36
Professor N Cheung, U.C. Berkeley Lecture 22 EE143 F2010 1 Electrical Characteristics of MOS Devices The MOS Capacitor Voltage components Accumulation, Depletion, Inversion Modes Effect of channel bias and substrate bias Effect of gate oxide charges Threshold-voltage adjustment by implantation Capacitance vs. voltage characteristics MOS Field-Effect Transistor I-V characteristics Parameter extraction “metal” oxide semiconductor V G + x ox “metal” oxide semiconductor V G + x ox

Lec_22

Embed Size (px)

DESCRIPTION

MOS Capacitor

Citation preview

  • Professor N Cheung, U.C. Berkeley

    Lecture 22EE143 F2010

    1

    Electrical Characteristics of MOS Devices

    The MOS Capacitor

    Voltage components

    Accumulation, Depletion, Inversion Modes

    Effect of channel bias and substrate bias

    Effect of gate oxide charges

    Threshold-voltage adjustment by implantation

    Capacitance vs. voltage characteristics

    MOS Field-Effect Transistor

    I-V characteristics

    Parameter extraction

    metal

    oxide

    semiconductor

    VG+

    xox

    metal

    oxide

    semiconductor

    VG+

    xox

  • Professor N Cheung, U.C. Berkeley

    Lecture 22EE143 F2010

    2

    2) Visit the Device Visualization Website

    http://jas.eng.buffalo.edu/

    and run the visualization experiments of

    1) Charge carriers and Fermi level,

    2) pn junctions

    3) MOS capacitors

    4) MOSFETs

    1) Reading Assignment

    Streetman: Section of Streetman Chap 8 on MOS

  • Professor N Cheung, U.C. Berkeley

    Lecture 22EE143 F2010

    3

    Work Function of Materials

    Eo

    EV

    ECq

    SEMICONDUCTOR

    Ef

    Eo

    Ef

    METAL

    Work function

    = q

    Vacuum

    energy level

    qM is determined

    by the metal material

    qS is determined

    by the semiconductor material,

    the dopant type,

    and doping concentration

  • Professor N Cheung, U.C. Berkeley

    Lecture 22EE143 F2010

    4

    Work Function (qM) of MOS Gate Materials

    Eo = vacuum energy level Ef = Fermi level

    EC = bottom of conduction band EV = top of conduction

    band

    Ef

    Examples:

    Al = 4.1 eV

    TiSi2 = 4.6 eV

    Ef

    Eo

    qM

    Eo

    qM

    Ei

    EC

    EV

    0.56eV

    q = 4.15eV

    0.56eV

    q = 4.15eV (electron affinity)

    Eo

    Ei

    EC

    EV

    0.56eV

    q = 4.15eV

    0.56eV

    Ef

    n+ poly-Si

    (Ef = EC)p+ poly-Si

    (Ef = EV)

    qM

  • Professor N Cheung, U.C. Berkeley

    Lecture 22EE143 F2010

    5

    Work Function of doped Si substrate

    q = 4.15eV

    Ef

    Eo

    qs

    Ei

    EC

    EV

    |qF|

    0.56eV

    0.56eV

    * Depends on substrate concentration NB

    Ef

    Eo

    qs

    Ei

    EC

    EV

    |qF|

    0.56eV

    0.56eV

    q = 4.15eV

    n-type Si p-type Si

    s (volts) = 4.15 +0.56 - |F| s (volts) = 4.15 +0.56 + |F|

    i

    BF

    n

    N

    q

    kTln

  • Professor N Cheung, U.C. Berkeley

    Lecture 22EE143 F2010

    6

    The MOS Capacitor

    SioxFBG VVVV

    ox

    oxox

    xC

    [in Farads /cm2]

    +_ VFB

    Vox (depends on VG)

    Vsi (depends on VG)

    +

    _

    +

    _

    metal

    oxide

    semiconductor

    VG+

    xox

    Oxide capacitance/unit area

  • Professor N Cheung, U.C. Berkeley

    Lecture 22EE143 F2010

    7

    Flat Band Voltage

    VFB is the built-in voltage of the MOS:

    Gate work function M:Al: 4.1 V; n+ poly-Si: 4.15 V; p+ poly-Si: 5.27 V

    Semiconductor work function S :

    Vox = voltage drop across oxide (depends on VG)

    VSi = voltage drop in the silicon (depends on VG)

    SMFBV

    s (volts) = 4.15 +0.56 - |F| for n-Si

    s (volts) = 4.15 +0.56 + |F| for p-Si

  • Professor N Cheung, U.C. Berkeley

    Lecture 22EE143 F2010

    8

    A) Accumulation: VG < VFB for p-type substrate

    VSi 0, so Vox = VG - VFB

    QSi = charge/unit area in Si

    =Cox (VG - VFB )

    MOS Operation Modes

    M O Si (p-Si)

    Thickness of accumulation layer ~0

    holes

    Charge Distribution

  • Professor N Cheung, U.C. Berkeley

    Lecture 22EE143 F2010

    9

    MOS Operation Modes

    B) Flatband Condition : VG = VFB

    No charge in Si (and hence no charge in metal gate)

    VSi = Vox = 0

    M O S (p-Si)

    Charge Distribution

  • Professor N Cheung, U.C. Berkeley

    Lecture 22EE143 F2010

    10

    C) Depletion: VG > VFB

    MOS Operation Modes (cont.)

