Lecture March8

Embed Size (px)

Citation preview

  • 7/24/2019 Lecture March8

    1/28

    CHM695March 9

  • 7/24/2019 Lecture March8

    2/28

    s-p hybridization on Be:

    H HBe

    H H

    Be

    Homework 1:Work out the bonding in CH4 based on similar

    analysis using HF/STO-3G basis.

    a) identify non-bonding MOsb) identify canonical MOsc) obtain, canonincal to localized MOsd) Based on that, show that C is sp3hybridised.

    Homework 2: Do the same for acetylene

  • 7/24/2019 Lecture March8

    3/28

    If you do a similar calculation in ethene,

    localisation yields

    Banana bonds

    C C C C

    CH2=CH2

    instead of 1 pi and 1 sigma bonds

    Similar ly, there are molecules, where3-centre 2-e bonds

    are formed!

    e.g. B2H6

  • 7/24/2019 Lecture March8

    4/28

    Natural Bonding Orbitals

    (NBO)

    A self consistent procedure to obtain localised

    orbitals (called natural orbitals) from thewavefunction (either HF or KS-DFT)

    http://www.cup.uni-muenchen.de/ch/compchem/pop/nbo2.html

    Workout example using Gaussian:

    Read more:Reed, Curtiss and Weinhold, Chem. Rev. (1988) 88, 899

  • 7/24/2019 Lecture March8

    5/28

    (r1, r01) = nZ (1, 2,

    , n) (10, 2,

    , n)d2d3

    dn

    one particle density matrix

    natural orbitals (Loewdin), are eigenfunctions

    i = ii

    ()ij =Z

    d1d0

    1

    (1)j(1

    0

    )

    matrix {i}is AO (basis)

  • 7/24/2019 Lecture March8

    6/28

    Basis on

    atom A

    Basis on atom

    B

    Find eigenvectors of

    each block

    (A)

    i

    eigenvectors of eachblocks are not

    orthogonal to each other.

    Apply orthogonalization

    S1/2i = i

  • 7/24/2019 Lecture March8

    7/28

    sigma bonds: bonding

    sigma bonds: antibonding

  • 7/24/2019 Lecture March8

    8/28

    NBO analysis with

    Gaussian: First Step

    %Chk=ch4.chk#PHF/3-21GPop=(NBORead,SaveNLMOs)

    Methane:NMOAnalysis;writeNLMOstoCheckpointfile

    01CH1hcH1hc2hchH1hc2hch3dih0H1hc2hch3-dih0

    hc1.08618hch109.47122dih120.

    $NBOAONLMO$END

  • 7/24/2019 Lecture March8

    9/28

    NBO analysis with

    Gaussian: Second Step

    %Chk=ch4.chk#PHF/3-21GGuess=(Read,Only)

    Methane:NMOAnalysis;writeNLMOstoCheckpointfile

    01

    Use molden to read the output file of the above run

  • 7/24/2019 Lecture March8

    10/28

    Module 2Potential Energy Surface

  • 7/24/2019 Lecture March8

    11/28

    H

    r(HH)=3!

    r(HH)

    -13.6 eV

    U(r)equilibrium distance

    (1.06!)

    1!g1

    r(HH)=1.06!

    H

    e

    1!g1 is the electronic configurationof the electronic ground state of H2+

    -16.39 eV

    H + H+

    1!u1

    there are bound states

  • 7/24/2019 Lecture March8

    12/28

    FDD DD F

    transition state

    there are bound statesperpendicular to the

    minimum energy

    pathways

  • 7/24/2019 Lecture March8

    13/28

    Complex PES for large molecules!

    Need not obtain the full PES: interestingparts are minima and maxima

    I = 1, ,N

    Multiple minima/maxima could present in PES

    maximum

    minimum

    2E

    RIRJ< 0

    2E

    RIRJ> 0

    E

    RI= 0

    E

    RI= 0

  • 7/24/2019 Lecture March8

    14/28

    Example of H2

    stationary point on the PES

    E(x1,y1,z1, x2,y2,z2) =E(q)

    E

    x1=

    E

    y1= =

    E

    z2= 0

  • 7/24/2019 Lecture March8

    15/28

    Usually, in programs like Gaussian, this ischecked by

    (hartree/bohr)max

    E

    qi

    < 1 10

    4i=1,,N

    vuut

    1

    3N

    "3N

    i

    E

    qi 2#< 1 10

    5

    parameters; can beadjusted by input

    keywords

    RMS of

    grad.

    2 2 2

  • 7/24/2019 Lecture March8

    16/28

    Hessian

    Di!cult to judge if non-diagonal elements are non-zero!

    h =

    2E

    l21

    0 0

    0 2E

    l22

    0

    ... ...

    . . . ...

    0 2E

    l

    2

    6

    H =

    2Ex2

    1

    2Ex1y1

    2Ex1z2

    2Ey1x1

    2Ey2

    1

    2Ey1z2

    ... ... . . . ...

