34
Length scale dependent aging and plasticity of a colloidal polycrystal under oscillatory shear Elisa Tamborini Laurence Ramos Luca Cipelletti Laboratoire Charles Coulomb CNRS-Université Montpellier 2 Montpellier, France

Length scale dependent aging and plasticity of a colloidal polycrystal under oscillatory shear Elisa Tamborini Laurence Ramos Luca Cipelletti Laboratoire

Embed Size (px)

Citation preview

Page 1: Length scale dependent aging and plasticity of a colloidal polycrystal under oscillatory shear Elisa Tamborini Laurence Ramos Luca Cipelletti Laboratoire

Length scale dependent aging and plasticity of a colloidal polycrystal under oscillatory shear

Elisa Tamborini Laurence RamosLuca Cipelletti

Laboratoire Charles CoulombCNRS-Université Montpellier 2Montpellier, France

Page 2: Length scale dependent aging and plasticity of a colloidal polycrystal under oscillatory shear Elisa Tamborini Laurence Ramos Luca Cipelletti Laboratoire

Motivation

MECHANICAL PROPERTIES OF ATOMIC POLYCRYSTALS

[Kumar Acta Mater. 2003]

2 competiting processes to control deformation• Grain-boundary (GB) sliding• Dislocation slip

[Richeton Nature Materials2005]

DISLOCATION GB

J. W

eis

s, L

GG

E/C

NR

S

Extremely small grains Unrealistically high strains

Numerical simulations

Experiments on metals

Difficulty of preparing samples with small grainsDifficulty of measurements

Page 3: Length scale dependent aging and plasticity of a colloidal polycrystal under oscillatory shear Elisa Tamborini Laurence Ramos Luca Cipelletti Laboratoire

Motivation

OUR OBJECTIVES

• Use colloidal crystals as analog of atomic crystals to get time- and space-resolved data on the behavior of the materials under mechanical stress

• Investigate POLYCRYSTALLINE samples, whereas most previous experimentswere on «monocrystals»

Polycrystals = a disordered network of grain-boundaries

Page 4: Length scale dependent aging and plasticity of a colloidal polycrystal under oscillatory shear Elisa Tamborini Laurence Ramos Luca Cipelletti Laboratoire

Experimental sample

3D NETWORK OF Grain Boundaries

• NPs confined in the grain-boundaries

• analogy with impurities in atomic & molecular systems[Lee Metall. Mater. Trans. A 2000] [Losert PNAS 1998]

Block-copolymer micellar crystal (fcc, lattice parameter ~ 30 nm)

+ nanoparticles (~ 1% or less, diameter 35 nm) =

temperature

~ 30 nm

fcc lattice

10 mm

Page 5: Length scale dependent aging and plasticity of a colloidal polycrystal under oscillatory shear Elisa Tamborini Laurence Ramos Luca Cipelletti Laboratoire

Home-made shear cell

laserspring

motor

moving slide

fixed slide

25 mm

Page 6: Length scale dependent aging and plasticity of a colloidal polycrystal under oscillatory shear Elisa Tamborini Laurence Ramos Luca Cipelletti Laboratoire

Observation by confocal microscopy

t

g = 3.6 %

t = 1 t = 2 t = 3g=0

50 µm

t = 1t = 2617

Overlay of 2 images taken at

~ 5000 cycles

Deformation of the crystalline grains

PROTOCOL (analogy to fatigue test in material science)

Page 7: Length scale dependent aging and plasticity of a colloidal polycrystal under oscillatory shear Elisa Tamborini Laurence Ramos Luca Cipelletti Laboratoire

10 µm

10-6 10-5 10-4 10-3 10-2 10-110-2

10-1

100

101

102

103

104

105

106

107

108

SANS

SLS

USALS

MALS

q (Å-1)

I (a

rb. u

n.)

q1 = 0.12 µm-1 - q10 = 3.72 µm-1

Experimental set-up

DLS under shear strain GBs dynamics

Tamborini et al., Langmuir 2012

Shear-cell coupled to Mid-Angle Light Scattering set-up

Page 8: Length scale dependent aging and plasticity of a colloidal polycrystal under oscillatory shear Elisa Tamborini Laurence Ramos Luca Cipelletti Laboratoire

