19
Lecture 6 Isospin What is Isospin? Rota4ons in Isospin space Reac4on rates Quarks and Isospin GellMannNishijima formula FK7003 208

Lecture’6’ Isospin’ · Isospin’introduced’based’on’the’observaon’that:’ ’ ’ ’m p = 0.9383 GeV and m n = 0.9396 GeV

  • Upload
    others

  • View
    8

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Lecture’6’ Isospin’ · Isospin’introduced’based’on’the’observaon’that:’ ’ ’ ’m p = 0.9383 GeV and m n = 0.9396 GeV

Lecture  6  Isospin  

•  What  is  Isospin?  •  Rota4ons  in  Isospin  space  •  Reac4on  rates  •  Quarks  and  Isospin  •  Gell-­‐Mann-­‐Nishijima  formula    

FK7003  

208  

Page 2: Lecture’6’ Isospin’ · Isospin’introduced’based’on’the’observaon’that:’ ’ ’ ’m p = 0.9383 GeV and m n = 0.9396 GeV

Isospin  introduced  based  on  the  observa4on  that:  

     mp = 0.9383 GeV and mn = 0.9396 GeV

Heisenberg  proposed  in  1932  the  idea  that  the  proton  and  neutrons  are  two  states  

of  the  same  par8cle,  the  nucleon.  

Later  we  could  observe  several  mul4plets  of  par4cles  with  similar  masses  but  differing  

charges:  

Similar  with  different  spin  states  of  the  same  par4cle,  the  nucleon,  the  pion,  …  

But  the  masses  are  NOT  exactly  the  same  within  a  mu4plet.  

SU(2)  –  Isospin  

p,n{ }

π +,π 0,π−{ }

Ξ−,Ξ0{ }

Σ+,Σ0,Σ−{ }m ≈ 0.94 GeV ≈0.140 GeV ≈1.32 GeV ≈1.19 GeV

FK7003   209  

Page 3: Lecture’6’ Isospin’ · Isospin’introduced’based’on’the’observaon’that:’ ’ ’ ’m p = 0.9383 GeV and m n = 0.9396 GeV

This  lead  to  the  idea  that  protons  and  neutrons  would  be  the  up  and  down  states  of  

the  same  par4cle.  

A  general  nucleon  =  an  arbitrary  combina4on  of  up  and  down  state  of  this  new  

“internal”  spin:    

And  the  proton  and  neutron:  

This  new,  abstract  internal  spin  is  called  “Isospin”  ,  behaves  in  the  same  way  as  spin  

An  isospin  state  is  wri_en  as:                                where  I  is  the  total  Isospin  and  I3  is  its  3rd    

component.  

This  is  only  nota4ons,  but  the  interes4ng  physics  arises  from  Heisenberg  postulate:  

The  Strong  interac4on  is  invariant  under  rota4on  in  Isospin  space.  

From  Noether’s  theorem,  it  means  that  isospin  is  conserved  by  the  strong  interac4on.  

p =10⎛

⎝ ⎜ ⎞

⎠ ⎟

n =01⎛

⎝ ⎜ ⎞

⎠ ⎟

N =α

β

⎝ ⎜ ⎞

⎠ ⎟ = α

10⎛

⎝ ⎜ ⎞

⎠ ⎟ + β

01⎛

⎝ ⎜ ⎞

⎠ ⎟

I,I3

p =1212

=10⎛

⎝ ⎜ ⎞

⎠ ⎟

n =12−12

=01⎛

⎝ ⎜ ⎞

⎠ ⎟

FK7003   210  

Page 4: Lecture’6’ Isospin’ · Isospin’introduced’based’on’the’observaon’that:’ ’ ’ ’m p = 0.9383 GeV and m n = 0.9396 GeV

The  number  of  states  in  a  mul4plet  is  given  by  2I+1

So  we  can  deduce  the  total  isospin  from  the  number  of  states  in  the  mul4plet.  

If  we  know  the  Isospin  we  can  deduce  the  number  of  states  in  the  mul4plet.  

Isospin  Mul4plets  

Assume  that  if  the  EM  interac4on  could  be  turned  off  the  masses  of  the  par4cles    inside  the  same  mul4plet  would  have  the  same  mass.  

p =1212

n =12−12

mp = 0.9383 GeV  

mn = 0.9396 GeV  

π + = 11

π 0 = 10

π− = 1−1

0.140 GeV  

0.140 GeV  

0.135 GeV  

Isospin  I3

FK7003   211  

Page 5: Lecture’6’ Isospin’ · Isospin’introduced’based’on’the’observaon’that:’ ’ ’ ’m p = 0.9383 GeV and m n = 0.9396 GeV

Invariance  of  the  strong  force  under  isospin  transforma8on  If  a  reac4on/decay  is  governed  by  the  strong  interac4on,  all  other  reac4ons/

decays  that  are  the  results  of  its  rota8on  in  isospin  space  also  exist  and  have  rate/life4me  that  can  be  deduced  from  it.  

