33
EECS490: Digital Image Processing Lecture #19 Shading and texture analysis using morphology Gray scale reconstruction Basic image segmentation: edges v. regions Point and line locators, edge types and noise Edge operators: LoG, DoG, Canny

Lecture #19 - Case Western Reserve Universityengr.case.edu/merat_francis/eecs490f07/Lectures/Lecture19.pdf · Lecture #19 • Shading and texture analysis using morphology • Gray

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Lecture #19 - Case Western Reserve Universityengr.case.edu/merat_francis/eecs490f07/Lectures/Lecture19.pdf · Lecture #19 • Shading and texture analysis using morphology • Gray

EECS490: Digital Image Processing

Lecture #19

• Shading and texture analysis using

morphology

• Gray scale reconstruction

• Basic image segmentation: edges v. regions

• Point and line locators, edge types and noise

• Edge operators: LoG, DoG, Canny

Page 2: Lecture #19 - Case Western Reserve Universityengr.case.edu/merat_francis/eecs490f07/Lectures/Lecture19.pdf · Lecture #19 • Shading and texture analysis using morphology • Gray

EECS490: Digital Image Processing

Gray Scale Morphology

© 2002 R. C. Gonzalez & R. E. Woods

original “top-hat”

h = f f b( )

A top-hat transformationsubtracts an opening fromthe image.

Enhances detail inthe presence ofshading

Page 3: Lecture #19 - Case Western Reserve Universityengr.case.edu/merat_francis/eecs490f07/Lectures/Lecture19.pdf · Lecture #19 • Shading and texture analysis using morphology • Gray

EECS490: Digital Image Processing

© 2002 R. C. Gonzalez & R. E. Woods

Gray-Scale Morphology

Page 4: Lecture #19 - Case Western Reserve Universityengr.case.edu/merat_francis/eecs490f07/Lectures/Lecture19.pdf · Lecture #19 • Shading and texture analysis using morphology • Gray

EECS490: Digital Image Processing

Chapter 9Morphological Image Processing

Page 5: Lecture #19 - Case Western Reserve Universityengr.case.edu/merat_francis/eecs490f07/Lectures/Lecture19.pdf · Lecture #19 • Shading and texture analysis using morphology • Gray

EECS490: Digital Image Processing

© 2002 R. C. Gonzalez & R. E. Woods

Gray-Scale Morphology

Algorithm for locatingtexture boundaries1. Repeatedly close theinput image with a SEsmaller than the largecircles. This willeventually remove allthe smaller objects.2. Now do a singleopening with a SElarger than theseparation betweenright hand circles3. Use a morphologicalgradient to computethe boundary

Page 6: Lecture #19 - Case Western Reserve Universityengr.case.edu/merat_francis/eecs490f07/Lectures/Lecture19.pdf · Lecture #19 • Shading and texture analysis using morphology • Gray

EECS490: Digital Image Processing

© 2002 R. C. Gonzalez & R. E. Woods

Gray-Scale MorphologySmooth to eliminatewood grain

Open withr=10 disk

Open withr=20 disk

Open with r=25 disk

Open withr=30 disk

Summing the surface area (light intensity) and subtracting to determinethe change as a function of r gives the particle size distribution

Page 7: Lecture #19 - Case Western Reserve Universityengr.case.edu/merat_francis/eecs490f07/Lectures/Lecture19.pdf · Lecture #19 • Shading and texture analysis using morphology • Gray

EECS490: Digital Image Processing

© 2002 R. C. Gonzalez & R. E. Woods

Gray-Scale Morphology

This shows that the image is basically composedof images of r=19 and r=27 particles

Page 8: Lecture #19 - Case Western Reserve Universityengr.case.edu/merat_francis/eecs490f07/Lectures/Lecture19.pdf · Lecture #19 • Shading and texture analysis using morphology • Gray

EECS490: Digital Image Processing

Gray Scale Morphology

© 2002 R. C. Gonzalez & R. E. Woods

Granulometry — how to determine size distributions1. Open with structuring elements which increase in size with eachiteration2. Compute differences between original and each opening3. Normalize these differences to give the size distribution

Page 9: Lecture #19 - Case Western Reserve Universityengr.case.edu/merat_francis/eecs490f07/Lectures/Lecture19.pdf · Lecture #19 • Shading and texture analysis using morphology • Gray

EECS490: Digital Image Processing

© 2002 R. C. Gonzalez & R. E. Woods

Gray-Scale Morphology

Original image

Opening by reconstructionusing 71 pixel horizontal line

Opening using 71 pixelhorizontal line

Top-hat byreconstruction 71pixel horizontal line

Top-hat

Opening byreconstructionusing 11 pixelvertical line

Dilation byreconstructionusing 21 pixelvertical line

MINFinal reconstruction

Thisillustratesmorphologicalreconstruction to eliminatevertical andhorizontallines andshadows in animage.

