50
LECTURE LECTURE #2 #2 TRIATOMIC MOLECULES TRIATOMIC MOLECULES : : TAILOR TAILOR - - MADE APPROACHES MADE APPROACHES Winter School in Theoretical Chemistry Helsinki, Finland, December 17-20, 2012 Attila G. Császár Laboratory of Molecular Structure and Dynamics Department of Physical Chemistry Institute of Chemistry Eötvös University Budapest, Hungary [email protected] http://theop11.chem.elte.hu

LECTURE #2 TRIATOMIC MOLECULES: TAILOR-MADE APPROACHES …

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: LECTURE #2 TRIATOMIC MOLECULES: TAILOR-MADE APPROACHES …

LECTURE LECTURE #2#2 TRIATOMIC MOLECULESTRIATOMIC MOLECULES: :

TAILORTAILOR--MADE APPROACHESMADE APPROACHES

Winter School in Theoretical ChemistryHelsinki, Finland, December 17-20,

2012

Attila G. CsászárLaboratory

of Molecular

Structure

and Dynamics

Department of Physical ChemistryInstitute

of Chemistry

Eötvös UniversityBudapest, [email protected]

http://theop11.chem.elte.hu

Page 2: LECTURE #2 TRIATOMIC MOLECULES: TAILOR-MADE APPROACHES …

OUTLINE

Introduction

The D3OPI and D2FOPI approaches

Spectroscopic and structural applicationsand implications

Summary and outlook

Page 3: LECTURE #2 TRIATOMIC MOLECULES: TAILOR-MADE APPROACHES …

The variational

approachProvides a complete theoretical treatment

with no/minimal a priori assumptionsand no/minimal a posteriori corrections

• Treats molecular vibrations and rotations at the same time(6-D problem for triatomics)

• Interprets experimental results in terms of potential energysurface(s), PES, and dipole moment surface (DMS)

• Only assumes rigorous quantum numbers:J, p, symmetry (e.g., ortho/para)

• Results in spectra if DMS is available• Works irrespective of perturbations of energy levels

Page 4: LECTURE #2 TRIATOMIC MOLECULES: TAILOR-MADE APPROACHES …

Source: J. Tennyson

Page 5: LECTURE #2 TRIATOMIC MOLECULES: TAILOR-MADE APPROACHES …

Choices to be made during the

design of a variational

nuclear motion algorithm

• coordinates (vibrational

and rotational)• derivation of the analytic form of the kinetic energy

operator

corresponding to the chosen set of coordinates and the chosen embedding

• determination of potential energy surface (PES)• selection of basis

functions

• computation of matrix elements

of the Hamiltonian• “diagonalization”

of the Hamiltonian

(Lecturer: Janne

Pesonen)

Page 6: LECTURE #2 TRIATOMIC MOLECULES: TAILOR-MADE APPROACHES …

The D3OPI and D2FOPI algorithmsDiscrete Variable Representation of the Hamiltonian

Energy operator in orthogonal (O) coordinate system

Direct-product (P) basis

Diagonalization with an iterative (I) technique (e.g., Lánczos)____________________________________________________________________ G. Czakó, T. Furtenbacher, A. G. Császár, and V. Szalay, Mol. Phys. (Nicholas

C.

Handy

Special

Issue) 102, 2411 (2004).T. Szidarovszky, A. G. Császár, and G. Czakó, PCCP

12, 8373 (2010).

TailorTailor--mademade

approachapproach: : prederivedprederived, , analyticanalytic, , casecase--dependentdependent

T,T,

uniqueunique

codecode

forfor

eacheach

moleculemoleculeThe The simplestsimplest

gridgrid--basedbased

procedureprocedure

toto

solvesolve

thethe

((triatomictriatomic))

rovibrationalrovibrational

problemproblem

variationallyvariationally::

Page 7: LECTURE #2 TRIATOMIC MOLECULES: TAILOR-MADE APPROACHES …

CoordinatesC

BAR1

R2

Jacobi (scattering) coordinates(1842)

simple internal coordinates

Radau coordinates (1868)

Page 8: LECTURE #2 TRIATOMIC MOLECULES: TAILOR-MADE APPROACHES …

Coordinates (Sutcliffe and Tennyson)

R1 = B

– S R2 = C

– P = BQC

BAPAg

1 CASAg

2

Jacobi coordinates:

