76
beamer-tu-log Variance Covariance Correlation coefļ¬cient Lecture 9: Variance, Covariance, Correlation Coefļ¬cient KateĖ‡ rina Sta Ė‡ nkovĆ” Statistics (MAT1003) May 2, 2012

Lecture 9: Variance, Covariance, Correlation -

  • Upload
    others

  • View
    25

  • Download
    0

Embed Size (px)

Citation preview

beamer-tu-logo

Variance Covariance Correlation coefficient

Lecture 9: Variance, Covariance,Correlation Coefficient

Katerina StankovĆ”

Statistics (MAT1003)

May 2, 2012

beamer-tu-logo

Variance Covariance Correlation coefficient

Outline

1 VarianceDefinitionStandard DeviationVariance of linear combination of RV

2 CovarianceMeaning & DefinitionExamples

3 Correlation coefficient

book: Sections 4.2, 4.3

beamer-tu-logo

Variance Covariance Correlation coefficient

And now . . .

1 VarianceDefinitionStandard DeviationVariance of linear combination of RV

2 CovarianceMeaning & DefinitionExamples

3 Correlation coefficient

beamer-tu-logo

Variance Covariance Correlation coefficient

Definition

VarianceLet X be an RV with Āµx = E(X ). Then the variance of X isgiven by

V (X ) = E{(X āˆ’ ĀµX )2}

Notation: V (X ), Var(X ), Ļƒ2, Ļƒ2xļøø ļø·ļø· ļøø

book

Alternative formula

V (X ) = E{(X āˆ’ ĀµX )2} = E(X 2 āˆ’ 2ĀµX X + Āµ2

X )

= E(X 2)āˆ’ 2ĀµX E(X ) + Āµ2X = E(X 2)āˆ’ 2Āµ2

X + Āµ2X

= E(X 2)āˆ’ Āµ2X

ObservationVariance is always nonnegative!

beamer-tu-logo

Variance Covariance Correlation coefficient

Definition

VarianceLet X be an RV with Āµx = E(X ). Then the variance of X isgiven by

V (X ) = E{(X āˆ’ ĀµX )2}

Notation: V (X ), Var(X ), Ļƒ2, Ļƒ2xļøø ļø·ļø· ļøø

book

Alternative formula

V (X ) = E{(X āˆ’ ĀµX )2} = E(X 2 āˆ’ 2ĀµX X + Āµ2

X )

= E(X 2)āˆ’ 2ĀµX E(X ) + Āµ2X = E(X 2)āˆ’ 2Āµ2

X + Āµ2X

= E(X 2)āˆ’ Āµ2X

ObservationVariance is always nonnegative!

beamer-tu-logo

Variance Covariance Correlation coefficient

Definition

VarianceLet X be an RV with Āµx = E(X ). Then the variance of X isgiven by

V (X ) = E{(X āˆ’ ĀµX )2}

Notation: V (X ), Var(X ), Ļƒ2, Ļƒ2xļøø ļø·ļø· ļøø

book

Alternative formula

V (X ) = E{(X āˆ’ ĀµX )2} = E(X 2 āˆ’ 2ĀµX X + Āµ2

X )

= E(X 2)āˆ’ 2ĀµX E(X ) + Āµ2X = E(X 2)āˆ’ 2Āµ2

X + Āµ2X

= E(X 2)āˆ’ Āµ2X

ObservationVariance is always nonnegative!

beamer-tu-logo

Variance Covariance Correlation coefficient

Definition

VarianceLet X be an RV with Āµx = E(X ). Then the variance of X isgiven by

V (X ) = E{(X āˆ’ ĀµX )2}

Notation: V (X ), Var(X ), Ļƒ2, Ļƒ2xļøø ļø·ļø· ļøø

book

Alternative formula

V (X ) = E{(X āˆ’ ĀµX )2} = E(X 2 āˆ’ 2ĀµX X + Āµ2

X )

= E(X 2)āˆ’ 2ĀµX E(X ) + Āµ2X = E(X 2)āˆ’ 2Āµ2

X + Āµ2X

= E(X 2)āˆ’ Āµ2X

ObservationVariance is always nonnegative!

beamer-tu-logo

Variance Covariance Correlation coefficient

Standard Deviation

Standard deviation ĻƒX

Square root of V (X ), i.e., ĻƒX = +āˆš

V (X ) = +āˆš

E(X 2)āˆ’ Āµ2Xļøø ļø·ļø· ļøø

V (X)

Example 1X : ] eyes on a die

V (X ) = E(X 2)āˆ’ Āµ2X =

916āˆ’(

72

)2

=3512

Standard deviation: ĻƒX =āˆš

3512

Example 2n : a real number

V (n) = E(n2)āˆ’ Āµ2n = n2 āˆ’ n2 = 0

,

Ļƒn = 0

beamer-tu-logo

Variance Covariance Correlation coefficient

Standard Deviation

Standard deviation ĻƒX

Square root of V (X ), i.e., ĻƒX = +āˆš

V (X ) = +āˆš

E(X 2)āˆ’ Āµ2Xļøø ļø·ļø· ļøø

V (X)

Example 1X : ] eyes on a die

V (X ) = E(X 2)āˆ’ Āµ2X =

916āˆ’(

72

)2

=3512

Standard deviation: ĻƒX =āˆš

3512

Example 2n : a real number

V (n) = E(n2)āˆ’ Āµ2n = n2 āˆ’ n2 = 0

,

Ļƒn = 0

beamer-tu-logo

Variance Covariance Correlation coefficient

Standard Deviation

Standard deviation ĻƒX

Square root of V (X ), i.e., ĻƒX = +āˆš

V (X ) = +āˆš

E(X 2)āˆ’ Āµ2Xļøø ļø·ļø· ļøø

V (X)

Example 1X : ] eyes on a die

V (X ) = E(X 2)āˆ’ Āµ2X =

916āˆ’(

72

)2

=3512

Standard deviation: ĻƒX =āˆš

3512

Example 2n : a real number

V (n) = E(n2)āˆ’ Āµ2n = n2 āˆ’ n2 = 0

,

Ļƒn = 0

beamer-tu-logo

Variance Covariance Correlation coefficient

Standard Deviation

Standard deviation ĻƒX

Square root of V (X ), i.e., ĻƒX = +āˆš

V (X ) = +āˆš

E(X 2)āˆ’ Āµ2Xļøø ļø·ļø· ļøø

V (X)

Example 1X : ] eyes on a die

V (X ) = E(X 2)āˆ’ Āµ2X =

916āˆ’(

72

)2

=3512

Standard deviation: ĻƒX =āˆš

3512

Example 2n : a real number

V (n) = E(n2)āˆ’ Āµ2n = n2 āˆ’ n2 = 0

,

Ļƒn = 0

beamer-tu-logo

Variance Covariance Correlation coefficient

Standard Deviation

Standard deviation ĻƒX

Square root of V (X ), i.e., ĻƒX = +āˆš

V (X ) = +āˆš

E(X 2)āˆ’ Āµ2Xļøø ļø·ļø· ļøø

V (X)