If  one  par4cle  is  found  in  Nature  within  a  certain  mul4plet,  then  all  other  members  of  the  mul4plet  must  exist  must  exist  too,  with  very  close  mass.  

Conserva8on  of  Isospin  in  reac8ons  governed  by  the  strong    interac8on  

The  total  isospin  before  a  reac4on/decay  is  equal  to  the  isospin  afer  the  reac4on/decay  (applies  to  both  I  and  I3)  

Usefulness  of  Isospin  

FK7003   212  

Page 6: Lecture’6’ Isospin’ · Isospin’introduced’based’on’the’observaon’that:’ ’ ’ ’m p = 0.9383 GeV and m n = 0.9396 GeV

Isospin  is  only  useful  when  dealing  with  the  strong  force.  

The  theory  of  strong  force  works  very  well  for  high  energy  interac8ons    

(q2>>  1GeV)  

At  low  energy  it  is  too  strong  to  allow  the  use  of  perturba8on  theory  

 Much  more  difficult  to  compute  hadron  masses  from  first  principles  

 Or  to  compute  reac4on  rates  from  first  principles.  

Easier  to  make  predic4ons  at  very  high  energies  when  working  with  quarks  

When  working  with  hadrons,  ofen  phenomenological  models  

Isospin  is  a  powerful  tool  to  understand  par8cle  masses  and  rates  

Usefulness  of  Isospin  (2)  

FK7003   213  

Page 7: Lecture’6’ Isospin’ · Isospin’introduced’based’on’the’observaon’that:’ ’ ’ ’m p = 0.9383 GeV and m n = 0.9396 GeV

Consider  a  rota4on  in  isospin  space  around  the  y-­‐axis  

It  transforms  isospin  up  (I3=+1)                            into  isospin  down  (I3=-1):  

⇒  transforms  a  proton  into  a  neutron  and  vice-­‐versa.  

Generally  transforms    

What  is  the  Isospin  rotated  equivalent  of  reac8on:                                                                                    ?  

Rota4on  in  Isospin  State  

10⎛

⎝ ⎜ ⎞

⎠ ⎟

01⎛

⎝ ⎜ ⎞

⎠ ⎟

(a) p + p→d +π +

I I3

⇒ I −I3=>  π+  transforms  into  π -  and  vice  versa.  

π + = 11

π 0 = 10

π− = 1−1

FK7003  

p =1212

n =12−12

=>  p  transforms  into  n  and  vice  versa.  

214  

Page 8: Lecture’6’ Isospin’ · Isospin’introduced’based’on’the’observaon’that:’ ’ ’ ’m p = 0.9383 GeV and m n = 0.9396 GeV

Consider a state made of two nucleons n+p, total isospin is either I=0 or 1

What  is  the  representa4on  of  Deuteron  in  Isospin  Space?    

00 =12121212−12

−12−121212

⎝ ⎜

⎠ ⎟

I=0 Iso-­‐singlet  

00 =12pn − np( )

FK7003   215  

Page 9: Lecture’6’ Isospin’ · Isospin’introduced’based’on’the’observaon’that:’ ’ ’ ’m p = 0.9383 GeV and m n = 0.9396 GeV

Consider a state made of two nucleons n+p, total isospin is either I=0 or 1

What  is  the  representa4on  of  Deuteron  in  Isospin  Space?    

00 =12121212−12

−12−121212

⎝ ⎜

⎠ ⎟

I=0 Iso-­‐singlet  

00 =12pn − np( )

FK7003  

11 =12121212

10 =12121212−12

+12−121212

⎝ ⎜

⎠ ⎟

1−1 =12−1212−12

I=1 Iso-­‐triplet  

11 = pp

10 =12pn + np( )

1−1 = nn

216  

Page 10: Lecture’6’ Isospin’ · Isospin’introduced’based’on’the’observaon’that:’ ’ ’ ’m p = 0.9383 GeV and m n = 0.9396 GeV

Consider a state made of two nucleons n+p, total isospin is either I=0 or 1

What  is  the  representa4on  of  Deuteron  in  Isospin  Space?    

00 =12121212−12

−12−121212

⎝ ⎜

⎠ ⎟

I=0 Iso-­‐singlet  

00 =12pn − np( )

FK7003  

11 =12121212

10 =12121212−12

+12−121212

⎝ ⎜

⎠ ⎟

1−1 =12−1212−12

I=1 Iso-­‐triplet  

11 = pp

10 =12pn + np( )

1−1 = nn

If  the  deuteron  has  I=1  then  we  expect  addi4onal  pp and  nn states,    We  do  not  observe  these  states  in  Nature  =>  I=0 for  the  deuteron  

Which one represents the deuteron?