Page 10: Lecture #19 - Case Western Reserve Universityengr.case.edu/merat_francis/eecs490f07/Lectures/Lecture19.pdf · Lecture #19 • Shading and texture analysis using morphology • Gray

EECS490: Digital Image Processing

Chap. 10 Image Segmentation

Page 11: Lecture #19 - Case Western Reserve Universityengr.case.edu/merat_francis/eecs490f07/Lectures/Lecture19.pdf · Lecture #19 • Shading and texture analysis using morphology • Gray

EECS490: Digital Image Processing

Image Segmentation

• Segmentation partitions image R intosubregions R1, R2, …, Rn such that:– R1 R2 … Rn=R

– Each Ri is a connected set– Ri Rj=0 for all i,j where i

– Q(Ri)=TRUE for every i

– Q(Ri Rj)=FALSE for any two adjacent regions

Page 12: Lecture #19 - Case Western Reserve Universityengr.case.edu/merat_francis/eecs490f07/Lectures/Lecture19.pdf · Lecture #19 • Shading and texture analysis using morphology • Gray

EECS490: Digital Image Processing

Image Segmentation

© 2002 R. C. Gonzalez & R. E. Woods

Original images

Boundariesobtained fromderivatives orsimilartechniques

Segmented image.Ri are orthogonaland havedifferentintensity.

Edge-basedsegmentation

Region-basedsegmentation

Segmented imagebased uponstandarddeviation of theintensity in 4x4regions

Page 13: Lecture #19 - Case Western Reserve Universityengr.case.edu/merat_francis/eecs490f07/Lectures/Lecture19.pdf · Lecture #19 • Shading and texture analysis using morphology • Gray

EECS490: Digital Image Processing

Line Detection

© 2002 R. C. Gonzalez & R. E. Woods

Edge basedsegmentationrequires findinggood edges —typically using afirst or secondderivative spatialoperator.

There are multiple typesof edges such as rampand step giving differentresponses.

First derivativeoperators typically givethicker edge responses;second derivativeoperators respond tofiner detail, includingnoise

Second derivatesproduce a double edgeresponse for ramp andstep edges

Page 14: Lecture #19 - Case Western Reserve Universityengr.case.edu/merat_francis/eecs490f07/Lectures/Lecture19.pdf · Lecture #19 • Shading and texture analysis using morphology • Gray

EECS490: Digital Image Processing

Line Detection

© 2002 R. C. Gonzalez & R. E. Woods

While we typically regarded a mask such as the 3x3 shown aboveas a spatial operator it can also be thought of as a correlationmask.

Page 15: Lecture #19 - Case Western Reserve Universityengr.case.edu/merat_francis/eecs490f07/Lectures/Lecture19.pdf · Lecture #19 • Shading and texture analysis using morphology • Gray

EECS490: Digital Image Processing

Line (and point) Detection

© 2002 R. C. Gonzalez & R. E. Woods

Single black pixelwe want to find

Regard thisas acorrelationmask for ablack pixel,i.e., a pointlocator

Response R tocorrelationmask

Threshold atT=90 of maxpixel intensity

R = wizii=1

9

Page 16: Lecture #19 - Case Western Reserve Universityengr.case.edu/merat_francis/eecs490f07/Lectures/Lecture19.pdf · Lecture #19 • Shading and texture analysis using morphology • Gray

EECS490: Digital Image Processing

Line Detection

© 2002 R. C. Gonzalez & R. E. Woods

Original image Laplacian processedimage. Intensitytransformed so 50%gray is zero. Double lineeffect is clearly visible.

Absolute value ofthe Laplacian giveswide lines

Using only positive valuesof the Laplacian givesnarrower lines.