Data analysis

INTENSITY CORRELATION & CHARACTERISTIC LENGTH SCALES

g2(t,t)-1=

q//tt = i t = i+1 t = i+2

g=0

t timet delay between shear cycle

t =1t =2

Page 9: Length scale dependent aging and plasticity of a colloidal polycrystal under oscillatory shear Elisa Tamborini Laurence Ramos Luca Cipelletti Laboratoire

100 101 102 103 1040.0

0.2

0.4

0.6

0.8

1.0

t = 1

g 2-1

Elasticity vs Plasticity

ELASTIC SAMPLE (PDMS)

0 1 2 3 40,0

0,2

0,4

0,6

0,8

1,0 t = 1

g 2-1

Page 10: Length scale dependent aging and plasticity of a colloidal polycrystal under oscillatory shear Elisa Tamborini Laurence Ramos Luca Cipelletti Laboratoire

Elasticity vs Plasticity

ELASTIC SAMPLE (PDMS)

PLASTIC SAMPLE (POLYCRYSTAL)

100 101 102 103 1040.0

0.2

0.4

0.6

0.8

1.0

t = 1

g 2-1

100 101 102 103 104 1050.0

0.2

0.4

0.6

0.8

1.0g 2 -

1

tr

Page 11: Length scale dependent aging and plasticity of a colloidal polycrystal under oscillatory shear Elisa Tamborini Laurence Ramos Luca Cipelletti Laboratoire

Visco-elasticty

CHOICE OF THE STRAIN AMPLITUDES

0.01 0.1 1 1010

100

1000

10000

storage modulus loss modulus

G',

G"

(Pa)

(%)

0.025°C/minf = 0.5 Hz

Elastic Plastic Viscous

g = 1.6 %

g = 2.5 %

g = 4.6 %

g = 5.2 %

g = 3.5 %

Page 12: Length scale dependent aging and plasticity of a colloidal polycrystal under oscillatory shear Elisa Tamborini Laurence Ramos Luca Cipelletti Laboratoire

Relaxation time vs # of shear cycles

g = 4.6 %

1 10 100 1000 100000.0

0.2

0.4

0.6

0.8

1.0 2 3 4 7 10 25 50 100 150 250 500 1500

g 2-1

1 10 100 1000 10000

0.1

1

10

100

1000

r

t

AGING law

Page 13: Length scale dependent aging and plasticity of a colloidal polycrystal under oscillatory shear Elisa Tamborini Laurence Ramos Luca Cipelletti Laboratoire

Relaxation time vs # of shear cycles

1 10 100 1000 100000.1

1

10

100

1000

r

t

q1

q2

q3

q4

q5

q6

q7

q8

q9

q10

1 10 100 1000 100000.0

0.2

0.4

0.6

0.8

1.0

g 2-1

0.130.200.240.390.781.161.582.202.833.72

q (m-1)

q AGING laws

g = 4.6 %

Page 14: Length scale dependent aging and plasticity of a colloidal polycrystal under oscillatory shear Elisa Tamborini Laurence Ramos Luca Cipelletti Laboratoire

Scaling

),(/ c* qttt

),(/* qrr

10-2 10-1 100 101 102 103 10410-4

10-3

10-2

10-1

100

r/

t/tc

g = 4.6 %

Page 15: Length scale dependent aging and plasticity of a colloidal polycrystal under oscillatory shear Elisa Tamborini Laurence Ramos Luca Cipelletti Laboratoire

Scaling

),(/* qrr

10-2 10-1 100 101 102 103 10410-4

10-3

10-2

10-1

100

= 1.5%

= 2.5%

= 3.5%

= 4.6%

= 5.2%

r/

t/tc

),(/ c* qttt

Page 16: Length scale dependent aging and plasticity of a colloidal polycrystal under oscillatory shear Elisa Tamborini Laurence Ramos Luca Cipelletti Laboratoire

0.1 1102

103

104

= 4.6%

q (m-1)

STEADY STATE RELAXATION TIME

Steady state

-1

q-1 ballistic motion

2 /(p grain size)

Page 17: Length scale dependent aging and plasticity of a colloidal polycrystal under oscillatory shear Elisa Tamborini Laurence Ramos Luca Cipelletti Laboratoire

0.1 1102

103

104

= 1.5%

= 2.5%

= 3.5%

= 4.6%

= 5.2%

q (m-1)

