237
University of Tennessee, Knoxville Trace: Tennessee Research and Creative Exchange Masters eses Graduate School 5-2004 Laboratory Study of Fatigue Characteristics of HMA Surface Mixtures Containing Recycled Asphalt Pavement (P) William R. Kingery University of Tennessee - Knoxville is esis is brought to you for free and open access by the Graduate School at Trace: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters eses by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. Recommended Citation Kingery, William R., "Laboratory Study of Fatigue Characteristics of HMA Surface Mixtures Containing Recycled Asphalt Pavement (P). " Master's esis, University of Tennessee, 2004. hp://trace.tennessee.edu/utk_gradthes/2271

Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Embed Size (px)

DESCRIPTION

highway

Citation preview

Page 1: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

University of Tennessee, KnoxvilleTrace: Tennessee Research and CreativeExchange

Masters Theses Graduate School

5-2004

Laboratory Study of Fatigue Characteristics ofHMA Surface Mixtures Containing RecycledAsphalt Pavement (RAP)William R. KingeryUniversity of Tennessee - Knoxville

This Thesis is brought to you for free and open access by the Graduate School at Trace: Tennessee Research and Creative Exchange. It has beenaccepted for inclusion in Masters Theses by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more information,please contact [email protected].

Recommended CitationKingery, William R., "Laboratory Study of Fatigue Characteristics of HMA Surface Mixtures Containing Recycled Asphalt Pavement(RAP). " Master's Thesis, University of Tennessee, 2004.http://trace.tennessee.edu/utk_gradthes/2271

Page 2: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

To the Graduate Council:

I am submitting herewith a thesis written by William R. Kingery entitled "Laboratory Study of FatigueCharacteristics of HMA Surface Mixtures Containing Recycled Asphalt Pavement (RAP)." I haveexamined the final electronic copy of this thesis for form and content and recommend that it be acceptedin partial fulfillment of the requirements for the degree of Master of Science, with a major in CivilEngineering.

Baoshan Huang, Major Professor

We have read this thesis and recommend its acceptance:

Eric C. Drumm, J. Hal Deathrage

Accepted for the Council:Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

Page 3: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

To the Graduate Council: I am submitting herewith a thesis written by William R. Kingery, III entitled “Laboratory Study of Fatigue Characteristics of HMA Surface Mixtures Containing Recycled Asphalt Pavement (RAP)”. I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Master of Science, with a major in Civil Engineering. Dr. Baoshan Huang Major Professor We have read this thesis And recommend its acceptance: Dr. Eric C. Drumm Dr. J. Hal Deatherage Accepted for the Council: Anne Mayhew Vice Chancellor and Dean of Graduate Studies

(Original signatures are on file with official student records.)

Page 4: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Laboratory Study of Fatigue Characteristics of HMA Surface Mixtures Containing Recycled Asphalt Pavement (RAP)

A Thesis Presented for the Master of Science

Degree The University of Tennessee, Knoxville

William R. Kingery, III May 2004

Page 5: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Acknowledgements

I would like to begin by thanking all the people who provided time, assistance and

direction in order for me to complete my master’s degree. I would especially like to

thank Tennessee Department of Transportation for funding and providing their invaluable

time during this research project with the University of Tennessee. I would like to thank

Dr. Baoshan Huang for giving me the opportunity to attend graduate school and

providing support throughout this journey. I would like to thank N. Randy Rainwater for

giving me confidence and assistance in keeping a functional laboratory. I would also like

to thank Dr. Eric Drumm and Dr. Hal Deatherage for their assistance as members of my

graduate committee.

I would like to thank Zhixiang Zhang, a visiting scholar from China, for his input

and help during the preliminary stages of this project. Also thanks goes to Dragon

Vukosavljevic, Michael Cloud and Mason Pitt for their help in the lab during sample

preparation and testing. I would also like to thank Ken Thomas and Larry Roberts for

their craftsmanship and ideas.

Lastly, I would like to thank my family and friends for their love and support

throughout my entire college career, especially my parents Mr. Billy and Betty Kingery.

I would also like to thank my beautiful fiancé for her love and support during crunch

time.

ii

Page 6: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Abstract

Reclaimed asphalt pavement (RAP) has been used in the construction of asphalt

pavements since the 1930’s. Conversely the use of RAP in load carrying layers has

always been a sensitive issue due to the uniformity and rheological properties of the

blended asphalt mixtures. Typically the inclusion of RAP will blend the long-term aged

asphalt binder in the RAP with the fresh asphalt binder resulting in a stiffer mixture.

Generally rutting will less likely be a problem with the inclusion of RAP. However, the

fatigue crack resistance of the HMA mixtures containing RAP has been a key interest to

designers and engineers. This thesis presents the results of a laboratory study, in which

the laboratory fatigue characteristics of asphalt mixtures containing RAP were evaluated.

A typical surface mixture meeting the state of Tennessee “D” mix criteria was

evaluated at 0, 10, 20 and 30 percent of screened RAP materials. Two types of

aggregates (limestone and gravel) and two types of binder (PG 64-22 and PG 76-22) were

used for this study. Fatigue characteristics were evaluated through indirect tensile

strength, semi-circular bending and beam fatigue tests.

The results from this study indicated that laboratory long-term aging and the

inclusion of RAP generally increased the stiffness and laboratory fatigue resistance for

the mixtures studied. For the mixtures studied, the inclusion of 30 percent RAP for both

binder types significantly changed the fatigue characteristics as compared to 0, 10 and 20

percent RAP. Increasing the percentage of RAP increased the fatigue resistance,

however at higher percentages of RAP the mixture becomes stiffer and some fatigue

iii

Page 7: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

characteristics are compromised by adding RAP. Based on the workability and

performance in the lab, 20 percent RAP would be recommended for use in Tennessee

surface mixtures. Field validations are recommended to compare laboratory performance

to field performance to verify the optimum percentage of RAP to be used during

pavement construction.

iv

Page 8: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Table of Contents

1.0 Introduction........................................................................................................1

1.1. Problem Statement......................................................................................1

1.2. Objective.....................................................................................................3

1.3. Scope...........................................................................................................3

1.4. Background.................................................................................................4

1.5. Literature Review .......................................................................................8

2.0 Research Methodology ....................................................................................15

2.1. Materials ...................................................................................................15

2.2. Mixture Design .........................................................................................17

2.3. Aging Experiment.....................................................................................20

2.4. Specimen Preparation ...............................................................................21

2.5. Test Methods ............................................................................................22

2.5.1. Indirect Tensile Strength and Strain Test (IDT) ..............................22

2.5.2. Semi-Circular Bending (SCB) Test .................................................24

SCB Frequency Sweep Test...............................................26

SCB Tensile Strength Test.................................................27

SCB Fatigue Test ...............................................................29

SCB Notched Fracture Test ...............................................30

2.5.3. Flexural Beam Fatigue Test.............................................................32

2.5.4. Asphalt Binder Testing ....................................................................36

3.0 Discussion of Results.......................................................................................38

3.1. Indirect Tensile Strength Test Results ......................................................38

v

Page 9: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

3.2. Semi-Circular Bending (SCB) Test Results .............................................45

3.2.1. SCB Frequency Sweep Test ............................................................45

3.2.2. SCB Tensile Strength Test...............................................................45

3.2.3. SCB Fatigue Test .............................................................................47

3.2.4. SCB Notched Fracture Resistance Test ...........................................53

3.3. Flexural Beam Fatigue Test Results .........................................................55

3.4. Asphalt Binder Testing Results ................................................................61

3.5. Statistical Analysis of Laboratory Test.....................................................64

3.6. Test Variability .........................................................................................70

4.0 Conclusions......................................................................................................73

References..............................................................................................................77

Appendices.............................................................................................................83

Appendix A. Job Mix Formulas ...............................................................84

Appendix B. Indirect Tensile Strength Test Data ..................................101

Appendix C. Semi-Circular Bending Test Data.....................................120

Appendix D. Flexural Beam Fatigue Test Data .....................................171

Appendix E. MTS Test Templates .........................................................207

Vita.......................................................................................................................225

vi

Page 10: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

List of Tables Table 1. Test Factorial .............................................................................................5 Table 2. Cost Comparison of Different Percentages of RAP ..................................7 Table 3. Savings Generated by Using RAP.............................................................8 Table 4. Limestone Job Mix Formula....................................................................18 Table 5. Gravel Job Mix Formula..........................................................................18 Table 6. IDT Results, Limestone Mixtures............................................................38 Table 7. Percent Change of IDT Properties, Limestone Mixtures.........................41 Table 8. IDT Results, Gravel Mixtures..................................................................42 Table 9. Percent Change of IDT Properties, Gravel Mixtures...............................44 Table 10. SCB Tensile Strength Test Results........................................................47 Table 11. Percent Change in SCB Strength ...........................................................48 Table 12. Comparison of Fatigue Life Relative to Slope ......................................51 Table 13. Beam Fatigue Test Results, Limestone Mixtures ..................................56 Table 14. Beam Fatigue Test Results, Gravel Mixtures ........................................59 Table 15. DSR Test Results ...................................................................................61 Table 16. Test Comparison ....................................................................................72

vii

Page 11: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

List of Figures Figure 1. Gradations of Stockpiles and RAP, Limestone Mix ..............................16 Figure 2. Gradations of Stockpiles and RAP, Gravel Mix ....................................17 Figure 3. Limestone Mixture Gradations...............................................................19 Figure 4. Gravel Mixture Gradations.....................................................................19 Figure 5. Prepared Test Specimens........................................................................22 Figure 6. Normalized IDT Curve for TI Calculation.............................................24 Figure 7. Typical SCB Test Setup .........................................................................25 Figure 8. SCB Frequency Sweep Test ...................................................................27 Figure 9. Typical SCB Tensile Strength Test ........................................................28 Figure 10. Load and Deformations in SCB Fatigue Test.......................................30 Figure 11. SCB Notched Fracture Test Setup........................................................31 Figure 12. J-Integral for Different Notch Depths ..................................................32 Figure 13. Beam Fatigue Fixture ...........................................................................33 Figure 14. Flexural Stiffness vs. Load Cycles (Automated Software) ..................35 Figure 15. IDT Test Results, Limestone Mixtures ................................................39 Figure 16. Percent Change in IDT Properties, Limestone Mixtures......................41 Figure 17. IDT Test Results, Gravel Mixtures ......................................................43 Figure 18. Percent Change in IDT Properties, Gravel Mixtures............................44 Figure 19. SCB Frequency Sweep Test .................................................................46 Figure 20. SCB Composite Modulus and Phase Angle .........................................46 Figure 21. SCB Tensile Strength Test Results.......................................................48 Figure 22. SCB Fatigue Test Results.....................................................................49

viii

Page 12: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Figure 23. SCB Fatigue Test Log-Log Scale.........................................................50 Figure 24. Change in SCB Fatigue Slope Relative to 0% RAP.............................51 Figure 25. SCB Fatigue Dissipated Energy ...........................................................52 Figure 26. SCB Notched Fracture Energy .............................................................53 Figure 27. J-Integral from Semi-Circular Notched Fracture Test..........................54 Figure 28. Beam Fatigue Summary, Limestone Mixtures.....................................56 Figure 29. Flexural Stiffness vs. Loading Cycles, Limestone Mixtures................57 Figure 30. Beam Fatigue Summary, Gravel Mixtures...........................................59 Figure 31. Flexural Stiffness vs. Loading Cycles, Gravel Mixtures......................60 Figure 32. DSR Test Results, Limestone PG 76-22 ..............................................62 Figure 33. BBR Test Results, Limestone PG 76-22 ..............................................63 Figure 34. ANOVA Analysis, Limestone IDT Test ..............................................66 Figure 35. ANOVA Analysis, Gravel IDT Test ....................................................66 Figure 36. ANOVA Analysis, Limestone SCB IDT Test......................................67 Figure 37. ANOVA Analysis, Limestone Beam Fatigue Test...............................68 Figure 38. ANOVA Analysis, Gravel Beam Fatigue Test.....................................69

ix

Page 13: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

1.0 Introduction

1.1 Problem Statement

With the increasing cost of construction and pavement rehabilitation programs,

recycled asphalt pavement has proven to be a valuable and economical resource.

Recycled asphalt pavements (RAP) have been used in construction as early as the 1930s

(Taylor, 1977) and millions of tons have been used since the 1970s. Oil embargos of the

1970s forced the asphalt industry into pavement recycling due to the increased cost of

crude oil, and the practice has increased due to the environmental risk associated with

material disposal. Due to the increased cost of construction, the asphalt industry has been

forced to seek alternatives anytime pavement rehabilitation is needed. The recycling of

existing pavements and mixing with virgin materials has proven to produce pavments that

perform as well or even better than asphalt pavements constructed of properly designed

virgin materials and result in substantial savings of material cost and environmental

concerns.

With the increasing use of RAP materials today, the addition of RAP in major

load carrying and surface layers of asphalt pavements has always been a sensitive issue.

The main concerns about the use of RAP (especially in significant quantity) in surface or

load carrying layers are the durability and long-term fatigue resistance of the HMA

mixtures containing RAP materials. Generally, the addition of RAP in HMA mixtures

will blend the long-term aged asphalt cement in the RAP with the fresh asphalt binder.

After blending the long-term aged asphalt cement in the RAP, the result will be a stiffer

1

Page 14: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

mixture. With an increase in stiffness, rutting generally will not be a problem for such

mixtures. The main concerns for such mixtures are their resistance to long-term fatigue

cracking and moisture susceptibility. For this reason, many state DOTs limit or restrict

the use of RAP on the surface layer and limit the percentage of RAP used in structural

layers.

The current Tennessee Department of Transportation (TDOT) specification

allows the use of up to 15 percent of RAP on the Type “A”, 20 percent on Type “B”, “B-

M”, “B-M2”, “C-W” and “C” mixtures (TDOT 1995). Currently there are no

specifications that allow the use of RAP in TDOT type “D” surface mixtures. All state

highway agencies permit the use of RAP at a specified percentage in base and binder

courses (Banasiak 1996). Although Tennessee doesn’t allow the inclusion of RAP in

surface mixtures, surrounding states such as Alabama, Georgia, Kentucky and Virginia

generally permit 10 to 30 percent RAP in their surface mixtures.

According to TDOT, approximately 4.96 million tons of hot mix asphalt was used

in 2002 to resurface 1,990 lanes miles of road during the construction season (TDOT

2002). Of the 4.96 million tons of HMA laid in 2002, approximately 1.32 million tons

met the Mix type “D” grading. Permitting the use of RAP in surface mixtures would

generate savings associated with material and disposal cost. With the increasing trend of

incorporating RAP into surface mixtures, many states are generating tremendous savings

in construction cost. Florida reported that recycled mixtures have had good performance

history and cost generally 25 percent less per ton of mix as compared to conventional

2

Page 15: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

mixtures with virgin aggregates (Choubane et al. 1998). A study conducted by the

University of New Hampshire indicated that the New Hampshire DOT currently allows

up 15% RAP in surface mixtures resulting in 10 percent savings in material cost (Daniel

and Lachance, 2003).

1.2 Objective

The objective of this document was to evaluate the laboratory fatigue

characteristics of Tennessee surface mixtures containing different percentages of No. 4

sieve screened RAP that meet the TDOT specifications for “D” mix. Fatigue

characteristics were determined through laboratory mixture performance test. Two types

of aggregates (Limestone and Gravel) and two types of asphalt binder (PG 64-22 and PG

76-22) were used to evaluate typical Tennessee surface mixtures containing 0, 10, 20 and

30 percent RAP.

1.3 Scope

The scope of this document was intended to employ an experimental approach to

evaluate the fatigue crack resistance of surface mixtures containing RAP. Two different

types of aggregates, Limestone and Gravel, were chosen for this study. For each

aggregate, two types of asphalt cement, PG 64-22 and PG 76-22 were used to evaluate

the affects of RAP on different binder types. Prior to testing, each mix was subject to

laboratory long-term aging in a forced draft oven at 100°C for a period of 3-days. In

addition to long-term aging, a portion of the samples were conditioned by one freeze

thaw cycle to examine the potential for moisture induced damage. The testing matrix

3

Page 16: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

was designed to compare the control mixture containing 0 percent RAP to mixtures

containing 10, 20 and 30 percent RAP. As shown in Table 1, the test used to evaluate the

fatigue resistance of mixtures containing RAP include indirect tensile strength test (IDT),

semi-circular bending test (SCB), SCB fatigue test, Semi-circular notched fracture test

and four-point beam (flexural beam) fatigue test.

1.4 Background

The National Asphalt Paving Association (NAPA) indicated that approximately

70 million tons of asphalt pavements are recycled each year, which is almost twice the

amount of combining recycled paper, glass, plastic and rubber. The Federal Highway

Administration (FHWA) indicated that 80 percent of the asphalt pavement is removed

each year during widening and resurfacing projects is re-used. This number is

substantially higher than any other recyclable bi-product recorded by the U.S.

Environmental Protection. Prior to recycling, much of the asphalt waste was removed

and disposed of in landfills. As landfills started to fill up and knowledge of recycling

became available, the concept of pavement recycling gained a large amount of interest.

With the increasing demand on our national highway system, pavements that have

aged in place and undergone physical distresses such as rutting and fatigue cracking

during their service life are ideal candidate for recycling. Reprocessing the salvaged

materials, plus the addition of virgin asphalt, is done through several processes which

include the following: (1) hot mix recycling, (2) hot in-place recycling (3) cold in place

recycling and (4) full depth reclamation (ARRA 1992).

4

Page 17: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Table 1. Test Factorial

0.5" 1.0" 1.5"0 x,y x,y x,y x,y x,y x,y x,y

10 x,y x,y x,y x,y x,y x,y x,y20 x,y x,y x,y x,y x,y x,y x,y30 x,y x,y x,y x,y x,y x,y x,y0 x,y x,y x,y x,y x,y x,y x,y

10 x,y x,y x,y x,y x,y x,y x,y20 x,y x,y x,y x,y x,y x,y x,y30 x,y x,y x,y x,y x,y x,y x,y0 y,z y,z - - - - y,z

10 y,z y,z - - - - y,z20 y,z y,z - - - - y,z30 y,z y,z - - - - y,z0 y,z y,z - - - - y,z

10 y,z y,z - - - - y,z20 y,z y,z - - - - y,z30 y,z y,z - - - - y,z

Note: Each Test will be conducted on triplicate samplesIDT - Indirect Tensile StrengthSCB - Semi-circular Bendingx - un-agedy - long-term agedz - long-term aged Freeze Thaw cycle

- not part of this research report

Gravel

PG 64-22

PG 76-22

Performance Test

Aggregate Asphalt Cement

411-D Surface Mixtures

RAP (%)

PG 64-22

PG 76-22

Limestone

Flexural Beam

SCB Notched FractureIDT SCB IDT SCB Fatigue

Hot mix asphalt recycling is a process where the RAP is blended with new materials

through conventional HMA production. Similar to conventional HMA production, the

RAP is handled and stored in stockpiles and used as needed. Both batch plants and drum

plants are capable of producing HMA containing recycled pavements with minor

modifications. Hot in-place recycling is a process that heats and softens the existing

surface by a milling machine that is capable of blending raw materials with the RAP,

placing the blended mixture and compacting in a single pass. Cold in place recycling is

similar to hot in-place recycling with exception of heat. Cold in-place recycling uses

rejuvenators or recycling agents (emulsifiers) that are remixed with the pulverized

pavement and blended with new materials. This process involves very little energy and

5

Page 18: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

can be done very efficiently to correct minor pavement distresses. Full depth reclamation

is a process in which the entire pavement structure is pulverized and reused as a base

material. The five main steps in this process are pulverization, introduction of additive,

compaction, and application of a surface or wearing coarse (Kandhal 1997). These are

some of the most common methods of recycling; however it is important to observe the

existing pavement conditions prior to choosing which alternative is best.

Prior to pavement recycling, poor pavements were torn up by removing the entire

pavement structure and discarding the waste in landfills. The cost to rebuild the existing

roadway put major burdens on both the contractor and highway user. As these concerns

increased along with the cost of energy, the asphalt industry has been forced to seek

alternatives anytime pavement rehabilitation is required. As the demand on our national

highway system increases, pavement recycling has proven to be a cost effective method

of rehabilitation. When properly designed, the use of RAP during pavement

rehabilitation has proven to be more economical than conventional HMA rehabilitation

methods.

The cost associated by using RAP is typically evaluated on both a construction

cost and a material cost basis. The variables associated with construction cost will be

dependent on the location and the type of milling operation required. In this research,

material cost was evaluated with the inclusion of 10, 20 and 30 percent RAP. Tennessee

reported in 2002 that approximately 1.32 million tons of asphalt meeting the “D” mix

criteria was placed throughout the state. A detailed material cost analysis was performed

6

Page 19: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

for a typical Tennessee surface mix containing 5.7 percent liquid asphalt. Vulcan

Materials Company and Marathon Ashland provided the average prices for the

aggregates and liquid asphalt respectively. Considering $8.00 per ton for aggregate and

$170.00 per ton for liquid asphalt, the cost to produce one ton of HMA with 5.7 percent

asphalt comes out to be $17.80. If you consider the cost associated with handling the

RAP to be $5.00 per ton, the cost of a mixture containing 30 percent RAP would be

$14.17. The savings generated are $3.63 per ton or 20 percent for a mixture containing

30 percent RAP. Tables 2 and 3 represent a cost comparison based on tons of asphalt

used in Tennessee during the 2002 paving season.