Page 17: Lecture #19 - Case Western Reserve Universityengr.case.edu/merat_francis/eecs490f07/Lectures/Lecture19.pdf · Lecture #19 • Shading and texture analysis using morphology • Gray

EECS490: Digital Image Processing

Line Detection

© 2002 R. C. Gonzalez & R. E. Woods

These can be regarded as line detector masks for lines withspecific orientations.

Page 18: Lecture #19 - Case Western Reserve Universityengr.case.edu/merat_francis/eecs490f07/Lectures/Lecture19.pdf · Lecture #19 • Shading and texture analysis using morphology • Gray

EECS490: Digital Image Processing

Line Detection

© 2002 R. C. Gonzalez & R. E. Woods

Original image Response using +45˚line detector

Zoom of topleft response

Zoom of bottomright response

Response withall negativevalues set tozero

Select onlymaximum valuesfrom (e)

Page 19: Lecture #19 - Case Western Reserve Universityengr.case.edu/merat_francis/eecs490f07/Lectures/Lecture19.pdf · Lecture #19 • Shading and texture analysis using morphology • Gray

EECS490: Digital Image Processing

Line Detection

© 2002 R. C. Gonzalez & R. E. Woods

Step edge andits intensityprofile.

Ramp edge andits intensityprofile.

Roof edge andits intensityprofile.

Page 20: Lecture #19 - Case Western Reserve Universityengr.case.edu/merat_francis/eecs490f07/Lectures/Lecture19.pdf · Lecture #19 • Shading and texture analysis using morphology • Gray

EECS490: Digital Image Processing

Line Detection

© 2002 R. C. Gonzalez & R. E. Woods

Real intensity image showing multiple typesof edges

Page 21: Lecture #19 - Case Western Reserve Universityengr.case.edu/merat_francis/eecs490f07/Lectures/Lecture19.pdf · Lecture #19 • Shading and texture analysis using morphology • Gray

EECS490: Digital Image Processing

Line Detection

© 2002 R. C. Gonzalez & R. E. Woods

Observations:1. Magnitude of the firstderivative can be used to detectthe presence of an edge at apoint2. Sign of second derivativeindicates which side of the edgethe pixel is on3. Zero crossings of the secondderivative can be used to locatethe centers of thick edges

Page 22: Lecture #19 - Case Western Reserve Universityengr.case.edu/merat_francis/eecs490f07/Lectures/Lecture19.pdf · Lecture #19 • Shading and texture analysis using morphology • Gray

EECS490: Digital Image Processing

Line Detection

© 2002 R. C. Gonzalez & R. E. Woods

Ramp edgecorrupted bysteadilyincreasingamounts ofadditiveGaussian noise

Firstderivative

Secondderivative

Fundamental steps inedge detection:1. Smoothing — fornoise reduction2. Detection — of allpotential edgecandidates3. Localization — selectthe real edge points

Page 23: Lecture #19 - Case Western Reserve Universityengr.case.edu/merat_francis/eecs490f07/Lectures/Lecture19.pdf · Lecture #19 • Shading and texture analysis using morphology • Gray

EECS490: Digital Image Processing

Line Detection

© 2002 R. C. Gonzalez & R. E. Woods

Strength and direction of an edge can bedetermined using the gradient

f =

f

xf

y

=gxgy

Strength (magnitude)

Direction

M x, y( ) = mag f( ) = gx2+ gy

2

x, y( ) = Tan 1 gxgy

Page 24: Lecture #19 - Case Western Reserve Universityengr.case.edu/merat_francis/eecs490f07/Lectures/Lecture19.pdf · Lecture #19 • Shading and texture analysis using morphology • Gray

EECS490: Digital Image Processing

Line Detection

© 2002 R. C. Gonzalez & R. E. Woods

f =

f

xf

y

=1

1

Gray=0, white=1

The gradientvector isperpendicular tothe actual edge.

