9
Lecture 27 Electro Mechanical System 1 The fact that power is always positive reveals that it always flows from the generator to the resistor. This is one of the basic properties of active power: although it pulsates between zero and max. it never changes direction. The average power is clearly midway between 2P and zero, and so its value is P = 2EI/2 = EI watts. That is precisely the power indicated by the wattmeter. The generator is an active source and the resistor is an active load. The symbol for active power is P and the unit is the watt (W). The kilowatt (kW) and megawatt (MW) are frequently used. Active power

Lecture 27Electro Mechanical System1 The fact that power is always positive reveals that it always flows from the generator to the resistor. This is

Embed Size (px)

Citation preview

Page 1: Lecture 27Electro Mechanical System1  The fact that power is always positive reveals that it always flows from the generator to the resistor.  This is

Lecture 27 Electro Mechanical System 1

The fact that power is always positive reveals that it always flows from the generator to the resistor.

This is one of the basic properties of active power: although it pulsates between zero and max. it never changes direction.

The average power is clearly midway between 2P and zero, and so its value is P = 2EI/2 = EI watts.

That is precisely the power indicated by the wattmeter. The generator is an active source and the resistor is an active

load. The symbol for active power is P and the unit is the watt (W).

The kilowatt (kW) and megawatt (MW) are frequently used.

Active power

Page 2: Lecture 27Electro Mechanical System1  The fact that power is always positive reveals that it always flows from the generator to the resistor.  This is

Lecture 27 Electro Mechanical System 2

The resistor is replaced by a reactor X . As a result, current I lags 90° behind the voltage E

we can draw the waveforms of E and I & by multiplying their instantaneous values, we obtain curve of instantaneous power

Positive waves correspond to instantaneous power delivered by the generator to the reactor and the negative waves represent power delivered from the reactor to the generator

Duration of each wave corresponds to one quarter of a cycle Frequency of power wave is therefore twice the line frequency Power that surges back and forth is called reactive power (Q) To distinguish this power from active power, another unit is

used the var. Its multiples are kilovar (kvar) and megavar (Mvar)

Reactive power

Page 3: Lecture 27Electro Mechanical System1  The fact that power is always positive reveals that it always flows from the generator to the resistor.  This is

Lecture 27 Electro Mechanical System 3

Reactive power involves real power that oscillates back and forth between two devices over a transmission line.

Consequently, it is impossible to say whether the power originates at one end of the line or the other.

It is useful to assume that some devices generate reactive power while others absorb it.

In other words, some devices behave like reactive sources and others like reactive loads.

A reactor is considered to be a reactive load that absorbs reactive power.

Reactive load & reactive source

Page 4: Lecture 27Electro Mechanical System1  The fact that power is always positive reveals that it always flows from the generator to the resistor.  This is

Lecture 27 Electro Mechanical System 4

A reactor having an inductive reactance of 4 Ω is connected to the terminals of a 120 V ac generator.a) Calculate the value of the current in the reactor IL = E / XL = 120V / 4 Ω = 30 A b)Calculate the power associated with the reactor

Q = EI = 120 X 30 = 3600 var = 3.6 kvarc)Calculate the power associated with the ac generator

Because the reactor absorbs 3.6 kvar of reactance power, the ac generator must be supplying it. Consequently, the generator is a source of reactive power: it delivers 3.6 kvar.d)Draw the phasor diagram for the circuit

The phasor diagram show that current I, lags 90° behind voltage E

Example

Page 5: Lecture 27Electro Mechanical System1  The fact that power is always positive reveals that it always flows from the generator to the resistor.  This is

Lecture 27 Electro Mechanical System 5

If we add capacitor having a reactance of 4 Ω to the circuit. capacitor current IC = 120 V/4Ω = 30A & leads the voltage by 90° The vector sum of IL and IC is zero and so the ac generator is

no longer supplying any power at all to the circuit. The current in the reactor has not changed; consequently, it

continues to absorb 30 A X 120 V = 3.6 kvar of reactive power. Where is this reactive power coming from? It can only come

from the capacitor, which acts as a source of reactive power. Q = Elc = 120 V X 30 A = 3600 var = 3.6 kvar It means a capacitor is a source of reactive power. It acts as a

reactive power source whenever it is part of a sine-wave-based, steady-state circuit.