    2Ez2x1

    2E

    z22

    eigenvalue

    eigenvector

    (normal coordinates)

    h = LHL

  • 7/24/2019 Lecture March8

    17/28

    2E

    l21

    =

    2E

    l22

    = =

    2E

    l25

    = 0

    2E

    l26

    > 0

    (asymptote)

    (minimum)

    At equilibrium

  • 7/24/2019 Lecture March8

    18/28

    Eigenvector matrix elements:

    (L)ij = lj

    qj!

    2E

    l2

    i! = qj

    li

    2E

    qjqk!qk

    lias,

    Thus, a normal coordinateis

    i =

    3N

    j

    liqj

    !qj

  • 7/24/2019 Lecture March8

    19/28

    ithnormal mode is displayed by drawing arrows (of

    arbitary length) on each atom (j ) in the directions

    lixj

    !,

    liyj

    !,

    lizj

    !

    l1 l2 l3

    l4 l5

    l6

  • 7/24/2019 Lecture March8

    20/28

    Connection to frequency:

    2E

    l26

    = k

    i =1

    2

    ski

    Imaginary freq: 2E

    l2i

    < 0

    if molecule is not having a stable structure; motion along will

    decrease energy.i

    3N-5 vibrational

    modes if planar

    3N-6 vibrationalmodes if non-planarvibrational

    mode

  • 7/24/2019 Lecture March8

    21/28

    Frequency Calculation Using Gaussian: H2example

    %Chk=h2.chk#PHF/3-21GFreqOpt=Tight

    FrequencyCalculationofH2

    01

    HH1hh

    hh0.8

    optimize the

    structure

    keyword to

    do freq.

    calculation

    visualize vibrations using molden:http://www.cmbi.ru.nl/molden/vibration.html

    visualize normal modes using gaussview:

    http://www.gaussian.com/g_tech/gv5ref/results.htm

    http://www.gaussian.com/g_tech/gv5ref/results.htmhttp://www.cmbi.ru.nl/molden/vibration.html
  • 7/24/2019 Lecture March8

    22/28

    FDD DD F

    DD F

    For TS, frequency is complex along the reaction coordinate.

    Along the all other modes, freq. is real

    TS

  • 7/24/2019 Lecture March8

    23/28

    Planar Ammonia at HF/STO-3G level:Compute the frequencies, and characterise the normal

    modes and the ir frequencies.

    Explain why one of the normal modes have imaginaryfrequency.

    What does motion along the normal mode indicate?

    Hint: create an z-matrix for planar

    ammonia.

    Use z-matrix input and optimize the

    structure of planar ammonia. By

    specifying the value of an internalcoordinate within the z-mat will

    constrain the structure to that value.

    You may fix angles (120deg.) and

    t o r s i o n s ( 1 8 0 d e g . ) d u r i n g

    optimisation.

    N

    N

    HH

    dNHdNH

    120

    dNH

    120120

    torsion H-N-H-H=180 deg.

  • 7/24/2019 Lecture March8

    24/28

    Structure Optimization

    q

    E

    q0

    E(q) =

    1

    2k(q

    q0)2

    E(qn) = 1

    2k(qn q0)

    2

    dE

    dq

    q=qn

    =k(qn q0)

    qn

    q1

    q2

    gradient (as arrows in the lef t figure)

    has the direction of greatest rate of increase of E

    q0 = qn 1

    k

    dEdq

    q=qn

  • 7/24/2019 Lecture March8

    25/28

    q

    E

    q0qn

    But, kis not known!

    q0 = qn 1

    k

    dE

    dq

    q=qn

    qn+1 = qn c

    dE

    dq

    q=qn

    scalingparameter

    q

    E

    q0qn

    Steepest descent method(line search)

  • 7/24/2019 Lecture March8

    26/28

    q

    E

    q0qn

    qn+1 = q

    nd

    2E

    dq21

    q=qndEdqq=qn

    q

    E

    quadratic

    quadratic assumption

    qn+1 = qn cd2E

    dq2

    1

    q=qndE

    dqq=qn

    q

    E

  • 7/24/2019 Lecture March8

    27/28

    qn+1 = qn cH1n gn

    In multi-dimensions:

    Hessian gradient

    BFGS Method (Quasi-Newton methods): Here H isnot computed explicitly!Make an initial guess of H

    Keeps on improving this by appropriate updatebased on gradients.

    Based on the change in energy, one can on-the-fly compute

    appropriate c

    BFGS is also usually done together with line-search method to

    improve the efficiency

    Newton-Raphson

    Hessian computation: usually numerical but is

    computationally expensive!

  • 7/24/2019 Lecture March8

    28/28

    E

    q

    Local minima and global minima on PES can occur like above.

    Standard optimizations algorithms find the local minimum,

    which may not be the true global minimum. Thus different

    starting structures may be experimented.