and the LHC, LHC2FC, CERN, Feb 2009 – p. 40/54

Page 43: LHC and the Cosmos Dark Matter Searcheslapth.cnrs.fr/pg-nomin/boudjema/talks/LHC2FC_DM_CERN.pdf · 2009. 12. 5. · LHC Dark Matter Connection: The new paradigm no mention of a connection,

reconstruct Properties of DM

measure masses and allimportant relevantcouplings (bino/wino/components,....., mixing)that enter the reliccalculation

Most often this is alsowhat enters the indirectdetection

strive to measure the cou-pling of the Higgs to theDM

F. BOUDJEMA, Dark Matter and the LHC, LHC2FC, CERN, Feb 2009 – p. 41/54

Page 44: LHC and the Cosmos Dark Matter Searcheslapth.cnrs.fr/pg-nomin/boudjema/talks/LHC2FC_DM_CERN.pdf · 2009. 12. 5. · LHC Dark Matter Connection: The new paradigm no mention of a connection,

The mSUGRA inspired regions

100 200 300 400 500 600 700 800 900 10000

100

200

300

400

500

600

700

800

100 200 300 400 500 600 700 800 900 10000

100

200

300

400

500

600

700

800

mh = 114 GeV

m0 (

GeV

)

m1/2 (GeV)

tan β = 10 , µ < 0

τ1/χ01 co-annihilation strip

mτ1< m

χ01

WMAP

b→

(exc.)

Pre-WMAP (bulk)

Bulk region: bino LSP, lR exchange,

(small m0, M1/2)

τ1 co-annihilation: NLSP thermally

accessible, ratio of the two populations

exp(−∆M/Tf ) small m0,

M1/2 : 350 − 900GeV

Higgs Funnel: Large tan β,

χ01χ0

1 → A → bb, (τ τ),

M1/2 : 250 − 1100GeV,

m0 : 450 − 1000GeV

Focus region: small µ ∼ M1, important

higgsino component, requires very large

TeV m0

F. BOUDJEMA, Dark Matter and the LHC, LHC2FC, CERN, Feb 2009 – p. 42/54

Page 45: LHC and the Cosmos Dark Matter Searcheslapth.cnrs.fr/pg-nomin/boudjema/talks/LHC2FC_DM_CERN.pdf · 2009. 12. 5. · LHC Dark Matter Connection: The new paradigm no mention of a connection,

LHC+ILC

88.83 / 34Constant 745.9 9.335Mean 0.1921 0.3741E-04Sigma 0.5305E-02 0.3928E-04

Ωχh2

No. M

C Ex

perim

ents

ISASUGRA v. 7.69

(a)

0

200

400

600

800

1000

1200

0.17 0.175 0.18 0.185 0.19 0.195 0.2 0.205 0.21 0.215 0.22

Polesello+Tovey, LHC, bulk Baltz,Battaglia, Peskin and WisanskyF. BOUDJEMA, Dark Matter and the LHC, LHC2FC, CERN, Feb 2009 – p. 43/54

Page 46: LHC and the Cosmos Dark Matter Searcheslapth.cnrs.fr/pg-nomin/boudjema/talks/LHC2FC_DM_CERN.pdf · 2009. 12. 5. · LHC Dark Matter Connection: The new paradigm no mention of a connection,

τ1 co-annihilation region: Model Independent

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

100 150 200 250 300 350 400 4500.6

0.7

0.8

0.9

1

1.1

1.2

1.3

∆co

s2

θ τ- r

eq

uir

ed

, a(M

)

δM r

eq

uir

ed

(G

eV

)

m~τ (GeV)

∆cos2θτ- required

δM requireda(Mχ)

∆M must be measured to less than 1GeV

mixing angle accuracy should be feasible at ILC

accuracy on LSP mass not demanding but this is

because we have constrained ∆M .

other slepton masses need also be measured

in terms of physical parameters residual µ tan β

accuracies not demanding

Preliminary studies indicate these accuracies will

be met for the lowest mχ01

-0.1

-0.05

0

0.05

100 200 300 400 500

∆Ωh2 /Ω

h2

m~τ (GeV)

∆tanβ=10∆µ=µ

2

3

4

5

6

7

150 200 250 300 350 400 450

GeV

me~ (GeV)

δ-(∆M)

F. BOUDJEMA, Dark Matter and the LHC, LHC2FC, CERN, Feb 2009 – p. 44/54

Page 47: LHC and the Cosmos Dark Matter Searcheslapth.cnrs.fr/pg-nomin/boudjema/talks/LHC2FC_DM_CERN.pdf · 2009. 12. 5. · LHC Dark Matter Connection: The new paradigm no mention of a connection,

direct and indirectDirect and Indirect Searches

p, e+ , γ, ν, . . .