STEADY STATE RELAXATION TIME

Steady state and cross-over from aging to steady

CROSSOVER TIME FROM AGING TO STEADY

0.1 1

100

101

102

q (m-1

)

= 1.5%

= 2.5%

= 3.5%

= 4.6%

= 5.2%

t c

-1

q-1 ballistic motion

Page 18: Length scale dependent aging and plasticity of a colloidal polycrystal under oscillatory shear Elisa Tamborini Laurence Ramos Luca Cipelletti Laboratoire

g = 0

GB dynamics under shear – a physical picture

TYPICAL SAMPLE CONFIGURATION

L

g 0Stationary state

« reshuffling » length scale

Page 19: Length scale dependent aging and plasticity of a colloidal polycrystal under oscillatory shear Elisa Tamborini Laurence Ramos Luca Cipelletti Laboratoire

0.1 1

100

101

102

q (m-1

)

= 1.5%

= 2.5%

= 3.5%

= 4.6%

= 5.2%

t c

)1(

2

ctq

GB dynamics under shear – a physical picture

CROSSOVER TIME FROM AGING TO STEADY

RESHUFFLING LENGTH SCALE

tc=1

1 2 3 4 5 60

10

20

30

40

50

60

70

(

m)

(%)

grain size

Page 20: Length scale dependent aging and plasticity of a colloidal polycrystal under oscillatory shear Elisa Tamborini Laurence Ramos Luca Cipelletti Laboratoire

Conclusion and open questions

Scaling of the “reshuffling” length scale when approaching the elastic and flow regimes?

Role of the microstructure ?

1 10

10

100

(

m)

(%)

ELASTIC FLOW?

?

Grain size

Analogy with the plasticity of other disordered materials?

Length scale dependence of the aging and plasticity of a colloidal polycrystal under cyclic shear

Page 21: Length scale dependent aging and plasticity of a colloidal polycrystal under oscillatory shear Elisa Tamborini Laurence Ramos Luca Cipelletti Laboratoire

Neda Ghofraniha

People - Acknowledgements

Ameur Louhichi

Luca Cipelletti

Elisa Tamborini

Julian Oberdisse

Laurence Ramos

Page 22: Length scale dependent aging and plasticity of a colloidal polycrystal under oscillatory shear Elisa Tamborini Laurence Ramos Luca Cipelletti Laboratoire
Page 23: Length scale dependent aging and plasticity of a colloidal polycrystal under oscillatory shear Elisa Tamborini Laurence Ramos Luca Cipelletti Laboratoire

Data analysis

q//

q1 = 0.12 µm-1 51 µmq2 = 0.19 µm-1

q3 = 0.24 µm-1

q4 = 0.39 µm-1

q5 = 0.78 µm-1

q6 = 1.16 µm-1

q7 = 1.58 µm-1

q8 = 2.2 µm-1

q9 = 2.83 µm-1

q10 = 3.72 µm-1

10 µm

51 mm

1.65 µm

grain size: 10 µm

INTENSITY CORRELATION & CARACTERISTIC LENGTH SCALES

Page 24: Length scale dependent aging and plasticity of a colloidal polycrystal under oscillatory shear Elisa Tamborini Laurence Ramos Luca Cipelletti Laboratoire

Elasticity vs Plasticity

ELASTIC SAMPLE (PDMS)

PLASTIC SAMPLE (POLYCRYSTAL)

100 101 102 103 1040.0

0.2

0.4

0.6

0.8

1.0

t = 1

g 2-1

100 101 102 103 104 1050.0

0.2

0.4

0.6

0.8

1.0g 2 -

1

Page 25: Length scale dependent aging and plasticity of a colloidal polycrystal under oscillatory shear Elisa Tamborini Laurence Ramos Luca Cipelletti Laboratoire
Page 26: Length scale dependent aging and plasticity of a colloidal polycrystal under oscillatory shear Elisa Tamborini Laurence Ramos Luca Cipelletti Laboratoire

0.007 °C/Min

0.0005 °C/Min

Partitioning p=[NP] in GB

[NP] inside grains

fNP=0.05 %, sNP = 100 nm

Design of a colloidal analog of a metallic alloy

NANOPARTICLE PARTIONING

Page 27: Length scale dependent aging and plasticity of a colloidal polycrystal under oscillatory shear Elisa Tamborini Laurence Ramos Luca Cipelletti Laboratoire