217  

Page 11: Lecture’6’ Isospin’ · Isospin’introduced’based’on’the’observaon’that:’ ’ ’ ’m p = 0.9383 GeV and m n = 0.9396 GeV

Consider  a  rota4on  in  isospin  space  around  the  y-­‐axis  

It  transforms  isospin  up  (I3=+1)                            into  isospin  down  (I3=-1):  

⇒  transforms  a  proton  into  a  neutron  and  vice-­‐versa.  

Generally  transforms    

What  is  the  Isospin  rotated  equivalent  of  reac8on:                                                                                    ?  

Rota4on  in  Isospin  State  

10⎛

⎝ ⎜ ⎞

⎠ ⎟

01⎛

⎝ ⎜ ⎞

⎠ ⎟

(a) p + p→d +π +

I I3

⇒ I −I3=>  π+  transforms  into  π -  and  vice  versa.  

π + = 11

π 0 = 10

π− = 1−1

FK7003  

p =1212

n =12−12

=>  p  transforms  into  n  and  vice  versa.  

(b) n + n→d +π−

From  the  point  of  view  these  reac8ons  (a)  and  (b)  are  the  same  =>  Same  reac8on  rates!  Well  verified  experimentally.  

218  

Page 12: Lecture’6’ Isospin’ · Isospin’introduced’based’on’the’observaon’that:’ ’ ’ ’m p = 0.9383 GeV and m n = 0.9396 GeV

Consider  the  3  reac4ons:  

1)  Verify  that  I3 is  conserved  in  each  reac4on.  2)  Es4mate  the  ra4o  of  the  rates  of  (a):(b):(c)  for  iden4cal  experimental  condi4ons,  

same  energies  momenta,  etc…,  the  only  difference  being  the  par8cles  interac8ng.  

•  Sum  I3 for  each  side  of  (a):  ½  +  ½    =  0  +  1                                                                                                  (b):  -­‐  ½  -­‐  ½  =  0  –  1  

                                                                                               (c):  ½  -­‐  ½  =  0  +  0  

•  What  happens  with  the  rates?  

Isospin  and  Reac4on  Rate  

(a)p + p→d +π +

(b)n + n→d +π−

(c)p + n→d +π 0

(LHS-­‐a)  

12121212

= 11 (RHS-­‐a)  

00 11 = 11

(LHS-­‐b)  

12−1212−12

= 1−1 (RHS-­‐b)  

00 1−1 = 1−1

(LHS-­‐c)  

121212−12

=1210 + 00[ ] (RHS-­‐c)  

00 10 = 10

FK7003   219  

Page 13: Lecture’6’ Isospin’ · Isospin’introduced’based’on’the’observaon’that:’ ’ ’ ’m p = 0.9383 GeV and m n = 0.9396 GeV

•  What  happens  with  the  rates?  

Isospin  and  Reac4on  Rate  (cont’d)  

(a)p + p→d +π +

(b)n + n→d +π−

(c)p + n→d +π 0

(LHS-­‐a)  

12121212

= 11 (RHS-­‐a)  

00 11 = 11

(LHS-­‐b)  

12−1212−12

= 1−1 (RHS-­‐b)  

00 1−1 = 1−1

(LHS-­‐c)  

121212−12

=1210 + 00[ ] (RHS-­‐c)  

00 10 = 10

Isospin  is  conserved  in  the  strong  interac4on  so  for  the  reac4on  (c)  the  transi8on  from  |00>  to  |10>  is  not  allowed.  

Only  the  ini4al  states  (|10>)  can  lead  to  the  d+π0  state  

⇒   This  yields  the  ra4o  of  amplitudes:  Ma:Mb:Mc=1:1:1/√2

⇒   Ra4os  of  rates:    |Ma|:|Mb|:|Mc|=1:1:½  

FK7003   220  

Page 14: Lecture’6’ Isospin’ · Isospin’introduced’based’on’the’observaon’that:’ ’ ’ ’m p = 0.9383 GeV and m n = 0.9396 GeV

Non  Conserva4on  of  Isospin  with  the  EM  and  Weak  Interac4ons  

u

u

π0  

γ  

γ  

EM  Decay  of  π0

Initial state: |I I3 >=|1 0>

Final state: |I I3 >=|0 0>  

Weak  Decay  of  Λ

Initial state: |I I3 >=|0 0>

Final state: |I I3 >=| ½ ½ >+ | 1 -1>  

The  EM  and  Weak  Interac4ons  do  not  conserve  Isospin.  