Table 2. Cost Comparison of Different Percentages of RAP

Material Price ($/ton) Used (%) Cost ($/ton) Material Price ($/ton) Used (%) Cost ($/ton)D-Rock $8.45 50 $4.23 D-Rock $8.45 50 $4.23#10 Screenings $8.45 15 $1.27 #10 Screenings $8.45 10 $0.85Natural Sand $6.00 25 $1.50 Natural Sand $6.00 20 $1.20Manufactured Sand $9.95 10 $1.00 Manufactured Sand $9.95 10 $1.00*RAP $5.00 *RAP $5.00 10 $0.50PG 64-22 $170.00 5.7 $9.81 PG 64-22 $170.00 5.1 $8.67

Cost $17.80 Cost $16.44

Material Price ($/ton) Used (%) Cost ($/ton) Material Price ($/ton) Used (%) Cost ($/ton)D-Rock $8.45 50 $4.23 D-Rock $8.45 50 $4.23#10 Screenings $8.45 0 $0.00 #10 Screenings $8.45 0 $0.00Natural Sand $6.00 20 $1.20 Natural Sand $6.00 10 $0.60Manufactured Sand $9.95 10 $1.00 Manufactured Sand $9.95 10 $1.00*RAP $5.00 20 $1.00 *RAP $5.00 30 $1.50PG 64-22 $170.00 4.5 $7.72 PG 64-22 $170.00 4 $6.85

Cost $15.14 Cost $14.17*Average cost of processing RAP

0% RAP 10% RAP

20% RAP 30% RAP

7

Page 20: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Table 3. Savings Generated by Using RAP

Percent RAP Cost ($/ton) Savings ($/ton) Savings (%)D-Mix $17.8010% $16.44 $1.36 820% $15.14 $2.66 1530% $14.17 $3.63 20

1.5 Literature Review

Pavement damage is often hard to characterize because of the unpredictable

distresses the pavement has experienced during its life. Roberts et al. 1997, noted that

asphalt distresses should not be viewed with surprise unless the pavement experiences

these distresses early in the design life. Similar to other materials, as asphalt pavements

reach their design life, distresses are expected to occur as a result of the environment and

repeated traffic loads (Roberts et al. 1997). Four of the most common types of distresses

for asphalt pavements are rutting, moisture damage, thermal cracking and fatigue

cracking. Generally rutting will not be a problem when designing asphalt mixtures with

RAP because the aged binder from the RAP will blend with the virgin binder resulting in

a stiffer mixture. The main concern when designing asphalt pavement with the inclusion

of RAP is its resistance to fatigue cracking. Fatigue cracking often occurs when the

asphalt experiences excessive loads during its design life or has been stressed to the limit

of its fatigue life by repetitive loading. For this study, attention was only given to the

fatigue characteristics of asphalt pavement containing RAP, because the blended asphalt

mixture will tend to be stiffer resulting in a more brittle material.

8

Page 21: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Typically fatigue cracking occurs due to aging, repetitive stresses from axle loads,

temperature changes and or inadequate drainage. The aging process begins during the

production and construction process starting at the asphalt plant. During plant mixing,

the asphalt cement experiences oxidation from the exposure of air and high temperatures.

After the initial oxidation, the rate of aging decreases at a much slower rate when

compacted and placed. The rate of aging or any other factors affecting the process are

extremely complicated and have troubled the industry for a long time. Researchers

suggest that each reaction seems to lead to an undesirable change or embrittlement of the

asphalt, which in turn has been associated with HMA of poor durability properties (Finn

1967).

In addition to aging, fatigue cracking due to repeated loading or temperature

change induces undesirable tensile stress and strain in the pavement layers that initiate

microcracks. These stresses propagate and densify, leading to the formation of

macrocracks and further damage to the pavement. Past research has indicated that fatigue

cracking is thought to initiate from the bottom of the asphalt layer where tensile stresses

are most notable and progress up to the surface. However, recent research has indicated

that cracks most often initiate longitudinally in wheel paths and propagate downward

(i.e., top-down cracking) through the HMA layer (Myers and Roque, 2001). Typically

top-down cracking occurs after the surface layer has experienced high stresses from

repetitive traffic loading and high thermal stresses leading to surface age hardening. As

the pavement becomes more brittle, the initiation of top-down cracking leads to further

pavement distresses that permanently damage the pavement structure. In order to

9

Page 22: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

address the concerns of how aging and fatigue are related, it is important to have a

controlled environment in the laboratory to characterize the behavior of pavements under

repeated stress or strain cycles.

Tangella et al. 1990, conducted NCHRP A-003A research project entitled

“Fatigue Response of Asphalt-Aggregate Mixtures” to evaluate test procedures for

measuring the fatigue response of asphalt paving mixtures and to summarize what is

known about the factors that influence pavement life. Mode of loading, typically either

controlled-stress or controlled-strain laboratory testing, was identified as one of the

primary factors affecting fatigue response (Tangella et al. 1990). They also believed that

the controlled-stress test essentially measures the loading necessary for crack initiation;

longer fatigue lives are recorded in controlled-strain test because crack propagation is

also included. Many types of fatigue testing were analyzed to come up with simple

fatigue test that would help characterize the fatigue life of pavements. Tengella et al.

1990, believed that the three most promising test methods were flexural fatigue test,

diametral fatigue, and tests employing fracture mechanics principals.

Flexural fatigue testing is used to estimate the fatigue life of flexible pavements

under repeated flexural bending. The flexural fatigue test consists of a rectangular

shaped asphalt beam cut from laboratory compacted samples and subjected to a user

defined cyclic stress or strain controlled load to the center of the beam until failure.

Constant stresses applied continuously to the beam create a negative bending moment

about the center point of the beam causing the beam to return to its original position

10

Page 23: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

between each loading cycle. A cyclic load with a chosen amplitude to create a positive

moment equal in magnitude to the continuous negative moment is applied to the center

point of the beam until failure occurs. For strain-controlled test, a strain is applied

continuously to the center of the beam during each load cycle. Stiffness is measured

from the center point of the beam after the 50th load cycle to determine the initial flexural

stiffness, and failure is defined as 50 percent reduction in initial stiffness. Experience has

shown that thick asphalt pavements (greater than 5 inches (130-mm)) generally perform

close to constant stress mode of loading while thin asphalt pavements perform close to

the constant strain mode of loading (Roberts et al. 1991).

The diametral fatigue test is an indirect tensile test that applies repetitive or

continuous loading to a cylindrical sample with a compressive load which acts parallel to

and along the vertical diametral plane (Kennedy 1977). This loading configuration

develops a relatively uniform tensile stress perpendicular to the direction of the applied

load and along the vertical diametral plane. According to Kennedy and Hudson (1968),

under a line load of sufficient magnitude, the diametral specimen would fail near the load

line due to compression. The compressive stresses are greatly reduced by distributing the

load through a loading strip, however, and a sufficiently large load will actually induce

tensile failure along the vertical diameter. The biaxial state of stress which exists during

diametral testing is due to compressive and vertical stresses at the center of the specimen,

where the vertical compressive stress is three times the horizontal tensile stress (Tangella

et al. 1990). While diametral testing is a stress controlled test, Roberts et al. (1991)

11

Page 24: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

believe that the second property determined from the indirect tensile test, which is tensile

strain at failure, is more useful for predicting cracking potential.

Similar to indirect tensile testing, European and South African researchers have

investigated the usefulness of the semi-circular bending test as a simple test which gives

decisive answers on the material characteristics needed for pavement design (Molenaar et

al. 2002). Test specimens are made by a gyratory compactor and cut into equal disk

typically 1-inch in thickness or cut from field cores. Molenaar et al. (2002) used this test

as a simple tool to obtain information of the modulus and the tensile characteristics of

asphalt mixtures. During this study, researchers investigated the advantages of using the

semi-circular bending test versus the indirect tensile test and discovered that a crack

would develop along the bottom of the semi-circular disk and cause the sample to fail in

tension. When comparing this with indirect tensile testing, indirect tensile specimens

most typically fail under compression near the loading strips by wedging or shear failure.

Although not a standard test method to characterize the pavements material behavior,

utilizing the basic principals of the semi-circular bending test can provide researchers

with a way to evaluate the tensile characteristics of the mixture tested.

Another approach for characterizing the fatigue response of asphalt concrete

makes use of the principals of fracture mechanics (Majidsadeh et al., 1971; Salam, 1971;

and Monismith et al., 1973), where fatigue is considered to develop in three phases: (1)

crack initiation, (2) stable crack growth, and (3) unstable crack propagation with the

second phase consuming most of the fatigue life (Tangella et al. 1990). This method of

12

Page 25: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

evaluation has become a useful tool to characterize both fracture resistance and fatigue

properties through crack propagation.

Distresses such as cracking have been recognized by designers as a weak or

unrecoverable (plastic) zone that contributes to further failure of the pavement structure.

Repetitive loading experienced by pavements over time make them ideal candidates for

the application of fracture mechanics (Sulaiman and Stock, 1995). Initial solutions to

fracture mechanics assumed the pavements to be linear elastic for brittle materials, but

once the crack was initiated the assumption was no longer valid for fracture mechanic

analysis. Once stable crack growth has propagated, research suggests that the pavement

must be modeled using linear elastic fracture mechanics (LEFM) that describe the

stresses present around the crack. As solutions became available for situations in which

the crack tip was preceded by the development of a significant plastic zone, the J-integral

approach has become widely accepted as a solution for this situation (Sulaiman and

Stock, 1995). This concept was first introduced by Rice in 1968 as a path independent

integration of strain energy around the crack (Rice 1968).

Mull et al. 2002, used the J-integral concept on semi-circular specimens with

various notch-depths ratios subject to three-point bending to characterize fracture

resistance of different asphalt mixtures. The J-integral was determined by monotonically

loading the notched specimens at a rate of 0.02 in./min. until failure. According to

Mull’s research, a relationship between the total strain energy to failure and the notch

depth were very linear. From this linear relationship between strain energy and notch

13

Page 26: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

depth, fracture resistance of the mixture can be determined by taking the slope of the

fracture energy versus various crack lengths.

Kim and Wen (2002), used the concept of fracture mechanics from the indirect

tension test (IDT) as a simple performance indicator for fatigue cracking. During their

study, they defined fracture energy as the area under the stress-strain curve in the loading

portion, which was the sum of the strain energy and the dissipated energy due to

structural changes (such as micro-cracking). Materials that are highly elastic require

tremendous amounts of work to permanently deform the material. From their

observation, they suggest that from the IDT that fracture energy and the sum of strain

energy may be the proper indicator for the resistance of asphalt concrete fatigue cracking.

14

Page 27: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

2.0 Research Methodology

The purpose of this laboratory study was to provide an understanding of how the

inclusion of RAP would affect the fatigue characteristics of a standard surface mixture

used in Tennessee. This section gives a detailed description of the test methodology used

to evaluate the fatigue characteristics of the laboratory compacted specimens.

2.1 Materials

The aggregates and asphalt binder were conventional for HMA surface mixtures

used in Tennessee. An aggregate structure meeting TDOT Specifications for 411-D

mixtures was used as a design basis. Two types of coarse aggregates (D-rock) were used:

Limestone and Gravel, both with a maximum aggregate size of ¾-inch. The fine

aggregates consisted of No. 10 screenings, natural sand, manufactured sand, agricultural

lime and screened RAP from both from limestone and gravel sources.

For each mixture, the RAP material used in the mix design process as a substitute

for sand or screenings was originally designed as a limestone or gravel D-mix. To

maintain consistent aggregate types, RAP materials were only used in mixtures similar to

their original design. Both RAP materials were processed during a typical milling

operation and were stored and sampled similar to virgin aggregates. To preserve material

uniformity, all RAP materials were screened through the No. 4 sieve to acquire a

consistent gradation that was comparable to the fine aggregates used in this study. All

RAP material retained on the No. 4 sieve were discarded and not used as part of the

15

Page 28: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

design. Gradations were determined on the bare aggregate after the binder was extracted

from the RAP material. The verified asphalt content of the RAP materials was 5.5

percent for limestone mixtures and 5.7 percent for gravel mixtures.

Two types of asphalt binder were used in the study, unmodified asphalt meeting

Superpave specifications for PG 64-22 and polymer modified asphalt meeting the

specification as PG 76-22. Figures 1 and 2 represent stockpile gradations for the

materials used in this study.

0

10

20

30

40

50

60

70

80

90

100

0 0.5 1 1.5 2 2.5 3 3.5Sieve Size, in.

Perc

ent P

assi

ng, %

D-Rock#10 SoftNa. SandMan. SandRAP

No.200 No.100 No.50 No.30 No.8 No.4 3/8'' 1/2'' 3/4''

Figure 1. Gradations of Stockpiles and RAP, Limestone Mix.

16

Page 29: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

0

10

20

30

40

50

60

70

80

90

100

0 0.5 1 1.5 2 2.5 3 3.5Sieve Size, in.

Perc

ent P

assi

ng, %

D-RockAg. Lime#10 SoftNat. SandRAP

No.200 No.100 No.50 No.30 No.8 No.4 3/8'' 1/2'' 3/4''

Figure 2. Gradations of Stockpiles and RAP, Gravel Mix.

2.2 Mixture Design

Standard Marshall mix design procedures were used to determine the volumetric

proportions for the mix used in this study. Prior to designing any mixtures with the

inclusion of RAP, a control mix was first designed as a guide to follow during RAP mix

design. TDOT provided a job mix formula (JMF) for typical 411-D surface mixtures

used in Tennessee to represent our control mix. Asphalt contents for limestone mixtures

were designed at 5.0 percent and gravel mixtures were designed at 5.8 percent asphalt.

Tables 4 and 5 represent the job mix formulas for both limestone and gravel control

mixtures. For Limestone and Gravel mixtures, screened RAP was substituted in equal

proportions for the fine aggregate. As shown in Figures 3 and 4, the gradations of the

blended mixtures were kept in a very narrow band so that all the mixtures resulted in

similar aggregate structures.

17

Page 30: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Table 4. Limestone Job Mix Formula

Percent Used 50% 15% 25% 10% 100 1005/8" 100 100 100 100 100 1001/2" 97 100 100 100 99 95-1003/8" 70 100 100 100 85 80-93#4 21 92 98 99 59 54-76#8 7 61 93 82 44 35-57

#30 4 29 63 28 25 17-29#50 3 21 13 17 10 10-18

#100 2.0 20.0 2.0 9.0 5.4 3-10#200 1.8 16.0 1.0 5.0 4.1 0-6.5

Asphalt Content Gmm Gmb Air Voids VMA Stability (lbs) Flow (.01")5.0 2.456 2.356 4.0 16 2607 9.7

Manufactured Sand JMF

Design RangeSieve Size

Limestone D-Rock

No. 10 Screenings

Natural Sand

Table 5. Gravel Job Mix Formula

Percent Used 55% 10% 25% 10% 100 1005/8" 100 100 100 100 100 1001/2" 95 100 100 100 97 95-1003/8" 77 100 100 100 87 80-93#4 40 91 96 98 65 54-76#8 22 60 84 92 48 35-57#30 8 30 60 64 29 17-29#50 5 21 8 52 12 10-18

#100 3.0 16.0 1.0 41.0 7.6 3-10#200 2.0 14.0 34.0 5.9 0-6.5

Asphalt Content Gmm Gmb Air Voids VMA Stability (lbs) Flow (.01")5.8 2.360 2.265 4.0 17 2972 10.9

Ag. Lime JMF Design RangeSieve Size

Gravel D-Rock

No. 10 Soft Screenings

Natural Sand

18

Page 31: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

100.0 90.0 Control

Gradation80.0

Upper LimitPe

rcen

t Pas

sing

, %

70.0 60.0 Lower Limit

50.0 10% RAP

40.0 20% RAP30.0

20.0 30% RAP

10.0 0.0 0.000 0.500 1.000 1.500 2.000 2.500 3.000 3.500 No.200 No.100 No.50 No.30 No.8 No.4 3/8'' 1/2” 3/4”

Sieve Size, in.

Figure 3. Limestone Mixture Gradations.

100.0 90.0

ControlGradation80.0 Upper Limit

70.0

Perc

ent P

assi

ng, %

Lower Limit60.0

10% RAP50.0

20% RAP40.0 30.0 30% RAP

20.0 10.0 0.0 0.000 0.500 1.000 1.500 2.000 2.500 3.000 3.500 No.200 No.100 No.50 No.30 No.8 No.4 3/8'' 1/2'' 3/4”

Sieve Size, in.

Figure 4. Gravel Mixture Gradations.

19

Page 32: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

2.3 Aging Experiment

A separate laboratory experiment was conducted to determine which aging

method would best simulate long-term aging of the mixtures. Both loose and compacted

mixtures were used to evaluate different laboratory aging methods to determine how

pressure, temperature and time affected the characteristics of the mixtures. The

compacted mixtures were laboratory aged to determine which laboratory aging method

would best represented long-term aging.

The aging procedure included both loose and compacted specimens that were

aged in a pressure aging vessel (PAV) at 100°C for 1-day, 2-days and 3-days. The size of

the samples would make it difficult to long-term age a significant amount of specimens in

the PAV so a portion of the samples were long-term aged in a forced draft oven at 85°C

for 5-days and at 100°C for 3-days to compare with the PAV.

To compare the rheological properties of the aged mixtures, the binder was

extracted and recovered from each aging protocol. Binder properties from each method

of aging were then compared to an un-aged sample with the same mixture properties

using the Dynamic Shear Rheometer (DSR). After comparing the rheological properties

of the extracted asphalt binders from the mixtures with different aging protocols, the 3-

day oven aging at 100°C was found to give similar results to the standard loose mixture

oven aging at 85°C for 5-days. Based on the rheological properties of the extracted

binder and investigating each aging method, half the test specimens were subjected to

oven aging at 100°C for a period of 3-days (72-hours).

20

Page 33: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

2.4 Specimen Preparation

To ensure the quality of each mixture, each stockpile was oven dried and broken

down into separate sieve sizes. By breaking the aggregate down into separate sieve sizes,

it reduced the variability of having inconsistent gradations. Prior to mixing, each mixture

was batched into 6000-8000 gram batches. Each batch was then superheated in a forced

draft oven prior to being mixed in the laboratory using a mechanical mixer. After

mixing, each mixture was subject to short-term aging for a period of 2-4 hours at 300°F

(150°C) prior to compaction. Two different methods of compactions were used in this

study. The Superpave Gyratory Compacter (SGC) was used to compact 4 – 6 inch

circular specimens and the vibratory compactor was used to compact beam specimens.

All circular specimens were compacted to 5±0.5 percent air voids and all beam samples

were compacted to 6±1 percent air voids.

Prior to testing, all samples were checked for air voids in accordance with

AASHTO T-269, Percent Air Voids in Compacted Dense and Open Bituminous Paving

Mixtures, to validate proper air void requirements. If any specimen was outside the

specified air void range, the specimen was discarded. Specimens suitable for testing

(Figure 5) were then cut using a wet blade saw into their respective sizes for each test.

After the specimens were cut they were stored at 77°F (25°C) for a minimum of two

hours prior to testing. All test were conducted at 77°F (25°C) throughout the study.

21

Page 34: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Figure 5. Prepared Test Specimens.

2.5 Test Methods

2.5.1 Indirect Tensile Strength and Strain Test (IDT)

The indirect tensile test (IDT) was used to determine the tensile strength and

strain of 4-inch (100-mm) diameter and 2.5-inch (37-mm) thick cylindrical samples.

Testing was done in triplicates on both un-aged and long-term aged specimens. Each

cylindrical sample was loaded along the diametral axis at a rate of 2 in./min. (50.8

mm/min.). This loading configuration develops a relatively uniform tensile stress

perpendicular to the direction of the applied load and along the vertical diametral plane,

which ultimately causes the specimen to fail by splitting along the vertical diameter

(Roberts et al. 1991). The load and deformations were continuously recorded and

indirect tensile strength and strain are computed as follows:

22

Page 35: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

)1(2Dt

PS ultT ⋅⋅

⋅=π

)2( 52.0 TT H=ε

where

ST – Tensile strength,

Pult – Peak load,

t – thickness of the specimen,

D – Diameter of the specimen,

εT – Horizontal tensile strain at failure, and

HT – Horizontal deformation at peak load, in.

Toughness index (TI), a parameter describing the toughening characteristics in the

post-peak region, was also calculated from the indirect tensile test results. Figure 6

presents a typical normalized indirect tensile stress and strain curve. A dimensionless

indirect tensile toughness index, TI is defined as follows (Sobhan and Mashnad, 2002):

)3(p

pAATI

εεε

−=

where

TI – Toughness index,

Aε – Area under the normalized stress-strain curve up to strain ε,

Ap – Area under the normalized stress-strain curve up to strain εp

ε – Strain at the point of interest, and

εp – Strain corresponding to the peak stress.

23

Page 36: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

Strain, %

IDT

Nor

mal

ized

Ap Aε

εp ε

Figure 6. Normalized IDT Curve for TI Calculation.

This toughness index compares the performance of a specimen with that of an

elastic perfectly plastic reference material, for which the TI remains constant at 1. For an

ideal brittle material with no post-peak load carrying capacity, the value of TI equals

zero. In this study, the values of indirect tensile toughness index were calculated up to

tensile strain of one percent. This strain level can be any strain greater than the strain

corresponding to the peak stress. The IDT test and TI calculation were used as a simple

performance test to understand how the RAP would affect the fatigue characteristics of

mixtures containing RAP.

2.5.2 Semi-Circular Bending (SCB) Test

The semi-circular bending (SCB) test for asphalt mixtures is more often reported

in Europe and South Africa (Molenarr et al 2002 and van de Ven et al 1997).