BA

B

mmm

g

1 02 g

internal coordinates: Radau coordinates:

021 gg

11g

1

12g

Page 9: LECTURE #2 TRIATOMIC MOLECULES: TAILOR-MADE APPROACHES …

Vibrational

kinetic energy operator

dV

= (volume element)

Page 10: LECTURE #2 TRIATOMIC MOLECULES: TAILOR-MADE APPROACHES …

ΘRRVjJjJjJJR

Θj

ΘΘ

ΘRRRRH

zz

z

,,ˆ22

1sin

ˆctg

21

21

21

21ˆ

212

211

2

2

2

2

222

211

22

2

22

1

2

1

dddddRdRΘdV 21sinsin

Rovibrational

kinetic energy operator in orthogonal coordinates

Page 11: LECTURE #2 TRIATOMIC MOLECULES: TAILOR-MADE APPROACHES …

Vibrational KE

Vibrational KENon-orthogonal coordinates only

Rotational & Coriolis terms

Rotational & Coriolis termsNon-orthogonal coordinates only

Effective Hamiltonian after integrationover angular and rotational coordinates.Case where z

is along r1

Reduced masses (g1 ,g2 ) defined by coordinates

Source: J. Tennyson

Page 12: LECTURE #2 TRIATOMIC MOLECULES: TAILOR-MADE APPROACHES …

Challenge

How would the kinetic energy operator look like if the rotational and vibrational masses were different?

Page 13: LECTURE #2 TRIATOMIC MOLECULES: TAILOR-MADE APPROACHES …

Non-adiabatic effects in the ST Hamiltonian

Source: J. Tennyson

Page 14: LECTURE #2 TRIATOMIC MOLECULES: TAILOR-MADE APPROACHES …

Open challenge

How would the kinetic energy operator look like if the rotational and vibrational masses would depend on the coordinates?

Page 15: LECTURE #2 TRIATOMIC MOLECULES: TAILOR-MADE APPROACHES …

Basis functions

• one-dimensional orthogonal polynomial basis functions- Hermite-functions- Laguerre-functions and variants- Legendre-functions- Sinc basis, etc.

• multidimensional basis functions (one possible but not the preferred way to treat singularities)

Vibrations

Rotations• symmetric top eigenfunctions• Wang functions

Page 16: LECTURE #2 TRIATOMIC MOLECULES: TAILOR-MADE APPROACHES …

Discrete variable representation (DVR) basis functions

Hermite

functions Hermite-DVR

functions

Source: C. Fábri

Page 17: LECTURE #2 TRIATOMIC MOLECULES: TAILOR-MADE APPROACHES …

Hamiltonian

ΘRRVΘ

ΘΘRRRR

H ,,ˆctg2

12

12

121ˆ

212

2

222

211

22

2

22

1

2

1

dΘdRΘdRdV 21sin

Radial singularity

Angular

singularity

1,1,1

0,0,02121

2121cos

LNN

nnnn ΘRRDirect product basis:

Basis functions

)(cos)1()(cosctg2

2

ΘPΘPΘ

ΘΘ

Normalized Legendre-polynomials:

Potential-optimized DVR basis

Page 18: LECTURE #2 TRIATOMIC MOLECULES: TAILOR-MADE APPROACHES …

)cos,,(ˆctg2

12

12

121ˆ

212

2

222

211

22

2

22

1

2

1

ΘRRVΘ

ΘΘRRRR

H

jnjj

jnnnR RR

Rjj

jjj

2

2

, 21K

2121212121 ,,diag ),,()( nnnnnnnnnn δqqqVV

TTK

)1)(2(0.00.....2100.010

,

LL

Θ

jj

jjj

nnnj

nnj q ,2,

2

21

R

diag22

21

DVR122121

VKRIKIRIKIIIKH ΘRΘRΘRRΘRR

Sparse matrix Special iterative Lanczos „diagonalization”

DVR representation

of the

Hamiltonian

Page 19: LECTURE #2 TRIATOMIC MOLECULES: TAILOR-MADE APPROACHES …

____________________________________________________________________ T. Szidarovszky, A. G. Császár, and G. Czakó, PCCP

12, 8373 (2010).