Example 1X : ] eyes on a die

V (X ) = E(X 2)āˆ’ Āµ2X =

916āˆ’(

72

)2

=3512

Standard deviation: ĻƒX =āˆš

3512

Example 2n : a real number

V (n) = E(n2)āˆ’ Āµ2n = n2 āˆ’ n2 = 0

,

Ļƒn = 0

beamer-tu-logo

Variance Covariance Correlation coefficient

Standard Deviation

Standard deviation ĻƒX

Square root of V (X ), i.e., ĻƒX = +āˆš

V (X ) = +āˆš

E(X 2)āˆ’ Āµ2Xļøø ļø·ļø· ļøø

V (X)

Example 1X : ] eyes on a die

V (X ) = E(X 2)āˆ’ Āµ2X =

916āˆ’(

72

)2

=3512

Standard deviation: ĻƒX =āˆš

3512

Example 2n : a real number

V (n) = E(n2)āˆ’ Āµ2n = n2 āˆ’ n2 = 0,

Ļƒn = 0

beamer-tu-logo

Variance Covariance Correlation coefficient

Standard Deviation

Standard deviation ĻƒX

Square root of V (X ), i.e., ĻƒX = +āˆš

V (X ) = +āˆš

E(X 2)āˆ’ Āµ2Xļøø ļø·ļø· ļøø

V (X)

Example 1X : ] eyes on a die

V (X ) = E(X 2)āˆ’ Āµ2X =

916āˆ’(

72

)2

=3512

Standard deviation: ĻƒX =āˆš

3512

Example 2n : a real number

V (n) = E(n2)āˆ’ Āµ2n = n2 āˆ’ n2 = 0, Ļƒn = 0

beamer-tu-logo

Variance Covariance Correlation coefficient

Standard Deviation

Variance & standard deviation

V (X )= E{(X āˆ’ ĀµX )2} = E(X 2)āˆ’ Āµ2

X , ĻƒX= +āˆš

V (X )

Example 3Let X be a continuous random variable with PDF

g(x) =103

x āˆ’ 103

x4, 0 < x < 1 (0 elsewhere)

E(X ) =

āˆ« 1

0x g(x)dx =

āˆ« 1

0x(

103

x āˆ’ 103

x4)

dx =59

E(X 2) =

āˆ« 1

0x2 g(x)dx =

āˆ« 1

0x2(

103

x āˆ’ 103

x4)

dx =5

14

V (X ) =

E(X 2)āˆ’ (E(X ))2 =5

14āˆ’(

59

)2

=55

1134

, ĻƒX =

āˆš55

1134

beamer-tu-logo

Variance Covariance Correlation coefficient

Standard Deviation

Variance & standard deviation

V (X )= E{(X āˆ’ ĀµX )2} = E(X 2)āˆ’ Āµ2

X , ĻƒX= +āˆš

V (X )

Example 3Let X be a continuous random variable with PDF

g(x) =103

x āˆ’ 103

x4, 0 < x < 1 (0 elsewhere)

E(X ) =

āˆ« 1

0x g(x)dx =

āˆ« 1

0x(

103

x āˆ’ 103

x4)

dx =59

E(X 2) =

āˆ« 1

0x2 g(x)dx =

āˆ« 1

0x2(

103

x āˆ’ 103

x4)

dx =5

14

V (X ) =

E(X 2)āˆ’ (E(X ))2 =5

14āˆ’(

59

)2

=55

1134

, ĻƒX =

āˆš55

1134

beamer-tu-logo

Variance Covariance Correlation coefficient

Standard Deviation

Variance & standard deviation

V (X )= E{(X āˆ’ ĀµX )2} = E(X 2)āˆ’ Āµ2

X , ĻƒX= +āˆš

V (X )

Example 3Let X be a continuous random variable with PDF

g(x) =103

x āˆ’ 103

x4, 0 < x < 1 (0 elsewhere)

E(X ) =

āˆ« 1

0x g(x)dx

=

āˆ« 1

0x(

103

x āˆ’ 103

x4)

dx =59

E(X 2) =

āˆ« 1

0x2 g(x)dx =

āˆ« 1

0x2(

103

x āˆ’ 103

x4)

dx =5

14

V (X ) =

E(X 2)āˆ’ (E(X ))2 =5

14āˆ’(

59

)2

=55

1134

, ĻƒX =

āˆš55

1134

beamer-tu-logo

Variance Covariance Correlation coefficient

Standard Deviation

Variance & standard deviation

V (X )= E{(X āˆ’ ĀµX )2} = E(X 2)āˆ’ Āµ2

X , ĻƒX= +āˆš

V (X )

Example 3Let X be a continuous random variable with PDF

g(x) =103

x āˆ’ 103

x4, 0 < x < 1 (0 elsewhere)

E(X ) =

āˆ« 1

0x g(x)dx =

āˆ« 1

0x(

103

x āˆ’ 103

x4)

dx

=59

E(X 2) =

āˆ« 1

0x2 g(x)dx =

āˆ« 1

0x2(

103

x āˆ’ 103

x4)

dx =5

14

V (X ) =

E(X 2)āˆ’ (E(X ))2 =5

14āˆ’(

59

)2

=55

1134

, ĻƒX =

āˆš55

1134

beamer-tu-logo

Variance Covariance Correlation coefficient

Standard Deviation

Variance & standard deviation

V (X )= E{(X āˆ’ ĀµX )2} = E(X 2)āˆ’ Āµ2

X , ĻƒX= +āˆš

V (X )

Example 3Let X be a continuous random variable with PDF

g(x) =103

x āˆ’ 103

x4, 0 < x < 1 (0 elsewhere)

E(X ) =

āˆ« 1

0x g(x)dx =

āˆ« 1

0x(

103

x āˆ’ 103

x4)

dx =59

E(X 2) =

āˆ« 1

0x2 g(x)dx =

āˆ« 1

0x2(

103

x āˆ’ 103

x4)

dx =5

14

V (X ) =

E(X 2)āˆ’ (E(X ))2 =5

14āˆ’(

59

)2

=55

1134

, ĻƒX =

āˆš55

1134

beamer-tu-logo

Variance Covariance Correlation coefficient

Standard Deviation

Variance & standard deviation

V (X )= E{(X āˆ’ ĀµX )2} = E(X 2)āˆ’ Āµ2

X , ĻƒX= +āˆš

V (X )

Example 3Let X be a continuous random variable with PDF

g(x) =103

x āˆ’ 103

x4, 0 < x < 1 (0 elsewhere)