24

Page 37: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Researchers have used this test to evaluate the tensile strength characteristics and fracture

resistance of asphalt mixtures. The test set up is very simple, any loading frame that can

apply monotonic or dynamic loading can be used. Figure 7 illustrates a typical SCB test

set up. The SCB test fixture consists of a three-point bending setup that is fabricated so it

can be attached to both the load frame and a load cell. The distance between the two

supports at the bottom is 4-inches (100-mm). A small hole was drilled through the

bottom of the fixture so an LVDT could be mounted to the bottom of the specimen to

measure the deflection on the bottom flat surface.

p

¦ Òt max

2aD

Figure 7. Typical SCB Test Setup.

25

Page 38: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

SCB specimens were prepared using the SGC. After compaction, semi-circular

disks were cut in half from 6-inch (150-mm) diameter cylindrical SGC specimens and

then sliced into 1.0-inch (25-mm) thick specimens for testing. SCB testing was done in

triplicate samples for both short-term and long-term aged specimens. Specimens subject

to long-term aging were placed in a forced draft oven at 100°C for three days.

During this study, the SCB test was used to characterize the various properties of

asphalt mixtures containing RAP. By using the SCB setup, mixture properties were

determined using both dynamic and monotonic loading. Dynamic loading consist of

applying cyclic loads at different frequencies to obtain viscoelastic properties, or by

applying continuous sinusoidal loading to the specimen until failure to determine fatigue

characteristics of different mixtures. Similar to the traditional indirect tensile strength

test, the SCB setup was used to apply monotonic loading to determine tensile strength

characteristics for different mixtures containing RAP.

SCB Frequency Sweep Test

A stress controlled frequency sweep test was conducted at 0.01, 0.02, 0.05, 0.1,

0.2, 0.5, 1, 2, 5, and 10 Hz with a 100 second resting period between each frequency to

allow for elastic recovery. During the frequency sweep test, a sinusoidal stress with

amplitude of 200 lbs. (0.89 kN) was applied to the specimen. Mixture composite

modulus (E*) and phase angle (δ) were calculated from the load and measured deflection.

Figure 8 represents a graphical illustration of the SCB frequency sweep test. The time

26

Page 39: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

0

50

100

150

200

250

0 200 400 600 800 1000 1200 1400

Time, sec.

Load

, lbs

. & V

ert.

Def

l., in

.

LoadDeflection

Figure 8. SCB Frequency Sweep Test.

lag between peak load and vertical deflection gives us a good understanding of how the

material behaves under cyclic loading and can be used as a tool for evaluating fatigue

properties of mixtures containing RAP.

SCB Tensile Strength Test

A semi-circular bending test was conducted at a constant displacement similar to

the IDT test. VenderVan 1997, believes that this test is a simple tool to obtain

information on the modulus and tensile characteristics for HMA mixtures. The reasoning

for this test is that a crack will develop along the bottom of the specimen that helps

characterize the tensile characteristics of the mixture. The specimen is loaded

monotonically at a loading rate of 2 in./min. (50 mm./min.) until failure occurs. As

shown in Figure 9, load and deformation are continuously recorded until failure.

27

Page 40: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

0

500

1000

1500

2000

2500

3000

3500

4000

0 0.05 0.1 0.15 0.2

Vert. Defl., in.

Load

, lbs

.

Figure 9. Typical SCB Tensile Strength Test.

Analytical solutions for the SCB test can be achieved with proper application of

loading and supporting conditions to the constitutive equations of the asphalt mixture.

However, even the linear elastic solution between the load and bottom deflection requires

complicated mathematical derivation. Molenaar et al. 2002, reported a specific solution

between the top deflection and applied load as follows.

)4(8.4DP

t =σ

)5(84.1r

v MP

Where:

σt – maximum tensile stress at the bottom of the specimen,

P – load per unit width of the specimen,

D – diameter of specimen,

28

Page 41: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

δv - vertical displacement at the top of the specimen, and

Mr – resilient modulus.

Equations (4) and (5) are only valid when the distance between the two bottom-

supports equals 0.8 times of the diameter. Huang et al. 2003, used finite element analyses

to back-calculate the composite moduli of the specimens based on the recorded loads and

deflections.

SCB Fatigue Test

To characterize the material properties under dynamic loading, a continuous

sinusoidal load was applied to a semi-circular disk until failure. The semi-circular fatigue

test is similar to the stress controlled frequency sweep test except the specimen was

loaded at a constant frequency of 5-hz. The load amplitude for each mixture was a

fraction of the ultimate bearing capacity from the SCB tensile strength test. An LVDT

was mounted on the bottom center of the specimen to measure vertical deformation.

Load and deformation were continuously recorded to evaluate the fatigue characteristics

for each mixture. Figure 10 illustrates the load and deformation response from the SCB

fatigue test. By applying different load magnitudes at different percentages of the SCB

tensile strength, the effect of RAP on the mixture during dynamic loading can be

demonstrated.

29

Page 42: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0 0.5 1 1. 5 2 2.5

Time

Load

& D

efl.

deflectionload

0

100

200

300

400

500

600

0.057 0.0572 0.0574 0.0576 0.0578 0.058 0.0582 0.0584 0.0586Strain, in./in.

Stre

ss, l

bs.

Figure 10. Load and Deformations in SCB Fatigue Test.

SCB Notched Fracture Test

Similar to SCB test setup, the semi-circular notched fracture test applies a

constant rate of deformation to a notched specimen. Researchers have been using this

test to evaluate the fracture resistance of asphalt mixtures through the J-integral (Mull et

al. 2002). The J-integral concept was first proposed by Rice in 1968 as a path

independent integration of strain energy, density, traction and displacement along an

arbitrary counter-clockwise path around the crack (Rice 1968). According to Mull et al.

2002, the J-integral concept is a method to characterize fracture resistance of asphalt

mixtures having different notch-depths. To calculate Jc, which is the slope between the

fracture energies of different notch depths, at least two different notch depths need to be

considered. In this study three notch depths were used, 0.5 in. (12.5-mm), 1.0 in. (25.4-

mm) and 1.5 in. (38-mm). Figure 11, illustrates the test configuration for a typical semi-

circular notched fracture test.

30

Page 43: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Figure 11. SCB Notched Fracture Test Setup.

The loading rate for the notched fracture test was 0.02 in/min. at the temperature

of 25 oC. This rate was chosen according to Mull et al 2002. The J-integral can be

calculated through the following equation.

)6(1

122

2

1

1

aabU

bU

J c −⋅⎟⎟⎠

⎞⎜⎜⎝

⎛−=

Where U is the strain energy to failure which equals to the area underneath the load-

deformation curve up to the peak load; b is the specimen thickness; and a represents the

notch depth. The diameter of the specimen (2rd) was 6-inches (150-mm), the specimen

thickness was approximately 1-inch (25.4-mm), and the spacing between the two

supports (2s) was 4-inches (100-mm).

Figure 12 illustrates fracture energy versus notch depth. The slope of the curve

between fracture energy and notch depth represents J-integral. Stiff mixtures that require

additional energy to initiate failure will have a higher J-integral (slope). The higher the J-

31

Page 44: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

0.000

5.000

10.000

15.000

20.000

25.000

30.000

0 0.5 1 1.5

Notch Depth, (in.)

Frac

ture

Ene

rgy,

psi

.

2

Figure 12. J-Integral for Different Notch Depths.

integral for a mixture during a semi-circular notched test, the stronger the fracture

resistance.

2.5.3 Flexural Beam Fatigue Test

This test was developed under SHRP A-003A to evaluate the fatigue response of

asphalt paving mixtures and to summarize what is known about the factors that influence

pavement life using third point loading. The flexural beam fatigue test was later

modified in SHRP-A-404 to improve the simplicity and reliability of the fatigue test.

The Flexural Beam Fatigue test is a strain controlled test to determine the fatigue

life of 15 in. long by 2 in. thick by 2.5 in. wide beam specimens cut from laboratory

32

Page 45: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

compacted samples subjected to repeated flexural bending until failure (AASHTO TP8-

94).

Beam specimens were compacted using the vibratory compactor to 6±1 percent

air voids and tested at 20°C according to AASHTO TP8-94, Standard Test Method for

Determining the Fatigue Life of Compacted Hot Mix Asphalt (HMA) Subjected to

Repeated Flexural Bending. Specimens were placed in a beam fatigue fixture (Figure 13)

that would allow 4-point bending with free rotation and horizontal translation at all load

and reaction points. An MTS closed loop computer controlled data acquisition system

was used to apply the load.

Load Load

Figure 13. Beam Fatigue Fixture.

ReactionSpecimen

Clamp Deflection Reaction

Return to Original Postion

33

Page 46: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

A user defined strain level was applied to the beam at a frequency of 10 Hz such

that the specimen will undergo a minimum of 10,000 load cycles. During each load cycle

beam deflections were measured at the center of the beam to calculate maximum tensile

stress, maximum tensile strain, phase angle, stiffness, dissipated energy, and cumulative

dissipated energy. Fatigue life is defined as the number of cycles corresponding to a 50

percent reduction in initial stiffness; initial stiffness was measured at the 50th load cycle

(AASHTO TP8-94). Data was analyzed using automated fatigue software developed as a

part of NCHRP A-003A by Tsai and Tayebali (1992). Figure 14 represents a typical

stiffness versus load cycle plot using automated fatigue software. The cycles and beam

deflections were continuously recorded and the above parameters were computed as

follows:

Maximum Tensile Stress, psi:

σ = 2

3whaP (7)

P = load applied by actuator, lbs. w = width of beam, in. h = specimen height, in.

Maximum Tensile Strain, psi:

ε = 22 4312

aLh−δ (8)

δ = maximum deflection at center of beam, in. a = space between inside clamps, 4.684 in. L = length of beam between outside clamps, 14.055 in.

34

Page 47: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Flexural Stiffness vs. Loading Cycles

0.000E+00

1.000E+05

2.000E+05

3.000E+05

4.000E+05

5.000E+05

100 50,100 100,100 150,100 200,100 250,100

Loading Cycles

Flex

ural

Stif

fnes

s (lb

f/in^

2)

Figure 14. Flexural Stiffness vs. Load Cycles (Automated Software).

Flexural Stiffness, psi:

S = εσ (9)

Phase Angle, deg:

Φ = 360fs (10) f = load frequency, Hz s = time lag between Pmax and δ max, sec.

Dissipated Energy (psi) per cycle:

wi = 0.25 π ε2 S sin(Φ) (11)

wi = energy dissipated at load cycle I, εi = strain at load cycle I, Si = stiffness at load cycle I, Φi = phase angle between stress and strain at load cycle i.

35

Page 48: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

2.5.4 Asphalt Binder Testing

Binder testing was completed to investigate the effect of different percentages of

RAP on the mixtures performance. When the aged binder from RAP is combined with

the new binder, it will have some effect on the resultant binder grade (McDaniel et al.

2000). To evaluate the effects of incorporating different percentages of RAP binder on

the mechanical properties of different mixtures, the binder from each mixture with the

inclusion of RAP must be extracted and recovered in accordance with AASHTO

standards T164-01 and T 170-00. The recovered binder must then be tested to evaluate

the effects of RAP on the rheological properties of PG binders used in the Superpave

system. Binder test were conducted on blended PG 76-22 mixtures containing 10, 20 and

30 percent RAP.

Binder from each mixture was tested as original binder (un-aged) at the high

temperature range as well as short-term aged binder and long-term aged binder at high,

low and intermediate temperature ranges. To simulate short-term aging, the Rolling Thin

Film Oven (RTFO) was used to represent aging during HMA production and

construction. To represent long-term aging, the Pressure Aging Vessel (PAV) was used

to simulate aging in the first 5 to 10 years of the pavements service life. The binder test

conducted to determine the rheological properties of the RAP mixtures included the

Dynamic Shear Rheometer (DSR) and Bending Beam Rheometer (BBR).

The DSR was used to characterize the viscous and elastic behavior of the blended

binders containing RAP. The DSR test measures the high and intermediate temperature

36

Page 49: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

complex modulus (G*) and phase angle (δ) in accordance with AASHTO TP5-98 to

determine its resistance to rutting and fatigue cracking. The rutting parameter, G*/sin δ,

which represents the high temperature performance grade was determined on the un-aged

mixtures as well as RTFO aged residue. The fatigue parameter, G*sin δ, which

represents the blended asphalt at intermediate temperatures was measured using PAV

aged binder.

The (BBR) was used to characterize the low temperature creep stiffness of the

blended asphalt mixtures containing RAP. To evaluate the low temperature performance

grade, PAV aged binder was placed in the BBR to measure the low-temperature creep

stiffness and creep rate. BBR specimens were tested in accordance with AASHTO TP1-

98 for the mixtures studied.

37

Page 50: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

3.0 Discussion of Results

The results of the laboratory fatigue testing for (1) indirect tensile strength (2)

semi-circular bending and (3) flexural beam fatigue tests are discussed in this chapter.

Data was taken from the test matrix discussed in Chapter 1 for both types of aggregates,

two types of binder and varying amounts of RAP ranging from 0 to 30 percent.

3.1 Indirect Tensile Strength Test Results

Table 6 summarizes the results from IDT testing for limestone mixtures.

Indirect tensile strength (ITS) was evaluated for both types of binder with the inclusion of

RAP. Mixtures subject to long-term aging had higher tensile strengths, lower strain at

peak load and lower toughness indices than un-aged mixtures. As shown in Figure 15,

the addition of screened RAP increased the tensile strength but significantly changed the

post failure characteristics for un-aged and long-term aged mixtures. As expected,

mixtures containing polymer modified asphalt PG 76-22 had higher tensile strengths and

similar post failure characteristics when compared to non-modified mixtures (PG 64-22).

Table 6. IDT Results, Limestone Mixtures

PG 64-22

% RAP UA Coef. Of Var. (%) LT-A Coef. Of

Var. (%) UA Coef. Of Var. (%) LT-A Coef. Of

Var. (%) UA Coef. Of Var. (%) LT-A Coef. Of

Var. (%)Control 198 3.6 216 4.7 0.0036 8.9 0.0027 10.9 0.612 7.0 0.481 19.4

10 202 1.4 243 4.6 0.0034 8.9 0.0030 14.3 0.574 6.9 0.464 2.820 226 0.6 261 4.8 0.0031 0.4 0.0028 10.9 0.469 3.4 0.430 9.930 261 6.5 304 1.9 0.0029 6.9 0.0024 6.9 0.469 4.4 0.399 7.3

PG 76-22

% RAP UA Coef. Of Var. (%) LT-A Coef. Of

Var. (%) UA Coef. Of Var. (%) LT-A Coef. Of

Var. (%) UA Coef. Of Var. (%) LT-A Coef. Of

Var. (%)Control 234 2.0 270 3.6 0.0037 9.9 0.0029 4.3 0.670 5.9 0.537 3.8

10 249 4.3 284 2.3 0.0037 4.8 0.0030 8.9 0.571 6.3 0.473 1.220 278 2.5 318 1.9 0.0032 9.9 0.0027 8.1 0.482 11.8 0.399 5.830 299 4.2 332 3.0 0.0028 9.7 0.0026 4.9 0.460 6.7 0.370 15.3

UA - un-agedLT-A - long-term aged

Indirect Tensile Strength, psi. Strain at Failure, in./in. Toughness Index

Toughness IndexIndirect Tensile Strength, psi. Strain at Failure, in./in.

38

Page 51: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Indirect Tensile Strength (psi): PG 64-22

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

unaged long-term aged

0% RAP10% RAP20% RAP30% RAP

Indirect Tensile Strength (psi): PG 76-22

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

unaged long-term aged

0% RAP10% RAP20% RAP30% RAP

Diametric Strain at Peak Load (%): PG 64-22

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

unaged long-term aged

0% RAP10% RAP20% RAP30% RAP

Diametric Strain at Peak Load (%): PG 76-22

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

unaged long-term aged

0% RAP10% RAP20% RAP30% RAP

Indirect Tensile Toughness Index: PG 64-22

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

unaged long-term aged

0% RAP10% RAP20% RAP30% RAP

Indirect Tensile Toughness Index: PG 76-22

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

unaged long-term aged

0% RAP10% RAP20% RAP30% RAP

Indirect Tensile Strength (psi): Unaged Mixtures

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

PG 64-22 PG 76-22

0% RAP10% RAP20% RAP30% RAP

Indirect Tensile Strength (psi): Long-term aged Mixtures

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

PG 64-22 PG 76-22

0% RAP10% RAP20% RAP30% RAP

Figure 15. IDT Test Results, Limestone Mixtures.

39

Page 52: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Table 7 presents the differences in IDT characteristics for both binder types in

addition to un-aged and long-term aged mixtures containing RAP. For both binder types,

mixtures containing 0 to 10 percent RAP displayed little difference between ITS,

diametric strain and post failure tenacity for un-aged and long-term aged mixtures.

However the addition of RAP at higher percentages (20-30 percent) resulted in

significant differences in tensile strength and post failure characteristics when compared

to the control mixture, Figure 16. This indicates increasing the percentage of RAP

significantly increases the tensile strength, lowers the strain at failure and lowers

toughness indices. At higher RAP percentages the change in IDT properties for PG 64-

22 had significantly different effects than those with PG 76-22. This affect is most

notable for PG 64-22 mixtures with high RAP contents subject to long-term aging.

Mixtures with PG 64-22 type binder gained significantly higher strengths after long-term

aging but saw little differences in strain at failure and toughness indices when compared

to long-term aged PG 76-22 mixtures. Conversely post peak characteristics, from both

types of binder, such as toughness indices were most notable for un-aged mixtures. The

reason for this phenomenon is believed to be mainly influenced by the aged binder

blending with the virgin binder resulting in a stiffer mixture.

Table 8 summarizes the results from IDT testing for gravel mixtures. Indirect

tensile strength was evaluated for both types of binder with the inclusion of RAP. To

evaluate the affects of moisture damage in addition to long-term aging, half the

specimens were subject to one freeze thaw cycle. The addition of screened RAP

increased the tensile strength when compared to control mixtures.

40

Page 53: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Table 7. Percent Change of IDT Properties, Limestone Mixtures

UA LT-A UA LT-A UA LT-A UA LT-A UA LT-A UA LT-A10 2 11 6 5 -6 10 0 3 -7 -4 -17 -1420 12 17 16 15 -16 4 -16 -7 -30 -12 -39 -3530 24 29 22 19 -24 -13 -32 -12 -30 -21 -46 -45

Note: The values in the Table indicated the increase or decrease of properties relative to the control mix (0% RAP)

%IDT ±

%RAPPG 64-22 PG 76-22

Indirect Tensile Strength Strain at FailurePG 64-22 PG 76-22

Toughness IndexPG 64-22 PG 76-22

Change in IDT relative to Control (0% RAP): Unaged Mixtures

0.00

5.00

10.00

15.00

20.00

25.00

30.00

PG 64-22 PG 76-22

% C

hang

e

10% RAP20% RAP30% RAP

Change in IDT relative to Control (0% RAP): Long-term aged Mixtures

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

PG 64-22 PG 76-22

% C

hang

e

10% RAP20% RAP30% RAP

Change in TI relative to Control (0% RAP): Unaged Mixtures

-50.00

-45.00

-40.00

-35.00

-30.00

-25.00

-20.00

-15.00

-10.00

-5.00

0.00

PG

64-

22

PG

76-

22

% C

hang

e

10% RAP20% RAP30% RAP

PG 64-22 PG 76-22

Change in TI relative to Control (0% RAP): Long-term aged Mixtures

-50.00

-45.00

-40.00

-35.00

-30.00

-25.00

-20.00

-15.00

-10.00

-5.00

0.001 2

% C

hang

e

10% RAP20% RAP30% RAP

PG 64-22 PG 76-22

Figure 16. Percent Change in IDT Properties, Limestone Mixtures.

41

Page 54: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Table 8. IDT Results, Gravel Mixtures

PG 64-22

% RAP LT-A Coef. Of Var. (%) LT-A FT Coef. Of

Var. (%) LT-A Coef. Of Var. (%) LT-A FT Coef. Of

Var. (%) LT-A Coef. Of Var. (%) LT-A FT Coef. Of

Var. (%)Control 206 8 201 13.7 0.0025 2.9 0.0027 3.9 0.503 0.8 0.487 6.1

10 226 8.1 222 1.2 0.0024 9.8 0.0025 9.7 0.433 17.3 0.418 12.020 263 2.7 252 7.6 0.0022 2.4 0.0023 4.2 0.425 7.9 0.403 22.230 291 1.8 272 1.3 0.0022 7.9 0.0020 5.2 0.411 6.8 0.392 15.0

PG 76-22

% RAP LT-A Coef. Of Var. (%) LT-A FT Coef. Of

Var. (%) LT-A Coef. Of Var. (%) LT-A FT Coef. Of

Var. (%) LT-A Coef. Of Var. (%) LT-A FT Coef. Of

Var. (%)Control 233 3.2 229 4.3 0.0026 6.0 0.0028 5.2 0.491 8.7 0.503 2.6

10 260 3.1 250 5.4 0.0025 3.1 0.0028 4.1 0.484 5.5 0.461 4.520 272 4.6 272 2.3 0.0025 1.6 0.0026 3 0.469 3 0.437 5.530 307 3.9 295 3.0 0.0024 3.7 0.0025 5.1 0.446 0.8 0.420 5.9

LT-A - long-term agedLT-A FT - long-term aged Freeze Thaw

Indirect Tensile Strength, psi. Strain at Failure, in./in. Toughness Index

Indirect Tensile Strength, psi. Strain at Failure, in./in. Toughness Index

However, with the addition of screened RAP (Figure 17), there was no significant

difference in post failure characteristics for long-term aged and long-term aged freeze

thaw mixtures. As expected, mixtures containing polymer modified asphalt PG 76-22

had higher tensile strengths when compared to non-modified PG 64-22 asphalt.

