Lec02 Review of Equations

Embed Size (px)

Citation preview

  • 7/29/2019 Lec02 Review of Equations

    1/20

    Review of conservation equations

    State, Mass and Momentum

  • 7/29/2019 Lec02 Review of Equations

    2/20

    Equation of State (EOS-80)

    Determines water density from T, S, and P

    ),,(/1),,(/1)0,,(),,( PTSPTSKPTSPTS 22/3)0,,(/1)0,,( DSCSBSATSTS

    22/32/3 )()(),,( PNSMPJSISHGSFSEPTSK A through Nare polynomials

    Tis temperature in oC

    S salinity

    Ppressure in bars

    Ksecant bulk modulus measure of compresibility

  • 7/29/2019 Lec02 Review of Equations

    3/20

    A B C D

    T0 999.842594 8.24493E-1 -5.72466E-3 4.8314E-4

    T1 6.793952E-2 -4.0899E-3 1.0227E-4

    T2 -9.095290E-3 7.6438E-5 -1.6546E-6

    T3 1.001685E-4 -8.2467E-7

    T4 -1.120083E-6 5.3875E-9

    T5 6.536332E-9

    E F G

    T0 19652.21 54.6746 7.944E-2

    T1 148.4206 -0.603459 1.6483E-2

    T2 -2.327105 1.09987E-2 -5.3009E-4

    T3 1.360477E-2 -6.1670E-5

    T4 -5.155288E-5

    H I J

    T0 3.239908 2.2838E-3 1.91075E-4

    T1 1.43713E-3 -1.0981E-5

    T2 1.16092E-4 -1.6078E-6

    T3 -5.77905E-7

    M N

    T0 8.50935E-5 -9.9348E-7

    T1 -6.12293E-6 2.0816E-8

    T2 5.2787E-8 9.1697E-10

    Check values:

    489.1069)1000,5,35(

    343.1023)0,25,35(

    1000

  • 7/29/2019 Lec02 Review of Equations

    4/20

    Greater influence of salinity on density

    90 % of Ocean Water

    Mean T & S for

    World Ocean

  • 7/29/2019 Lec02 Review of Equations

    5/20

    Effects of Temperature and Salinity on Density

    T

    1

    S

    1

    Thermal Expansion Saline Contraction

    x 10-4 oC-1 x 10-4 S-1

    Density changes by 0.2 kg/m3 for a T change of 1oC,

    and by 0.8 kg/m3 for a S change of 1.

  • 7/29/2019 Lec02 Review of Equations

    6/20

    x

    z

    y

    dy

    dz

    dx

    Flux of mass in (kg/s) = dzdyu Flux of mass out (kg/s) = dzdyu dzdydxu

    x

    Net Flux of mass in

    x = dzdydxux

    Net Flux of mass in y = dzdydxvy

    Net Flux of mass in z = dzdydxwz

    dxux

    u

    , u

    , w

    , v

    u

    Mass per area per time

    (kg/(m2 s))

  • 7/29/2019 Lec02 Review of Equations

    7/20

    The change of mass per unit time going through the volume element is:

    And the change of mass per unit time per unit volume is:

    dzdydxtt

    M

    dzdydxw

    zv

    yu

    xdzdydx

    t

    0 wzvyuxt which is the same as:

    0

    z

    w

    y

    v

    x

    u

    zwyvxut

    01

    z

    w

    y

    v

    x

    u

    Dt

    D

    or

  • 7/29/2019 Lec02 Review of Equations

    8/20

    This is the Continuity Equation or Equation ofConservation of Mass

    How valid is the Boussinesq approximation in the OCEAN?

    How would you determine that?

    1 sigma-t throughout one day = 1 / (24*3600.) = 1.1510-5

    01

    z

    w

    y

    v

    x

    u

    Dt

    D

    0

    Dt

    DTaking

    Boussinesq approximation

    0 zw

    y

    v

    x

    u

    x

    u]O[10

    km100

    m/s0.1 6-

    Dt

    D

    810O1 Dt

    DBut

  • 7/29/2019 Lec02 Review of Equations

    9/20

    Continuity Equation in Bulk Form: b0 VEVPR

    z

    x

  • 7/29/2019 Lec02 Review of Equations

    10/20

    Conservation of Salt:

    ydiffusivitDt

    DS

    z

    S

    zK

    zy

    S

    yK

    yx

    S

    xK

    xz

    Sw

    y

    Sv

    x

    Su

    t

    S

    Conservation of Heat:

    z

    T

    zzy

    T

    yyx

    T

    xxz

    Tw

    y

    Tv

    x

    Tu

    t

    T

    Equation of State:

    SpTS 11000],,[

  • 7/29/2019 Lec02 Review of Equations

    11/20

    Continuity Equation in Bulk Form: b0 VEVPR

    Sb

    S0

    Salt Conservation Equation in Bulk Form: VbSb =V0S0

    z

    x

  • 7/29/2019 Lec02 Review of Equations

    12/20

    Conservation of Momentum (Equations of Motion)

    Fam

    m

    Fa

    z

    ww

    y

    wv

    x

    wu

    t

    w

    z

    vw

    y

    vv

    x

    vu

    t

    vz

    uw

    y

    uv

    x

    uu

    t

    u

    dt

    Vda

  • 7/29/2019 Lec02 Review of Equations

    13/20

    mF Pressure gradient + friction + tides + gravity+ CoriolisPressure gradient: Barotropic and Baroclinic

    Friction: Surface, bottom, internal

    Tides: Boundary condition

    Gravity: Only in the vertical

    Coriolis: Only in the horizontal

    REMEMBER, these are FORCES PER UNIT MASS

  • 7/29/2019 Lec02 Review of Equations

    14/20

    mF Pressure gradient + friction + tides + gravity+ CoriolisPressure gradient: Barotropic and Baroclinic

    Friction: Surface, bottom, internal

    Tides: Boundary condition

    Gravity: Only in the vertical

    Coriolis: Only in the horizontal

    REMEMBER, these are FORCES PER UNIT MASS

  • 7/29/2019 Lec02 Review of Equations

    15/20

    z

    h dzgPHydrostatic Pressure

    Pressure gradient force per unit mass

    x

    P

    1

    dzgPPz

    a Total Pressure

    dzxgxgxP za

    1

    Note that even if the density is constant with depth, the horizontal pressure gradient

    increases with depth if there is a horizontal density gradient

    Barometric Barotropic Baroclinic

  • 7/29/2019 Lec02 Review of Equations

    16/20

    mF Pressure gradient + friction + tides + gravity+ CoriolisPressure gradient: Barotropic and Baroclinic

    Friction: Surface, bottom, internal

    Tides: Boundary condition

    Gravity: Only in the vertical

    Coriolis: Only in the horizontal

    REMEMBER, these are FORCES PER UNIT MASS

  • 7/29/2019 Lec02 Review of Equations

    17/20

    Friction

    z

    uA

    zy

    uA

    yx

    uA

    xzyx

    @ surface:

    WWC

    z

    uA

    xdas

    z

    @ bottom: VCrruVuCVuC

    z

    uA

    bb

    bb

    z

    ;

    @ interior: 22

    ;?

    z

    v

    z

    u

    z

    g

    RiRifzuA

    z

  • 7/29/2019 Lec02 Review of Equations

    18/20

    mF Pressure gradient + friction + tides + gravity+ CoriolisPressure gradient: Barotropic and Baroclinic

    Friction: Surface, bottom, internal

    Tides: Boundary condition

    Gravity: Only in the vertical

    Coriolis: Only in the horizontal

    REMEMBER, these are FORCES PER UNIT MASS

  • 7/29/2019 Lec02 Review of Equations

    19/20

    Gravity

    [0, 0, g] = [0, 0, 9.81]

    Coriolis

    [-fv, fu, 0]

    h

    f

    24

    2sin2

  • 7/29/2019 Lec02 Review of Equations

    20/20

    Fam

    gz

    P

    z

    vA

    zy

    vA

    yx

    vA

    xdz

    y

    g

    ygfu

    z

    vw

    y

    vv

    x

    vu

    t

    v

    z

    uA

    zy

    uA

    yx

    uA

    xdz

    x

    g

    xgfv

    z

    uw

    y

    uv

    x

    uu

    t

    u

    z

    zyx

    z

    zyx

    10

    0

    z

    w

    y

    v

    x

    u

    z

    S

    z

    K

    zy

    S

    y

    K

    yx

    S

    x

    K

    xz

    Sw

    y

    Sv

    x

    Su

    t

    S

    z

    T

    zzy

    T

    yyx

    T

    xxz

    Tw

    y

    Tv

    x

    Tu

    t

    T

    SSpTS t 1000;11000],,[