E(X ) =

āˆ« 1

0x g(x)dx =

āˆ« 1

0x(

103

x āˆ’ 103

x4)

dx =59

E(X 2) =

āˆ« 1

0x2 g(x)dx

=

āˆ« 1

0x2(

103

x āˆ’ 103

x4)

dx =5

14

V (X ) =

E(X 2)āˆ’ (E(X ))2 =5

14āˆ’(

59

)2

=55

1134

, ĻƒX =

āˆš55

1134

beamer-tu-logo

Variance Covariance Correlation coefficient

Standard Deviation

Variance & standard deviation

V (X )= E{(X āˆ’ ĀµX )2} = E(X 2)āˆ’ Āµ2

X , ĻƒX= +āˆš

V (X )

Example 3Let X be a continuous random variable with PDF

g(x) =103

x āˆ’ 103

x4, 0 < x < 1 (0 elsewhere)

E(X ) =

āˆ« 1

0x g(x)dx =

āˆ« 1

0x(

103

x āˆ’ 103

x4)

dx =59

E(X 2) =

āˆ« 1

0x2 g(x)dx =

āˆ« 1

0x2(

103

x āˆ’ 103

x4)

dx

=5

14

V (X ) =

E(X 2)āˆ’ (E(X ))2 =5

14āˆ’(

59

)2

=55

1134

, ĻƒX =

āˆš55

1134

beamer-tu-logo

Variance Covariance Correlation coefficient

Standard Deviation

Variance & standard deviation

V (X )= E{(X āˆ’ ĀµX )2} = E(X 2)āˆ’ Āµ2

X , ĻƒX= +āˆš

V (X )

Example 3Let X be a continuous random variable with PDF

g(x) =103

x āˆ’ 103

x4, 0 < x < 1 (0 elsewhere)

E(X ) =

āˆ« 1

0x g(x)dx =

āˆ« 1

0x(

103

x āˆ’ 103

x4)

dx =59

E(X 2) =

āˆ« 1

0x2 g(x)dx =

āˆ« 1

0x2(

103

x āˆ’ 103

x4)

dx =5

14

V (X ) =

E(X 2)āˆ’ (E(X ))2 =5

14āˆ’(

59

)2

=55

1134

, ĻƒX =

āˆš55

1134

beamer-tu-logo

Variance Covariance Correlation coefficient

Standard Deviation

Variance & standard deviation

V (X )= E{(X āˆ’ ĀµX )2} = E(X 2)āˆ’ Āµ2

X , ĻƒX= +āˆš

V (X )

Example 3Let X be a continuous random variable with PDF

g(x) =103

x āˆ’ 103

x4, 0 < x < 1 (0 elsewhere)

E(X ) =

āˆ« 1

0x g(x)dx =

āˆ« 1

0x(

103

x āˆ’ 103

x4)

dx =59

E(X 2) =

āˆ« 1

0x2 g(x)dx =

āˆ« 1

0x2(

103

x āˆ’ 103

x4)

dx =5

14

V (X ) = E(X 2)āˆ’ (E(X ))2

=5

14āˆ’(

59

)2

=55

1134

, ĻƒX =

āˆš55

1134

beamer-tu-logo

Variance Covariance Correlation coefficient

Standard Deviation

Variance & standard deviation

V (X )= E{(X āˆ’ ĀµX )2} = E(X 2)āˆ’ Āµ2

X , ĻƒX= +āˆš

V (X )

Example 3Let X be a continuous random variable with PDF

g(x) =103

x āˆ’ 103

x4, 0 < x < 1 (0 elsewhere)

E(X ) =

āˆ« 1

0x g(x)dx =

āˆ« 1

0x(

103

x āˆ’ 103

x4)

dx =59

E(X 2) =

āˆ« 1

0x2 g(x)dx =

āˆ« 1

0x2(

103

x āˆ’ 103

x4)

dx =5

14

V (X ) = E(X 2)āˆ’ (E(X ))2 =5

14āˆ’(

59

)2

=55

1134

, ĻƒX =

āˆš55

1134

beamer-tu-logo

Variance Covariance Correlation coefficient

Standard Deviation

Variance & standard deviation

V (X )= E{(X āˆ’ ĀµX )2} = E(X 2)āˆ’ Āµ2

X , ĻƒX= +āˆš

V (X )

Example 3Let X be a continuous random variable with PDF

g(x) =103

x āˆ’ 103

x4, 0 < x < 1 (0 elsewhere)

E(X ) =

āˆ« 1

0x g(x)dx =

āˆ« 1

0x(

103

x āˆ’ 103

x4)

dx =59

E(X 2) =

āˆ« 1

0x2 g(x)dx =

āˆ« 1

0x2(

103

x āˆ’ 103

x4)

dx =5

14

V (X ) = E(X 2)āˆ’ (E(X ))2 =5

14āˆ’(

59

)2

=55

1134, ĻƒX =

āˆš55

1134

beamer-tu-logo

Variance Covariance Correlation coefficient

Standard Deviation

Variance & standard deviation

V (X )= E{(X āˆ’ ĀµX )2} = E(X 2)āˆ’ Āµ2

X , ĻƒX= +āˆš

V (X )

Example 3Let X be a continuous random variable with PDF

g(x) =103

x āˆ’ 103

x4, 0 < x < 1 (0 elsewhere)

E(X ) =

āˆ« 1

0x g(x)dx =

āˆ« 1

0x(

103

x āˆ’ 103

x4)

dx =59

E(X 2) =

āˆ« 1

0x2 g(x)dx =

āˆ« 1

0x2(

103

x āˆ’ 103

x4)

dx =5

14

V (X ) = E(X 2)āˆ’ (E(X ))2 =5

14āˆ’(

59

)2

=55

1134, ĻƒX =

āˆš55

1134

beamer-tu-logo

Variance Covariance Correlation coefficient

Standard Deviation

Variance & standard deviation

V (X )= E{(X āˆ’ ĀµX )2} = E(X 2)āˆ’ Āµ2

X

ĻƒX= +āˆš

V (X )

Example 4Let

h(y) = 5 y4, 0 < y < 1 (0 elsewhere)

E(Y ) =

āˆ« 1

0y h(y)dy =

āˆ« 1

05 y5 dy =

[56

y6]1

y=0=

56

E(Y 2) =

āˆ« 1

0y2 h(y)dy =

āˆ« 1

05 y6 dy =

57

V (Y ) = E(Y 2)āˆ’ (E(Y ))2 =57āˆ’(

56

)2

=5

252

,

ĻƒY =

āˆš5

252

beamer-tu-logo

Variance Covariance Correlation coefficient

Standard Deviation

Variance & standard deviation

V (X )= E{(X āˆ’ ĀµX )2} = E(X 2)āˆ’ Āµ2

X

ĻƒX= +āˆš

V (X )

Example 4Let

h(y) = 5 y4, 0 < y < 1 (0 elsewhere)

E(Y ) =

āˆ« 1

0y h(y)dy =

āˆ« 1

05 y5 dy =

[56

y6]1

y=0=

56

E(Y 2) =

āˆ« 1

0y2 h(y)dy =

āˆ« 1

05 y6 dy =

57

V (Y ) = E(Y 2)āˆ’ (E(Y ))2 =57āˆ’(

56

)2

=5

252

,

ĻƒY =

āˆš5

252

beamer-tu-logo

Variance Covariance Correlation coefficient

Standard Deviation

Variance & standard deviation

V (X )= E{(X āˆ’ ĀµX )2} = E(X 2)āˆ’ Āµ2

X

ĻƒX= +āˆš

V (X )