Table 9 presents the differences in IDT characteristics for both binder types in

addition to long-term aging and long-term aged freeze thaw mixtures containing RAP.

As expected mixtures subject to one freeze thaw cycle had lower ITS when compared to

long-term aged mixtures. Post failure characteristics for both types of conditioning with

the inclusion of RAP had no significant difference when comparing to the control

mixture. For both binder types and both types of conditioning, the addition of RAP

resulted in no significant differences in IDT properties, Figure 18.

42

Page 55: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Indirect Tensile Strength (psi): PG 64-22

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

long-term aged long-term aged FT

0% RAP10% RAP20% RAP30% RAP

Indirect Tensile Strength (psi): PG 76-22

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

long-term aged long-term aged FT

0% RAP10% RAP20% RAP30% RAP

Diametric Strain at Peak Load (%): PG 64-22

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

long-term aged long-term aged FT

0% RAP10% RAP20% RAP30% RAP

Diametric Strain at Peak Load (%): PG 76-22

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

long-term aged long-term aged FT

0% RAP10% RAP20% RAP30% RAP

Indirect Tensile Toughness Index: PG 64-22

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

long-term aged long-term aged FT

0% RAP10% RAP20% RAP30% RAP

Indirect Tensile Toughness Index: PG 76-22

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

long-term aged long-term aged FT

0% RAP10% RAP20% RAP30% RAP

Indirect Tensile Strength (psi): Long-term aged Mixtures

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

PG 64-22 PG 76-22

0% RAP10% RAP20% RAP30% RAP

Indirect Tensile Strength (psi): Long-term aged FT Mixtures

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

PG 64-22 PG 76-22

0% RAP10% RAP20% RAP30% RAP

Figure 17. IDT Test Results, Gravel Mixtures.

43

Page 56: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Table 9. Percent Change of IDT Properties, Gravel Mixtures.

LT-A LT-A FT LT-A LT-A FT LT-A LT-A FT LT-A LT-A FT LT-A LT-A FT LT-A LT-A FT10 9 10 10 8 -4 -8 -4 0 -16 -17 -1 -920 20 20 14 16 -14 -17 -4 -8 -18 -21 -5 -1530 26 26 24 22 -14 -35 -8 -12 -22 -24 -10 -20

Note: The values in the Table indicated the increase or decrease of properties relative to the control mix (0% RAP)LT-A - long-term agedLT-A FT - long-term aged Freeze Thaw

%IDT ±

%RAP

Indirect Tensile Strength Strain at Failure Toughness IndexPG 64-22 PG 76-22 PG 64-22 PG 76-22 PG 64-22 PG 76-22

Change in IDT relative to Control (0% RAP): Long-term aged Mixtures

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

PG 64-22 PG 76-22

10% RAP20% RAP30% RAP

Change in IDT relative to Control (0% RAP): Long-term aged FT Mixtures

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

PG 64-22 PG 76-22

10% RAP20% RAP30% RAP

Change in TI relative to Control (0% RAP): Long-term aged Mixtures

-50.00

-45.00

-40.00

-35.00

-30.00

-25.00

-20.00

-15.00

-10.00

-5.00

0.00PG 64-22 PG 76-22

10% RAP20% RAP30% RAP

PG 64-22 PG 76-22

Change in TI relative to Control (0% RAP): Long-term aged FT Mixtures

-50.00

-45.00

-40.00

-35.00

-30.00

-25.00

-20.00

-15.00

-10.00

-5.00

0.00PG 64-22 PG 76-22

10% RAP20% RAP30% RAP

PG 64-22 PG 76-22

Figure 18. Percent Change in IDT Properties, Gravel Mixtures.

44

Page 57: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

3.2 Semi-Circular Bending (SCB) Test Results

3.2.1 SCB Frequency Sweep Test

Figure 19 represents typical curves of composite modulus and phase angles versus

frequencies for the materials used in this study. SCB Composite modulus increased with

increasing frequency while phase angle decreased with frequency. This trend was typical

for mixtures containing RAP.

An increase in composite modulus was more significant for un-aged mixtures. As

shown in Figure 20, mixtures subject to long-term aging had significantly higher

composite modulus than un-aged mixtures. For un-aged mixtures the inclusion of 10

percent RAP significantly increased the composite modulus. Mixtures subject to long-

term aging had little increase in composite modulus; however the inclusion of 30 percent

RAP significantly stiffened the mixture. An increase in stiffness led to a decrease in

phase angle. Figure 20 illustrates that mixtures subject to long-term aging had a lower

phase angle when compared to un-aged mixtures. Similarly, the addition of RAP reduced

the phase angle at higher RAP percentages. This trend indicates that with the inclusion of

RAP and long-term aging, mixtures become more elastic and viscous.

3.2.2 SCB Tensile Strength Test

Table 10 presents the results from the SCB tensile strength test. Similar to the

traditional indirect tensile strength test, semi-circular samples were loaded monotonically

at a loading rate of 2 in./min.. This test was used principally for SCB fatigue testing. By

statically loading the specimens, ultimate strength for each mixture was obtained.

45

Page 58: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

SCB Frequency Sweep Composite Modulus

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

0.01 0.1 1 10

Frequency (Hz)

E* (p

si)

Phase Angle in SCB Frequency Sweep Test

0

10

20

30

40

50

60

70

0.01 0.1 1 10

Frequency (Hz)

Pha

se A

ngle

(deg

)

Figure 19. SCB Frequency Sweep Test.

SCB Phase Angle at 0.01 Hz: PG 64-22

0

10

20

30

40

50

60

70

80

90

unaged long-term aged

Pha

se A

ngle

(deg

)

0% RAP10% RAP20% RAP30% RAP

SCB Composite Modulus at 0.01 Hz: PG 64-22

0

50000

100000

150000

200000

250000

300000

350000

unaged long-term aged

E* (p

si) 0% RAP

10% RAP20% RAP30% RAP

SCB Phase Angle at 0.01 Hz: PG 76-22

0

10

20

30

40

50

60

70

unaged long-term aged

Pha

se A

ngle

(deg

)

0% RAP10% RAP20% RAP30% RAP

SCB Composite Modulus at 0.01 Hz: PG 76-22

0

50000

100000

150000

200000

250000

300000

350000

unaged long-term aged

E*

(Psi

) 0% RAP10% RAP20% RAP30% RAP

Figure 20. SCB Composite Modulus and Phase Angle.

46

Page 59: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Table 10. SCB Tensile Strength Test Results.

PG 64-22

% RAP UA Coef. Of Var. (%) LT-A Coef. Of

Var. (%)Control 2125 7.5 2624 5.1

10 2416 0.9 2740 520 2741 9.4 2861 10.230 2991 2.7 3434 7.6

PG 76-22

% RAP UA Coef. Of Var. (%) LT-A Coef. Of

Var. (%)Control 2265 0.3 2664 2.1

10 2622 0.5 3018 1.520 2742 3.9 2935 5.930 3228 3.4 3639 5.5

UA - un-agedLT-A - long-term aged

Load at Failure

Load at Failure

As shown in Figure 21 the inclusion of RAP increased the fatigue resistance for

both un-aged and long-term aged mixtures. Mixtures subject to long-term aging had

higher strengths than un-aged mixtures. For PG 64-22 mixtures, the addition of 20 to 30

percent RAP significantly increased the performance for un-aged mixtures. There was

little difference in strength between 0 to 10 percent RAP. However, mixtures containing

30 percent RAP were significantly stiffer than the control mix. As expected mixtures

containing PG 76-22 binder had higher strengths than mixtures containing PG 64-22

binder. Table 11 represents the change in SCB properties relative to 0 percent RAP.

3.2.3 SCB Fatigue Test

Figure 22 presents the results of the SCB fatigue test. Load levels were based on

a fraction of the ultimate strength from the SCB tensile strength test. Load levels ranging

47

Page 60: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Semi-Circular Bending Strength: PG 64-22

0

500

1000

1500

2000

2500

3000

3500

4000

unaged long-term aged

Ulti

mat

e S

treng

th, l

bs.

0% RAP10% RAP20% RAP30% RAP

Semi-Circular Bending Strength: PG 76-22

0

500

1000

1500

2000

2500

3000

3500

4000

unaged long-term aged

Ulti

mat

e S

treng

th, l

bs.

0% RAP10% RAP20% RAP20% RAP

Figure 21. SCB Tensile Strength Test Results.

Table 11. Percent Change in SCB Strength

UA LT-A UA LT-A10 12 4 14 1220 22 8 17 930 29 24 30 27

Note: The values in the Table indicated the increase or decrease of properties relative to the control mix (0% RAP)

%SCB ±

%RAP

Load at FailurePG 64-22 PG 76-22

48

Page 61: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

SCB Fatigue, Un-Aged PG 64-22

0

500

1000

1500

2000

2500

3000

3500

4000

1 10 100 1000 10000 100000 1000000Cycles, Nf

Load

0% RAP10% RAP20% RAP30% RAP

SCB Fatigue, Un-Aged PG 76-22

0

500

1000

1500

2000

2500

3000

3500

4000

1 10 100 1000 10000 100000Cycles, Nf

Load

0% RAP10% RAP20% RAP30% RAP

SCB Fatigue, Long-term Aged PG 64-22

0

500

1000

1500

2000

2500

3000

3500

4000

1 10 100 1000 10000 100000Cycles, Nf

Load

0% RAP10% RAP20% RAP30% RAP

SCB Fatigue, Long-term Aged PG 76-22

0

500

1000

1500

2000

2500

3000

3500

4000

1 10 100 1000 10000 100000Cycles, Nf

Load

0% RAP10% RAP20% RAP30% RAP

Figure 22. SCB Fatigue Test Results.

from 15 to 35 percent of the ultimate SCB tensile strength were applied at a frequency of

5 Hz to evaluate the fatigue characteristics of mixtures containing RAP. Typically

fatigue data is plotted on log-log scale (Figure 23). For this study semi-log scale was

used to graphically illustrate how the inclusion of RAP stiffened the mixture when

compared to the control mixture. The effects of RAP were more noticeable and followed

similar trends as the previous test when plotted on semi-log scale. Additionally the slope

of the fatigue line plotted on the semi-log scale had slightly higher R2 values than log-log

R2 values for the same data.

49

Page 62: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

SCB Fatigue, Un-Aged PG 64-22

y = 2345.4x-0.2081

R2 = 0.9524

y = 2670.3x-0.1927

R2 = 0.958

y = 2990.5x-0.1883

R2 = 0.9666

y = 3149.2x-0.1697

R2 = 0.9644

1

10

100

1000

10000

100000

1 10 100 1000 10000 100000 1000000

Cycles, Nf

Load

0% RAP10% RAP20% RAP30% RAP

SCB Fatigue, Un-Aged PG 76-22

y = 2328.9x-0.1747

R2 = 0.9781

y = 2688.4x-0.1664

R2 = 0.9544

y = 2817.2x-0.1612

R2 = 0.9687

y = 3302.9x-0.1626

R2 = 0.96341

10

100

1000

10000

100000

1 10 100 1000 10000 100000Cycles, Nf

Load

0% RAP10% RAP20% RAP30% RAP

SCB Fatigue, Long-term Aged PG 64-22

y = 2772.4x-0.1843

R2 = 0.9602

y = 2881.5x-0.1811

R2 = 0.9673

y = 3008.4x-0.1735

R2 = 0.9608

y = 3624.2x-0.1787

R2 = 0.95481

10

100

1000

10000

100000

1 10 100 1000 10000 100000Cycles, Nf

Load

0% RAP10% RAP20% RAP30% RAP

SCB Fatigue, Long-term Aged PG 76-22

y = 2729.5x-0.1626

R2 = 0.9433

y = 3102.8x-0.16

R2 = 0.9622

y = 3014.8x-0.1531

R2 = 0.9691

y = 3738.2x-0.1641

R2 = 0.97631

10

100

1000

10000

100000

1 10 100 1000 10000 100000Cycles, Nf

Load

0% RAP10% RAP20% RAP30% RAP

Figure 23. SCB Fatigue Test Log-Log Scale.

Mixtures subject to long-term aging generally had higher fatigue lives when

compared to un-aged mixes. In addition to long-term aging the inclusion of RAP also

increased the fatigue life for the mixtures used in this study. Increasing the percentage of

RAP resulted in a higher fatigue life when compared to the control mixture at load levels

greater than 500 lbs. However, at lower stress levels below 500 lbs. the fatigue life of

mixtures containing 30 percent RAP had a lower fatigue life. This indicates that smaller

load levels, similar to highway conditions, would generally reduce the fatigue life of

mixtures containing 30 percent RAP.

Long-term aging significantly changed the mixtures resistance to fatigue cracking

for both binder types. As noted in Table 12 and Figure 24, 30 percent RAP would result

50

Page 63: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Table 12. Comparison of Fatigue Life Relative to Slope

PG 64-22 % RAP Slope R2 % PG 76-22 % RAP Slope R2 %0 180 0.9872 - 0 208 0.9994 -

10 197 0.9884 2 10 231 0.9999 1020 216 0.9764 10 20 233 1.0000 1130 238 0.9958 18 30 278 0.9997 260 217 0.9985 - 0 231 0.9955 -

10 236 0.9969 6 10 256 0.9995 1020 237 0.9984 7 20 237 1.0000 330 294 0.9993 25 30 315 0.9995 27

Note: % indicates the percent change in slope relative Note: % indicates the percent change in slope relativeto the control mix (0% RAP). to the control mix (0% RAP).

un-aged

long-term aged

un-aged

long-term aged

SCB Fatigue: PG 64-22

0

5

10

15

20

25

30

unaged long-term aged

% C

hang

e

10% RAP20% RAP30% RAP

SCB Fatigue: PG 76-22

0

5

10

15

20

25

30

unaged long-term aged

% C

hang

e10% RAP20% RAP30% RAP

SCB Fatigue: Unaged Mixtures

0

5

10

15

20

25

30

PG 64-22 PG 76-22

% C

hang

e

10% RAP20% RAP30% RAP

SCB Fatigue: Long-term Aged MIxtures

0

5

10

15

20

25

30

unaged long-term aged

% C

hang

e

10% RAP20% RAP30% RAP

Figure 24. Change in SCB Fatigue Slope Relative to 0% RAP.

51

Page 64: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

in higher slopes and lower fatigue life. Un-aged mixtures had no significant difference in

fatigue life up to 20 percent RAP for PG 64-22 mixtures. Mixtures containing PG 76-22

binder had higher fatigue resistance than those with PG 64-22 binder. There was little

difference in fatigue life for both un-aged and long-term aged mixtures with the inclusion

of 20 percent RAP.

The total dissipated energy to failure increased with long-term aging and the

inclusion of RAP, Figure 25. A load level of the same magnitude was applied to each

mixture to evaluate the correlation of fatigue life and dissipated energy by increasing the

percent RAP in the mix. Mixtures containing 20 percent RAP indicated a significant

increase in dissipated energy for un-aged mixtures. Long-term aged mixture increased

linearly up to 20 percent RAP and no significant difference was noticeable when

compared to 30 percent RAP. This also indicates that the inclusion of RAP and long-

term aging increased the fatigue life when compared to the control mixture (0% RAP).

Total Dissipated Energy to Failure

0

100

200

300

400

500

600

700

unaged long-term aged

Dis

sipa

ted

Ene

rgy

(psi

)

0% RAP10% RAP20% RAP30% RAP

Figure 25. SCB Fatigue Dissipated Energy.

52

Page 65: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

3.2.4 SCB Notched Fracture Resistance Test

Figure 26 presents the results from the SCB notched fracture test for limestone

mixtures. Fracture energy was evaluated for both types of binder with the inclusion of

RAP. Similar to IDT and SCB IDT, notched specimens were subject to a 0.02 in./min.

monotonic load. Notch depths of 0.5, 1.0 and 1.5 inches were used to evaluate the

fracture resistance for the mixtures used. The higher the J-integral for a mixture during a

semi-circular notched test, the stronger the fracture resistance.

Figure 27 represents the calculated J-integral for each mixture. The inclusion of

RAP and long-term aging exhibited higher J-integral values than mixtures without RAP.

Notched Fracture Energy, Unaged Mixes: PG 64-22

0.000

5.000

10.000

15.000

20.000

25.000

30.000

0 0.5 1 1.5 2

Notch Depth, (in.)

Frac

ture

Ene

rgy,

psi

.

0% RAP10% RAP20% RAP30% RAP

Notched Fracture Energy, Unaged Mixes: PG 76-22

0.000

5.000

10.000

15.000

20.000

25.000

30.000

0 0.5 1 1.5 2Notch Depth, (in.)

Frac

ture

Ene

rgy,

psi

.

0% Aged10% Aged20% Aged30% Aged

Notched Fracture Energy, Long-term Aged Mixes: PG 64-22

0.000

5.000

10.000

15.000

20.000

25.000

30.000

0 0.5 1 1.5 2

Notch Depth, (in.)

Frac

ture

Ene

rgy,

psi

.

0% Aged10% Aged20% Aged30% Aged

Notched Fracture Energy, Aged Mixes: PG 76-22

0.000

5.000

10.000

15.000

20.000

25.000

30.000

0 0.5 1 1.5 2Notch Depth, (in.)

Frac

ture

Ene

rgy,

psi

.

0% RAP10% RAP20% RAP30% RAP

Figure 26. SCB Notched Fracture Energy.

53

Page 66: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

J-Integral from SCB Notched Fracture Test: PG 64-22

0

5

10

15

20

25

unaged long-term aged

Jc, p

si. 0% RAP

10% RAP20% RAP30% RAP

J-Integral from SCB Notched Fracture Test: PG 76-22

0

5

10

15

20

25

unaged long-term aged

Jc, p

si. 0% RAP

10% RAP20% RAP30% RAP

Figure 27. J-Integral from Semi-Circular Notched Fracture Test.

As expected, mixtures containing PG 76-22 asphalt binder resulted in higher J-

integral values when compared to non-modified PG 64-22 asphalt. Long-term aging was

more notable for PG 64-22 mixtures than PG 76-22 mixtures.

When comparing the effects of long-term aging for both binder types, PG 64-22

had higher strength gains when compared to the strength gains for mixtures with PG 76-

22. J-integral for PG 76-22 mixtures with the inclusion of RAP resulted in no significant

difference when compared to un-aged mixtures.

Increasing the percentage of RAP generally increased the mixtures stiffness and

resistance to cracking. For un-aged PG 64-22 mixtures, the inclusion of 30 percent RAP

resulted in much higher J-integral than mixtures containing 0 to 20 percent RAP. For

laboratory long-term aged mixtures, J-integral increased more linearly when compared to

un-aged mixtures.

54

Page 67: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Un-aged PG 76-22 mixtures resulted in no significant difference up to 20 percent

RAP. However, the inclusion of 30 percent RAP significantly increased the fracture

resistance when compared to mixtures without RAP. Long-term aged PG 76-22 mixtures

had similar J-integral values when compared to un-aged mixtures. An inclusion of 30

percent RAP significantly increased the fracture resistance for PG 76-22 mixtures with no

significant change in fracture resistance for mixtures containing up to 20 percent RAP.

Three notch depths were used in this study to determine J-integral. The addition

of RAP resulted in a higher Jc when compared to mixtures without RAP. Higher J-

integral values accounts for the mixtures capability to absorb strain energy prior to

failure. Similar to ITS testing, the addition of screened RAP increased the tensile

strengths and lost some post failure tenacity resulting in higher J-integral values. This

indicates that the addition of RAP stiffened the mixture into a more elastic material that is

capable of absorbing more strain energy before tensile failure occurs. As failure

propagates, mixtures with high percentages of RAP will fail faster because of the reduced

post failure tenacity.

3.3 Flexural Beam Fatigue Test Results

Table 13 presents the results from the flexural beam fatigue test for limestone

mixtures. Flexural beam fatigue testing was evaluated on both types of binder with the

inclusion of RAP, Figure 28. A constant sinusoidal strain of 600 micro-strain was

applied to the neutral axis of the beam until the initial flexural stiffness was reduced by

50 percent.

55

Page 68: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Table 13. Beam Fatigue Test Results, Limestone Mixtures

PG 64-22

% RAP UA Coef. Of Var. (%) LT-A Coef. Of

Var. (%) UA Coef. Of Var. (%) LT-A Coef. Of

Var. (%) UA Coef. Of Var. (%) LT-A Coef. Of

Var. (%)Control 15299 49.0 13058 23.0 315000 2.0 445000 11.0 2414 48 2186 21.0

10 13840 58.0 51185 33.0 401666 17.0 580000 5.0 2711 63 10176 37.020 25263 22.0 48735 66.0 576667 19.0 640000 9.0 5121 16 9645 70.030 85641 27.0 74233 57.0 700000 10.0 690000 10.0 18039 25 14777 62.0

PG 76-22

% RAP UA Coef. Of Var. (%) LT-A Coef. Of

Var. (%) UA Coef. Of Var. (%) LT-A Coef. Of

Var. (%) UA Coef. Of Var. (%) LT-A Coef. Of

Var. (%)Control 224022 33.5 131190 94.9 560000 20.1 480000 8.8 39306 26.38 20755 92.6

10 84224 21.9 199974 17.4 546667 18.5 560000 9.5 15960 23.31 33292 20.420 28286 33.4 53029 33.4 495000 10.0 505000 21.0 4334 40.99 7666 41.830 145680 67.9 242768 40.8 656666 3.2 733333 6.2 26032 67.74 40094 39.3

UA - un-agedLT-A - long-term aged

Cumm. Dissipated Energy, psi.