Page 25: Lecture #19 - Case Western Reserve Universityengr.case.edu/merat_francis/eecs490f07/Lectures/Lecture19.pdf · Lecture #19 • Shading and texture analysis using morphology • Gray

EECS490: Digital Image Processing

Image Segmentation

© 2002 R. C. Gonzalez & R. E. Woods

The Prewittand Sobel arethe mostcommonlyused gradientmasks

The Sobel has betternoise characteristicsthan the Prewitt

Page 26: Lecture #19 - Case Western Reserve Universityengr.case.edu/merat_francis/eecs490f07/Lectures/Lecture19.pdf · Lecture #19 • Shading and texture analysis using morphology • Gray

EECS490: Digital Image Processing

Image Segmentation

© 2002 R. C. Gonzalez & R. E. Woods

ModifiedPrewitt andSobel masks fordetectingdiagonal edges

-45˚ +45˚

Page 27: Lecture #19 - Case Western Reserve Universityengr.case.edu/merat_francis/eecs490f07/Lectures/Lecture19.pdf · Lecture #19 • Shading and texture analysis using morphology • Gray

EECS490: Digital Image Processing

Image Segmentation

© 2002 R. C. Gonzalez & R. E. Woods

1200x1600original image

|Gx| using 3x3Sobel

|Gy| using 3x3Sobel

|Gx|+|Gy|gradientapproximation

Page 28: Lecture #19 - Case Western Reserve Universityengr.case.edu/merat_francis/eecs490f07/Lectures/Lecture19.pdf · Lecture #19 • Shading and texture analysis using morphology • Gray

EECS490: Digital Image Processing

Image Segmentation

© 2002 R. C. Gonzalez & R. E. Woods

Gradient angle plotted as an intensity. Areas of constant intensity havethe same gradient vector (perpendicular to the edge). Black means thegradient vector is at 0˚ so the actual edge is vertical (at -90˚)

Page 29: Lecture #19 - Case Western Reserve Universityengr.case.edu/merat_francis/eecs490f07/Lectures/Lecture19.pdf · Lecture #19 • Shading and texture analysis using morphology • Gray

EECS490: Digital Image Processing

Image Segmentation

© 2002 R. C. Gonzalez & R. E. Woods

1200x1600original imagesmoothed with a5x5 averagingfilter

|Gx| using 3x3Sobel

|Gy| using 3x3Sobel

|Gx|+|Gy|gradientapproximation

Averagingcauses theedges to beweaker butcleaner. Noteloss of brickedges

Page 30: Lecture #19 - Case Western Reserve Universityengr.case.edu/merat_francis/eecs490f07/Lectures/Lecture19.pdf · Lecture #19 • Shading and texture analysis using morphology • Gray

EECS490: Digital Image Processing

Image Segmentation

© 2002 R. C. Gonzalez & R. E. Woods

-45˚ Sobel +45˚ Sobel

Note that both can detect a horizontal or verticaledge, but with a weaker response than ahorizontal or vertical operator

Page 31: Lecture #19 - Case Western Reserve Universityengr.case.edu/merat_francis/eecs490f07/Lectures/Lecture19.pdf · Lecture #19 • Shading and texture analysis using morphology • Gray

EECS490: Digital Image Processing

Image Segmentation

© 2002 R. C. Gonzalez & R. E. Woods

Thresholded gradientimage w/o smoothing

Thresholded gradientimage w/smoothing

Threshold = 1/3 max_value

Page 32: Lecture #19 - Case Western Reserve Universityengr.case.edu/merat_francis/eecs490f07/Lectures/Lecture19.pdf · Lecture #19 • Shading and texture analysis using morphology • Gray

EECS490: Digital Image Processing

Image Segmentation

© 2002 R. C. Gonzalez & R. E. Woods

The LoG is sometimescalled the Mexican hatoperator

The Laplacian isNEVER used directlybecause of its strongnoise sensitivity

Combining theLaplacian with aGaussian gives the LoG

2h r( ) =r2 2

4e

r2

2 2

Page 33: Lecture #19 - Case Western Reserve Universityengr.case.edu/merat_francis/eecs490f07/Lectures/Lecture19.pdf · Lecture #19 • Shading and texture analysis using morphology • Gray

EECS490: Digital Image Processing

Image Segmentation

Marr-Hildereth algorithm:– Filter image with a nxn Gaussian low-pass filter

– Compute the Laplacian of the filtered image using anappropriate mask

– Find the zero crossings of this image

This operator is based upon a 2nd derivative operator and canbe scaled using the parameter to fit a particular image orapplication, i.e., small operators for sharp detail and largeoperators for blurry edges

G x, y( ) = ex2 + y2

2 2