Example 4Let

h(y) = 5 y4, 0 < y < 1 (0 elsewhere)

E(Y ) =

āˆ« 1

0y h(y)dy =

āˆ« 1

05 y5 dy =

[56

y6]1

y=0=

56

E(Y 2) =

āˆ« 1

0y2 h(y)dy =

āˆ« 1

05 y6 dy =

57

V (Y ) =

E(Y 2)āˆ’ (E(Y ))2 =57āˆ’(

56

)2

=5

252

, ĻƒY =

āˆš5

252

beamer-tu-logo

Variance Covariance Correlation coefficient

Standard Deviation

Variance & standard deviation

V (X )= E{(X āˆ’ ĀµX )2} = E(X 2)āˆ’ Āµ2

X

ĻƒX= +āˆš

V (X )

Example 4Let

h(y) = 5 y4, 0 < y < 1 (0 elsewhere)

E(Y ) =

āˆ« 1

0y h(y)dy

=

āˆ« 1

05 y5 dy =

[56

y6]1

y=0=

56

E(Y 2) =

āˆ« 1

0y2 h(y)dy =

āˆ« 1

05 y6 dy =

57

V (Y ) =

E(Y 2)āˆ’ (E(Y ))2 =57āˆ’(

56

)2

=5

252

, ĻƒY =

āˆš5

252

beamer-tu-logo

Variance Covariance Correlation coefficient

Standard Deviation

Variance & standard deviation

V (X )= E{(X āˆ’ ĀµX )2} = E(X 2)āˆ’ Āµ2

X

ĻƒX= +āˆš

V (X )

Example 4Let

h(y) = 5 y4, 0 < y < 1 (0 elsewhere)

E(Y ) =

āˆ« 1

0y h(y)dy =

āˆ« 1

05 y5 dy

=

[56

y6]1

y=0=

56

E(Y 2) =

āˆ« 1

0y2 h(y)dy =

āˆ« 1

05 y6 dy =

57

V (Y ) =

E(Y 2)āˆ’ (E(Y ))2 =57āˆ’(

56

)2

=5

252

, ĻƒY =

āˆš5

252

beamer-tu-logo

Variance Covariance Correlation coefficient

Standard Deviation

Variance & standard deviation

V (X )= E{(X āˆ’ ĀµX )2} = E(X 2)āˆ’ Āµ2

X

ĻƒX= +āˆš

V (X )

Example 4Let

h(y) = 5 y4, 0 < y < 1 (0 elsewhere)

E(Y ) =

āˆ« 1

0y h(y)dy =

āˆ« 1

05 y5 dy =

[56

y6]1

y=0

=56

E(Y 2) =

āˆ« 1

0y2 h(y)dy =

āˆ« 1

05 y6 dy =

57

V (Y ) =

E(Y 2)āˆ’ (E(Y ))2 =57āˆ’(

56

)2

=5

252

, ĻƒY =

āˆš5

252

beamer-tu-logo

Variance Covariance Correlation coefficient

Standard Deviation

Variance & standard deviation

V (X )= E{(X āˆ’ ĀµX )2} = E(X 2)āˆ’ Āµ2

X

ĻƒX= +āˆš

V (X )

Example 4Let

h(y) = 5 y4, 0 < y < 1 (0 elsewhere)

E(Y ) =

āˆ« 1

0y h(y)dy =

āˆ« 1

05 y5 dy =

[56

y6]1

y=0=

56

E(Y 2) =

āˆ« 1

0y2 h(y)dy =

āˆ« 1

05 y6 dy =

57

V (Y ) =

E(Y 2)āˆ’ (E(Y ))2 =57āˆ’(

56

)2

=5

252

, ĻƒY =

āˆš5

252

beamer-tu-logo

Variance Covariance Correlation coefficient

Standard Deviation

Variance & standard deviation

V (X )= E{(X āˆ’ ĀµX )2} = E(X 2)āˆ’ Āµ2

X

ĻƒX= +āˆš

V (X )

Example 4Let

h(y) = 5 y4, 0 < y < 1 (0 elsewhere)

E(Y ) =

āˆ« 1

0y h(y)dy =

āˆ« 1

05 y5 dy =

[56

y6]1

y=0=

56

E(Y 2) =

āˆ« 1

0y2 h(y)dy

=

āˆ« 1

05 y6 dy =

57

V (Y ) =

E(Y 2)āˆ’ (E(Y ))2 =57āˆ’(

56

)2

=5

252

, ĻƒY =

āˆš5

252

beamer-tu-logo

Variance Covariance Correlation coefficient

Standard Deviation

Variance & standard deviation

V (X )= E{(X āˆ’ ĀµX )2} = E(X 2)āˆ’ Āµ2

X

ĻƒX= +āˆš

V (X )

Example 4Let

h(y) = 5 y4, 0 < y < 1 (0 elsewhere)

E(Y ) =

āˆ« 1

0y h(y)dy =

āˆ« 1

05 y5 dy =

[56

y6]1

y=0=

56

E(Y 2) =

āˆ« 1

0y2 h(y)dy =

āˆ« 1

05 y6 dy

=57

V (Y ) =

E(Y 2)āˆ’ (E(Y ))2 =57āˆ’(

56

)2

=5

252

, ĻƒY =

āˆš5

252

beamer-tu-logo

Variance Covariance Correlation coefficient

Standard Deviation

Variance & standard deviation

V (X )= E{(X āˆ’ ĀµX )2} = E(X 2)āˆ’ Āµ2

X

ĻƒX= +āˆš

V (X )

Example 4Let

h(y) = 5 y4, 0 < y < 1 (0 elsewhere)

E(Y ) =

āˆ« 1

0y h(y)dy =

āˆ« 1

05 y5 dy =

[56

y6]1

y=0=

56

E(Y 2) =

āˆ« 1

0y2 h(y)dy =

āˆ« 1

05 y6 dy =

57

V (Y ) =

E(Y 2)āˆ’ (E(Y ))2 =57āˆ’(

56

)2

=5

252

, ĻƒY =

āˆš5

252

beamer-tu-logo

Variance Covariance Correlation coefficient

Standard Deviation

Variance & standard deviation

V (X )= E{(X āˆ’ ĀµX )2} = E(X 2)āˆ’ Āµ2

X

ĻƒX= +āˆš

V (X )

Example 4Let

h(y) = 5 y4, 0 < y < 1 (0 elsewhere)