Cumm. Dissipated Energy, psi.

Cycles to failure Initial Stiffness, psi.

Cycles to failure Initial Stiffness

Number of Cycles to Failure: PG 64-22

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

90,000

unaged long-term aged

Cyc

les,

Nf 0% RAP

10% RAP20% RAP30% RAP

Number of Cycles to Failure: PG 76-22

0

50,000

100,000

150,000

200,000

250,000

300,000

unaged long-term aged

Cyc

les,

Nf 0% RAP

10% RAP20% RAP30% RAP

Cumulative Dissipated Energy: PG 64-22

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

20,000

unaged long-term aged

Dis

sipa

ted

Ener

gy (i

n-lb

/in3)

0% RAP10% RAP20% RAP30% RAP

Cumulative Dissipated Energy: PG 76-22

0.00

5,000.00

10,000.00

15,000.00

20,000.00

25,000.00

30,000.00

35,000.00

40,000.00

45,000.00

unaged long-term aged

Dis

sipa

ted

Ener

gy (i

n-lb

f/in3

)

0% RAP10% RAP20% RAP30% RAP

Figure 28. Beam Fatigue Summary, Limestone Mixtures.

56

Page 69: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Generally, the inclusion of RAP and laboratory long-term aging significantly

increased the fatigue life for PG 64-22 mixtures. In addition to the increase in fatigue

life, the cumulative dissipated energy also increased with the inclusion of RAP and long-

term aging. For un-aged PG 64-22 mixtures, the inclusion of 30 percent RAP

significantly increased the fatigue life when compared to mixtures with less than 20

percent RAP. Fatigue life for long-term aged PG 64-22 mixtures significantly increased

with the inclusion of 10 percent RAP. Figure 29 represents stiffness vs. cycles for the

mixtures studied. The inclusion of RAP increased the mixtures stiffness and increased

the fatigue life when compared to mixtures without RAP.

Flexural Stiffness vs. Cycles, unaged mixtures: PG 64-22

0

100000

200000

300000

400000

500000

600000

700000

100 1000 10000 100000 1000000

Cycles, No

Stiff

ness

, psi 0% RAP

10% RAP20% RAP30% RAP

Flexural Stiffness vs. Cycles, unaged mixtures: PG 76-22

0

100000

200000

300000

400000

500000

600000

700000

800000

100 1000 10000 100000 1000000

Cycles, No

Stiff

ness

, psi 0% RAP

10% RAP20% RAP30% RAP

Flexural Stiffness vs. Cycles, long-term aged mixtures: PG 64-22

0

100000

200000

300000

400000

500000

600000

700000

100 1000 10000 100000 1000000

Cycles, No

Stiff

ness

, psi 0% RAP

10% RAP20% RAP30% RAP

Flexural Stiffness vs. Cycles, long-term aged mixtures: PG 76-22

0

100000

200000

300000

400000

500000

600000

700000

800000

100 1000 10000 100000 1000000Cycles, No

Stiff

ness

, psi

0% RAP10% RAP20% RAP30% RAP

Figure 29. Flexural Stiffness vs. Loading Cycles, Limestone Mixtures.

57

Page 70: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Fatigue life for PG 76-22 mixtures had noticeably different trends than PG 64-22

mixtures. The inclusion of 10 and 20 percent reduced the fatigue life for un-aged PG 76-

22 mixtures when compared to mixtures without RAP. Long-term aged PG 76-22

mixtures increased in fatigue life with the inclusion of 10 percent RAP, decreased with

20 percent RAP and significantly increased with the inclusion of 30 percent RAP.

Flexural stiffness generally increased with the inclusion of RAP for long-term aged

mixtures. However, un-aged PG 76-22 control mixture resulted in higher flexural

stiffness than mixtures with 10 and 20 percent RAP.

As expected mixtures with PG 76-22 asphalt had a longer fatigue life when

compared to PG 64-22 mixtures. However, PG 76-22 mixtures were found to have

similar trends to the other laboratory fatigue tests.

Table 14 and Figure 30, represents the results from the flexural beam fatigue test

for gravel mixtures. Flexural beam fatigue testing was evaluated on both types of binder

with the inclusion of RAP. To evaluate the affects of moisture damage, half the gravel

beams were subject to one freeze thaw cycle in addition to long-term aging in a forced

draft oven.

Long-term aged PG 76-22 mixtures with the inclusion of 10 and 20 percent RAP

resulted in no significant difference when compared to the control mixture. The addition

of 30 percent RAP significantly stiffened the mixture resulting in a higher fatigue life.

58

Page 71: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Table 14. Beam Fatigue Test Results, Gravel Mixtures

PG 64-22

% RAP LTA Coef. Of Var. (%) LT-A FT Coef. Of

Var. (%) LTA Coef. Of Var. (%) LT-A FT Coef. Of

Var. (%) LTA Coef. Of Var. (%) LT-A FT Coef. Of

Var. (%)Control 17826 39 4990 23 603333 10.1 536667 8 4009 41 1080 25.0

10 15673 53 15029 19 600000 8.6 533333 14.1 3323 57.2 3274 14.020 46933 36 11491 30 670000 15.1 573333 9.6 10689 43.6 2176 30.730 52151 59 35787 10 680000 12.8 650000 8.6 9583 53.6 6954 16.5

PG 76-22

% RAP LTA Coef. Of Var. (%) LT-A FT Coef. Of

Var. (%) LTA Coef. Of Var. (%) LT-A FT Coef. Of

Var. (%) LTA Coef. Of Var. (%) LT-A FT Coef. Of

Var. (%)Control 91950 44.0 65963 1.0 613333 11.0 520000 8 19307 58 12787 9.0

10 80423 24.0 70104 53.0 630000 5.7 596666 10.9 17891 24.7 15010 56.620 87376 21.0 65576 92.0 633333 10.7 543333 12.2 15372 35.5 13464 97.330 250764 27.7 55712 74.0 695000 13.2 613333 11.1 39659 10.8 11426 82.2

LTA - long-term agedLT-A FT - long-term aged freeze thaw

Cycles to failure Initial Stiffness, psi. Cumm. Dissipated Energy, psi.

Cycles to failure Initial Stiffness, psi. Cumm. Dissipated Energy, psi.

Number of Cycles to Failure: PG 64-22

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

long-term aged long-term aged FT

Cyc

les,

Nf 0% RAP

10% RAP20% RAP30% RAP

Number of Cycles to Failure: PG 76-22

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

180,000

long-term aged long-term aged FT

Cyc

les,

Nf 0% RAP

10% RAP20% RAP30% RAP

Cumulative Dissipated Energy: PG 64-22

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

20,000

long-term aged long-term aged FT

Dis

sipa

ted

Ener

gy (i

n-lb

/in3)

0% RAP10% RAP20% RAP30% RAP

Cumulative Dissipated Energy: PG 76-22

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

50,000

long-term aged long-term aged FT

Dis

sipa

ted

Ener

gy (i

n-lb

/in3)

0% RAP10% RAP20% RAP30% RAP

Figure 30. Beam Fatigue Summary, Gravel Mixtures.

59

Page 72: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

No significant difference was notable for PG 76-22 mixtures subject to one freeze

thaw cycle with the inclusion of RAP. As expected, mixtures with PG 76-22 had higher

fatigue life when compared to PG 64-22 mixtures.

Figure 31 represents stiffness vs. loading cycles for both binder types. The

inclusion of RAP increased the mixtures stiffness for both long-term aged and long-term

aged freeze thaw mixtures. However, after one freeze thaw cycle, the mixtures studied

resulted in lower stiffness and fatigue life when compared to long-term aged mixtures.

Flexural Stiffness vs. Load Cycles, Long-term Aged: PG 64-22

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

100 1000 10000 100000

Cycles, No

Stif

fnes

s, p

si.

0% RAP10% RAP20% RAP30% RAP

Flexural Stiffness vs. Load Cycles, Long-term aged: PG 76-22

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

100 1000 10000 100000 1000000Cycles, No

Stif

fnes

s, p

si.

0% RAP10% RAP20% RAP30% RAP

Flexural Stiffness vs. Load Cycles, Long-term Aged FT: PG 64-22

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

100 1000 10000 100000

Cycles, No

Stiff

ness

, psi

.

0% RAP10% RAP20% RAP30% RAP

Flexural Stiffness vs. Load Cycles, Long-term aged FT: PG 76-22

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

100 1000 10000 100000 1000000Cycles, No

Stif

fnes

s, p

si.

0% RAP10% RAP20% RAP30% RAP

Figure 31. Flexural Stiffness vs. Loading Cycles, Gravel Mixtures.

60

Page 73: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

3.4 Asphalt Binder Testing Results

Table 15 presents the DSR results for Limestone PG 76-22 mixtures at high and

intermediate temperatures. Laboratory fatigue testing discussed in the previous sections

indicated that increasing the percentage of RAP in the mixture would notably increase the

mixtures stiffness and resistance to fatigue cracking for the mixtures studied.

To further understand the rheological properties of mixtures containing 10, 20 and

30 percent RAP, superpave binder testing was completed on the recovered binders. As

expected, increasing the percentage of RAP would notably increase G*/sin(δ) at lower

temperatures and higher percentages of RAP, Figure 32. The superpave binder

specifications requires that original binder and RTFO aged binder satisfy a rutting factor,

G*/sin(δ), to be a minimum of 1.00 kPa and 2.20 kPa respectively. For each mixture,

original and RTFO aged binders met the minimum criteria for rutting resistance. This

indicates that increasing the percentage of RAP will increase the mixtures resistance to

rutting under repeated loading.

Table 15. DSR Test Results

61

Page 74: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

DSR Original Binder: PG 76-22 Mixtures

0

1

2

3

4

5

6

7

8

0 5 10 15 20 25 30 35 40% RAP

G*/

sin(δ)

, kPa

T = 76C

T = 82C

T = 88C

DSR RTFO Binder: PG 76-22 Mixtures

0

2

4

6

8

10

12

14

16

18

20

0 5 10 15 20 25 30 35 40% RAP

G*/

sin(δ)

, kP

a

T = 88C

T = 82C

T = 76C

DSR RTFO + PAV Binder: PG 76-22 Mixtures

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 5 10 15 20 25 30 35 40

% RAP

G*s

in(δ

), kP

a

T = 25C

Figure 32. DSR Test Results, Limestone PG 76-22.

Increasing the percentage of RAP will generally increase the mixtures stiffness.

Superpave binder specifications require that the fatigue factor, G*sin(δ), be a maximum

of 5000 kPa on RTFO and PAV aged binders. G*sin(δ) increased with the inclusion of

RAP. The smaller the fatigue factor, G*sin(δ), the better the mixture resists to fatigue

cracking. For each mixture tested between 10 and 30 percent RAP, G*sin(δ) did not

exceed 5000 kPa.

Figure 33 represents the results from BBR testing at -12°C. BBR testing

indicated that increasing the percentage of RAP will increase the creep stiffness and

62

Page 75: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Creep Stiffness Trend: PG 76-22 Mixtures

0

50

100

150

200

250

300

350

400

450

500

0 5 10 15 20 25 30 35 40% RAP

Cre

ep S

tiffn

ess

(MPa

)

T=-12C

Creep Rate Trend: PG 76-22 Mixtures

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 10 20 30 40% RAP

Cre

ep R

ate T=-12C

Figure 33. BBR Test Results, Limestone PG 76-22.

decrease the logarithmic creep rate. Superpave binder specifications specify that the

binder stiffness be less than 300 MPa and a creep rate “m-value” be greater than 0.300.

For the mixture studied at -12°C, the inclusion of 10, 20 and 30 percent RAP met the

specification for thermal cracking, however; the creep rate did not meet the specification

for m-value. This indicates that increasing the percentage of RAP will lower the low

temperature grade under superpave PG binder testing.

For the three different mixtures used for binder testing, the inclusion of RAP

typically increased the rheological properties of the blended asphalt binders. This

indicates that the inclusion of RAP significantly increases the mixtures stiffness and its

resistance to rutting and fatigue cracking. However, at low temperatures the potential of

thermal cracking is more likely with higher percentages of RAP. Further binder testing is

recommended to evaluate the effects on the rheological properties of mixtures containing

RAP.

63

Page 76: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

3.5 Statistical Analysis of Laboratory Test

The analysis of variance (ANOVA) was used to determine the variability for each

mixture with the inclusion of RAP and comparing each to a control mix (0 percent RAP)

to understand the relative importance of each mixture containing RAP. A simple

ANOVA analysis was performed at a 95% confidence interval for IDT, SCB IDT and

Beam fatigue test. Laboratory test results were used to compare the means of mixtures

containing 0, 10, 20 and 30 percent RAP. The population means are represented as

µ1=0% RAP, µ2=10% RAP, µ3=20% RAP and µ4=30% RAP. The hypothesis tested was:

Ho: µ1 = µ2 = µ3 = µ4

H1: at least one differs

For each mixture tested the null hypothesis indicates that the inclusion of RAP

will not significantly affect the fatigue characteristics when compared to the control

mixture (0% RAP). The hypothesis is rejected if the inclusion of RAP significantly

increases the fatigue resistance of any one mixture containing RAP.

The analysis compares the means for each mixture and compares to the control

mixture for significance with p-value = 0.05. Each mixture is placed within a column of

homogenous subsets which represents no significant difference for the mixture within the

subset and significant difference for difference subsets.

64

Page 77: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Figure 34 represents an ANOVA analysis for PG 64-22 and PG 76-22 limestone

IDT test results. For both un-aged and long-term aged PG 64-22 mixtures the inclusion

of RAP resulted in no significant difference between 0 and 10 percent RAP. However,

the inclusion of 20 and 30 percent RAP significantly changed the indirect tensile strength

(ITS) properties for limestone PG 64-22 mixtures.

For both un-aged and long-term aged PG 76-22 mixtures, the inclusion of 20

percent RAP significantly increases the ITS properties. There is no significant difference

between 0 and 10 percent RAP.

Figure 35 represents an ANOVA analysis for PG 64-22 and PG 76-22 gravel IDT

test. For long-term aged PG 64-22 mixtures the inclusion of 20 percent RAP

significantly increased the ITS properties for gravel mixtures. Long-term aged freeze

thaw mixtures increased linearly up to 30 percent RAP.

For long-term aged PG 76-22 mixtures, the inclusion of 10 percent RAP

significantly increased ITS properties when compared to the control mixtures. Long-term

aged freeze thaw PG 76-22 mixtures significantly increased in ITS properties with the

inclusion of 20 percent RAP when compared to the control mixture.

Figure 36 represents the ANOVA analysis for SCB testing. For un-aged PG 64

mixtures, the inclusion of 20 percent RAP significantly increased the fatigue resistance

65

Page 78: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Un-aged PG 64-22

Tukey HSDa

3 198.003 201.33 201.333 225.333 260.33

.971 .058 1.000

% RAP Limestone0102030Sig.

N 1 2 3Subset for alpha = .05

Means for groups in homogeneous subsets are displayed.Uses Harmonic Mean Sample Size = 3.000.a.

Unaged PG 76-22

Tukey HSDa

3 234.413 248.573 278.293 298.60

.307 .102

% RAP Limestone0102030Sig.

N 1 2Subset for alpha = .05

Means for groups in homogeneous subsets are displayed.Uses Harmonic Mean Sample Size = 3.000.a.

Long-term Aged PG 64-22

Tukey HSD a

3 216.333 242.73 242.733 260.833 303.87

.052 .209 1.000

% RAP Limestone0102030Sig.

N 1 2 3Subset for alpha = .05

Means for groups in homogeneous subsets are displayed.Uses Harmonic Mean Sample Size = 3.000.a.

Long-term Aged PG 76-22

Tukey HSDa

3 269.693 283.723 317.603 332.20

.231 .206

% RAP Limestone0102030Sig.

N 1 2Subset for alpha = .05

Means for groups in homogeneous subsets are displayed.Uses Harmonic Mean Sample Size = 3.000.a.

Figure 34. ANOVA Analysis, Limestone IDT Test.

Long-term Aged PG 64-22

Tukey HSDa

3 206.003 225.973 262.633 291.43

.323 .108

% RAP Gravel0102030Sig.

N 1 2Subset for a lpha = .05

Means for groups in homogeneous subsets are displayed.Uses Harmonic Mean Sample Size = 3.000.a.

Long-term Aged PG 76-22

Tukey HSDa

3 232.913 259.873 272.403 306.88

1.000 .485 1.000

% RAP Gravel0102030Sig.

N 1 2 3Subset for alpha = .05

Means for groups in homogeneous subsets are displayed.Uses Harmonic Mean Sample Size = 3.000.a.

Long-term Aged FT PG 64-22

Tukey HSDa

3 200.803 222.33 222.333 251.83 251.833 272.40

.444 .216 .479

% RAP Gravel0102030Sig.

N 1 2 3Subset for alpha = .05

Means for groups in homogeneous subsets are displayed.Uses Harmonic Mean Sample Size = 3.000.a.

Long-term Aged FT PG 76-22

Tukey HSDa

3 229.083 249.79 249.793 272.09 272.093 294.65

.127 .096 .092

% RAP Gravel0102030Sig.

N 1 2 3Subset for alpha = .05

Means for groups in homogeneous subsets are displayed.Uses Harmonic Mean Sample Size = 3.000.a.

Figure 35. ANOVA Analysis, Gravel IDT Test.

66

Page 79: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Un-aged PG 64-22

Tukey HSDa

3 2125.333 2416.00 2416.003 2741.00 2741.003 2991.67

.187 .130 .282

% RAP Limestone0102030Sig.

N 1 2 3Subset for alpha = .05

Means for groups in homogeneous subsets are displayed.Uses Harmonic Mean Sample Size = 3.000.a.

Unaged PG 76-22

Tukey HSDa

2 2265.502 2622.502 2742.002 3228.50

1.000 .487 1.000

% RAP Limestone0102030Sig.

N 1 2 3Subset for alpha = .05

Means for groups in homogeneous subsets are displayed.Uses Harmonic Mean Sample Size = 2.000.a.

Long-term Aged PG 64-22

Tukey HSDa

3 2624.993 2740.963 2860.673 3434.67

.574 1.000

% RAP Limestone0102030Sig.

N 1 2Subset for alpha = .05

Means for groups in homogeneous subsets are displayed.Uses Harmonic Mean Sample Size = 3.000.a.

Long-term Aged PG 76-22

Tukey HSDa

2 2664.002 2934.502 3018.502 3639.00

.181 1.000

% RAP Limestone0201030Sig.

N 1 2Subset for alpha = .05

Means for groups in homogeneous subsets are displayed.Uses Harmonic Mean Sample Size = 2.000.a.

Figure 36. ANOVA Analysis, Limestone SCB IDT Test.

for SCB test. For long-term aged PG 64-22 mixtures, the inclusion of 30 percent RAP

significantly increased the SCB properties when compared to the control mixture.

The inclusion of 10 percent RAP significantly increased the SCB fatigue

resistance for un-aged PG 76-22 mixtures. However, for long-term aged PG 76 mixtures,

the inclusion of 30 percent RAP significantly increased the SCB fatigue resistance when

compared to the control mixture.

Figure 37 represents an ANOVA analysis for limestone beam fatigue testing. The

ANOVA analysis compares cycles to failure for each fatigue test to the fatigue life of the

control mixture. For un-aged PG 64-22 mixtures, the inclusion of 30 percent RAP

67

Page 80: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Un-aged PG 64-22

Tukey HSDa

3 13840.003 15298.673 25264.333 85641.33

.715 1.000

% RAP Limestone1002030Sig.

N 1 2Subset for alpha = .05

Means for groups in homogeneous subsets are displayed.Uses Harmonic Mean Sample Size = 3.000.a.

Long-term Aged PG 64-22

Tukey HSDa

3 13057.673 48735.333 51185.003 74232.67

.103

% RAP Limestone0201030Sig.

N 1

Subsetfor alpha

= .05

Means for groups in homogeneous subsets are displayed.Uses Harmonic Mean Sample Size = 3.000.a.

Unaged PG 76-22

Tukey HSDa,b

2 28286.003 84224.673 145680.333 890422.00

.433

% RAP Limestone2010300Sig.

N 1

Subsetfor alpha

= .05

Means for groups in homogeneous subsets are displayed.Uses Harmonic Mean Sample Size = 2.667.a.

The group sizes are unequal. The harmonic meanof the group sizes is used. Type I error levels arenot guaranteed.

b.

Long-term Aged PG 76-22

Tukey HSDa,b

2 53029.002 131190.003 199974.673 242768.00

.136

% RAP Limestone2001030Sig.

N 1

Subsetfor alpha

= .05

Means for groups in homogeneous subsets are displayed.Uses Harmonic Mean Sample Size = 2.400.a.

The group sizes are unequal. The harmonic meanof the group sizes is used. Type I error levels arenot guaranteed.

b.

Figure 37. ANOVA Analysis, Limestone Beam Fatigue Test.

significantly increased the fatigue life when compared to the control mixture. No

significant difference is notable for long-term aged PG 64-22 mixtures. No significant

difference was noticed for PG 76-22 mixtures with the inclusion of RAP when compared

to the control mixture.

