21
Land use dynamics Discounting Terminal Values Initialization Ages Markov chains

Land use dynamics

Embed Size (px)

DESCRIPTION

Land use dynamics. Discounting Terminal Values Initialization Ages Markov chains. Discounting. Discount factor. t … time periods l … length of time periods (years) r … real interest rate T … time horizon. Terminal Values. - PowerPoint PPT Presentation

Citation preview

Page 1: Land use dynamics

Land use dynamics

Discounting

Terminal Values

Initialization

Ages

Markov chains

Page 2: Land use dynamics

Discounting

• t … time periods• l … length of time periods (years)• r … real interest rate• T … time horizon

0 0

1

(1 )

T T

t t tltt t

NPV V Vr

Discount factor

Page 3: Land use dynamics

Terminal Values

• Model ends at period T but real life/ business is likely to continue thereafter

• Without consideration of life/business after T, the model would cease all investments as it approaches T

• To account for life/business after T, terminal conditions need to be specified which account for benefits outside the model horizon of investments inside the model horizon

Page 4: Land use dynamics

Net Present Value in the last period

0

2

2

1

(1 )

1 1 1 1...

(1 ) (1 ) (1 ) (1 )

1 (1 ) 1 1 1...

(1 ) (1 ) (1 ) (1 ) (1 )

1 1 1 1(1 ) ...

(1 ) (1 ) (1 ) (1 )

T TT ltt

T T T TT T l T l T l

l

T T T TT l T l T l T l

lT T TT T T l T

NPV Vr

V V V Vr r r r

rV V V V

r r r r r

V r V Vr r r r

( )

1 1

(1 ) (1 )

Tl l

T TT l

V

V NPVr r

Page 5: Land use dynamics

Net Present Value in the last period

0

1 1 1

(1 ) (1 ) (1 )

1 10

(1 ) (1 )

1 (1 ) 1 11

(1

(1 )

(1 ) 1 (

) (1 ) (

1 )

1 )

lim

T T T TT lt T lt

T kk

l

T T Tl l T

l

T T T Tl T

NPV V V NPVr r r

r r

rNPV NPV V

r

rNP

r

r

V Vr

r

V

Page 6: Land use dynamics

Discount factors

Period 1% 2% 3% 4% 5% 6%0 1.000 1.000 1.000 1.000 1.000 1.0001 0.990 0.980 0.971 0.962 0.952 0.943

10 0.905 0.820 0.744 0.676 0.614 0.55820 0.820 0.673 0.554 0.456 0.377 0.31230 0.742 0.552 0.412 0.308 0.231 0.17440 0.672 0.453 0.307 0.208 0.142 0.09750 0.608 0.372 0.228 0.141 0.087 0.054

100 0.370 0.138 0.052 0.020 0.008 0.003100 + Infinity 7.618 1.464 0.379 0.111 0.035 0.012

Discount Rate

Page 7: Land use dynamics

Initialization

• Represent past investments for activities which are still alive at the beginning of the model horizon

• Industry capacities created in the past

• Current forests planted in the past

• State of soil carbon

Page 8: Land use dynamics

Represent Age

• If time is discrete, so should age be

• Width of age classes should correspond to length of time periods

• Last age class should represent all ages above the upper boundary on the second highest age class

Page 9: Land use dynamics

Mathematical Representation

, ,1

1, 1 1,0 0,

0 0

0,1 0

t a t t aa

t a t at t a A

a at a Aa A t

H P X

X X

x x

Page 10: Land use dynamics

Discrete – Time Markov Chains

• Many real-world systems contain uncertainty and evolve over time.

• Stochastic processes and Markov chains are probability models for such systems

• A discrete-time stochastic process is a sequence of random variables x0, x1, x2, … typically denoted {xt}.

Page 11: Land use dynamics

State Occupancy Probability Vector

Let π be a row vector. Denote πi to be the ith element of the vector with n elements. If π is a state occupancy probability vector, then πi(t) is the probability that a DTMC has value i (or is in state i) at time-step t

( )1

1n

ii

t tp=

= "å

Page 12: Land use dynamics

State Transition Probabilities

4.5.1.

2.6.2.

2.3.5.321

3

2

1ijPP

Page 13: Land use dynamics

Transient Behavior of DTMC

π(t) = π(t-1)P

π(t-1)= π(t-2)P

π(t) = [π(t-2)P]P = π(t-2)P2

π(t-2)= π(t-3)P

π(t) = [π(t-3)P]P2 = π(t-3)P3

π(t) = π(0)Pt

Page 14: Land use dynamics

Convergence t+1 = t P

State ... Year t Year t+1

1 ... 50 50

2 ... 75 75

3 ... 83 83

Page 15: Land use dynamics

Empirical Example

• Soil carbon sequestration from land use will receive premium

• Continuous application of a certain tillage system leads to specific soil carbon equilibrium (after few decades)

• How to model optimal decision path?

Page 16: Land use dynamics

Empirical Example

• Two tillage systems

• Annual decisions over multi-decade

horizon

• Limited land availability

• Carbon price

Page 17: Land use dynamics

Time

Soil Carbon

Tillage Effect on Soil Carbon

Zero Tillage

Intensive Tillage

Page 18: Land use dynamics

Land Use Decision Model

t … time indexr … region indexi … soil type indexu … tillage index

M Ct t,r,i,u t ,r,i,u t ,r,i,u

t ,r,i,u

max v v X

t ,r,i,u t ,r,iu

X LL … available landvM … market profitvC … carbon profit … discount factor

Page 19: Land use dynamics

Soil Carbon Status Dynamics

t ,r,i,u,o r,i,u,o,o t 1,r,i,u,ou u,o t 1

r,i,o t 1

X X

t, r, i,o

t … time index r … region indexi … soil type index u … tillage indexo … soil carbon state

Page 20: Land use dynamics

I II III IV V

Case (see Schneider 2007)

Transition Probabilities

Page 21: Land use dynamics

C a s e I : I f u p u p u pr , i , u , oo s o a n d lo w lo w lo w

r , i , u , oo s o , th e n u p lo w lo w

r , i , u , o

r , i , u , o , or , i , u , o

o o s

w

C a s e I I : I f u p u p u pr , i , u , oo s o a n d lo w lo w lo w

r , i , u , oo s o , th e n u p u p lo w

r , i , u , o

r , i , u , o , or , i , u , o

o s o

w

C a s e I I I : I f u p u p u pr , i , u , oo s o a n d lo w lo w lo w

r , i , u , oo s o , th e n u p lo w

r , i , u , o , or , i , u , o

o o

w

C a s e IV : I f u p u p u pr , i , u , oo s o a n d lo w lo w lo w

r , i , u , oo s o , th e n r , i , u , o , o 1

C a s e V : I f u p u p lo wr , s , u , o , oo s o o r lo w lo w u p

r , s , u , o , oo s o , th e n r , s , u , o , o 0

Transition Probabilities