E(Y ) =

āˆ« 1

0y h(y)dy =

āˆ« 1

05 y5 dy =

[56

y6]1

y=0=

56

E(Y 2) =

āˆ« 1

0y2 h(y)dy =

āˆ« 1

05 y6 dy =

57

V (Y ) = E(Y 2)āˆ’ (E(Y ))2

=57āˆ’(

56

)2

=5

252

, ĻƒY =

āˆš5

252

beamer-tu-logo

Variance Covariance Correlation coefficient

Standard Deviation

Variance & standard deviation

V (X )= E{(X āˆ’ ĀµX )2} = E(X 2)āˆ’ Āµ2

X

ĻƒX= +āˆš

V (X )

Example 4Let

h(y) = 5 y4, 0 < y < 1 (0 elsewhere)

E(Y ) =

āˆ« 1

0y h(y)dy =

āˆ« 1

05 y5 dy =

[56

y6]1

y=0=

56

E(Y 2) =

āˆ« 1

0y2 h(y)dy =

āˆ« 1

05 y6 dy =

57

V (Y ) = E(Y 2)āˆ’ (E(Y ))2 =57āˆ’(

56

)2

=5

252

, ĻƒY =

āˆš5

252

beamer-tu-logo

Variance Covariance Correlation coefficient

Standard Deviation

Variance & standard deviation

V (X )= E{(X āˆ’ ĀµX )2} = E(X 2)āˆ’ Āµ2

X

ĻƒX= +āˆš

V (X )

Example 4Let

h(y) = 5 y4, 0 < y < 1 (0 elsewhere)

E(Y ) =

āˆ« 1

0y h(y)dy =

āˆ« 1

05 y5 dy =

[56

y6]1

y=0=

56

E(Y 2) =

āˆ« 1

0y2 h(y)dy =

āˆ« 1

05 y6 dy =

57

V (Y ) = E(Y 2)āˆ’ (E(Y ))2 =57āˆ’(

56

)2

=5

252, ĻƒY =

āˆš5

252

beamer-tu-logo

Variance Covariance Correlation coefficient

Standard Deviation

Variance & standard deviation

V (X )= E{(X āˆ’ ĀµX )2} = E(X 2)āˆ’ Āµ2

X

ĻƒX= +āˆš

V (X )

Example 4Let

h(y) = 5 y4, 0 < y < 1 (0 elsewhere)

E(Y ) =

āˆ« 1

0y h(y)dy =

āˆ« 1

05 y5 dy =

[56

y6]1

y=0=

56

E(Y 2) =

āˆ« 1

0y2 h(y)dy =

āˆ« 1

05 y6 dy =

57

V (Y ) = E(Y 2)āˆ’ (E(Y ))2 =57āˆ’(

56

)2

=5

252, ĻƒY =

āˆš5

252

beamer-tu-logo

Variance Covariance Correlation coefficient

Variance of linear combination of RV

Theorem about V (a X + b)

Let X be an RV with variance V (X ). Then:V (a X + b) = a2 V (X )Proof:

V (a X + b) = E{(a X + b āˆ’ ĀµaX+b)2}

= E{(a X + b āˆ’ (aĀµX + b))2}= E{(a X āˆ’ aĀµX )

2} = E{a2(X āˆ’ ĀµX )2}

= a2 E{(X āˆ’ ĀµX )2} = a2 V (X )

ļæ½

beamer-tu-logo

Variance Covariance Correlation coefficient

Variance of linear combination of RV

Theorem about V (a X + b)

Let X be an RV with variance V (X ). Then:V (a X + b) = a2 V (X )

Proof:

V (a X + b) = E{(a X + b āˆ’ ĀµaX+b)2}

= E{(a X + b āˆ’ (aĀµX + b))2}= E{(a X āˆ’ aĀµX )

2} = E{a2(X āˆ’ ĀµX )2}

= a2 E{(X āˆ’ ĀµX )2} = a2 V (X )

ļæ½

beamer-tu-logo

Variance Covariance Correlation coefficient

Variance of linear combination of RV

Theorem about V (a X + b)

Let X be an RV with variance V (X ). Then:V (a X + b) = a2 V (X )Proof:

V (a X + b) = E{(a X + b āˆ’ ĀµaX+b)2}

= E{(a X + b āˆ’ (aĀµX + b))2}= E{(a X āˆ’ aĀµX )

2} = E{a2(X āˆ’ ĀµX )2}

= a2 E{(X āˆ’ ĀµX )2} = a2 V (X )

ļæ½

beamer-tu-logo

Variance Covariance Correlation coefficient

Variance of linear combination of RV

Theorem about V (a X + b)

Let X be an RV with variance V (X ). Then:V (a X + b) = a2 V (X )Proof:

V (a X + b) = E{(a X + b āˆ’ ĀµaX+b)2}

= E{(a X + b āˆ’ (aĀµX + b))2}= E{(a X āˆ’ aĀµX )

2} = E{a2(X āˆ’ ĀµX )2}

= a2 E{(X āˆ’ ĀµX )2} = a2 V (X )

ļæ½

beamer-tu-logo

Variance Covariance Correlation coefficient

Variance of linear combination of RV

Theorem about V (a X + b)

Let X be an RV with variance V (X ). Then:V (a X + b) = a2 V (X )Proof:

V (a X + b) = E{(a X + b āˆ’ ĀµaX+b)2}

= E{(a X + b āˆ’ (aĀµX + b))2}

= E{(a X āˆ’ aĀµX )2} = E{a2(X āˆ’ ĀµX )

2}= a2 E{(X āˆ’ ĀµX )

2} = a2 V (X )

ļæ½

beamer-tu-logo

Variance Covariance Correlation coefficient

Variance of linear combination of RV

Theorem about V (a X + b)

Let X be an RV with variance V (X ). Then:V (a X + b) = a2 V (X )Proof:

V (a X + b) = E{(a X + b āˆ’ ĀµaX+b)2}

= E{(a X + b āˆ’ (aĀµX + b))2}= E{(a X āˆ’ aĀµX )

2}

= E{a2(X āˆ’ ĀµX )2}

= a2 E{(X āˆ’ ĀµX )2} = a2 V (X )

ļæ½

beamer-tu-logo

Variance Covariance Correlation coefficient

Variance of linear combination of RV

Theorem about V (a X + b)

Let X be an RV with variance V (X ). Then:V (a X + b) = a2 V (X )Proof:

V (a X + b) = E{(a X + b āˆ’ ĀµaX+b)2}

= E{(a X + b āˆ’ (aĀµX + b))2}= E{(a X āˆ’ aĀµX )

2} = E{a2(X āˆ’ ĀµX )2}

= a2 E{(X āˆ’ ĀµX )2} = a2 V (X )

ļæ½

beamer-tu-logo

Variance Covariance Correlation coefficient

Variance of linear combination of RV

Theorem about V (a X + b)

Let X be an RV with variance V (X ). Then:V (a X + b) = a2 V (X )Proof:

V (a X + b) = E{(a X + b āˆ’ ĀµaX+b)2}

= E{(a X + b āˆ’ (aĀµX + b))2}= E{(a X āˆ’ aĀµX )

2} = E{a2(X āˆ’ ĀµX )2}

= a2 E{(X āˆ’ ĀµX )2}

= a2 V (X )