Figure 38 presents an ANOVA analysis for gravel beam fatigue testing. No

significant difference was noticeable for long-term aged PG 64-22 mixtures. For long-

term aged freeze thaw mixtures, the inclusion of 20 percent RAP significantly increased

the fatigue life for PG 64-22 mixtures when compared to the control mixture.

68

Page 81: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Long-term Aged PG 64-22

Tukey HSDa

3 15672.673 17826.003 46932.673 52151.00

.148

% RAP Gravel1002030Sig.

N 1

Subsetfor alpha

= .05

Means for groups in homogeneous subsets are displayed.Uses Harmonic Mean Sample Size = 3.000.a.

Long-term Aged PG 76-22

Tukey HSDa,b

3 80422.673 87375.673 91950.002 250764.50

.982 1.000

% RAP Gravel1020030Sig.

N 1 2Subset for alpha = .05

Means for groups in homogeneous subsets are displayed.Uses Harmonic Mean Sample Size = 2.667.a.

The group sizes are unequal. The harmonic meanof the group sizes is used. Type I error levels arenot guaranteed.

b.

Long-term Aged FT PG 64-22

Tukey HSDa

3 4990.003 11491.00 11491.003 15029.003 35787.33

.098 .488 1.000

% RAP Gravel0201030Sig.

N 1 2 3Subset for alpha = .05

Means for groups in homogeneous subsets are displayed.Uses Harmonic Mean Sample Size = 3.000.a.

Long-term Aged FT PG 76-22

Tukey HSDa

3 55777.333 65576.333 65922.673 70104.00

.972

% RAP Gravel3020010Sig.

N 1

Subsetfor alpha

= .05

Means for groups in homogeneous subsets are displayed.Uses Harmonic Mean Sample Size = 3.000.a.

Figure 38. ANOVA Analysis, Gravel Beam Fatigue Test.

The inclusion of 30 percent RAP significantly increased the fatigue life for long-

term aged PG 76-22 mixtures. No significant difference was notable for long-term aged

freeze thaw PG 76-22 mixtures.

Statistical analysis indicates that the inclusion of RAP does influence the fatigue

characteristics for the mixtures studied. For each test considered for statistical analysis,

increasing the percentage of RAP will ultimately increase the mixtures resistance to

fatigue cracking. Based on the initial hypothesis that the means of each mixture were

equal:

Ho: µ1 = µ2 = µ3 = µ4

69

Page 82: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

H1: at least one differs

After evaluating the laboratory test through analysis of variance at the 95%

confidence interval, the null hypothesis is rejected and the alternate is accepted and that

the inclusion of RAP will increase the fatigue life of the mixtures studied.

3.6 Test Variability

Based on the results from the laboratory fatigue test completed on the mixtures

containing RAP, the repeatability varied for each test. Two methods of compaction were

used during sample preparation for each test. All cylindrical samples were prepared

using the Superpave Gyratory Compactor and the rectangular specimens were compacted

using the Pavement Technology Vibratory Compactor.

Test completed indicated that the variability within each test method was low for

specimens compacted using the SGC and the variability increased for rectangular

specimens. Specimens prepared using the SGC were controlled by compacting to a

specified height and density that was easily repeated for each mixture and test. However,

for flexural beam fatigue testing the Vibratory Compactor was modified to compact

larger specimens which made it more difficult to be consistent with the proper density.

Data evaluated from each test indicated that the repeatability for cylindrical

specimens resulted in low coefficient of variations compared to the variations obtained

during flexural beam testing. IDT testing and SCB testing were easily repeated for each

70

Page 83: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

test conducted. This indicates that the specimen quality was more repeatable for

cylindrical specimens resulting in better test results. Data from the flexural beam fatigue

test had more variability than any of the previous fatigue test completed. Test results

were more scattered during beam testing due to the difficulty in specimen preparation and

testing. A more precise method of compaction would be recommended for future beam

testing to reduce the variability. Table 16 illustrates a test comparison of the completed

test used to evaluate the fatigue characteristics of HMA mixtures containing RAP.

71

Page 84: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Table 16. Test Comparison

Type of Fatigue Test Geometry Load Type Load Frequency Repeatability Advantages Disadvantages COV

20-70%

0-10%

0-10%

5-30%

0-25%

Stiffness is easily obtained

Sample preperation is difficult, data is very scattered

2 in./min.

2 in./min.

5 Hz

.02 in./min.

600-700 micro-strain

predict fatigue life at different stress levels Creep occurs

specimen alignment, notches are difficult to cut

6" Semi-Circular Notched Static easy

evaluate the mixtures stiffness through

fracture mechanics

test is easily performed, obtain

tensile characteristics

material punches around loading fixture

6" Semi-Circular Static easytest is easily

performed, obtain tensile characteristics

specimen alignment

Flexural Beam Fatigue Test

4" Cylindrical Static easy

6" Semi-Circular Stress-

Controlled Dynamic

moderately easy

15" x 2.5" x 2" Rectangular

Strain-Controlled Dynamic

Difficult

Indirect Tensile Test (IDT)

SCB IDT

SCB Fatigue

SCB Notched IDT

72

Page 85: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

4.0 Conclusions

A laboratory study has been conducted to evaluate the fatigue characteristics of

typical Tennessee surface mixtures containing RAP. Mixtures consisting of either

limestone or gravel meeting the TDOT “D” mix specification were considered for this

study. Fatigue crack characteristics were evaluated for mixtures containing 0, 10, 20 and

30 percent RAP and compared to the control mixture containing 0 percent RAP.

Laboratory testing completed on both un-aged and laboratory long-term aged mixtures

for both PG 64-22 and PG 76-22 mixtures containing RAP were presented and discussed.

The following conclusions can be summarized for the test conducted.

Laboratory mixture long-term aging and the inclusion of RAP influenced the

fatigue characteristics for the mixtures studied. Laboratory long-term aging had more

noticeable effects for PG 64-22 mixtures than PG 76-22 mixtures. This trend was typical

for each fatigue test completed.

The inclusion of RAP and laboratory long-term aging increased the ITS properties

for the limestone mixtures studied. The inclusion of RAP and long-term aging typically

increased the mixtures stiffness and resistance to fatigue cracking. However, as the

mixture increased in stiffness and tensile strength, the mixtures became more brittle

resulting in a loss in diametric strain and post failure tenacity with the inclusion of RAP

and laboratory long-term aging. Gravel mixtures subject to moisture induced damage

resulted in lower ITS properties than long-term aged gravel mixtures.

73

Page 86: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

For both limestone and gravel IDT testing, the inclusion of 30 percent RAP

significantly changed the mixtures ITS properties. As expected, mixtures with PG 76-22

had higher strengths than PG 64-22 mixtures.

Laboratory long-term aging and the inclusion of RAP changed the mixtures

response under cyclic loading. The inclusion of RAP generally increased the mixtures

composite modulus. However, the inclusion of RAP decreased the phase angle between

peak load and peak deflection. This indicates that long-term aging and the inclusion of

RAP significantly stiffens the mixture into a more brittle material.

Laboratory long-term aging and the inclusion of RAP increased the SCB tensile

strength. The inclusion of RAP increased the mixtures stiffness and decreased the post

failure characteristics. Similar to IDT testing, SCB tensile strength testing followed the

same trend with the inclusion of RAP and long-term aging.

The inclusion of RAP and laboratory long-term aging increased the fatigue life in

the SCB fatigue test at stress levels above 20 percent of SCB tensile strength. However,

at lower stress levels, the inclusion of 30 percent RAP and long-term aging tended to

reduce the fatigue life of mixtures containing 30 percent RAP. This indicates that at

lower stress levels, similar to highway conditions, higher percentages of RAP would

potentially lower the fatigue life of mixtures containing RAP.

74

Page 87: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Laboratory long-term aging and the inclusion of RAP increased the mixtures

resistance to fracture failure in the SCB notched fracture test. Fracture energy and J-

integral values increased with the inclusion of RAP and long-term aging. The inclusion

of 30 percent RAP significantly increased the fracture resistance when compared to

control mixtures.

Beam fatigue testing indicated that the inclusion of RAP and laboratory long-term

aging generally increased the fatigue life. In addition to fatigue life, the flexural stiffness

increased with the inclusion of RAP and long-term aging. For limestone mixtures, an

increase in fatigue life was significant for PG 64-22 asphalt than the mixtures with PG

76-22 asphalt. Gravel mixtures subject to one freeze thaw cycle had a lower fatigue life

than long-term aged gravel mixtures. Mixtures with PG 76-22 asphalt performed better

than PG 64-22 mixtures. The inclusion of 30 percent RAP significantly increased the

fatigue properties for both aggregate mixtures used in the beam fatigue test.

Superpave binder testing completed on the extracted binder indicated that

laboratory long-term aging and the inclusion of RAP increased the rheological properties

of the blended mixture. DSR test indicated that the inclusion of up to 30 percent RAP

would satisfy both G*/sin(δ) and G*sin(δ), the rutting and fatigue parameters for

performance graded asphalt binders. Both rutting and fatigue generally will not be a

problem for the mixtures studied up to 30 percent RAP. However, BBR testing indicated

that the low-temperature grade could possible drop by one performance grade for the

75

Page 88: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

mixtures studied. Additional binder test are recommended to properly grade the blended

binders with the inclusion of RAP.

The results presented in this paper were completed on laboratory prepared

samples and the effects of fatigue life and mixture performance increased with the

inclusion of RAP for each test completed. Based on the results from each fatigue test, a

maximum of 20 percent screened RAP would be recommended for use in Tennessee

surface mixtures. Further field testing is recommended to validate the fatigue crack

resistance of field compacted to mixtures to laboratory compacted mixtures.

76

Page 89: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

References

77

Page 90: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

“AASHTO T 164-01 Quantitative Extraction of Bitumen from Bituminous Paving Mixtures,” Standard Specifications for Transportation Materials and Methods of Sampling and Testing, Part II, American Association of State Highway and Transportation Officials, Washington D.C., 2003.

“AASHTO T 166-00 Bulk Specific Gravity of Compacted Bituminous Mixtures Using

Saturated Surface-Dry Specimens,” Standard Specifications for Transportation Materials and Methods of Sampling and Testing, Part II, American Association of State Highway and Transportation Officials, Washington D.C., 2003.

“AASHTO T 209-99 Theoretical Maximum Specific Gravity and Density of Bituminous

Paving Mixtures,” Standard Specifications for Transportation Materials and Methods of Sampling and Testing, Part II, American Association of State Highway and Transportation Officials, Washington D.C., 2003.

“AASHTO T 240-03 Effect of Heat and Air on a Moving Film of Asphalt (Rolling Thin-

Film Oven Test),” Standard Specifications for Transportation Materials and Methods of Sampling and Testing, Part II, American Association of State Highway and Transportation Officials, Washington D.C., 2003.

“AASHTO T 269-97 (1998) Percent Air Voids in Compacted Dense and Open

Bituminous Paving Mixtures,” Standard Specifications for Transportation Materials and Methods of Sampling and Testing, Part II, American Association of State Highway and Transportation Officials, Washington D.C., 2003.

“AASHTO T 283-03 Resistance of Compacted Asphalt Mixtures to Moisture-Induced

Damage,” Standard Specifications for Transportation Materials and Methods of Sampling and Testing, Part II, American Association of State Highway and Transportation Officials, Washington D.C., 2003.

“AASHTO T 308-01 Determining the Asphalt Binder Content of Hot-Mix Asphalt

(HMA) by the Ignition Method,” Standard Specifications for Transportation Materials and Methods of Sampling and Testing, Part II, American Association of State Highway and Transportation Officials, Washington D.C., 2003.

“AASHTO T 312-03 Preparing and Determining the Density of the Hot-Mix Asphalt

(HMA) Specimens by Means of the Superpave Gyratory Compactor,” Standard Specifications for Transportation Materials and Methods of Sampling and Testing, Part II, American Association of State Highway and Transportation Officials, Washington D.C., 2003.

78

Page 91: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

“AASHTO T 313-03 Determining the Flexural Creep Stiffness of Asphalt Binder Using the Bending Beam Rheometer (BBR),” Standard Specifications for Transportation Materials and Methods of Sampling and Testing, Part II, American Association of State Highway and Transportation Officials, Washington D.C., 2003.

“AASHTO T 315-02 Determining the Rheological Properties of Asphalt Binder Using a

Dynamic Shear Rheometer (DSR),” Standard Specifications for Transportation Materials and Methods of Sampling and Testing, Part II, American Association of State Highway and Transportation Officials, Washington D.C., 2003.

“AASHTO T 321-03 Determining the Fatigue Life of Compacted Hot-Mix Asphalt

(HMA) Subject to Repeated Flexural Bending,” Standard Specifications for Transportation Materials and Methods of Sampling and Testing, Part II, American Association of State Highway and Transportation Officials, Washington D.C., 2003.

Banasiak, D., “States Plane off Excess in RAP Specs.” Roads and Bridges, Vol. 34, No.

10, October 1996. Bell, C.A., “Summary Report on Aging of Asphalt-Aggregate Systems,” Strategic

Highway Research Program, SHRP A-305, November 1989. Benedetto, H. D., Soltani, A.A., Chaverot, P., “Fatigue Damage for Bituminous Mixtures:

A Pertinent Approach” Journal of the Association of Asphalt Paving Technologist, Vol. 65, 1996, pp 142-152.

Brock, J. D., Milling and Recycling, Technical Paper T-127, ASTEC, Chattanooga, TN. Bronstein, M., J. B. Sousa. Computer Software ATS-testing system. SHRP Equipment

Inc., Walnut Creek, CA. 1987. Choubane, B., Sholar, G.A., Musselman, J.A., Page, G.C., “Long Term Performance

Evaluation of Asphalt-Rubber Surface Mixes.” State Materials Office. Rep. No. FL/DOT/SMO/98-431, November 1998.

Daniel, J.S., Lachance, A., “Rheological Properties of Asphalt Mixtures Containing

Recycled Asphalt Pavement (RAP),” Journal of the Transportation Research Board (TRB), July 2003.

Finn, F. N., “Factors Involved in the Design of Asphaltic Pavement Surfaces,” HRB,

NCHRP Report 39, 1967.

79

Page 92: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Huang, B., Egan, B., Kingery, W.R., Zhang, Z., and Zuo, G., “Laboratory Study of Fatigue Characteristics of HMA Surface Mixtures Containing RAP,” Journal of the Transportation Research Board (TRB). January 2004.

Kandhal, P.S., “Recycling of Asphalt Pavements – An Overview” Journal of the

Association of Asphalt Paving Technologist, Vol. 66, 1997, pp. 686-696. Kandhal, P.S., Rao, S. S., “Performance of Recycled Hot Mix Asphalt Mixtures,” NCAT

Report No. 95-1, May 1995. Kennedy, T. W. and Hudson, W. R., “Application of the Indirect Tensile Test to Stabilize

Materials,” Highway Research Record 235, Highway Research Board, Washington, D. C., 1968

Kennedy, T.W. and Anagnos, J.N., Procudures for the Static and Repeated Load Indirect

Tensile Tests. Research Record 183-14, Center for Transportation Research, University of Texas at Austin.

Kennedy, T.W., “Characterization of Asphalt Pavement Materials Using the Indirect

Tensile Test,” Journal of the Association of Asphalt Paving Technologist, Vol. 56, 1977.

Kim, Y. R., and Wen, W., “Fracture Energy from Indirect Tension Testing,” Journal of

the Association of Asphalt Paving Technologist, Vol. 71, 2002. Kim, Y.R., Kim, N., and Khosla, N.P., 1992, "Effects of Aggregate Type and Gradation

on Fatigue and Permanent Deformation of Asphalt Concrete," Effects of Aggregate and Mineral Fillers on Asphalt Mixture Performance, ASTM STP 1147, Richard Meininger, Editor, American Society for Testing and Materials, Philadelphia, pp. 310-328.

LADOTD, Louisiana Standard Specifications for Roads and Bridges, Louisiana

Department of Transportation and Development (LADOTD), Baton Rouge, LA, 2000, p. 220.

Majidzadeh, K., Kauffmann, E. M., and Saraf, C. L., “Application of Fracture mechanics

in Analysis of Pavement Fatigue,” Proceedings, Association of Asphalt Paving Technologist, 1971.

Molenaar, A., “Fracture Energy from Semi Circular Bending Test,” Asphalt Paving

Technology, Journal of the Association of Asphalt Paving Technologists, Vol. 71, 2002, (In Press.)

Monismith, C. L., and Salam, Y. M., “Distress Characteristics of Asphalt Concrete

Mixes,” Proceedings, Association of Asphalt Paving Technologist, 1973.

80

Page 93: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Myers, L.A., Roque, R., “Evaluation of Top-Down Cracking in Thick Asphalt Pavements

and the Implications for Pavement Design.” Transportation Research Circular, Issue 503 pp 79-87, 2001.

Pais, J., Pereira, P. and Picado-Santos L., 2002, "Variability of Laboratory Fatigue Life of Bituminous Mixtures Using Four Point Bending Test Results," International Journal of Pavement, Vol. 1, Number 2, pp. 48 - 58.

Roberts, F.L., P.S. Kandhal, E.R. Brown, D.Y. Lee, and T.W. Kennedy, “Hot Mix

Asphalt Materials, Mixture Design, and Construction,” 2nd Edition, NAPA Education Foundation, Lanham, Maryland, 1991, p. 439.

Sobhan, K., Mashnad, M., “Tensile Strength and Toughness of Soil-Cement-Fly-Ash

Composite Reinforced with Recycled High-Density Polyethylene Strips.” Journal of Materials in Civil Engineering, March/April 2002.

Salam, Y. M., Characteristics of Deformation and Fracture of Asphalt Concrete, Ph.D.

Dissertation, University of California, Berkeley, 1971. SHRP-A-404. “Fatigue Response of Asphalt-Aggregate Mixes”. Institute of

Transportation Studies, University of California, Berkeley, 1994 Sulaiman, S. J., and Stock, A. F., “The Use of Fracture Mechanics for the Evaluation of

Asphalt Mixes,” Journal of the Association of Asphalt Paving Technologist, Vol. 64, 1995.

Tangella, R., J. Crauss, J. A. Deacon, and C. L. Monismith (1990). Summary report of

fatigue response of asphalt mixtures. Technical Memorandum No. TM-UCB-A-003A-89-3m, prepared for SHRP Project A-003A. Institute of Transportation Studies, University of California, Berkeley.

Tangella, R., J. Crauss, J. A. Deacon, and C. L. Monismith. Summary report of fatigue

response of asphalt mixtures. Technical Memorandum No. TM-UCB-A-003A-89-3m, prepared for SHRP Project A-003A. Institute of Transportation Studies, University of California, Berkeley. February 1990.

Taylor, N.H., “Life Expectancy of Recycled Asphalt Paving,” Recycling of Bituminous

Pavements, Editor, L.E. Wood, ASTM STP 662, American Society for Testing Materials, Philadelphia, PA, 1977, pp. 3 – 15.

TDOT, Standard Specifications for Road and Bridge Construction, the Tennessee

Department of Transportation, Nashville, TN, March, 1995, p. 167.

81

Page 94: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Tsai, B. W., and A.A. Tayebali. “Computer software for fatigue test data analysis for SHRP Project A-003A”. Prepared for SHRP Project A-003A. Asphalt Research Program, Institute of Transportation Studies, University of California, Berkeley, January 1992.

82

Page 95: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Appendices

83

Page 96: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Appendix A: Job Mix Formulas

84

Page 97: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

01/10/03

Date of Letting 01/10/03

Type Mix Item

5.5 5.0 Total

AC Contribution: Virgin AC 5.00 RAP AC Percent Virgin AC:

2.457#VALUE!

ADT Beginning: Ending:

Sieve % Req. DesignSize 50.0 15.0 25.0 10.0 100 Range2" 100 100 100 100 100 100

1.5" 100 100 100 100 100 1001.25" 100

1" 100 100 100 100 100 1003/4" 100 100 100 100 100 1005/8" 100 100 100 100 100 1001/2" 97 100 100 100 99 95-1003/8" 70 100 100 100 85 80-93No.4 21 92 98 99 59 54-76No.8 7 61 93 82 44 35-57

No.16No.30 4 29 63 28 25 17-29No.50 3 21 13 17 10 10-18No.100 2.0 20.0 2.0 9.0 5.4 3-10No.200 1.8 16.0 1.0 5.0 4.1 0-6.5

100.0

2.650

Theo. Gravity: T.S.R.:

Dust to Asphalt Ratio:

Percent AC in RAP:5.000

Optimum AC Content:

PG 64-22

07/16/2002

Gravity of RAP Agg:

DateRegionCountyContract No.

153.3

Asphalt Sp. Gravity:

Lbs/Ft3:

% Glassy Particles on CA:Eff. Gravity of Agg:

N/A

Project Ref. No.Project No.

0% RAP Limestone PG 64-22

Hot-mix Producer

Contractor

Percent Used

ACS-HM

State Route No.

Serial No.: Design No.:

Material

Roadway Surface

Size or Grade Producer and LocationD Rock(Limestone) Vulcan Materials Co.

Vulcan Materials Co.IngramVulcan Materials Co.

RAPAsphalt Cement

Coarse AggregateScreenings

Natural SandManufactured Sand

RAP

47.50014.25023.7509.500

N/A

Dosage:100.000

0.81

Compaction Temp Range(°F):

1.03

Mixing Temp Range(°F):

L.O.I.:Log Miles

Requested:

RAP

Approved:

Contractor Personnel and Lab Tech Cert No.