The  W±,  Z0  and  γ  and  the  leptons  are  assigned  Isospin  state=  |00>

FK7003   221  

Page 15: Lecture’6’ Isospin’ · Isospin’introduced’based’on’the’observaon’that:’ ’ ’ ’m p = 0.9383 GeV and m n = 0.9396 GeV

The  ini4al  symmetry  between  the  proton  and  the  neutron  is  related  to  their  quark  

contents  and  the  similar  masses  between  the  u  and  d  quarks.  

The  Isospin  states  for  the  quarks  are:  

For  the  an4-­‐quarks:  

And  the  other  quarks  carry  no  isospin:  |00>  

Quarks  and  Isospin  

u ≡ 1212

d ≡ 12−12

u ≡ 12−12

d ≡ − 1212

The  (-­‐)  sign  in  front  of  d  will  not  ma_er    for  us  in  this  course  

FK7003   222  

Page 16: Lecture’6’ Isospin’ · Isospin’introduced’based’on’the’observaon’that:’ ’ ’ ’m p = 0.9383 GeV and m n = 0.9396 GeV

Let’s  reformulate  some  Isospin  states  from  the  quarks:  

Quarks  and  Isospin  (2)  

π + = ud = −12121212

= −11

π 0 =12(uu − dd) = 10 =

12121212−12

+12−121212

⎝ ⎜

⎠ ⎟

π− = du =12−1212−12

= 1−1 π0   π+  π -  I3  

3  pions  with  approximately  the  same  mass  of  140  MeV  

12(uu + dd) = 00 =

12121212−12

−12−121212

⎝ ⎜

⎠ ⎟

What  about  the  following  state:  

This  corresponds  to  another  par4cle  with  I3=0  with  mass  548  MeV  and  Strangeness=0      η

FK7003   223  

Page 17: Lecture’6’ Isospin’ · Isospin’introduced’based’on’the’observaon’that:’ ’ ’ ’m p = 0.9383 GeV and m n = 0.9396 GeV

Not  a  stupid  ques4on!  

Think  in  terms  of  quarks:  mu≈3  MeV  and  md≈5  MeV  to  be  compared  with  the  masses    

of    :                                                                    m  ≈  135-­‐140  MeV  

The  quark  masses  are  essen8ally  neglible  compared  to  the  pion  mass  itself.  

The  pion  masses  are  dominated  by  binding  energy  of  the  quarks  and  quark  mo8on  

If  mu> 1 GeV >> md  for  example  then  the  Isospin  symmetry  would  break  down.  

The  proton  (uud)  and  (udd)  would  have  very  different  masses  and  the  rates  of:  

would  be  very  different.  

Isospin  symmetry  is  essen4ally  a  symmetry  of    interchange  of  u  and  d  quarks.  

Why  does  Isospin  work?  

π0   π+  π -  

π + = ud

π 0 =12(uu − dd)

π− = du

(a)p + p→d +π +

(b)n + n→d +π−

FK7003   224  

Page 18: Lecture’6’ Isospin’ · Isospin’introduced’based’on’the’observaon’that:’ ’ ’ ’m p = 0.9383 GeV and m n = 0.9396 GeV

Empirically  we  observe  that:  

where  Q  is  the  charge,  I3  is  the  3rd  component  of  the  Isospin,  B  Baryon  number,  S, C, B  are  the  Strangeness,  Charmness  and  Beauty  of  the  hadron.  

Gell-­‐Mann-­‐Nishijima  Formula  

Q = I3 +12(B + S +C + B)

The Meson Nonet The Baryon Octet

Stra

ngen

ess

FK7003   225  

Page 19: Lecture’6’ Isospin’ · Isospin’introduced’based’on’the’observaon’that:’ ’ ’ ’m p = 0.9383 GeV and m n = 0.9396 GeV

•  Isospin  is  a  good  symmetry  of  the  strong  interac4on  –  Hadron  masses,  reac4on/decay  rates  respect  the  Isospin  symmetry  –  The  strong  interac4on  is  invariant  under  SU(2)  transforma4ons  in  

isospin  space.  

–  This  is  due  to  the  fact  that  the  mass  difference  between  u  and  d  quarks  is  negligible  compared  to  the  binding  energy  of  all  hadrons.  

•  The  other  quarks  are  much  heavier    –  Observables  are  no  longer  invariant  under  the  interchange  with  a  u  or  

a  d  quark.  

–  S4ll  SU(3)  symmetry  can  be  useful  to  enumerate  the  right  list  of  expected  hadrons  

–  The  strong  interac4on  is  not  invariant  under  u,d,s  SU(3)  transforma4ons  

Summary  

FK7003   226