25
LEADER Project Analysis of Representative DEC Events of the ETDR with RELAP5 and CATHARE Giacomino Bandini - ENEA/Bologna Genevieve Geffraye – CEA/Grenoble LEADER 4 th WP5 Meeting Karlsruhe, 22 November 2012

LEADER Project

  • Upload
    adanne

  • View
    38

  • Download
    0

Embed Size (px)

DESCRIPTION

LEADER Project. Analysis of Representative DEC Events of the ETDR with RELAP5 and CATHARE . Giacomino Bandini - ENEA/Bologna Genevieve Geffraye – CEA/Grenoble LEADER 4 th WP5 Meeting Karlsruhe, 22 November 2012. Outline. Analyzed DEC Transients at EOC ALFRED Modeling - PowerPoint PPT Presentation

Citation preview

Page 1: LEADER Project

LEADER Project

Analysis of Representative DEC Events of the ETDR with RELAP5 and CATHARE

Giacomino Bandini - ENEA/BolognaGenevieve Geffraye – CEA/Grenoble

LEADER 4th WP5 MeetingKarlsruhe, 22 November 2012

Page 2: LEADER Project

2

Outline

Analyzed DEC Transients at EOC ALFRED Modeling Transient Results Conclusions

Page 3: LEADER Project

3

Analyzed DEC Transients

TRANSIENT Initiating Event (t = 0 s) Reactor scram and threshold

Primary pump trip

MHX FW trip

MSIV closure DHR startup

TR-4: Reactivity insertion (UTOP)

Insertion of 250 pcm in 10 s No No No No No

TO-3: Reduction of FW temp. + all pumps stop

FW temp. from 335 °C down to 300 °C in 1 s

2 s, low pump speed 0 s 2 s 2 s DHR-1 at 3 s

(4 IC loops)

TO-6: Increase of FW flowr. + all pumps stop

20% increase in FW flowrate in 25 s

2 s, low pump speed 0 s 2 s 2 s DHR-1 at 3 s

(4 IC loops)

TDEC-1: Total ULOF All primary pump coastdown No 0 s 1 s 1 s DHR-1 at 2 s

(3 IC loops)

TDEC-3: ULOHS All MHX feedwater trip No No 1 s 1 s DHR-1 at 2 s (3 IC loops)

T-DEC4: ULOHS + ULOF

All primary pumps and MHX feedwater trip No 0 s 0 s 0 s DHR-1 at 2 s

(3 IC loops)