D Rock(Limesto

ne)#10 (Soft)

Percents Used

Compaction Temperature(°F):Mixing Temperature(°F):

Approved:

STATE OF TENNESSEE ASPHALT JOB MIX FORMULA

Ignition Oven Corr. Factor: N/A

Anti-Strip Additive:

% Fracture Face on CA:

411-D PG 64-22

#10 (Soft)Natural Sand

Manufactured Sand

Natural Sand

Regional Construction Supervisor

Approved:

Headquarters Materials and Tests

Regional Materials and Tests Supervisor

Manufactured Sand

85

Page 98: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

01/10/03

Date of Letting 01/10/03

Type Mix Item

5.5 5.0 Total

AC Contribution: Virgin AC 4.45 RAP AC 0.55 Percent Virgin AC:

2.453#VALUE!

ADT Beginning: Ending:

Sieve % Req. DesignSize 50.0 10.0 20.0 10.0 10.0 100 Range2" 100 100 100 100 100 100 100

1.5" 100 100 100 100 100 100 1001.25" 100

1" 100 100 100 100 100 100 1003/4" 100 100 100 100 100 100 1005/8" 100 100 100 100 100 100 1001/2" 97 100 100 100 100 99 95-1003/8" 70 100 100 100 100 85 80-93No.4 21 92 98 99 100 59 54-76No.8 7 61 93 82 81 44 35-57

No.16No.30 4 29 63 28 46 25 17-29No.50 3 21 13 17 30 11 10-18No.100 2.0 20.0 2.0 9.0 23.2 6.6 3-10No.200 1.8 16.0 1.0 5.0 19.3 5.1 0-6.5

88.9

2.645

Theo. Gravity: T.S.R.:

Dust to Asphalt Ratio:

Percent AC in RAP:4.447

Optimum AC Content:

PG 64-22

07/16/2002

Gravity of RAP Agg:

DateRegionCountyContract No.

153.1

Asphalt Sp. Gravity:

Lbs/Ft3:

% Glassy Particles on CA:Eff. Gravity of Agg:

N/A

Project Ref. No.Project No.

10% RAP Limestone PG 64-22

Hot-mix Producer

Contractor

Percent Used

ACS-HM

State Route No.

Serial No.: Design No.:

Material

Roadway Surface

Size or Grade Producer and LocationD Rock(Limestone) Vulcan Materials Co.

Vulcan Materials Co.IngramVulcan Materials Co.

RAPAsphalt Cement

Coarse AggregateScreenings

Natural SandManufactured Sand

RAP

47.5009.500

19.0009.500

10.053

N/A

Dosage:100.000

1.03

Compaction Temp Range(°F):

1.03

Mixing Temp Range(°F):

L.O.I.:Log Miles

Requested:

RAP

Approved:

Contractor Personnel and Lab Tech Cert No.

D Rock(Limesto

ne)#10 (Soft)

Percents Used

Compaction Temperature(°F):Mixing Temperature(°F):

Approved:

STATE OF TENNESSEE ASPHALT JOB MIX FORMULA

Ignition Oven Corr. Factor: N/A

Anti-Strip Additive:

% Fracture Face on CA:

411-D PG 64-22

#10 (Soft)Natural Sand

Manufactured Sand

Natural Sand

Regional Construction Supervisor

Approved:

Headquarters Materials and Tests

Regional Materials and Tests Supervisor

Manufactured Sand

86

Page 99: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

01/10/03

Date of Letting 01/10/03

Type Mix Item

5.5 5.0 Total

AC Contribution: Virgin AC 3.89 RAP AC 1.11 Percent Virgin AC:

2.462#VALUE!

ADT Beginning: Ending:

Sieve % Req. DesignSize 50.0 20.0 10.0 20.0 100 Range2" 100 100 100 100 100 100

1.5" 100 100 100 100 100 1001.25" 100

1" 100 100 100 100 100 1003/4" 100 100 100 100 100 1005/8" 100 100 100 100 100 1001/2" 97 100 100 100 99 95-1003/8" 70 100 100 100 85 80-93No.4 21 98 99 100 60 54-76No.8 7 93 82 81 46 35-57

No.16No.30 4 63 28 46 27 17-29No.50 3 13 17 30 12 10-18No.100 2.0 2.0 9.0 23.2 6.9 3-10No.200 1.8 1.0 5.0 19.3 5.5 0-6.5

77.9

2.656

Theo. Gravity: T.S.R.:

Dust to Asphalt Ratio:

Percent AC in RAP:3.894

Optimum AC Content:

PG 64-22

07/16/2002

Gravity of RAP Agg:

DateRegionCountyContract No.

153.6

Asphalt Sp. Gravity:

Lbs/Ft3:

% Glassy Particles on CA:Eff. Gravity of Agg:

N/A

Project Ref. No.Project No.

20% RAP Limestone PG 64-22

Hot-mix Producer

Contractor

Percent Used

ACS-HM

State Route No.

Serial No.: Design No.:

Material

Roadway Surface

Size or Grade Producer and LocationD Rock(Limestone) Vulcan Materials Co.

Vulcan Materials Co.IngramVulcan Materials Co.

RAPAsphalt Cement

Coarse AggregateScreenings

Natural SandManufactured Sand

RAP

47.500

19.0009.500

20.106

N/A

Dosage:100.000

1.09

Compaction Temp Range(°F):

1.03

Mixing Temp Range(°F):

L.O.I.:Log Miles

Requested:

RAP

Approved:

Contractor Personnel and Lab Tech Cert No.

D Rock(Limesto

ne)#10 (Soft)

Percents Used

Compaction Temperature(°F):Mixing Temperature(°F):

Approved:

STATE OF TENNESSEE ASPHALT JOB MIX FORMULA

Ignition Oven Corr. Factor: N/A

Anti-Strip Additive:

% Fracture Face on CA:

411-D PG 64-22

#10 (Soft)Natural Sand

Manufactured Sand

Natural Sand

Regional Construction Supervisor

Approved:

Headquarters Materials and Tests

Regional Materials and Tests Supervisor

Manufactured Sand

87

Page 100: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

01/10/03

Date of Letting 01/10/03

Type Mix Item

5.5 5.0 Total

AC Contribution: Virgin AC 3.34 RAP AC 1.66 Percent Virgin AC:

2.468#VALUE!

ADT Beginning: Ending:

Sieve % Req. DesignSize 50.0 10.0 10.0 30.0 100 Range2" 100 100 100 100 100 100

1.5" 100 100 100 100 100 1001.25" 100

1" 100 100 100 100 100 1003/4" 100 100 100 100 100 1005/8" 100 100 100 100 100 1001/2" 97 100 100 100 99 95-1003/8" 70 100 100 100 85 80-93No.4 21 98 99 100 60 54-76No.8 7 93 82 81 45 35-57

No.16No.30 4 63 28 46 25 17-29No.50 3 13 17 30 14 10-18No.100 2.0 2.0 9.0 23.2 9.1 3-10No.200 1.8 1.0 5.0 19.3 7.3 0-6.5

66.8

2.664

Theo. Gravity: T.S.R.:

Dust to Asphalt Ratio:

Percent AC in RAP:3.341

Optimum AC Content:

PG 64-22

07/16/2002

Gravity of RAP Agg:

DateRegionCountyContract No.

154.0

Asphalt Sp. Gravity:

Lbs/Ft3:

% Glassy Particles on CA:Eff. Gravity of Agg:

N/A

Project Ref. No.Project No.

30% RAP Limestone PG 64-22

Hot-mix Producer

Contractor

Percent Used

ACS-HM

State Route No.

Serial No.: Design No.:

Material

Roadway Surface

Size or Grade Producer and LocationD Rock(Limestone) Vulcan Materials Co.

Vulcan Materials Co.IngramVulcan Materials Co.

RAPAsphalt Cement

Coarse AggregateScreenings

Natural SandManufactured Sand

RAP

47.500

9.5009.500

30.159

N/A

Dosage:100.000

1.46

Compaction Temp Range(°F):

1.03

Mixing Temp Range(°F):

L.O.I.:Log Miles

Requested:

RAP

Approved:

Contractor Personnel and Lab Tech Cert No.

D Rock(Limesto

ne)#10 (Soft)

Percents Used

Compaction Temperature(°F):Mixing Temperature(°F):

Approved:

STATE OF TENNESSEE ASPHALT JOB MIX FORMULA

Ignition Oven Corr. Factor: N/A

Anti-Strip Additive:

% Fracture Face on CA:

411-D PG 64-22

#10 (Soft)Natural Sand

Manufactured Sand

Natural Sand

Regional Construction Supervisor

Approved:

Headquarters Materials and Tests

Regional Materials and Tests Supervisor

Manufactured Sand

88

Page 101: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

01/10/03

Date of Letting 01/10/03

Type Mix Item

5.5 5.0 Total

AC Contribution: Virgin AC 5.00 RAP AC Percent Virgin AC:

2.455#VALUE!

ADT Beginning: Ending:

Sieve % Req. DesignSize 50.0 15.0 25.0 10.0 100 Range2" 100 100 100 100 100 100

1.5" 100 100 100 100 100 1001.25" 100

1" 100 100 100 100 100 1003/4" 100 100 100 100 100 1005/8" 100 100 100 100 100 1001/2" 97 100 100 100 99 95-1003/8" 70 100 100 100 85 80-93No.4 21 92 98 99 59 54-76No.8 7 61 93 82 44 35-57

No.16No.30 4 29 63 28 25 17-29No.50 3 21 13 17 10 10-18No.100 2.0 20.0 2.0 9.0 5.4 3-10No.200 1.8 16.0 1.0 5.0 4.1 0-6.5

100.0

2.648

Theo. Gravity: T.S.R.:

Dust to Asphalt Ratio:

Percent AC in RAP:5.000

Optimum AC Content:

PG 76-22

07/16/2002

Gravity of RAP Agg:

DateRegionCountyContract No.

153.2

Asphalt Sp. Gravity:

Lbs/Ft3:

% Glassy Particles on CA:Eff. Gravity of Agg:

N/A

Project Ref. No.Project No.

0% RAP Limestone PG 76-22

Hot-mix Producer

Contractor

Percent Used

ACS-HM

State Route No.

Serial No.: Design No.:

Material

Roadway Surface

Size or Grade Producer and LocationD Rock(Limestone) Vulcan Materials Co.

Vulcan Materials Co.IngramVulcan Materials Co.

RAPAsphalt Cement

Coarse AggregateScreenings

Natural SandManufactured Sand

RAP

47.50014.25023.7509.500

N/A

Dosage:100.000

0.81

Compaction Temp Range(°F):

1.03

Mixing Temp Range(°F):

L.O.I.:Log Miles

Requested:

RAP

Approved:

Contractor Personnel and Lab Tech Cert No.

D Rock(Limesto

ne)#10 (Soft)

Percents Used

Compaction Temperature(°F):Mixing Temperature(°F):

Approved:

STATE OF TENNESSEE ASPHALT JOB MIX FORMULA

Ignition Oven Corr. Factor: N/A

Anti-Strip Additive:

% Fracture Face on CA:

411-D PG 76-22

#10 (Soft)Natural Sand

Manufactured Sand

Natural Sand

Regional Construction Supervisor

Approved:

Headquarters Materials and Tests

Regional Materials and Tests Supervisor

Manufactured Sand

89

Page 102: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

01/10/03

Date of Letting 01/10/03

Type Mix Item

5.5 5.0 Total

AC Contribution: Virgin AC 4.45 RAP AC 0.55 Percent Virgin AC:

2.453#VALUE!

ADT Beginning: Ending:

Sieve % Req. DesignSize 50.0 10.0 20.0 10.0 10.0 100 Range2" 100 100 100 100 100 100 100

1.5" 100 100 100 100 100 100 1001.25" 100

1" 100 100 100 100 100 100 1003/4" 100 100 100 100 100 100 1005/8" 100 100 100 100 100 100 1001/2" 97 100 100 100 100 99 95-1003/8" 70 100 100 100 100 85 80-93No.4 21 92 98 99 100 59 54-76No.8 7 61 93 82 81 44 35-57

No.16No.30 4 29 63 28 46 25 17-29No.50 3 21 13 17 30 11 10-18No.100 2.0 20.0 2.0 9.0 23.2 6.6 3-10No.200 1.8 16.0 1.0 5.0 19.3 5.1 0-6.5

Natural Sand

Regional Construction Supervisor

Approved:

Headquarters Materials and Tests

Regional Materials and Tests Supervisor

Manufactured Sand

STATE OF TENNESSEE ASPHALT JOB MIX FORMULA

Ignition Oven Corr. Factor: N/A

Anti-Strip Additive:

% Fracture Face on CA:

411-D PG 76-22

#10 (Soft)Natural Sand

Manufactured Sand

Approved:

Contractor Personnel and Lab Tech Cert No.

D Rock(Limesto

ne)#10 (Soft)

Percents Used

Compaction Temperature(°F):Mixing Temperature(°F):

Approved:

Requested:

RAP

1.03

Compaction Temp Range(°F):

1.03

Mixing Temp Range(°F):

L.O.I.:Log Miles

10.053

N/A

Dosage:100.000

47.5009.500

19.0009.500

RAPAsphalt Cement

Coarse AggregateScreenings

Natural SandManufactured Sand

RAP

Size or Grade Producer and LocationD Rock(Limestone) Vulcan Materials Co.

Vulcan Materials Co.IngramVulcan Materials Co.

Percent Used

ACS-HM

State Route No.

Serial No.: Design No.:

Material

Roadway Surface

Project Ref. No.Project No.

10% RAP Limestone PG 76-22

Hot-mix Producer

Contractor

153.1

Asphalt Sp. Gravity:

Lbs/Ft3:

% Glassy Particles on CA:Eff. Gravity of Agg:

N/A

PG 76-22

07/16/2002

Gravity of RAP Agg:

DateRegionCountyContract No.

88.9

2.645

Theo. Gravity: T.S.R.:

Dust to Asphalt Ratio:

Percent AC in RAP:4.447

Optimum AC Content:

90

Page 103: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

01/10/03

Date of Letting 01/10/03

Type Mix Item

5.5 5.0 Total

AC Contribution: Virgin AC 3.89 RAP AC 1.11 Percent Virgin AC:

2.462#VALUE!

ADT Beginning: Ending:

Sieve % Req. DesignSize 50.0 20.0 10.0 20.0 100 Range2" 100 100 100 100 100 100

1.5" 100 100 100 100 100 1001.25" 100

1" 100 100 100 100 100 1003/4" 100 100 100 100 100 1005/8" 100 100 100 100 100 1001/2" 97 100 100 100 99 95-1003/8" 70 100 100 100 85 80-93No.4 21 98 99 100 60 54-76No.8 7 93 82 81 46 35-57

No.16No.30 4 63 28 46 27 17-29No.50 3 13 17 30 12 10-18No.100 2.0 2.0 9.0 23.2 6.9 3-10No.200 1.8 1.0 5.0 19.3 5.5 0-6.5

Natural Sand

Regional Construction Supervisor

Approved:

Headquarters Materials and Tests

Regional Materials and Tests Supervisor

Manufactured Sand

STATE OF TENNESSEE ASPHALT JOB MIX FORMULA

Ignition Oven Corr. Factor: N/A

Anti-Strip Additive:

% Fracture Face on CA:

411-D PG 76-22

#10 (Soft)Natural Sand

Manufactured Sand

Approved:

Contractor Personnel and Lab Tech Cert No.

D Rock(Limesto

ne)#10 (Soft)

Percents Used

Compaction Temperature(°F):Mixing Temperature(°F):

Approved:

Requested:

RAP

1.09

Compaction Temp Range(°F):

1.03

Mixing Temp Range(°F):

L.O.I.:Log Miles

20.106

N/A

Dosage:100.000

47.500

19.0009.500

RAPAsphalt Cement

Coarse AggregateScreenings

Natural SandManufactured Sand

RAP

Size or Grade Producer and LocationD Rock(Limestone) Vulcan Materials Co.

Vulcan Materials Co.IngramVulcan Materials Co.

Percent Used

ACS-HM

State Route No.

Serial No.: Design No.:

Material

Roadway Surface

Project Ref. No.Project No.

20% RAP Limestone PG 76-22

Hot-mix Producer

Contractor

153.6

Asphalt Sp. Gravity:

Lbs/Ft3:

% Glassy Particles on CA:Eff. Gravity of Agg:

N/A

PG 76-22

07/16/2002

Gravity of RAP Agg:

DateRegionCountyContract No.

77.9

2.656

Theo. Gravity: T.S.R.:

Dust to Asphalt Ratio:

Percent AC in RAP:3.894

Optimum AC Content:

91

Page 104: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

01/10/03

Date of Letting 01/10/03

Type Mix Item

5.5 5.0 Total

AC Contribution: Virgin AC 3.34 RAP AC 1.66 Percent Virgin AC:

2.468#VALUE!

ADT Beginning: Ending:

Sieve % Req. DesignSize 50.0 10.0 10.0 30.0 100 Range2" 100 100 100 100 100 100

1.5" 100 100 100 100 100 1001.25" 100

1" 100 100 100 100 100 1003/4" 100 100 100 100 100 1005/8" 100 100 100 100 100 1001/2" 97 100 100 100 99 95-1003/8" 70 100 100 100 85 80-93No.4 21 98 99 100 60 54-76No.8 7 93 82 81 45 35-57

No.16No.30 4 63 28 46 25 17-29No.50 3 13 17 30 14 10-18No.100 2.0 2.0 9.0 23.2 9.1 3-10No.200 1.8 1.0 5.0 19.3 7.3 0-6.5

Natural Sand

Regional Construction Supervisor

Approved:

Headquarters Materials and Tests

Regional Materials and Tests Supervisor

Manufactured Sand

STATE OF TENNESSEE ASPHALT JOB MIX FORMULA

Ignition Oven Corr. Factor: N/A

Anti-Strip Additive:

% Fracture Face on CA:

411-D PG 76-22

#10 (Soft)Natural Sand

Manufactured Sand

Approved:

Contractor Personnel and Lab Tech Cert No.

D Rock(Limesto

ne)#10 (Soft)

Percents Used

Compaction Temperature(°F):Mixing Temperature(°F):

Approved:

Requested:

RAP

1.46

Compaction Temp Range(°F):

1.03

Mixing Temp Range(°F):

L.O.I.:Log Miles

30.159

N/A

Dosage:100.000

47.500

9.5009.500

RAPAsphalt Cement

Coarse AggregateScreenings

Natural SandManufactured Sand

RAP

Size or Grade Producer and LocationD Rock(Limestone) Vulcan Materials Co.

Vulcan Materials Co.IngramVulcan Materials Co.

Percent Used

ACS-HM

State Route No.

Serial No.: Design No.:

Material

Roadway Surface

Project Ref. No.Project No.

30% RAP Limestone PG 76-22

Hot-mix Producer

Contractor

154.0

Asphalt Sp. Gravity:

Lbs/Ft3:

% Glassy Particles on CA:Eff. Gravity of Agg:

N/A

PG 76-22

07/16/2002

Gravity of RAP Agg:

DateRegionCountyContract No.

66.8

2.664

Theo. Gravity: T.S.R.:

Dust to Asphalt Ratio:

Percent AC in RAP:3.341

Optimum AC Content:

92

Page 105: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

1/22/2003(r4)

Date of Letting 01/10/03

Type Mix Item

5.8 5.8 Total

AC Contribution: Virgin AC 5.80 RAP AC Percent Virgin AC:

2.367 90.08.0

ADT Beginning: Ending:

Sieve % Req. DesignSize 55.0 10.0 10.0 25.0 100 Range2" 100 100 100 100 100 100

1.5" 100 100 100 100 100 1001.25" 100

1" 100 100 100 100 100 1003/4" 100 100 100 100 100 1005/8" 100 100 100 100 100 1001/2" 95 100 100 100 97 95-1003/8" 77 100 100 100 87 80-93No.4 40 98 91 96 65 54-76No.8 22 92 60 84 48 35-57

No.16No.30 8 64 30 60 29 17-29No.50 5 52 21 8 12 10-18No.100 3.0 41.0 16.0 1.0 7.6 3-10No.200 2.0 34.0 14.0 5.9 0-6.5

310

#10 (Soft)

Regional Construction Supervisor

Approved:

Headquarters Materials and Tests

Regional Materials and Tests Supervisor

Natural Sand

STATE OF TENNESSEE ASPHALT JOB MIX FORMULA

Ignition Oven Corr. Factor: 0.55

Anti-Strip Additive:

% Fracture Face on CA:

411-D PG 64-22

Ag. Lime#10 (Soft)

Natural Sand

Approved:

Contractor Personnel and Lab Tech Cert No.

330

D Rock(Gravel) Ag. Lime

Percents Used

Compaction Temperature(°F):Mixing Temperature(°F):

Approved:

Requested:

RAP

310-350

1.02

Compaction Temp Range(°F): 290-330

1.03

Mixing Temp Range(°F):

L.O.I.:Log Miles

80.4

Dosage:100.000

MARATHON ASHLAND, KNOXVILLE

51.8109.4209.420

23.550

RAPAsphalt Cement

Coarse AggregateAg. Lime

ScreeningsNatural Sand

RAP

Size or Grade Producer and LocationD Rock(Gravel) Standard Const. Frank Road

Vulcan Mtl. Savannah, TN.Vulcan Mtl. Savannah, TN.Standard Const. Frank Road

Percent Used

ACS-HM

State Route No.

Serial No.: Design No.:

Material

Roadway Surface

Project Ref. No.Project No.