ļæ½

beamer-tu-logo

Variance Covariance Correlation coefficient

Variance of linear combination of RV

Theorem about V (a X + b)

Let X be an RV with variance V (X ). Then:V (a X + b) = a2 V (X )Proof:

V (a X + b) = E{(a X + b āˆ’ ĀµaX+b)2}

= E{(a X + b āˆ’ (aĀµX + b))2}= E{(a X āˆ’ aĀµX )

2} = E{a2(X āˆ’ ĀµX )2}

= a2 E{(X āˆ’ ĀµX )2} = a2 V (X )

ļæ½

beamer-tu-logo

Variance Covariance Correlation coefficient

Variance of linear combination of RV

Theorem about V (a X + b)

Let X be an RV with variance V (X ). Then:V (a X + b) = a2 V (X )Proof:

V (a X + b) = E{(a X + b āˆ’ ĀµaX+b)2}

= E{(a X + b āˆ’ (aĀµX + b))2}= E{(a X āˆ’ aĀµX )

2} = E{a2(X āˆ’ ĀµX )2}

= a2 E{(X āˆ’ ĀµX )2} = a2 V (X )

ļæ½

beamer-tu-logo

Variance Covariance Correlation coefficient

And now . . .

1 VarianceDefinitionStandard DeviationVariance of linear combination of RV

2 CovarianceMeaning & DefinitionExamples

3 Correlation coefficient

beamer-tu-logo

Variance Covariance Correlation coefficient

Meaning & Definition

What is covariance?Dependence of realizations of 2 (or more) different RVs.

DefinitionLet X and Y be RVs with ĀµX = E(X ) and ĀµY = E(Y ). Then

Cov(X ,Y ) = E{(X āˆ’ ĀµX )(Y āˆ’ ĀµY )}

Notation: Cov(X ,Y ), ĻƒX ,Yļøøļø·ļø·ļøøbook

RemarkCovariance can be positive and negative (variance is alwaysnonnegative)

beamer-tu-logo

Variance Covariance Correlation coefficient

Meaning & Definition

What is covariance?Dependence of realizations of 2 (or more) different RVs.

DefinitionLet X and Y be RVs with ĀµX = E(X ) and ĀµY = E(Y ). Then

Cov(X ,Y ) = E{(X āˆ’ ĀµX )(Y āˆ’ ĀµY )}

Notation: Cov(X ,Y ), ĻƒX ,Yļøøļø·ļø·ļøøbook

RemarkCovariance can be positive and negative (variance is alwaysnonnegative)

beamer-tu-logo

Variance Covariance Correlation coefficient

Meaning & Definition

What is covariance?Dependence of realizations of 2 (or more) different RVs.

DefinitionLet X and Y be RVs with ĀµX = E(X ) and ĀµY = E(Y ). Then

Cov(X ,Y ) = E{(X āˆ’ ĀµX )(Y āˆ’ ĀµY )}

Notation: Cov(X ,Y ), ĻƒX ,Yļøøļø·ļø·ļøøbook

RemarkCovariance can be positive and negative (variance is alwaysnonnegative)

beamer-tu-logo

Variance Covariance Correlation coefficient

Meaning & Definition

Definition

Cov(X ,Y ) = E{(X āˆ’ ĀµX )(Y āˆ’ ĀµY )}

Notation: Cov(X ,Y ), ĻƒX ,Yļøøļø·ļø·ļøøbook

Alternative formula

Cov(X ,Y ) = E{(X āˆ’ ĀµX )(Y āˆ’ ĀµY )}= E (XY āˆ’ ĀµY Ā· X āˆ’ ĀµX Ā· Y + ĀµX ĀµY )

= E(XY )āˆ’ ĀµY Ā· ĀµX āˆ’ ĀµX Ā· ĀµY + ĀµXĀµY

= E(XY )āˆ’ ĀµXĀµY

beamer-tu-logo

Variance Covariance Correlation coefficient

Meaning & Definition

Definition

Cov(X ,Y ) = E{(X āˆ’ ĀµX )(Y āˆ’ ĀµY )}

Notation: Cov(X ,Y ), ĻƒX ,Yļøøļø·ļø·ļøøbook

Alternative formula

Cov(X ,Y ) = E{(X āˆ’ ĀµX )(Y āˆ’ ĀµY )}= E (XY āˆ’ ĀµY Ā· X āˆ’ ĀµX Ā· Y + ĀµX ĀµY )

= E(XY )āˆ’ ĀµY Ā· ĀµX āˆ’ ĀµX Ā· ĀµY + ĀµXĀµY

= E(XY )āˆ’ ĀµXĀµY

beamer-tu-logo

Variance Covariance Correlation coefficient

Meaning & Definition

Definition

Cov(X ,Y ) = E{(X āˆ’ ĀµX )(Y āˆ’ ĀµY )}

Notation: Cov(X ,Y ), ĻƒX ,Yļøøļø·ļø·ļøøbook

Alternative formula

Cov(X ,Y ) = E{(X āˆ’ ĀµX )(Y āˆ’ ĀµY )}= E (XY āˆ’ ĀµY Ā· X āˆ’ ĀµX Ā· Y + ĀµX ĀµY )

= E(XY )āˆ’ ĀµY Ā· ĀµX āˆ’ ĀµX Ā· ĀµY + ĀµXĀµY

= E(XY )āˆ’ ĀµXĀµY

beamer-tu-logo

Variance Covariance Correlation coefficient

Examples

CovarianceLet X and Y be RVs with ĀµX = E(X ) and ĀµY = E(Y ). Then

Cov(X ,Y ) = E{(X āˆ’ ĀµX )(Y āˆ’ ĀµY )} = E(XY )āˆ’ ĀµXĀµY

Notation: Cov(X ,Y ), ĻƒX ,Yļøøļø·ļø·ļøøbook

Example 1X , Y independent RVs

Cov(X ,Y ) = E(XY )āˆ’ ĀµXĀµY = E(X ) Ā· E(Y )āˆ’ ĀµX Ā· ĀµY = 0

beamer-tu-logo

Variance Covariance Correlation coefficient

Examples

CovarianceLet X and Y be RVs with ĀµX = E(X ) and ĀµY = E(Y ). Then

Cov(X ,Y ) = E{(X āˆ’ ĀµX )(Y āˆ’ ĀµY )} = E(XY )āˆ’ ĀµXĀµY

Notation: Cov(X ,Y ), ĻƒX ,Yļøøļø·ļø·ļøøbook

Example 1X , Y independent RVs

Cov(X ,Y ) = E(XY )āˆ’ ĀµXĀµY = E(X ) Ā· E(Y )āˆ’ ĀµX Ā· ĀµY = 0

beamer-tu-logo

Variance Covariance Correlation coefficient

Examples

CovarianceLet X and Y be RVs with ĀµX = E(X ) and ĀµY = E(Y ). Then

Cov(X ,Y ) = E{(X āˆ’ ĀµX )(Y āˆ’ ĀµY )} = E(XY )āˆ’ ĀµXĀµY

Notation: Cov(X ,Y ), ĻƒX ,Yļøøļø·ļø·ļøøbook

Example 1X , Y independent RVs

Cov(X ,Y )