Capacitor and reactive power

Page 6: Lecture 27Electro Mechanical System1  The fact that power is always positive reveals that it always flows from the generator to the resistor.  This is

Lecture 27 Electro Mechanical System 6

Remove the reactor from the circuit. Capacitor is now alone. It still carries a current of 30 A, leading the voltage E by 90° Capacitor acts as a source of reactive power, delivering 3.6 kvar Where does this power go? Capacitor delivers it to the generator How, can a passive device(capacitor) produce any power? Reactive power really represents energy, like a pendulum, swings

back and forth without ever doing any useful work The capacitor acts as a temporary energy-storing device Instead of storing magnetic energy, it stores electrostatic energy If we connect a varmeter, it will give a negative reading of

EI = – 3600 var, showing that reactive power is indeed flowing from the capacitor to the generator.

Capacitor and reactive power

Page 7: Lecture 27Electro Mechanical System1  The fact that power is always positive reveals that it always flows from the generator to the resistor.  This is

Lecture 27 Electro Mechanical System 7

An ac generator is connected to a group of R, L, C circuit elements carrying, the currents shown. Calculate the active and reactive power associated with the generator. The two resistors absorb active power given by

P = I2R =(16.122 X 2) + (142 X 4) = 784 + 520 = 1304 WThe 3 Ω reactor absorbs reactive power:

QL = I2XL = 142 X 3 = 588 varThe 3.5 Ω capacitor generates reactive power:

QC=I2Xc = 202 X 3.5 = 1400 varR, L, C circuit generates a net reactive power of 1400 – 588 = 812 varIn conclusion, the ac generator is a source of active power (1304 W) and a receiver of reactive power (812 var).

Example

Page 8: Lecture 27Electro Mechanical System1  The fact that power is always positive reveals that it always flows from the generator to the resistor.  This is

Lecture 27 Electro Mechanical System 8

Active and reactive power, are separate quantities and one cannot be converted into the other.

Both place a burden on the transmission line. Active power eventually produces a tangible result (heat,

mechanical power, light, etc.) Reactive power represents power that oscillates back and forth. All ac inductive devices such as magnets, transformers, ballasts,

and induction motors, absorb reactive power because one component of the current they draw lags 90° behind the voltage.

The reactive power plays a very important role because it produces the ac magnetic field in these devices.

A building, shopping center, or city may be considered to be a huge active/reactive load connected to an electric utility system.

Load centers contain thousands of electromagnetic devices that draw both reactive power (to sustain their magnetic fields) and active power (to do the useful work).

Distinction between active and reactive power

Page 9: Lecture 27Electro Mechanical System1  The fact that power is always positive reveals that it always flows from the generator to the resistor.  This is

Lecture 27 Electro Mechanical System 9

Loads that absorb active power P and reactive power Q is made up of a resistance and an inductive reactance.

Resistor draws a current Ip, while the reactor draws a current Iq

Consequently, Ip is in phase with E while Iq lags 90° behind. Resultant line current I lags behind E by an angle . If we connect a wattmeter and a varmeter , the readings will both

be positive, indicating P = EIp watts and Q = EIq vars An ammeter will indicate a current of I amperes, so the power

supplied to the load should be equal to EI watts. This is incorrect because the power is composed of an active

component (watts) and a reactive component (vars). For this reason the product EI is called apparent power, symbol is S.

Apparent power is expressed in voltamperes. (kVA) & (MVA).

Combined active & reactive loads: apparent power

22qp III