χ0

1

CDMS, Edelweiss, DAMA, Genuis, ..

χ

ν

χχ → νν

Amanda, Antares, Icecube, ..

F. BOUDJEMA, Dark Matter and the LHC, LHC2FC, CERN, Feb 2009 – p. 45/54

Page 48: LHC and the Cosmos Dark Matter Searcheslapth.cnrs.fr/pg-nomin/boudjema/talks/LHC2FC_DM_CERN.pdf · 2009. 12. 5. · LHC Dark Matter Connection: The new paradigm no mention of a connection,

Annihilation into photons

dΦγ

dΩdEγ=

i

dN iγ

dEγσiv

1

4πm2χ

︸ ︷︷ ︸

Particulephysics

(ρ + δρ)2dl︸ ︷︷ ︸

Astro

γ′s: Point to the source, independent of propagation model(s)

• continuum spectrum from χ01χ0

1 → ff , . . ., hadronisa-

tion/fragmentation (→ π0 → γ ) done through isajet/herwig

• Loop induced mono energetic photons,γγ, Zγ final states

ACT: HESS,

Magic, VERITAS,

Cangoroo, ...

Space-based:

AMS, GLAST,

Egret,...F. BOUDJEMA, Dark Matter and the LHC, LHC2FC, CERN, Feb 2009 – p. 46/54

Page 49: LHC and the Cosmos Dark Matter Searcheslapth.cnrs.fr/pg-nomin/boudjema/talks/LHC2FC_DM_CERN.pdf · 2009. 12. 5. · LHC Dark Matter Connection: The new paradigm no mention of a connection,

Halo Profile Modelling

F. BOUDJEMA, Dark Matter and the LHC, LHC2FC, CERN, Feb 2009 – p. 47/54

Page 50: LHC and the Cosmos Dark Matter Searcheslapth.cnrs.fr/pg-nomin/boudjema/talks/LHC2FC_DM_CERN.pdf · 2009. 12. 5. · LHC Dark Matter Connection: The new paradigm no mention of a connection,

SloopS, micrOMEGAs,AMS/HESSPropagation

GUT Scale Suspect micrOMEGAs PYTHIA Halo model Cosmic Ray Fluxes

charged

γ

SloopS

with AMS energy resolution [ GeV ]γE1 10 210

]-1

.s-2

[

GeV

.cm

γφ.2E

-810

-710

-610

bb

γγ

-τ+τ0Zγ

=151 GeVχm

with a typical ACT energy resolution [ GeV ]γE1 10 210

]-1

.s-2

[ G

eV.c

mγφ.2

E

-810

-710

SIMULATION:

Parameterising the halo profile:

(α, β, γ) = (1, 3, 1), a = 25kpc. (core radius), r0 = 8kpc (distance to galactic centre),

ρ0 = 0.3 GeV/cm3 (DM density), opening angle cone 1o

SUSY parameterisation

m0 = 113GeV, m1/2 = 375 GeV, A = 0, tan β = 20, µ > 0

γ lines could be distinguished from diffuse background

F. BOUDJEMA, Dark Matter and the LHC, LHC2FC, CERN, Feb 2009 – p. 48/54

Page 51: LHC and the Cosmos Dark Matter Searcheslapth.cnrs.fr/pg-nomin/boudjema/talks/LHC2FC_DM_CERN.pdf · 2009. 12. 5. · LHC Dark Matter Connection: The new paradigm no mention of a connection,

Annihilation into e+, p, D

dΦf

dΩdEf=

i

dN if

dEf

σiv1

4πm2χ

︸ ︷︷ ︸

Particlephysics

(ρ + δρ)2Pprop

︸ ︷︷ ︸

Astro

γ′s: Model of propagation and background

• Halo Profile modeling, clumps, cusps,..boost factors,..

If particle Physics fixed, constrain astrophysics

ACT: HESS,

Magic, VERITAS,

Cangoroo, ...