T-DEC5: Partial block. in the hottest FA

10% to 97.5 % blockage at hottest FA inlet No No No No No

T-DEC6: SCS failure Depressurization of all secondary circuits

2 s, low second. pressure No 2 s No No

Main events and reactor scram threshold

Page 4: LEADER Project

4

RELAP5 Modeling

Feedwater

Steam

521- 8

531- 8

551- 8 561-8

151-

8

Feedwater

Steam

521- 8

531- 8

551- 8 561-8

151-

8

841 - 4

851 - 8441 -8

801 - 4

811-4831 - 4

815

401 - 8

841 - 4

-

801 - 4

811-4831 - 4

815

841 - 4

-

801 - 4

811-4831 - 4

815

611 - 8

841 - 4

-

801 - 4

811-4831 - 4

815

611 -

711-

731-

741- 4

751 - 8

761- 4

621- 4

641 - 4

771

781 - 8

601- 4

661 - 4

611 -

711- 8

731- 8

741- 4

751 -

761- 4

621- 4

641 - 4

771 -8

781 -

601- 4

661 - 4

611 -

711-

731-

741- 4

751 -

761- 4

621- 4

641 - 4

771 -

781 -

711-

731-

741- 4

751 -

761- 4

621- 4

641 - 4

771 -

781

601- 4

661 - 4

841 - 8

-

801 - 4

811-4831 - 4

815

841 -

-

801 - 8

811-8831 - 8

815

611 -

841 -

-

801 -

811-831 -

411 -8

611 -

711-

731-

741- 4

751 -

761- 4

621- 4

641 - 4

771

781

711-

731-

741- 4

751 -

761- 4

621- 4

641 - 4

771 -

781 -

601- 8

661 - 8

611 -

711-

731-

741- 8

751 -

761- 8

621- 8

641 - 8

841 - 4

851 - 8441 -8

801 - 4

811-4831 - 4

815

401 - 8

841 - 4

-

801 - 4

811-4831 - 4

815

841 - 4

-

801 - 4

811-4831 - 4

815

611 - 8

841 - 4

-

801 - 4

811-4831 - 4

815

611 -

711-

731-

741- 4

751 - 8

761- 4

621- 4

641 - 4

771

781 - 8

601- 4

661 - 4

611 -

711- 8

731- 8

741- 4

751 -

761- 4

621- 4

641 - 4

771 -8

781 -

601- 4

661 - 4

611 -

711-

731-

741- 4

751 -

761- 4

621- 4

641 - 4

771 -

781 -

711-

731-

741- 4

751 -

761- 4

621- 4

641 - 4

771 -

781

601- 4

661 - 4

841 - 8

-

801 - 4

811-4831 - 4

815

841 -

-

801 - 8

811-8831 - 8

815

611 -

841 -

-

801 -

811-831 -

411 -8

611 -

711-

731-

741- 4

751 -

761- 4

621- 4

641 - 4

771

781

711-

731-

741- 4

751 -

761- 4

621- 4

641 - 4

771 -

781 -

601- 8

661 - 8

611 -

711-

731-

741- 8

751 -

761- 8

621- 8

641 - 8

ALFRED Nodalization scheme with RELAP5

8 MHXs

8 Secondary loops Primary circuit

8 IC loops

Steam line

Feedwater line

100

101102109

110

115

060061-8 070

050

020

200 151-8

121-8

131-8

141-8

220

230

210

100

101102109

110

115

060061-8 070

050

020

200 151-8

121-8

131-8

141-8

220

230

210

100

101102109

110

180

060061-8 070

050

020

200 151-8

121-8

131-8

141-8

220

230

210

Feedwater

Steam

521- 8

531- 8

551- 8 561-8

151-

8

Feedwater

Steam

521- 8

531- 8

551- 8 561-8

151-

8

841 - 4

851 - 8441 -8

801 - 4

811-4831 - 4

815

401 - 8

841 - 4

-

801 - 4

811-4831 - 4

815

841 - 4

-

801 - 4

811-4831 - 4

815

611 - 8

841 - 4

-

801 - 4

811-4831 - 4

815

611 -

711-

731-

741- 4

751 - 8

761- 4

621- 4

641 - 4

771

781 - 8

601- 4

661 - 4

611 -

711- 8

731- 8

741- 4

751 -

761- 4

621- 4

641 - 4

771 -8

781 -

601- 4

661 - 4

611 -

711-

731-

741- 4

751 -

761- 4

621- 4

641 - 4

771 -

781 -

711-

731-

741- 4

751 -

761- 4

621- 4

641 - 4

771 -

781

601- 4

661 - 4

841 - 8

-

801 - 4

811-4831 - 4

815

841 -

-

801 - 8

811-8831 - 8

815

611 -

841 -

-

801 -

811-831 -

411 -8

611 -

711-

731-

741- 4

751 -

761- 4

621- 4

641 - 4

771

781

711-

731-

741- 4

751 -

761- 4

621- 4

641 - 4

771 -

781 -

Page 5: LEADER Project

5

CATHARE Modeling

ALFRED Nodalization scheme with CATHARE

Primary circuit

2 Secondary loops (weight 4)

2 IC loops (weight 4)

Page 6: LEADER Project

TR-4: Reactivity insertion (1/3)(RELAP5 – CATHARE Comparison)

Core and MHX powers Core and MHX powers

ASSUMPTIONS: Insertion of 250 pcm in 10 s No feedwater control on secondary side Different fuel rod gap dynamic model in RELAP5 and CATHARE Fuel-clad linked effect fuel expansion according to clad temperature (closed gap)

6

Page 7: LEADER Project

7

TR-4: Reactivity insertion (2/3) (RELAP5 – CATHARE Comparison)

Core temperatures Core temperatures

Total reactivity and feedbacks Total reactivity and feedbacks

Page 8: LEADER Project

8

TR-4: Reactivity insertion (3/3) (RELAP5 – CATHARE Comparison)

MAIN RESULTS: Initial core power peak around 700 MW Maximum clad temperature remains below 650 °C Maximum fuel temperature (hottest FA, middle core plane, pellet centre) exceeds

the MOX melting point of about 2760 °C only local fuel melting no extended core melting

Core temperatures Core temperatures

Page 9: LEADER Project

9

T-DEC1: ULOF (1/3) (RELAP5 – CATHARE Comparison)

Active core flowrate Active core flowrate

Core and MHX powers Core and MHX powers

Page 10: LEADER Project

10

T-DEC1: ULOF (2/3) (RELAP5 – CATHARE Comparison)

Core temperatures Core temperatures

Core temperatures Core temperatures

Page 11: LEADER Project

11

T-DEC1: ULOF (3/3) (RELAP5 – CATHARE Comparison)

Total reactivity and feedbacks Total reactivity and feedbacks

ASSUMPTIONS: No feedwater control on secondary side Fuel-clad not-linked effect fuel expansion according to fuel temperature

MAIN RESULTS: Natural circulation in primary around 23% of nominal value Core power reduces down to about 200 MW Initial clad peak temperature at 750 °C; max clad temperature stabilizes around 650 °C

Page 12: LEADER Project

12

T-DEC3: ULOHS (1/3) (RELAP5 – CATHARE Comparison)Core and MHX powers Core and MHX powers

Core temperatures Core temperatures

Page 13: LEADER Project

13

T-DEC3: ULOHS (2/3) (RELAP5 – CATHARE Comparison)

Core and vessel temperatures Core and vessel temperatures

Total reactivity and feedbacks Total reactivity and feedbacks

Page 14: LEADER Project

14

T-DEC3: ULOHS (3/3) (RELAP5 – CATHARE Comparison)

