Large-Scale Testing of Steel Reinforced Concrete (SRC) Coupling Beams

  • Upload
    mrefaat

  • View
    228

  • Download
    0

Embed Size (px)

DESCRIPTION

Large-Scale Testing

Citation preview

  • 6/19/13

    1

    Large-Scale Testing of Steel Reinforced Concrete (SRC) Coupling Beams

    Christopher J. Motter, UC Los Angeles John W. Wallace, UC Los Angeles

    Ron Klemencic, John Hooper, Dave Fields Magnusson, Klemencic Associates

    Los Angeles Tall Building Structural Design Council May 2013, Los Angeles, CA

    Charles Pankow Foundation

    ACI Pankow Foundation Student Fellowship

    Presentation Outline

    n Background n Motivation n Specimen Design n Testing Program n Test Results n Backbone Modeling n Conclusions &

    Recommendations

    2

  • 6/19/13

    2

    Background Coupling Beams n RC coupling beams

    n Diagonally-reinforced n Concrete-encased structural steel

    n Primary functions n Added strength & stiffness n energy dissipation

    n Primary issues n Detailing issues (ductility) n Modeling (e.g., backbone relation)

    3 Diagonally-Reinforced Concrete-Encased Steel

    T C

    4

    Embedment Model

    Marcakis & Mitchell (1980)* :

    Mattock & Gaafar (1982)* :

    '0.85 ( )

    1 3.6( )

    c eff en

    e

    f b l cV

    el c

    =

    +

    0.66' 1

    10.58 0.224.5 ( )

    0.88 ( ) / ( )n c e e

    tV f b l cb a c l c

    = + +

    b

    beff

    t

    *Modified to include interface spalling per Harries et al (2000)

    c = 0.003n.a.

    2'

    0 0

    2 c cc cf f

    =

    '0.85c cf f=1x

    x

    Vn

    aLe

    strain

    c

  • 6/19/13

    3

    5

    AISC 2010 Seismic Provisions n Flexural capacity using strain

    compatibility or plastic analysis

    n Shear capacity using

    n Initial stiffness using 0.35Ig

    n Embedment length consistent with Mattock and Gaafar (1982)

    n Transfer bars and bearing plates required

    n Vertical boundary steel: Asfy > Vn,beam

    1.1 1.56comp y steel RCV R V V= +

    bearingplates

    auxiliary transfer bars

    Asfy > Vbeam

    Vbeam

    Test Sub-Assembly

    6

    Vb

    V

    Vb

    Split at Coupling Beam Inflection Point (Center)

    M M

    Mid-level: intermediate level detailing (ordinary boundary element)

    Upper-level: No boundary transverse reinforcement when boundary < 400/fy)

    V

    P P

  • 6/19/13

    4

    7

    Motivation n Large-scale SRC beam n Realistic boundary conditions (load paths)

    n Wall strain gradient across connection

    Flat M

    C T

    Vbeam

    n.a.

    Flat M

    C T

    Vbeam

    n.a.

    Embedment into reaction block: No strain gradient Load path satisfied

    Embedment into wall boundary: Strain gradient at embedment Imposes demands on wall

    Motivation Impact of Load Paths

    8

    Increases Local Tension

    Reduces Local Compression

  • 6/19/13

    5

    Testing Program Overview

    n Two test specimens n Each specimen

    n One wall n Two coupling beams,

    one on each side n Coupling beam tests

    n Individually with wall loads applied

    n Second specimen designed after testing completed on first specimen

    9

    10

    Summary of Test Variables

    n Beam 1: Long embedment (conservative design)

    n Beam 2: Shorter embedment n Beam 3: Shorter aspect ratio n Beam 4: No boundary

    confinement, bound < 400/fy

    beam=L/h Le bound. bound. trans. Beam 1 (3.33-32-6C) 3.33 32 0.024 (14#6) #2@4" Beam 2 (3.33-24-7C) 3.33 24 0.033 (14#7) #2@4" Beam 3 (2.40-26-5C) 2.40 26 0.017 (14#5) #2@4" Beam 4 (3.33-24-3NC) 3.33 24 0.006 (14#3) none

    Vbeam

    L/2

    bound

    h

    bound. trans.

    Le

  • 6/19/13

    6

    Coupling Beam

    n Flexure-controlled n ~1/2-scale W24x250

    11

    12

    W12x96, flanges

    trimmed to 5.5 width

    #2 @ 3 (two U-bars)

    Longitudinal bars not

    embedded into shear

    wall

    18

    Shear Wall Boundary

    Ordinary boundary element No boundary Confinement 12

  • 6/19/13

    7

    Embedment Detailing

    n Pre-drilled holes in web of steel section

    n Threaded rods and side plates to maintain boundary confinement

    13

    Test Set-Up

    14

    8'

    200 kip act.

