32
L’algèbre des symétries quantiques d’Ocneanu et la classification des systèms conformes à 2D Gil Schieber Directeurs : R. Coquereaux R. Amorim (J. A. Mignaco) IF-UFRJ (Rio de Janeiro) CPT-UP (Marseille)

L’algèbre des symétries quantiques d’Ocneanu et la classification des systèms conformes à 2D

Embed Size (px)

DESCRIPTION

L’algèbre des symétries quantiques d’Ocneanu et la classification des systèms conformes à 2D. Gil Schieber. IF-UFRJ (Rio de Janeiro) CPT-UP (Marseille). Directeurs : R. Coquereaux R. Amorim (J. A. Mignaco). Introduction. 2d CFT. - PowerPoint PPT Presentation

Citation preview

Page 1: L’algèbre des symétries quantiques d’Ocneanu et la classification des systèms conformes à 2D

L’algèbre des symétries quantiques d’Ocneanu et la classification des

systèms conformes à 2D

Gil Schieber

Directeurs : R. Coquereaux

R. Amorim (J. A. Mignaco)

IF-UFRJ (Rio de Janeiro)

CPT-UP (Marseille)

Page 2: L’algèbre des symétries quantiques d’Ocneanu et la classification des systèms conformes à 2D

Introduction

2d CFT Quantum Symmetries

Classification of partition functions

• 1987: Cappelli-Itzykson-Zuber

modular invariant of affine su(2)

• 1994: Gannon

modular invariant of affine su(3)

Algebra of quantum symmetries

of diagrams (Ocneanu)

Ocneanu graphs

•From unity, we get classification of

modular invariants partition functions

• Other points generalized part. funct.

1998 … Zuber, Petkova : interpreted in CFT language as part. funct. of systems with defect lines

Page 3: L’algèbre des symétries quantiques d’Ocneanu et la classification des systèms conformes à 2D

Plan

• 2d CFT and partition functions

• From graphs to partition functions

• Weak hopf algebra aspects

• Open problems

Page 4: L’algèbre des symétries quantiques d’Ocneanu et la classification des systèms conformes à 2D

2d CFT

and

partition functions

Set of coefficients

Page 5: L’algèbre des symétries quantiques d’Ocneanu et la classification des systèms conformes à 2D

2d CFT

• Conformal invariance lots of constraints in 2d

algebra of symmetries : Virasoro ( dimensionnal)

• Models with affine Lie algebra g : Vir g affine su(n)

finite number of representations at a fixed level : RCFT

Hilbert space :

• Information on CFT encoded in OPE coefficients of fields

fusion algebra

Page 6: L’algèbre des symétries quantiques d’Ocneanu et la classification des systèms conformes à 2D

• Geometry in 2d torus ( modular parameter )

• invariance under modular group SL(2,Z)

Modular group generated by S, T

The (modular invariant) partition function reads:

Classification problem

Find matrices M such that:

Caracteres of affine su(n) algebra

Page 7: L’algèbre des symétries quantiques d’Ocneanu et la classification des systèms conformes à 2D

Classifications of modular invariant part. functions

Affine su(2) : ADE classification by Cappelli-Itzykson-Zuber (1987)

Affine su(3) : classification by Gannon (1994)

6 series , 6 exceptional cases graphs

Page 8: L’algèbre des symétries quantiques d’Ocneanu et la classification des systèms conformes à 2D

Boundary conditions and defect lines

Boundary conditions labelled by a,b

Defect lines labelled by x,y

matrices Fi

Fi representation of fusion algebra

Matrices Wij or Wxy

Wij representation of square fusion algebra

x = y = 0

Page 9: L’algèbre des symétries quantiques d’Ocneanu et la classification des systèms conformes à 2D

• They form nimreps of certain algebras

• They define maps structures of a weak Hopf algebra

• They are encoded in a set of graphs

Classification of partition functions

Set of coefficients (non-negative integers)

Page 10: L’algèbre des symétries quantiques d’Ocneanu et la classification des systèms conformes à 2D

From graphs

to

partition functions

Page 11: L’algèbre des symétries quantiques d’Ocneanu et la classification des systèms conformes à 2D

I. Classical analogy

a) SU(2) (n) Irr SU(2) n = dimension = 2j+1

Irreducible representations and graphs A

j = spin

Graph algebra of SU(2)

Page 12: L’algèbre des symétries quantiques d’Ocneanu et la classification des systèms conformes à 2D

b) SU(3)

Irreps (i) 1 identity, 3 e 3 generators

Page 13: L’algèbre des symétries quantiques d’Ocneanu et la classification des systèms conformes à 2D

II. Quantum case

Lie groups Quantum groups

Finite dimensional Hopf quotients

Finite number of irreps graph of tensorisation

Graph of tensorisation by the fundamental irrep

identity

Level k = 3

Page 14: L’algèbre des symétries quantiques d’Ocneanu et la classification des systèms conformes à 2D

Truncation at level k of classical graph of tensorisation of irreps of SU(n)

Graph algebra Fusion algebra of CFT

h = Coxeter number of SU(n)

= gen. Coxeter number of

Page 15: L’algèbre des symétries quantiques d’Ocneanu et la classification des systèms conformes à 2D

• same norm of

• vector space of vertex G is a module under the action of the algebra

with non-negative integer coeficients

0 . a = a 1 . a = 1 . a

• Local cohomological properties (Ocneanu)

Search of graph G (vertices ) such that:

(Generalized) Coxeter-Dynkin graphs G

Fix graph vertices

norm = max. eigenvalue of adjacency matrix

Partition functions of models with boundary conditions a,b

Page 16: L’algèbre des symétries quantiques d’Ocneanu et la classification des systèms conformes à 2D
Page 17: L’algèbre des symétries quantiques d’Ocneanu et la classification des systèms conformes à 2D
Page 18: L’algèbre des symétries quantiques d’Ocneanu et la classification des systèms conformes à 2D

Ocneanu graph Oc(G)

To each generalized Dynkin graph G Ocneanu graph Oc(G)

Definition: algebraic structures on the graph G

two products and

diagonalization of the law encoded by algebra of quantum symmetries

graph Oc(G) = graph algebra

Ocneanu: published list of su(2) Ocneanu graphs

never obtained by explicit diagonalization of law

used known clasification of modular inv. partition functions of affine su(2) models

Page 19: L’algèbre des symétries quantiques d’Ocneanu et la classification des systèms conformes à 2D

Works of Zuber et. al. , Pearce et. al., …

Ocneanu graph as an input

Method of extracting coefficients that enters definition of partition functions

(modular invariant and with defect lines)

Limited to su(2) cases

Our approach

Realization of the algebra of quantum symmetries Oc(G) = G J G

Coefficients calculated by the action (left-right) of the A(G) algebra

on the Oc(G) algebra

Caracterization of J by modular properties of the G graph

Possible extension to su(n) cases

Page 20: L’algèbre des symétries quantiques d’Ocneanu et la classification des systèms conformes à 2D

Realization of the algebra of quantum symmetries

Exemple: E6 case of ``su(2)´´

G = E6 A(G) = A11

Order of verticesAdjacency matrix

Page 21: L’algèbre des symétries quantiques d’Ocneanu et la classification des systèms conformes à 2D

E6 is a module under action of A11

Restriction

• Matrices Fi

• Essential matrices Ea

Page 22: L’algèbre des symétries quantiques d’Ocneanu et la classification des systèms conformes à 2D

Sub-algebra of E6 defined by modular properties

Page 23: L’algèbre des symétries quantiques d’Ocneanu et la classification des systèms conformes à 2D

Realization of Oc(E6)

0 : identity

1, 1´ : generators

1 =

1´ =

Multiplication by generator 1 : full lines

Multiplication by generator 1´: dashed lines

..

.

.

.

Page 24: L’algèbre des symétries quantiques d’Ocneanu et la classification des systèms conformes à 2D

Partition functions

G = E6 module under action of A(G) = A11

E6 A11

Elements x Oc(E6)

Action of A11 (left-right ) on Oc(E6)

We obtain the coefficients

Action of A(G) on Oc(G)

Partition functions of models with defect lines and modular invariant

Partition functions with defect lines x,y

Modular invariant : x = y = 0

.

Page 25: L’algèbre des symétries quantiques d’Ocneanu et la classification des systèms conformes à 2D

Generalization

All su(2) cases studied

Cases where Oc(G) is not commutative: method not fully satisfactory

Some su(3) cases studied

G A(G)

Oc(G) x = y = 0

Page 26: L’algèbre des symétries quantiques d’Ocneanu et la classification des systèms conformes à 2D

``su(3) example´´: the case

24*24 = 576 partition functions

1 of them modular invariant

Gannon classification

Page 27: L’algèbre des symétries quantiques d’Ocneanu et la classification des systèms conformes à 2D

Weak Hopf algebras aspects

Page 28: L’algèbre des symétries quantiques d’Ocneanu et la classification des systèms conformes à 2D

Paths on diagrams

``su(2)´´ cases G = ADE diagram example of A3 graph

Elementary paths = succession of adjacent vertices on the graph

0 1 2A3 ( = 4)

: number of elementary paths of length 1 from vertex i to vertex j

: number of elementary paths of length n from vertex i to vertex j

Essential paths : paths kernel of Jones projectors

n

Theorem [Ocneanu] No essential paths with length bigger than - 2

(Fn)ij : number of essential paths of length n from vertex i to vertex j

Coefficients of fusion algebra

Page 29: L’algèbre des symétries quantiques d’Ocneanu et la classification des systèms conformes à 2D

Endomorphism of essential paths

H = vector space of essential paths graded by length finite dimensional

H Essential path of length i from vertex a to vertex b

B = vector space of graded endomorphism of essential paths

Elements of B

A3

length 0 1 2

Number of Ess. paths 3 4 3

dim(B(A3)) = 3² + 4² + 3² = 34

Page 30: L’algèbre des symétries quantiques d’Ocneanu et la classification des systèms conformes à 2D

Algebraic structures on B

Product on B : composition of endomorphism

B as a weak Hopf algebra

B vector space <B,B*> C B* dual

<< , >> scalar product

product

coproduct

Page 31: L’algèbre des symétries quantiques d’Ocneanu et la classification des systèms conformes à 2D

Graphs A(G) and Oc(G) (example of A3)

• B(G) : vector space of graded endomorphism of essential paths

• Two products and defined on B(G)

• B(G) is semi-simple for this two algebraic structures

• B(G) can be diagonalized in two ways : sum of matrix blocks

• First product : blocks indexed by length i projectors i

• Second product : blocks indexed by label x projectors x

A(G)

Oc(G)

Page 32: L’algèbre des symétries quantiques d’Ocneanu et la classification des systèms conformes à 2D

• Give a clear definition product product and verify that all axioms defining a weak Hopf algebra are satisfied.

• Obtain explicitly the Ocneanu graphs from the algebraic structures of B.

• Study of the others su(3) cases + su(4) cases.

• Conformal systems defined on higher genus surfaces.

open problems