= E(XY )āˆ’ ĀµXĀµY = E(X ) Ā· E(Y )āˆ’ ĀµX Ā· ĀµY = 0

beamer-tu-logo

Variance Covariance Correlation coefficient

Examples

CovarianceLet X and Y be RVs with ĀµX = E(X ) and ĀµY = E(Y ). Then

Cov(X ,Y ) = E{(X āˆ’ ĀµX )(Y āˆ’ ĀµY )} = E(XY )āˆ’ ĀµXĀµY

Notation: Cov(X ,Y ), ĻƒX ,Yļøøļø·ļø·ļøøbook

Example 1X , Y independent RVs

Cov(X ,Y ) = E(XY )āˆ’ ĀµXĀµY

= E(X ) Ā· E(Y )āˆ’ ĀµX Ā· ĀµY = 0

beamer-tu-logo

Variance Covariance Correlation coefficient

Examples

CovarianceLet X and Y be RVs with ĀµX = E(X ) and ĀµY = E(Y ). Then

Cov(X ,Y ) = E{(X āˆ’ ĀµX )(Y āˆ’ ĀµY )} = E(XY )āˆ’ ĀµXĀµY

Notation: Cov(X ,Y ), ĻƒX ,Yļøøļø·ļø·ļøøbook

Example 1X , Y independent RVs

Cov(X ,Y ) = E(XY )āˆ’ ĀµXĀµY = E(X ) Ā· E(Y )āˆ’ ĀµX Ā· ĀµY

= 0

beamer-tu-logo

Variance Covariance Correlation coefficient

Examples

CovarianceLet X and Y be RVs with ĀµX = E(X ) and ĀµY = E(Y ). Then

Cov(X ,Y ) = E{(X āˆ’ ĀµX )(Y āˆ’ ĀµY )} = E(XY )āˆ’ ĀµXĀµY

Notation: Cov(X ,Y ), ĻƒX ,Yļøøļø·ļø·ļøøbook

Example 1X , Y independent RVs

Cov(X ,Y ) = E(XY )āˆ’ ĀµXĀµY = E(X ) Ā· E(Y )āˆ’ ĀµX Ā· ĀµY = 0

beamer-tu-logo

Variance Covariance Correlation coefficient

Examples

CovarianceCov(X ,Y ) = E{(X āˆ’ ĀµX )(Y āˆ’ ĀµY )} = E(XY )āˆ’ ĀµXĀµY

Example 2X , Y independent RVs with joint PDF

f (x , y) ={

10x y2, 0 < x < y < 10, elswhere

.

Find Cov(X ,Y ), E(X ,Y )

g(x) =103

x āˆ’ 103

x4, (0 < x < 1) (0 elsewhere)

h(y) = 5 y4, (0 < y < 1) (0 elsewhere)

E(X ) = 59 , E(X 2) = 5

14 , V (X ) = 551134 , E(Y ) = 5

6 , E(Y 2) = 57 , V (Y ) = 5

252

E(X ,Y ) =āˆ« 1

0

āˆ« 1x x Ā· y Ā· 10 x y2 dy dx = 10

21Cov(X ,Y ) = E(XY )āˆ’ ĀµX ĀµY = 10

21 āˆ’ 59

56 = 5

378

beamer-tu-logo

Variance Covariance Correlation coefficient

Examples

CovarianceCov(X ,Y ) = E{(X āˆ’ ĀµX )(Y āˆ’ ĀµY )} = E(XY )āˆ’ ĀµXĀµY

Example 2X , Y independent RVs with joint PDF

f (x , y) ={

10x y2, 0 < x < y < 10, elswhere

.

Find Cov(X ,Y ), E(X ,Y )

g(x) =103

x āˆ’ 103

x4, (0 < x < 1) (0 elsewhere)

h(y) = 5 y4, (0 < y < 1) (0 elsewhere)

E(X ) = 59 , E(X 2) = 5

14 , V (X ) = 551134 , E(Y ) = 5

6 , E(Y 2) = 57 , V (Y ) = 5

252

E(X ,Y ) =āˆ« 1

0

āˆ« 1x x Ā· y Ā· 10 x y2 dy dx = 10

21Cov(X ,Y ) = E(XY )āˆ’ ĀµX ĀµY = 10

21 āˆ’ 59

56 = 5

378

beamer-tu-logo

Variance Covariance Correlation coefficient

Examples

CovarianceCov(X ,Y ) = E{(X āˆ’ ĀµX )(Y āˆ’ ĀµY )} = E(XY )āˆ’ ĀµXĀµY

Example 2X , Y independent RVs with joint PDF

f (x , y) ={

10x y2, 0 < x < y < 10, elswhere

.

Find Cov(X ,Y ), E(X ,Y )

g(x) =103

x āˆ’ 103

x4, (0 < x < 1) (0 elsewhere)

h(y) = 5 y4, (0 < y < 1) (0 elsewhere)

E(X ) = 59 , E(X 2) = 5

14 , V (X ) = 551134 , E(Y ) = 5

6 , E(Y 2) = 57 , V (Y ) = 5

252

E(X ,Y ) =āˆ« 1

0

āˆ« 1x x Ā· y Ā· 10 x y2 dy dx = 10

21Cov(X ,Y ) = E(XY )āˆ’ ĀµX ĀµY = 10

21 āˆ’ 59

56 = 5

378

beamer-tu-logo

Variance Covariance Correlation coefficient

Examples

CovarianceCov(X ,Y ) = E{(X āˆ’ ĀµX )(Y āˆ’ ĀµY )} = E(XY )āˆ’ ĀµXĀµY

Example 2X , Y independent RVs with joint PDF

f (x , y) ={

10x y2, 0 < x < y < 10, elswhere

.

Find Cov(X ,Y ), E(X ,Y )

g(x) =103

x āˆ’ 103

x4, (0 < x < 1) (0 elsewhere)

h(y) = 5 y4, (0 < y < 1) (0 elsewhere)

E(X ) = 59 , E(X 2) = 5

14 , V (X ) = 551134 , E(Y ) = 5

6 , E(Y 2) = 57 , V (Y ) = 5

252

E(X ,Y ) =āˆ« 1

0

āˆ« 1x x Ā· y Ā· 10 x y2 dy dx = 10

21Cov(X ,Y ) = E(XY )āˆ’ ĀµX ĀµY = 10

21 āˆ’ 59

56 = 5

378

beamer-tu-logo

Variance Covariance Correlation coefficient

Examples

CovarianceCov(X ,Y ) = E{(X āˆ’ ĀµX )(Y āˆ’ ĀµY )} = E(XY )āˆ’ ĀµXĀµY

Example 2X , Y independent RVs with joint PDF

f (x , y) ={

10x y2, 0 < x < y < 10, elswhere

.