    M O S (p-Si)

    qNB

    xd

    s

    2

    dB

    ox

    dBFBG

    2

    xqN

    C

    xqNVV

    (For given VG, can solve for xd)

    B

    SiSid

    qN

    V2x

    Vox VSi

    Depletion layer

    Charge Distribution

    Depletion

    Layer

    thickness

    Note: NBxd is the total

    charge in Si /unit area

  • Professor N Cheung, U.C. Berkeley

    Lecture 22EE143 F2010

    11

    x

    x=0

    Q'

    Metal

    (x)

    Oxide

    x=xo

    x

    xd

    x=0

    Q'

    Metal Semiconductor

    (x)

    Oxide

    x=xo

    x=xo+

    Q'-

    x

    xd

    x=0

    Q'

    Metal Semiconductor

    (x)

    Oxide

    x=xo

    x=xo+

    Semiconductor

    Depletion Mode :Charge and Electric Field Distributions

    by Superposition Principle of Electrostatics

    x

    xd

    x=0

    Metal SemiconductorE(x)

    Oxide

    x=xo

    x=xo+

    x

    xd

    x=0

    Metal Semiconductor

    E(x)

    Oxide

    x=xo

    x=xo+

    x

    xd

    x=0

    Metal Semiconductor

    E(x)

    Oxide

    x=xo

    x=xo+

    =+

  • Professor N Cheung, U.C. Berkeley

    Lecture 22EE143 F2010

    12

    D) Threshold of Inversion: VG = VT

    nsurface = NB (for p-type substrate)

    => VSi = 2|F|

    MOS Operation Modes (cont.)

    M O S (p-Si)

    qNB

    xdmax

    F

    ox

    BFs

    FBTGC

    qNVVV

    2

    22 )(

    Qn

    This is a definition

    for onset of

    strong inversion

  • Professor N Cheung, U.C. Berkeley

    Lecture 22EE143 F2010

    13

    E) Strong Inversion: VG > VT

    MOS Operation Modes (cont.)

    M O S (p-Si)

    qNa

    xdmax

    )(

    max

    TGoxn

    ox

    ndB

    ox

    VVCQ

    C

    QxqNV

    B

    FSi

    dqN

    x

    4

    max

    Qn

    electrons

    xdmax is approximately unchanged

    when VG> VT

  • Professor N Cheung, U.C. Berkeley

    Lecture 22EE143 F2010

    14

  • Professor N Cheung, U.C. Berkeley

    Lecture 22EE143 F2010

    15

  • Professor N Cheung, U.C. Berkeley

    Lecture 22EE143 F2010

    16

    p-Si

  • Professor N Cheung, U.C. Berkeley

    Lecture 22EE143 F2010

    17

    Accumulation

    Depletion

    Inversion

    Vox = Qa/CoxVSi ~ 0

    Vox =qNaxd/Cox

    VSi = qNaxd2/(2s)

    Vox = [qNaxdmax+Qn]/Cox

    VSi = qNaxdmax2/(2s)

    = 2|F|

    Voltage drop = area under E-field curve

    * For simplicity, dielectric constants assumed to be same for oxide and Si in E-field sketches

  • Professor N Cheung, U.C. Berkeley

    Lecture 22EE143 F2010

    18

    Most derivations for MOS shown in lecture notes

    are done with p-type substrate (NMOS)

    as example.

    Repeat the derivations yourself for n-type substrate

    (PMOS) to test your understanding of MOS.

    Suggested Exercise

  • Professor N Cheung, U.C. Berkeley

    Lecture 22EE143 F2010

    19

    VG(more

    positive)VFB VT

    Accumulation

    (holes) depletionstrong inversion

    (electrons)

    p-Si substrate (NMOS)

    n-Si substrate (PMOS)

    VG(more

    negative)VFBVT

    Accumulation

    (electrons)depletionStrong inversion

    (holes)

  • Professor N Cheung, U.C. Berkeley

    Lecture 22EE143 F2010

    20

  • Professor N Cheung, U.C. Berkeley

    Lecture 22EE143 F2010

    21

  • Professor N Cheung, U.C. Berkeley

    Lecture 22EE143 F2010

    22

  • Professor N Cheung, U.C. Berkeley

    Lecture 22EE143 F2010

    23

  • Professor N Cheung, U.C. Berkeley

    Lecture 22EE143 F2010

    24

  • Professor N Cheung, U.C. Berkeley

    Lecture 22EE143 F2010

    25

    C-V Characteristic

    C/Cox

    VT

    1

    VG

    p-type

    substrate

    a

    c

    d

    b

    e

    C/Cox

    VT

    1

    VG

    n-type

    substrate

    a

    c

    d

    b

    e

    a) accumulation: Cox

    b) flatband: ~Cox (actually a bit less)

    c) depletion: Cox in series with the Cdepl

    d) threshold: Cox in series with the minimum Cdepl

    e) inversion: Cox (with some time delay!)