    STRONG FLOOR

    2'-6"

    4'-9"

    1'-6"

    8'7'-3"

    2'-9"

    1'-6"

    Le

    2'

    400 kip actuator

    400 kip actuator

    15'

    5'-6"

    5'

    STEEL LOADING BEAM

    1'

    24'

    8'-8.5"

    22'

    CONCRETETOP BEAM

    SHEAR WALL

    EMBEDDEDSTEEL

    SECTION

    FOO

    TING

    300 kip actuator

    Le

    STEEL (AXIAL) LOADING BEAM

    LOADING JACK

    2'typ.

    typ.

    EMBEDDEDSTEEL

    SECTION

  • 6/19/13

    8

    Vbeam 15

    Vwall

    0.4*Vwall

    0.4*Vwall

    Wall Loading n Proportional loading: Vu and Mu n Wall moment demands at connection

    n Beam 1: Exceeded cracking moment (low moment, long Le) n Beam 2: Approached yield moment (high moment, short Le)

    n Wall moment demands at connection n Beam 3 and Beam 4: Similar to Beam 2

    16

    (+), Up (-), Down Beam 1 0.5 0.5 Beam 2 1.25 1.25 Beam 3 1.0 0.5 Beam 4 1.0 0.5

    k = Vwall / Vbeam =

    Vbeam

    0.4*Vwall

    Vwall = k*Vbeam

    0.4*Vwall

    380-kips (Beam 3 & Beam 4 only)

  • 6/19/13

    9

    Testing Protocol n Reversed cyclic loading n 3 cycles at each level up to 4%, then 2 cycles n Load-controlled to (+/-) *Vyield, then

    displacement- controlled

    17

    Observed Damage (Beams 1 & 2)

    n Concentrated at beam-wall interface Beam 1 (3.33-32-6C) after 3% rotation

    Beam 1 (3.33-32-6C) after 6% rotation

    Beam 2 (3.33-24-7C) after 3% rotation

    Beam 2 (3.33-24-7C) after 6% rotation

    18

  • 6/19/13

    10

    Beam 1: 3.33-32-6C (end of test)

    19

    Beam 2: 3.33-24-7C (end of test)

    20

  • 6/19/13

    11

    Observed Damage (Beams 3 & 4)

    n Included embedment damage

    Beam 3 (2.40-26-5C) after 3% rotation

    Beam 3 (2.40-26-5C) after 6% rotation

    Beam 4 (3.33-24-3NC) after 3% rotation

    Beam 4 (3.33-24-3NC) after 6% rotation

    21

    2.40-26-5C (end of test)

    22

  • 6/19/13

    12

    3.33-24-3NC (end of test)

    23

    Observed Damage

    Photo showing significant gapping between flange and concrete (3.33-24-7C)

    24

  • 6/19/13

    13

    Modeling Recommendation

    n Harris et al (2000) recommend taking the effective fixity point at Le/3 inside the beam-wall interface for modeling purposes

    Vbeam

    L/2 Le Le/3

    gapping 25

    Load-Displacement

    26

  • 6/19/13

    14

    Load-Displacement

    27

    Load-Displacement

    28

  • 6/19/13

    15

    Load-Displacement

    29

    Test Results

    30

  • 6/19/13

    16

    Test Results

    31

    Test Results

    32

  • 6/19/13

    17

    Backbone

    33

    Backbone

    34

  • 6/19/13

    18

    Recommendation(1) - Capacity

    n Flexural capacity, Mn, determined using plastic section analysis with the design steel stress, Fy, and a Whitney stress block

    n Probable flexural capacity for computing embedment length, Mn,pr, considers expected steel stress Ry*Fy

    35

    1 Cc1Cc2Cc3

    Cs,fCs,w

    Tw

    Tf

    x

    Fy

    Fy f'cSTRESSES FORCES

    Recommendation(2) - Backbone n For peak shear:

    n Interface fixity, use clear span, L

    n Use initial stiffness 0.2EcIg

    n For reliable shear: n Effective fixity, use Leff = L

    + Le/3 n Use initial stiffness

    0.35EcIg Vbeam

    beam(rad.)0.08

    V@Mn using L

    V@Mn using Leff

    0.35EcIg

    0.2EcIg

    Peak StrengthReliable Strength

    36

  • 6/19/13

    19

    Recommendation(3) - Embedment

    n Embedment length per Marcakis and Mitchell (1980), Mattock and Gaafar (1982), or AISC 2010 Seismic Provisions n Use design fc

    n Transfer bars and bearing plates n Not needed if sufficient quantity of wall

    boundary vertical reinforcement, i.e. Beam 1, Beam 2

    n May improve embedment performance if insufficient embedment length or wall boundary vertical reinforcement, i.e. Beam 3, Beam 4

    37

    Shear Wall Testing

    38

  • 6/19/13

    20

    Objectives

    n Typical wall tests: n Thin walls, i.e. 6 n Special boundary elements, s=4

    n This specimen: n Thick wall

    n 12 test specimen, 24 thick full-scale n Intermediate confinement, i.e. ordinary

    boundary element n s=4 test specimen, s=8 full scale

    39

    Shear Wall Testing

    40

  • 6/19/13

    21

    Shear Wall Testing

    41

    Thank you

    n Questions?

    42