Find Cov(X ,Y ), E(X ,Y )

g(x) =103

x āˆ’ 103

x4, (0 < x < 1) (0 elsewhere)

h(y) = 5 y4, (0 < y < 1) (0 elsewhere)

E(X ) = 59 , E(X 2) = 5

14 , V (X ) = 551134 , E(Y ) = 5

6 , E(Y 2) = 57 , V (Y ) = 5

252

E(X ,Y ) =āˆ« 1

0

āˆ« 1x x Ā· y Ā· 10 x y2 dy dx = 10

21Cov(X ,Y ) = E(XY )āˆ’ ĀµX ĀµY = 10

21 āˆ’ 59

56 = 5

378

beamer-tu-logo

Variance Covariance Correlation coefficient

Examples

CovarianceCov(X ,Y ) = E{(X āˆ’ ĀµX )(Y āˆ’ ĀµY )} = E(XY )āˆ’ ĀµXĀµY

Example 2X , Y independent RVs with joint PDF

f (x , y) ={

10x y2, 0 < x < y < 10, elswhere

.

Find Cov(X ,Y ), E(X ,Y )

g(x) =103

x āˆ’ 103

x4, (0 < x < 1) (0 elsewhere)

h(y) = 5 y4, (0 < y < 1) (0 elsewhere)

E(X ) = 59 , E(X 2) = 5

14 , V (X ) = 551134 , E(Y ) = 5

6 , E(Y 2) = 57 , V (Y ) = 5

252

E(X ,Y ) =āˆ« 1

0

āˆ« 1x x Ā· y Ā· 10 x y2 dy dx = 10

21

Cov(X ,Y ) = E(XY )āˆ’ ĀµX ĀµY = 1021 āˆ’ 5

956 = 5

378

beamer-tu-logo

Variance Covariance Correlation coefficient

Examples

CovarianceCov(X ,Y ) = E{(X āˆ’ ĀµX )(Y āˆ’ ĀµY )} = E(XY )āˆ’ ĀµXĀµY

Example 2X , Y independent RVs with joint PDF

f (x , y) ={

10x y2, 0 < x < y < 10, elswhere

.

Find Cov(X ,Y ), E(X ,Y )

g(x) =103

x āˆ’ 103

x4, (0 < x < 1) (0 elsewhere)

h(y) = 5 y4, (0 < y < 1) (0 elsewhere)

E(X ) = 59 , E(X 2) = 5

14 , V (X ) = 551134 , E(Y ) = 5

6 , E(Y 2) = 57 , V (Y ) = 5

252

E(X ,Y ) =āˆ« 1

0

āˆ« 1x x Ā· y Ā· 10 x y2 dy dx = 10

21Cov(X ,Y ) = E(XY )āˆ’ ĀµX ĀµY = 10

21 āˆ’ 59

56 = 5

378

beamer-tu-logo

Variance Covariance Correlation coefficient

And now . . .

1 VarianceDefinitionStandard DeviationVariance of linear combination of RV

2 CovarianceMeaning & DefinitionExamples

3 Correlation coefficient

beamer-tu-logo

Variance Covariance Correlation coefficient

Definition of correlation coefficient Ļ(X ,Y )

The correlation coefficient of 2 RVs X and Y is defined asfollows:

Ļ(X ,Y ) =cov(X ,Y )

ĻƒX Ā· ĻƒY

Observationsāˆ’1 ā‰¤ Ļ(X ,Y ) ā‰¤ 1

If X and Y are independent, then Ļ(X ,Y ) = 0.

In the previous example

Cov(X ,Y ) = 5378 , ĻƒX =

āˆšV (X ) =

āˆš55

1134 ,

ĻƒY =āˆš

V (Y ) =āˆš

5252

Ļ(X ,Y ) =5

378āˆš55

1134 Ā·āˆš

5252

ā‰ˆ 0.4264

beamer-tu-logo

Variance Covariance Correlation coefficient

Definition of correlation coefficient Ļ(X ,Y )

The correlation coefficient of 2 RVs X and Y is defined asfollows:

Ļ(X ,Y ) =cov(X ,Y )

ĻƒX Ā· ĻƒY

Observationsāˆ’1 ā‰¤ Ļ(X ,Y ) ā‰¤ 1

If X and Y are independent, then Ļ(X ,Y ) = 0.

In the previous example

Cov(X ,Y ) = 5378 , ĻƒX =

āˆšV (X ) =

āˆš55

1134 ,

ĻƒY =āˆš

V (Y ) =āˆš

5252

Ļ(X ,Y ) =5

378āˆš55

1134 Ā·āˆš

5252

ā‰ˆ 0.4264

beamer-tu-logo

Variance Covariance Correlation coefficient

Definition of correlation coefficient Ļ(X ,Y )

The correlation coefficient of 2 RVs X and Y is defined asfollows:

Ļ(X ,Y ) =cov(X ,Y )

ĻƒX Ā· ĻƒY

Observationsāˆ’1 ā‰¤ Ļ(X ,Y ) ā‰¤ 1If X and Y are independent, then Ļ(X ,Y ) = 0.

In the previous example

Cov(X ,Y ) = 5378 , ĻƒX =

āˆšV (X ) =

āˆš55

1134 ,

ĻƒY =āˆš

V (Y ) =āˆš

5252

Ļ(X ,Y ) =5

378āˆš55

1134 Ā·āˆš

5252

ā‰ˆ 0.4264

beamer-tu-logo

Variance Covariance Correlation coefficient

Definition of correlation coefficient Ļ(X ,Y )

The correlation coefficient of 2 RVs X and Y is defined asfollows:

Ļ(X ,Y ) =cov(X ,Y )

ĻƒX Ā· ĻƒY

Observationsāˆ’1 ā‰¤ Ļ(X ,Y ) ā‰¤ 1If X and Y are independent, then Ļ(X ,Y ) = 0.

In the previous example

Cov(X ,Y ) = 5378 , ĻƒX =

āˆšV (X ) =

āˆš55

1134 ,

ĻƒY =āˆš

V (Y ) =āˆš

5252

Ļ(X ,Y ) =5

378āˆš55

1134 Ā·āˆš

5252

ā‰ˆ 0.4264

beamer-tu-logo

Variance Covariance Correlation coefficient

Definition of correlation coefficient Ļ(X ,Y )

The correlation coefficient of 2 RVs X and Y is defined asfollows:

Ļ(X ,Y ) =cov(X ,Y )

ĻƒX Ā· ĻƒY

Observationsāˆ’1 ā‰¤ Ļ(X ,Y ) ā‰¤ 1If X and Y are independent, then Ļ(X ,Y ) = 0.

In the previous example

Cov(X ,Y ) = 5378 , ĻƒX =

āˆšV (X ) =

āˆš55

1134 ,

ĻƒY =āˆš

V (Y ) =āˆš

5252

Ļ(X ,Y ) =5

378āˆš55

1134 Ā·āˆš

5252

ā‰ˆ 0.4264