  • Professor N Cheung, U.C. Berkeley

    Lecture 22EE143 F2010

    26

    Accumulation

    Depletion

    Inversion

    Q

    Q

    Q

    Q

    Q

    Q

    Low frequency High frequency

    Q

    Q

    All frequencies

    All frequencies

    C = Cox

    C = Cox 1/C = 1/Cox + xdmax/s

    1/C = 1/Cox + xd/s

    Small signal charge response Q due to VG

  • Professor N Cheung, U.C. Berkeley

    Lecture 22EE143 F2010

    27

    SioxFBBG VVVVV

    net bias across MOS

    M

    O

    p-Si

    V

    VG

    C

    inversion

    electrons

    depletion

    region

    VB

    n+n+

    Effect of Substrate Bias VB and Channel Bias VC

  • Professor N Cheung, U.C. Berkeley

    Lecture 22EE143 F2010

    28

    s

    da

    OX

    daFBBG

    BCpSi

    XqN

    C

    XqNVVV

    VVV

    max2

    max

    2

    1

    2

    M O SiEi

    Efs

    q(VC-VB)

    Efn

    pq

    pq

    s

    daSi

    XqNV

    max2

    2

    1

    At the onset of strong inversion, where VG is defined

    as the threshold voltage

  • Professor N Cheung, U.C. Berkeley

    Lecture 22EE143 F2010

    29

    At threshold: VG VB = VFB+Vox+VSi

    But VSi = 2|p| + (VC - VB ) =>

    xdmax is different from no-bias case

    B

    SiSid

    qN

    Vx

    2max

    VT -VB = VFB + 2sqNB(2|F| + VC-VB)

    Cox + 2|F| + VC - VB

    Vox VSi

  • Professor N Cheung, U.C. Berkeley

    Lecture 22EE143 F2010

    30

    Flat Band Voltage with Oxide charges

    VFB is the Gate voltage required to create no charge in the Si

    dxx

    xx

    CC

    QV

    oxx

    ox

    ox

    oxox

    f

    SMFB 0

    )(1

    x = 0 x = xox

    M O S

    ox (x)Qf

    ox (x) due to alkaline

    contaminants or trapped

    chargeQf due to broken bonds

    at

    Si-SiO interface

  • Professor N Cheung, U.C. Berkeley

    Lecture 22EE143 F2010

    31

    VT Tailoring with Ion Implantation

    Nsub

    Shallow implanted

    dopant profile at Si-SiO2

    interface (approximated as

    a delta function)

    Acceptor implant gives positive shift (+ VT)

    Donor implant gives negative shift - VT

    Algebraic sign of VT shift is independent of n or p substrate !

    OX

    iT

    C

    QV

    Qi = q implant dose in Si

  • Professor N Cheung, U.C. Berkeley

    Lecture 22EE143 F2010

    32

    p-Si

    implanted acceptors

    Na

    SiO2

    Doping Profile After Implantation

    SiO2

    xdmax

    Q

    Qd

    d

    Qn

    p-Si

    (due to implanted acceptors)

    Charge Distribution for V G > VT

    * Valid if thickness of implanted dopants

  • Professor N Cheung, U.C. Berkeley

    Lecture 22EE143 F2010

    33

    Summary : Parameters Affecting VT

    6

    7

    n+

    Na

    VB

    5

    1

    2

    4

    3

    Dopant implant near Si/SiO2 interface

    fOX Q& M

    xox

    VCQn n+

  • Professor N Cheung, U.C. Berkeley

    Lecture 22EE143 F2010

    34

    + Qf or Qox

    B threshold implant

    As or P threshold implant

    Xox increases

    Xox increases

    M increases

    M decreases

    |VCB| increases

    |VCB| increases

  • Professor N Cheung, U.C. Berkeley

    Lecture 22EE143 F2010

    35

    Summary of MOS Threshold Voltage (NMOS, p-substrate)

    Threshold voltage of MOS capacitor:

    Threshold voltage of MOS transistor:

    Note 1: At the onset of strong inversion, inversion charge is negligible

    and is often ignored in the VT expression

    Note 2: VT of a MOSFET is taken as the VT value at source ( i.e., VC =VS)

    Note 3 : Qi = (q implant dose ) is the charge due to the ionized donors

    or acceptors implanted at the Si surface. Qi is negative for acceptors

    and is positive for donors

    VT = VFB + 2sqNB(2|F|)

    Cox + 2|F| -

    Qi

    Cox

    VT = VFB + 2sqNB(2|F| + |VC-VB|)

    Cox + 2|F| + VC -

    Qi

    Cox

  • Professor N Cheung, U.C. Berkeley

    Lecture 22EE143 F2010

    36

    Summary of MOS Threshold Voltage (PMOS, n-substrate)

    Threshold voltage of MOS capacitor:

    Threshold voltage of MOS transistor:

    * Yes, + sign for VC term but VC (