Space-based:

AMS, GLAST,

Egret,...F. BOUDJEMA, Dark Matter and the LHC, LHC2FC, CERN, Feb 2009 – p. 49/54

Page 52: LHC and the Cosmos Dark Matter Searcheslapth.cnrs.fr/pg-nomin/boudjema/talks/LHC2FC_DM_CERN.pdf · 2009. 12. 5. · LHC Dark Matter Connection: The new paradigm no mention of a connection,

Otherwise tempted to fit with large uncertainties

10-5

10-4

10-1

1 10E [GeV]

E2 * flux

[GeV

cm-2 s-1 sr-1 ]

EGRETbackgroundsignalbg + sig

Boostfaktor: 5χ2: 7.2/6χ2 (bg only): 25.1/7bg scaling: 1.11

m0 = 500 GeVm1/2 = 500 GeVtan β = 51

bb-

mχ = 207 GeV

10-8

10-7

10-6

10-5

10-1

1 10 102

E [GeV]

p- flux [

cm-2 Ge

V-1 s-1 sr-1 ]

BESS 95/97backgroundsignalbg + sig

Boostfaktor: 7.2χ2: 6.5/12χ2 (bg only): 17.4/13bg scaling: 0.97

m0 = 500 GeVm1/2 = 500 GeVtan β = 51

bb-

mχ = 207 GeV

10-3

10-2

10-1

1

10-1

1 10 102

E [GeV]

e+ /(e+ +e

- )

HEAT 94 / 95 / 00AMS01backgroundsignalbg + sig

Boostfaktor: 7χ2: 15.7/17χ2 (bg only): 71.2/18

bg scaling: 0.96

m0 = 500 GeVm1/2 = 500 GeVtan β = 51

bb-

mχ = 207 GeV

Wim de Boer and Co

F. BOUDJEMA, Dark Matter and the LHC, LHC2FC, CERN, Feb 2009 – p. 50/54

Page 53: LHC and the Cosmos Dark Matter Searcheslapth.cnrs.fr/pg-nomin/boudjema/talks/LHC2FC_DM_CERN.pdf · 2009. 12. 5. · LHC Dark Matter Connection: The new paradigm no mention of a connection,

1 10 100

e+

energy (GeV)

0

0.05

0.1

0.15

0.2

e+ /(e- +e

+ )

backgroundHEAT[94,95]HEAT[2000]

Higgsino LSP (m=91GeV, Bs=7.7, Bp=0.77, χ2=10.6)

Wino LSP (m=131GeV, Bs=0.9, Bp=0.7, χ2=11.6)

G. Kane and Co

F. BOUDJEMA, Dark Matter and the LHC, LHC2FC, CERN, Feb 2009 – p. 51/54

Page 54: LHC and the Cosmos Dark Matter Searcheslapth.cnrs.fr/pg-nomin/boudjema/talks/LHC2FC_DM_CERN.pdf · 2009. 12. 5. · LHC Dark Matter Connection: The new paradigm no mention of a connection,

from a few days back in Moriond..

F. BOUDJEMA, Dark Matter and the LHC, LHC2FC, CERN, Feb 2009 – p. 52/54

Page 55: LHC and the Cosmos Dark Matter Searcheslapth.cnrs.fr/pg-nomin/boudjema/talks/LHC2FC_DM_CERN.pdf · 2009. 12. 5. · LHC Dark Matter Connection: The new paradigm no mention of a connection,

direct detection

Uncertainties coming from nuclear form factors (still large,strange component), velocity distribution,...

χm100 200 300 400 500 600 700 800 900

(pb)

S.I.

σ

-1110

-1010

-910

-810

-710

-610

-510 Edelweiss II

Zeplin II

Zeplin IV

Xenon

Genius

χm100 200 300 400 500 600 700 800 900

(pb)

S.I.

σ-1110

-1010

-910

-810

-710

-610

-510 Edelweiss II

Zeplin II

Zeplin IV

Xenon

Genius

tan β = 10 tan β = 50

• within WMAP

F. BOUDJEMA, Dark Matter and the LHC, LHC2FC, CERN, Feb 2009 – p. 53/54

Page 56: LHC and the Cosmos Dark Matter Searcheslapth.cnrs.fr/pg-nomin/boudjema/talks/LHC2FC_DM_CERN.pdf · 2009. 12. 5. · LHC Dark Matter Connection: The new paradigm no mention of a connection,

Summary

Cosmology has entered the era of precision measurements. Particle Physics

component of DM must be extracted unambiguously. If large clean and understood

signals of Etmiss at LHC there is most probably a link with DM

Strive for as much as possible for a model independent reconstruction of the

important relevant parameters of DM

One may be lucky to be a good region of the New physics parameter space

Other hints and constraint can come from observables not necessarily with Etmiss,

the rest of the NP spectrum even Higgs

In a first stage one can fit to constrained models

strategy would also depend on how the astrophysics scene evolves

in the most lucky situation an extraordinary synergy between collider physics,

astrophysics and cosmology, a glimpse on the history of the Universe, remnants of the

Planck scale???

F. BOUDJEMA, Dark Matter and the LHC, LHC2FC, CERN, Feb 2009 – p. 54/54