Page 20: LECTURE #2 TRIATOMIC MOLECULES: TAILOR-MADE APPROACHES …

Hamiltonian

matrix

in

case of the

D2FOPI algorithm

ΘRRVΘ

ΘΘRRRR

H ,,ˆctg2

12

12

121ˆ

212

2

222

211

22

2

22

1

2

1

N1

= 105N2

= 100L = 80

99,94% nulla elem

Page 21: LECTURE #2 TRIATOMIC MOLECULES: TAILOR-MADE APPROACHES …

Grid-based

techniques

in

natural

sciences• Discrete

Ordinate

Method

(DOM, atmospheric

sciences for 3D radiative transfer, DOTS with time stepping)

• Quadrature

Discretization

Method

(QDM, kinetic theory, Fokker-Planck equation)

• Lagrange mesh

(LM, quantum mechanics)• Fourier grid

Hamiltonian

(FGH, time-

dependent quantum mechanics)• Discrete

Variable

Representation

(DVR,

molecular spectroscopy) with (optimal) generalized (GDVR) variants

Page 22: LECTURE #2 TRIATOMIC MOLECULES: TAILOR-MADE APPROACHES …

Source: V. Szalay

Page 23: LECTURE #2 TRIATOMIC MOLECULES: TAILOR-MADE APPROACHES …

Standard DVR versus FBRDVR advantages• Diagonal in the potential (quadrature approximation)

< | V

| > =

V(x

), no need for integration• Analytic evaluation of kinetic energy matrix elements• Optimal truncation and diagonalization based on adiabatic separation• Sparse Hamiltonian matrix with product basis• Easy property evaluations: ith element of the nth eigenvector proportional

to the value of the nth eigenfunction at the ith quadrature point

DVR disadvantages• Not strictly variational (quadrature and truncation error couple,

difficult to do small calculations)• Problems with coupled basis sets (back to optimal (G)FBR)• Inefficient for non-orthogonal coordinate systems

Transformation between DVR and FBR is quick & simple for standard DVR

Page 24: LECTURE #2 TRIATOMIC MOLECULES: TAILOR-MADE APPROACHES …

Diagonalization

of large

matrices1.) Secular equation with metric S

2.) Secular equation with metric S

= I

KKK SvAv

UDAU

3.) Jacobi method (1846)

TUDUA

UAUA )0(nn

U: product of a large no. of simple, unitary matrices

)0()2()1()( ...lim RRRRU

kkk

k

qp

pqA22 )(A nondiagonality measure

Page 25: LECTURE #2 TRIATOMIC MOLECULES: TAILOR-MADE APPROACHES …

Diagonalization

of large

matrices4.) Givens (1954): tridiagonal form in 0.5(n

- 1)(n

- 2) rotations

5.) Householder: much improved tridiagonalization

6.) Wilkinson: QL (sometimes called QR) algorithm, applicable after tridiagonalization

7.) non-unit metric: Cholesky decomposition (Gram-Schmidtin disguise), canonical or Löwdin (symmetric) orthogonalization

Page 26: LECTURE #2 TRIATOMIC MOLECULES: TAILOR-MADE APPROACHES …

Iterative Lanczos

„diagonalization”

TABB

.....

...

..

..

...

43

332

221

11

dttdt

tdttd

T

111 iiiiiii tdt bbbAb

A

large, B

small

1

111

/

ii

iiiiii

iTii

ii

iii

xttd

d

x

bbσxbσ

Abσxb

start: x1

Krylov sequence:x1 , Ax1 , A2x1 , …

preconditioning

Page 27: LECTURE #2 TRIATOMIC MOLECULES: TAILOR-MADE APPROACHES …

Question 1:

Can

experimental

precision be achieved

for

the

first-principles

prediction

of high-resolution

rotational-vibrational

spectra of

polyatomic

molecules?

Page 28: LECTURE #2 TRIATOMIC MOLECULES: TAILOR-MADE APPROACHES …

Assignments using branches

Ab

initio

potential

J

Erro

r / c

m-1

determined potentialSpectroscopically

Disadvantages of empirical fitting

Source: J. Tennyson

Page 29: LECTURE #2 TRIATOMIC MOLECULES: TAILOR-MADE APPROACHES …

The The colorcolor

of Hof H33

++

((PRLPRL

2012, 2012, 108108, 023002), 023002)

Page 30: LECTURE #2 TRIATOMIC MOLECULES: TAILOR-MADE APPROACHES …

The The colorcolor

of Hof H33

++

((PRLPRL

2012, 2012, 108108, 023002), 023002)