Pluronics F108PEO-PPO-PEO

Design of a colloidal analog of a metallic alloy

fcc crystal latticea = 31.7 nm

SANS

110-23

10-22

10-21

10-20

10-19

I/(

)² (

cm3 )

q (nm-1)

~ 30 nm

fcc lattice

BLOCK-COPOLYMER IN WATER

Page 28: Length scale dependent aging and plasticity of a colloidal polycrystal under oscillatory shear Elisa Tamborini Laurence Ramos Luca Cipelletti Laboratoire

THERMOSENSITIVITY OF F108 PEOx-PPOy-PEOx

temperature

~ 30 nm

fcc lattice

Design of a colloidal analog of a metallic alloy

T

f

16 17 18

0.76

0.78

0.80

0 5 10 15 20 250.0

0.2

0.4

0.6

0.8

1.0

crystallization

Hea

t Flo

w (

arb.

un.

)

T (°C)

micellization

RheologyDSC

0 10000 20000 300000.1

1

10

100

1000

10000

0

4

8

12

16

20

24

G',

G"

(Pa)

time (s)

G' G"

T (°C

) T

Page 29: Length scale dependent aging and plasticity of a colloidal polycrystal under oscillatory shear Elisa Tamborini Laurence Ramos Luca Cipelletti Laboratoire

0.02 °C/Min

T

0.007 °C/Min

0.0005°C/Min

0.00025°C/min

Fluorescent polystyrene NPsNP = 36 nmfNP=0.5 %

Controlling the microstructure

.

ROLE OF THE HEATING RATE

Page 30: Length scale dependent aging and plasticity of a colloidal polycrystal under oscillatory shear Elisa Tamborini Laurence Ramos Luca Cipelletti Laboratoire

0.02 °C/Min

0.007 °C/Min

0.0005°C/Min

0.00025°C/min

fNP=0.5 % (v/v) s = 36 nm

Effect of the heating rate on the microstructure

Page 31: Length scale dependent aging and plasticity of a colloidal polycrystal under oscillatory shear Elisa Tamborini Laurence Ramos Luca Cipelletti Laboratoire

fNP

1% v/v

0.5% v/v

0.1% v/v

0.05% v/v

T=0.007°C/Min.

Analogy to grain refinement in metallic alloys

Controlling the microstructure

ROLE OF THE NP CONCENTRATION

Page 32: Length scale dependent aging and plasticity of a colloidal polycrystal under oscillatory shear Elisa Tamborini Laurence Ramos Luca Cipelletti Laboratoire

0.05% v/v

0.5% v/v

1% v/v

0.1% v/v

Controlling the microstructure

ROLE OF THE NP CONCENTRATION

Page 33: Length scale dependent aging and plasticity of a colloidal polycrystal under oscillatory shear Elisa Tamborini Laurence Ramos Luca Cipelletti Laboratoire

vs heating ratevs NP content

0.0001 0.001 0.01

10

R (m

)

NP

0.001 0.01

10

R (m

)

T (°C min-1).

Controlling the microstructure

AVERAGE CRYSTALLITE SIZE

Page 34: Length scale dependent aging and plasticity of a colloidal polycrystal under oscillatory shear Elisa Tamborini Laurence Ramos Luca Cipelletti Laboratoire

SHEAR CELL

LASER

L1a L1b

PDT

L2a L2b L3a L3b

M

LPDT

CCD

PC

S

PDM

OF

BS

Z

COLLIMATOR

Experimental set-up

Tamborini & Cipelletti, Rev. Sci. Instr. 2012

DLS undershear strain GBs dynamics

10-5 10-4 10-3 10-2 10-110-1

100

101

102

103

104

105

106

107

q (Å-1)

I (a

rb. u

n.)

USALS SALS SLS SANSx

d10 µm

~ 1/x

~1/d

10-6 10-5 10-4 10-3 10-2 10-110-2

10-1

100

101

102

103

104

105

106

107

108

SANS

SLS

USALS

MALS

q (Å-1)

I (a

rb. u

n.)

~ 1/x

~ 1/d

INTENSITY CORRELATION

q1 = 0.12 µm-1 - q10 = 3.72 µm-1