ASSUMPTIONS: 3 out of 4 IC loops of DHR-1 system in service No heat losses from the vessel external surface

MAIN RESULTS: Core power progressively reduces down towards decay level Maximum clad temperature rises up to about 700 °C after 30 minutes Maximum vessel temperature rises up to about 650 °C after 30 minutes

Page 15: LEADER Project

15

T-DEC4: ULOHS + ULOF (1/3) (RELAP5 – CATHARE Comparison)

Active core flowrate Active core flowrate

Core and MHX powers Core and MHX powers

Page 16: LEADER Project

16

T-DEC4: ULOHS + ULOF (2/3) (RELAP5 – CATHARE Comparison)

Core temperatures Core temperatures

Core temperatures Core temperatures

Page 17: LEADER Project

17

T-DEC4: ULOHS + ULOF (3/3) (RELAP5 – CATHARE Comparison)

Total reactivity and feedbacks Total reactivity and feedbacks

ASSUMPTIONS: 3 out of 4 IC loops of DHR-1 system in service No heat losses from the vessel external surfaceMAIN RESULTS: Natural circulation in primary circuit reduces down to very low value (around 1%) Core power progressively reduces down towards decay level Max T-clad rises up to 800 °C after about 15 minutes and stabilizes around 825 °C Maximum vessel temperature rises up to about 500 °C after 60 minutes

Page 18: LEADER Project

18

TO-3: FW temp. reduction + PP stop (1/2) (RELAP5 Results)

Total reactivity and feedbacks Core temperatures

Active core flowrate (short term) Active core flowrate (long term)

Page 19: LEADER Project

19

TO-3: FW temp. reduction + PP stop (2/2) (RELAP5 Results)

Core decay and MHX powers Primary lead temperatures

ASSUMPTIONS: Loss of one preheater (FW temperature from 335 °C down to 300 °C in 1 s) + primary

pump coastdown reactor scram at t = 2 s on low pump speed signal 4 IC loops in service for decay heat removalMAIN RESULTS: Power removal by 4 IC loops of DHR-1 system is about 7 MW No risk of lead freezing after DHR-1 start-up Lead freezing at MHX outlet is reached after about 2 hours (cold lead at the MHX

outlet to the core inlet without significant mixing in the cold pool above MHX outlet)

Page 20: LEADER Project

20

TO-6: FW flowrate + 20% + PP stop (1/2) (RELAP5 Results)

Total reactivity and feedbacks Core temperatures

Active core flowrate (short term) Active core flowrate (long term)

Page 21: LEADER Project

21

TO-6: FW flowrate + 20% + PP (2/2) (RELAP5 Results)

Core decay and MHX powers Primary lead temperatures

ASSUMPTIONS: FW flowrate increase of 20% + primary pump coastdown reactor scram at t = 2 s on

low pump speed signal 4 IC loops in service for decay heat removalMAIN RESULTS: Power removal by 4 IC loops of DHR-1 system is about 7 MW No risk of lead freezing after DHR-1 start-up Lead freezing at MHX outlet is reached after about 2 hours (cold lead at the MHX

outlet to the core inlet without significant mixing in the cold pool above MHX outlet)

Page 22: LEADER Project

22

T-DEC6: SCS failure (1/2) (RELAP5 Results)

Secondary pressure Total reactivity and feedbacks

Core and MHX powers Primary lead temperatures

Page 23: LEADER Project

23

T-DEC6: SCS failure (2/2) (RELAP5 Results)

Core decay and MHX powers Core and vessel temperatures

ASSUMPTIONS: Depressurization of all secondary circuits (no availability of DHR-1 system) reactor

scram at t = 2 s on low secondary pressureMAIN RESULTS: Initial MHX power increase up to 800 MW no risk for lead freezing Slow primary temperature increase due to large thermal inertia of primary system

and efficient hot lead mixing in the cold pool at MHX outlet before to reach the core inlet

Page 24: LEADER Project

24

TDEC-5: Partial FA blockage (RELAP5 Results)

ASSUMPTIONS: ΔP over total FA = 1.0 bar ΔP at FA inlet = 0.22 bar No heat exchange with

surrounding FAS Flow area blockage at FA inlet

MAIN RESULTS: 75% FA flow area blockage 50% FA

flowrate reduction 85% blockage T max clad = 700 °C No clad melting if area blockage < 95% Fuel melting if area blockage > 97.5% 50% inlet flow area blockage can be

detected by TCs at FA outlet

Page 25: LEADER Project

25

Conclusions

The analysis of DEC transients with RELAP5 and CATHARE codes has highlighted the very good intrinsic safety features of ALFRED design thanks to:

Good natural circulation characteristic, Large thermal inertia, and Significant negative reactivity feedbacks

In all analyzed transients there is no risk for significant core damage or risk for lead freezing large grace time is left to the operator to take the opportune corrective actions to bring the plant in safe conditions in the medium and long term