Page 31: LECTURE #2 TRIATOMIC MOLECULES: TAILOR-MADE APPROACHES …

Deviation

between

experiment

and theory

for

H3+

Page 32: LECTURE #2 TRIATOMIC MOLECULES: TAILOR-MADE APPROACHES …

BO computation

non-BO

effectsconsidered

Deviation

between

experiment

and theory

for

H3+

Page 33: LECTURE #2 TRIATOMIC MOLECULES: TAILOR-MADE APPROACHES …

Question 2:

Can

complete

high-resolution

rotational- vibrational

spectra

(all

the

bound

states)

of polyatomic

molecules

be computed ab initio in

a converged

way?

Page 34: LECTURE #2 TRIATOMIC MOLECULES: TAILOR-MADE APPROACHES …

Complete

vibrational

spectroscopy

of H3+

even

parity

(688) odd

parity

(599)

____________________________________________________________________ T. Szidarovszky, A. G. Császár, and G. Czakó, PCCP

12, 8373 (2010).

Page 35: LECTURE #2 TRIATOMIC MOLECULES: TAILOR-MADE APPROACHES …

BoundBound

rovibrationalrovibrational

statesstates

of of waterwater underunder

thethe

dissociationdissociation

limitlimit

Page 36: LECTURE #2 TRIATOMIC MOLECULES: TAILOR-MADE APPROACHES …

Highly

excited

vibrational

states

of water

A. G. Császár et al., J. Quant. Spectr. Rad. Transfer

111, 1043 (2010).

(16 0 0)(ergodic state)

Page 37: LECTURE #2 TRIATOMIC MOLECULES: TAILOR-MADE APPROACHES …

Highly

excited

vibrational

states

of water

A. G. Császár et al., J. Quant. Spectr. Rad. Transfer

111, 1043 (2010).

(16 0 0)

Page 38: LECTURE #2 TRIATOMIC MOLECULES: TAILOR-MADE APPROACHES …

Highly

excited

vibrational

states

of water

A. G. Császár et al., J. Quant. Spectr. Rad. Transfer

111, 1043 (2010).

(16 0 0)(0 22 0)

Page 39: LECTURE #2 TRIATOMIC MOLECULES: TAILOR-MADE APPROACHES …

Question 3:

How

do rotational-vibrational

spectra

of polyatomic

molecules beyond

the

first

dissociation

limit

look

like?

Page 40: LECTURE #2 TRIATOMIC MOLECULES: TAILOR-MADE APPROACHES …

Resonance

states

are

stationary eigenstates

of the

Hamiltonian

which

are

associated

with

...• complex, discrete

eigenvalues

of the

Hamiltonian of 

the

form:                          where

is the

energy

and           is related

to

the

lifetime• wavefuncions

that

are

not

in

and which

diverge

exponentially

with

respect

to

the dissociation

coordinate(s)

There

are

two

possibilities

to

compute

Feshbach

and  shape

resonances: CAP and complex

scaling

2L

20

iEE 0E

Page 41: LECTURE #2 TRIATOMIC MOLECULES: TAILOR-MADE APPROACHES …

QuasiboundQuasibound

statesstates

of of waterwater

beyondbeyond thethe

dissociationdissociation

limitlimit

Page 42: LECTURE #2 TRIATOMIC MOLECULES: TAILOR-MADE APPROACHES …

QuasiboundQuasibound

statesstates

of of waterwater

beyondbeyond thethe

dissociationdissociation

limitlimit

Page 43: LECTURE #2 TRIATOMIC MOLECULES: TAILOR-MADE APPROACHES …

Question 4:

How

high

in

energy

do

the simple

rigid-rotor and

harmonic-oscillator pictures

with

their

corresponding

approximate RRHO quantum

numbers

work?

Page 44: LECTURE #2 TRIATOMIC MOLECULES: TAILOR-MADE APPROACHES …

Normal

Mode

Decomposition

(NMD)

HNCO,,Fundamentals”

2HO2JiiJ QNMD

4631.0 98 0 0 0 0 0 0 0 0 0 0 0 0 … 99

579.5 0 95 0 1 0 0 0 0 0 0 0 0 0 … 97

660.2 0 0 99 0 0 0 0 0 0 0 0 0 0 … 99

780.7 0 2 0 90 0 0 0 0 0 0 2 0 0 … 96

1146.8 0 0 0 0 80 0 6 5 0 0 0 0 0 … 93

1267.1 0 0 0 0 3 0 26 41 20 0 0 0 0 … 94

1275.1 0 0 0 0 0 91 0 0 0 5 0 0 0 … 97

1329.3 0 0 0 2 4 0 11 45 22 0 4 0 0 … 92

1358.6 0 0 0 2 7 0 54 5 15 0 7 0 0 … 93

1476.6 0 0 0 0 0 7 0 0 0 88 0 0 0 … 97

1521.6 0 0 0 2 0 0 2 0 28 0 51 0 0 … 91

1712.7 0 0 0 0 0 0 0 0 0 0 0 69 0 … 90

1843.6 0 0 0 0 0 0 0 0 0 0 0 0 45 … 96

4681.3

572.4

637.0

818.1

1144.8

1209.4

1274.0

1318.3

1390.5

1455.1

1636.2

1717.2

1781.8

Q0

Q5

Q6

Q4

Q5+5

Q5+6

Q6+6

Q3

Q4+5

Q4+6

Q4+4

Q5+5+5

Q5+5+6

Sum

… … … … … … … … … … … … …

Sum 98 99 98 95 98 99 99 94 98 95 92 95 98E. Mátyus, C. Fábri, T. Szidarovszky, G. Czakó, W. D. Allen, and A. G. Császár, J. Chem.

Phys.

2010, 133, 034113.

Page 45: LECTURE #2 TRIATOMIC MOLECULES: TAILOR-MADE APPROACHES …

Percentage

of clearly

identifiable rovibrational

states

of

H2

16O based on RRD coefficients

Page 46: LECTURE #2 TRIATOMIC MOLECULES: TAILOR-MADE APPROACHES …

Question 5:

Can

quantum

chemistry

predict measurable, i.e., temperature-dependent,

rovibrationally

averaged molecular

properties?

Page 47: LECTURE #2 TRIATOMIC MOLECULES: TAILOR-MADE APPROACHES …

rrgg

structuresstructures

of of waterwater

((TT

= 293 K)= 293 K)H2

16O D216O

rg (OH)/Å rg (HH)/Å rg (OD)/Å rg (DD)/Årg calc.

(GED)(Spectr.)

0.97566(0.9763)(0.9745)

1.53812(1.567)(1.537)

0.97136(0.9700)(0.9702)

1.53122(1.526)(1.531)

ra calc.(Adiabatic re

0.971380.95785

1.529561.51472

0.967830.95783

1.525161.51460)

rg

re 0.01781(0.0182)cubic

0.01353(0.0131)cubic__________________________________________________________

G. Czakó, E. Mátyus, A. G. Császár, J. Phys. Chem. A

113, 11665 (2009).

Page 48: LECTURE #2 TRIATOMIC MOLECULES: TAILOR-MADE APPROACHES …

TemperatureTemperature

dependencedependence

ofof rrgg

(OH) of (OH) of waterwater

________________________________________________________

G. Czakó, E. Mátyus, A. G. Császár, J. Phys. Chem. A 113, 11665 (2009).

H216O

rg (OH)/Å rg (HH)/Å0 K

300 K700 K

0.975650.976250.97718

1.538231.538121.53825

1000 K1500 K

0.978130.98048

1.539071.54070

Page 49: LECTURE #2 TRIATOMIC MOLECULES: TAILOR-MADE APPROACHES …

EffectiveEffective

structuresstructures

of of ortorthhoo--

and and parapara--waterwater

Read = 0.95785 A

Page 50: LECTURE #2 TRIATOMIC MOLECULES: TAILOR-MADE APPROACHES …

SummarySummary(a) DOPI-type procedures, using tailor-made kinetic energy operators,

are the favored techniques for the solution of the (tri- and tetra- atomic) variational rovibrational problem when the goal is to match experiments, compute full rovibrational spectra (including resonances), or estimate rovibrational averages.

(b) Molecules have quasibound states above the dissociation limit, theircomputation is feasible via fourth-age quantum chemical techniques.

(c) Spin statistics play an important for molecular spectroscopy.

(d) There is still a lot to learn about nonadiabatic behavior of smallmolecules if full understanding of molecular spectra is desired.

(e) Variational nuclear motion computations can bridge the gap between equilibrium properties computed via electronic structure computations and temperature-dependent, rovibrationally averaged measured molecular properties.