0% RAP Gravel PG 64-22

Hot-mix Producer

Contractor

147.7

Asphalt Sp. Gravity:

Lbs/Ft3:

% Glassy Particles on CA:Eff. Gravity of Agg:

N/A

PG 64-22

11/03/2003

Gravity of RAP Agg:

DateRegionCountyContract No.

100.0

2.573

Theo. Gravity: T.S.R.:

Dust to Asphalt Ratio:

Percent AC in RAP:5.800

0.3%Optimum AC Content:

93

Page 106: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

1/22/2003(r4)

Date of Letting 01/10/03

Type Mix Item

5.8 5.8 Total

AC Contribution: Virgin AC 5.22 RAP AC 0.58 Percent Virgin AC:

2.367 90.08.0

ADT Beginning: Ending:

Sieve % Req. DesignSize 55.0 10.0 25.0 10.0 100 Range2" 100 100 100 100 100 100

1.5" 100 100 100 100 100 1001.25" 100

1" 100 100 100 100 100 1003/4" 100 100 100 100 100 1005/8" 100 100 100 100 100 1001/2" 95 100 100 100 97 95-1003/8" 77 100 100 100 87 80-93No.4 40 91 96 100 65 54-76No.8 22 60 84 90 48 35-57

No.16No.30 8 30 60 57 28 17-29No.50 5 21 8 27 10 10-18No.100 3.0 16.0 1.0 14.8 5.0 3-10No.200 2.0 14.0 10.8 3.6 0-6.5

310

#10 (Soft)

Regional Construction Supervisor

Approved:

Headquarters Materials and Tests

Regional Materials and Tests Supervisor

Natural Sand

STATE OF TENNESSEE ASPHALT JOB MIX FORMULA

Ignition Oven Corr. Factor: 0.55

Anti-Strip Additive:

% Fracture Face on CA:

411-D PG 64-22

Ag. Lime#10 (Soft)

Natural Sand

Approved:

Contractor Personnel and Lab Tech Cert No.

330

D Rock(Gravel) Ag. Lime

Percents Used

Compaction Temperature(°F):Mixing Temperature(°F):

Approved:

Requested:

RAP

310-350

0.62

Compaction Temp Range(°F): 290-330

1.03

Mixing Temp Range(°F):

L.O.I.:Log Miles

10.000

80.4

Dosage:100.000

MARATHON ASHLAND, KNOXVILLE

51.810

9.42023.550

RAPAsphalt Cement

Coarse AggregateAg. Lime

ScreeningsNatural Sand

RAP

Size or Grade Producer and LocationD Rock(Gravel) Standard Const. Frank Road

Vulcan Mtl. Savannah, TN.Vulcan Mtl. Savannah, TN.Standard Const. Frank Road

Percent Used

ACS-HM

State Route No.

Serial No.: Design No.:

Material

Roadway Surface

Project Ref. No.Project No.

10% RAP Gravel PG 64-22

Hot-mix Producer

Contractor

147.7

Asphalt Sp. Gravity:

Lbs/Ft3:

% Glassy Particles on CA:Eff. Gravity of Agg:

N/A

PG 64-22

11/03/2003

Gravity of RAP Agg:

DateRegionCountyContract No.

90.0

2.573

Theo. Gravity: T.S.R.:

Dust to Asphalt Ratio:

Percent AC in RAP:5.220

0.3%Optimum AC Content:

94

Page 107: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

1/22/2003(r4)

Date of Letting 01/10/03

Type Mix Item

5.8 5.8 Total

AC Contribution: Virgin AC 4.64 RAP AC 1.16 Percent Virgin AC:

2.367 90.08.0

ADT Beginning: Ending:

Sieve % Req. DesignSize 55.0 5.0 20.0 20.0 100 Range2" 100 100 100 100 100 100

1.5" 100 100 100 100 100 1001.25" 100

1" 100 100 100 100 100 1003/4" 100 100 100 100 100 1005/8" 100 100 100 100 100 1001/2" 95 100 100 100 97 95-1003/8" 77 100 100 100 87 80-93No.4 40 98 96 100 66 54-76No.8 22 92 84 90 51 35-57

No.16No.30 8 64 60 57 31 17-29No.50 5 52 8 27 12 10-18No.100 3.0 41.0 1.0 14.8 6.9 3-10No.200 2.0 34.0 10.8 5.0 0-6.5

310

#10 (Soft)

Regional Construction Supervisor

Approved:

Headquarters Materials and Tests

Regional Materials and Tests Supervisor

Natural Sand

STATE OF TENNESSEE ASPHALT JOB MIX FORMULA

Ignition Oven Corr. Factor: 0.55

Anti-Strip Additive:

% Fracture Face on CA:

411-D PG 64-22

Ag. Lime#10 (Soft)

Natural Sand

Approved:

Contractor Personnel and Lab Tech Cert No.

330

D Rock(Gravel) Ag. Lime

Percents Used

Compaction Temperature(°F):Mixing Temperature(°F):

Approved:

Requested:

RAP

310-350

0.85

Compaction Temp Range(°F): 290-330

1.03

Mixing Temp Range(°F):

L.O.I.:Log Miles

20.000

80.4

Dosage:100.000

MARATHON ASHLAND, KNOXVILLE

51.8104.710

18.840

RAPAsphalt Cement

Coarse AggregateAg. Lime

ScreeningsNatural Sand

RAP

Size or Grade Producer and LocationD Rock(Gravel) Standard Const. Frank Road

Vulcan Mtl. Savannah, TN.Vulcan Mtl. Savannah, TN.Standard Const. Frank Road

Percent Used

ACS-HM

State Route No.

Serial No.: Design No.:

Material

Roadway Surface

Project Ref. No.Project No.

20% RAP Gravel PG 64-22

Hot-mix Producer

Contractor

147.7

Asphalt Sp. Gravity:

Lbs/Ft3:

% Glassy Particles on CA:Eff. Gravity of Agg:

N/A

PG 64-22

11/03/2003

Gravity of RAP Agg:

DateRegionCountyContract No.

80.0

2.573

Theo. Gravity: T.S.R.:

Dust to Asphalt Ratio:

Percent AC in RAP:4.640

0.3%Optimum AC Content:

95

Page 108: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

1/22/2003(r4)

Date of Letting 01/10/03

Type Mix Item

5.8 5.8 Total

AC Contribution: Virgin AC 4.06 RAP AC 1.74 Percent Virgin AC:

2.367 90.08.0

ADT Beginning: Ending:

Sieve % Req. DesignSize 55.0 5.0 10.0 30.0 100 Range2" 100 100 100 100 100 100

1.5" 100 100 100 100 100 1001.25" 100

1" 100 100 100 100 100 1003/4" 100 100 100 100 100 1005/8" 100 100 100 100 100 1001/2" 95 100 100 100 97 95-1003/8" 77 100 100 100 87 80-93No.4 40 98 96 100 67 54-76No.8 22 92 84 90 52 35-57

No.16No.30 8 64 60 57 31 17-29No.50 5 52 8 27 14 10-18No.100 3.0 41.0 1.0 14.8 8.2 3-10No.200 2.0 34.0 10.8 6.0 0-6.5

310

#10 (Soft)

Regional Construction Supervisor

Approved:

Headquarters Materials and Tests

Regional Materials and Tests Supervisor

Natural Sand

STATE OF TENNESSEE ASPHALT JOB MIX FORMULA

Ignition Oven Corr. Factor: 0.55

Anti-Strip Additive:

% Fracture Face on CA:

411-D PG 64-22

Ag. Lime#10 (Soft)

Natural Sand

Approved:

Contractor Personnel and Lab Tech Cert No.

330

D Rock(Gravel) Ag. Lime

Percents Used

Compaction Temperature(°F):Mixing Temperature(°F):

Approved:

Requested:

RAP

310-350

1.04

Compaction Temp Range(°F): 290-330

1.03

Mixing Temp Range(°F):

L.O.I.:Log Miles

30.000

80.4

Dosage:100.000

MARATHON ASHLAND, KNOXVILLE

51.8104.710

9.420

RAPAsphalt Cement

Coarse AggregateAg. Lime

ScreeningsNatural Sand

RAP

Size or Grade Producer and LocationD Rock(Gravel) Standard Const. Frank Road

Vulcan Mtl. Savannah, TN.Vulcan Mtl. Savannah, TN.Standard Const. Frank Road

Percent Used

ACS-HM

State Route No.

Serial No.: Design No.:

Material

Roadway Surface

Project Ref. No.Project No.

30% RAP Gravel PG 64-22

Hot-mix Producer

Contractor

147.7

Asphalt Sp. Gravity:

Lbs/Ft3:

% Glassy Particles on CA:Eff. Gravity of Agg:

N/A

PG 64-22

11/03/2003

Gravity of RAP Agg:

DateRegionCountyContract No.

70.0

2.573

Theo. Gravity: T.S.R.:

Dust to Asphalt Ratio:

Percent AC in RAP:4.060

0.3%Optimum AC Content:

96

Page 109: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

1/22/2003(r4)

Date of Letting 01/10/03

Type Mix Item

5.8 5.8 Total

AC Contribution: Virgin AC 5.80 RAP AC Percent Virgin AC:

2.367 90.08.0

ADT Beginning: Ending:

Sieve % Req. DesignSize 55.0 10.0 10.0 25.0 100 Range2" 100 100 100 100 100 100

1.5" 100 100 100 100 100 1001.25" 100

1" 100 100 100 100 100 1003/4" 100 100 100 100 100 1005/8" 100 100 100 100 100 1001/2" 95 100 100 100 97 95-1003/8" 77 100 100 100 87 80-93No.4 40 98 91 96 65 54-76No.8 22 92 60 84 48 35-57

No.16No.30 8 64 30 60 29 17-29No.50 5 52 21 8 12 10-18No.100 3.0 41.0 16.0 1.0 7.6 3-10No.200 2.0 34.0 14.0 5.9 0-6.5

310

#10 (Soft)

Regional Construction Supervisor

Approved:

Headquarters Materials and Tests

Regional Materials and Tests Supervisor

Natural Sand

STATE OF TENNESSEE ASPHALT JOB MIX FORMULA

Ignition Oven Corr. Factor: 0.55

Anti-Strip Additive:

% Fracture Face on CA:

411-D PG 76-22

Ag. Lime#10 (Soft)

Natural Sand

Approved:

Contractor Personnel and Lab Tech Cert No.

330

D Rock(Gravel) Ag. Lime

Percents Used

Compaction Temperature(°F):Mixing Temperature(°F):

Approved:

Requested:

RAP

310-350

1.02

Compaction Temp Range(°F): 290-330

1.03

Mixing Temp Range(°F):

L.O.I.:Log Miles

80.4

Dosage:100.000

MARATHON ASHLAND, KNOXVILLE

51.8109.4209.420

23.550

RAPAsphalt Cement

Coarse AggregateAg. Lime

ScreeningsNatural Sand

RAP

Size or Grade Producer and LocationD Rock(Gravel) Standard Const. Frank Road

Vulcan Mtl. Savannah, TN.Vulcan Mtl. Savannah, TN.Standard Const. Frank Road

Percent Used

ACS-HM

State Route No.

Serial No.: Design No.:

Material

Roadway Surface

Project Ref. No.Project No.

0% RAP Gravel PG 76-22

Hot-mix Producer

Contractor

147.7

Asphalt Sp. Gravity:

Lbs/Ft3:

% Glassy Particles on CA:Eff. Gravity of Agg:

N/A

PG 76-22

11/03/2003

Gravity of RAP Agg:

DateRegionCountyContract No.

100.0

2.573

Theo. Gravity: T.S.R.:

Dust to Asphalt Ratio:

Percent AC in RAP:5.800

0.3%Optimum AC Content:

97

Page 110: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

1/22/2003(r4)

Date of Letting 01/10/03

Type Mix Item

5.8 5.8 Total

AC Contribution: Virgin AC 5.22 RAP AC 0.58 Percent Virgin AC:

2.367 90.08.0

ADT Beginning: Ending:

Sieve % Req. DesignSize 55.0 10.0 25.0 10.0 100 Range2" 100 100 100 100 100 100

1.5" 100 100 100 100 100 1001.25" 100

1" 100 100 100 100 100 1003/4" 100 100 100 100 100 1005/8" 100 100 100 100 100 1001/2" 95 100 100 100 97 95-1003/8" 77 100 100 100 87 80-93No.4 40 98 96 100 66 54-76No.8 22 92 84 90 51 35-57

No.16No.30 8 64 60 57 32 17-29No.50 5 52 8 27 13 10-18No.100 3.0 41.0 1.0 14.8 7.5 3-10No.200 2.0 34.0 10.8 5.6 0-6.5

310

#10 (Soft)

Regional Construction Supervisor

Approved:

Headquarters Materials and Tests

Regional Materials and Tests Supervisor

Natural Sand

STATE OF TENNESSEE ASPHALT JOB MIX FORMULA

Ignition Oven Corr. Factor: 0.55

Anti-Strip Additive:

% Fracture Face on CA:

411-D PG 76-22

Ag. Lime#10 (Soft)

Natural Sand

Approved:

Contractor Personnel and Lab Tech Cert No.

330

D Rock(Gravel) Ag. Lime

Percents Used

Compaction Temperature(°F):Mixing Temperature(°F):

Approved:

Requested:

RAP

310-350

0.96

Compaction Temp Range(°F): 290-330

1.03

Mixing Temp Range(°F):

L.O.I.:Log Miles

10.000

80.4

Dosage:100.000

MARATHON ASHLAND, KNOXVILLE

51.8109.420

23.550

RAPAsphalt Cement

Coarse AggregateAg. Lime

ScreeningsNatural Sand

RAP

Size or Grade Producer and LocationD Rock(Gravel) Standard Const. Frank Road

Vulcan Mtl. Savannah, TN.Vulcan Mtl. Savannah, TN.Standard Const. Frank Road

Percent Used

ACS-HM

State Route No.

Serial No.: Design No.:

Material

Roadway Surface

Project Ref. No.Project No.

10% RAP Gravel PG 76-22

Hot-mix Producer

Contractor

147.7

Asphalt Sp. Gravity:

Lbs/Ft3:

% Glassy Particles on CA:Eff. Gravity of Agg:

N/A

PG 76-22

11/03/2003

Gravity of RAP Agg:

DateRegionCountyContract No.

90.0

2.573

Theo. Gravity: T.S.R.:

Dust to Asphalt Ratio:

Percent AC in RAP:5.220

0.3%Optimum AC Content:

98

Page 111: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

1/22/2003(r4)

Date of Letting 01/10/03

Type Mix Item

5.8 5.8 Total

AC Contribution: Virgin AC 4.64 RAP AC 1.16 Percent Virgin AC:

2.367 90.08.0

ADT Beginning: Ending:

Sieve % Req. DesignSize 55.0 5.0 20.0 20.0 100 Range2" 100 100 100 100 100 100

1.5" 100 100 100 100 100 1001.25" 100

1" 100 100 100 100 100 1003/4" 100 100 100 100 100 1005/8" 100 100 100 100 100 1001/2" 95 100 100 100 97 95-1003/8" 77 100 100 100 87 80-93No.4 40 98 96 100 66 54-76No.8 22 92 84 90 51 35-57

No.16No.30 8 64 60 57 31 17-29No.50 5 52 8 27 12 10-18No.100 3.0 41.0 1.0 14.8 6.9 3-10No.200 2.0 34.0 10.8 5.0 0-6.5

310

#10 (Soft)

Regional Construction Supervisor

Approved:

Headquarters Materials and Tests

Regional Materials and Tests Supervisor

Natural Sand

STATE OF TENNESSEE ASPHALT JOB MIX FORMULA

Ignition Oven Corr. Factor: 0.55

Anti-Strip Additive:

% Fracture Face on CA:

411-D PG 76-22

Ag. Lime#10 (Soft)

Natural Sand

Approved:

Contractor Personnel and Lab Tech Cert No.

330

D Rock(Gravel) Ag. Lime

Percents Used

Compaction Temperature(°F):Mixing Temperature(°F):

Approved:

Requested:

RAP

310-350

0.85

Compaction Temp Range(°F): 290-330

1.03

Mixing Temp Range(°F):

L.O.I.:Log Miles

20.000

80.4

Dosage:100.000

MARATHON ASHLAND, KNOXVILLE

51.8104.710

18.840

RAPAsphalt Cement

Coarse AggregateAg. Lime

ScreeningsNatural Sand

RAP

Size or Grade Producer and LocationD Rock(Gravel) Standard Const. Frank Road

Vulcan Mtl. Savannah, TN.Vulcan Mtl. Savannah, TN.Standard Const. Frank Road

Percent Used

ACS-HM

State Route No.

Serial No.: Design No.:

Material

Roadway Surface

Project Ref. No.Project No.

20% RAP Gravel PG 76-22

Hot-mix Producer

Contractor

147.7

Asphalt Sp. Gravity:

Lbs/Ft3:

% Glassy Particles on CA:Eff. Gravity of Agg:

N/A

PG 76-22

11/03/2003

Gravity of RAP Agg:

DateRegionCountyContract No.

80.0

2.573

Theo. Gravity: T.S.R.:

Dust to Asphalt Ratio:

Percent AC in RAP:4.640

0.3%Optimum AC Content:

99

Page 112: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

1/22/2003(r4)

Date of Letting 01/10/03

Type Mix Item

5.8 5.8 Total

AC Contribution: Virgin AC 4.06 RAP AC 1.74 Percent Virgin AC:

2.367 90.08.0

ADT Beginning: Ending:

Sieve % Req. DesignSize 55.0 5.0 10.0 30.0 100 Range2" 100 100 100 100 100 100

1.5" 100 100 100 100 100 1001.25" 100

1" 100 100 100 100 100 1003/4" 100 100 100 100 100 1005/8" 100 100 100 100 100 1001/2" 95 100 100 100 97 95-1003/8" 77 100 100 100 87 80-93No.4 40 98 96 100 67 54-76No.8 22 92 84 90 52 35-57

No.16No.30 8 64 60 57 31 17-29No.50 5 52 8 27 14 10-18No.100 3.0 41.0 1.0 14.8 8.2 3-10No.200 2.0 34.0 10.8 6.0 0-6.5

310

#10 (Soft)

Regional Construction Supervisor

Approved:

Headquarters Materials and Tests

Regional Materials and Tests Supervisor

Natural Sand

STATE OF TENNESSEE ASPHALT JOB MIX FORMULA

Ignition Oven Corr. Factor: 0.55

Anti-Strip Additive:

% Fracture Face on CA:

411-D PG 76-22

Ag. Lime#10 (Soft)

Natural Sand

Approved:

Contractor Personnel and Lab Tech Cert No.

330

D Rock(Gravel) Ag. Lime

Percents Used

Compaction Temperature(°F):Mixing Temperature(°F):

Approved:

Requested:

RAP

310-350

1.04

Compaction Temp Range(°F): 290-330

1.03

Mixing Temp Range(°F):

L.O.I.:Log Miles

30.000

80.4

Dosage:100.000

MARATHON ASHLAND, KNOXVILLE

51.8104.710

9.420

RAPAsphalt Cement

Coarse AggregateAg. Lime

ScreeningsNatural Sand

RAP

Size or Grade Producer and LocationD Rock(Gravel) Standard Const. Frank Road

Vulcan Mtl. Savannah, TN.Vulcan Mtl. Savannah, TN.Standard Const. Frank Road

Percent Used

ACS-HM

State Route No.

Serial No.: Design No.:

Material

Roadway Surface

Project Ref. No.Project No.

30% RAP Gravel PG 76-22

Hot-mix Producer

Contractor

147.7

Asphalt Sp. Gravity:

Lbs/Ft3:

% Glassy Particles on CA:Eff. Gravity of Agg:

N/A

PG 76-22

11/03/2003

Gravity of RAP Agg:

DateRegionCountyContract No.

70.0

2.573

Theo. Gravity: T.S.R.:

Dust to Asphalt Ratio:

Percent AC in RAP:4.060

0.3%Optimum AC Content:

100

Page 113: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Appendix B: Indirect Tensile Strength Test Data

101

Page 114: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Limestone Mixtures

Virgin Stress, psi. Strain in./in. TI avg std COV avg std Diam. Strain,% COV avg std. COVU-1 192.0 0.003300 0.57U-2 206.0 0.003508 0.62U-3 196.5 0.003923 0.65 198.2 7.2 3.6 0.0036 0.0003 0.358 8.9 0.612 0.043 7.0A-1 225.8 0.002359 0.38A-2 205.6 0.002772 0.57A-3 217.3 0.002925 0.50 216.2 10.2 4.7 0.0027 0.0003 0.269 10.9 0.481 0.093 19.4

10% RAP Stress, psi. Strain in./in. TIU-1 204.2 0.003515 0.58U-2 198.9 0.003653 0.61U-3 202.9 0.003071 0.53 202.0 2.8 1.4 0.0034 0.0003 0.341 8.9 0.574 0.039 6.9A-1 236.5 0.003201 0.48A-2 255.5 0.002474 0.45A-3 236.2 0.003217 0.46 242.7 11.1 4.6 0.0030 0.0004 0.296 14.3 0.464 0.013 2.8

20% RAP Stress, psi. Strain in./in. TIU-1 226.7 0.003063 0.49U-2 224.2 0.003071 0.46U-3 226.4 0.003048 0.46 225.7 1.3 0.6 0.0031 0.0000 0.306 0.4 0.469 0.016 3.4A-1 261.9 0.002903 0.43A-2 272.9 0.002466 0.39A-3 247.7 0.003056 0.47 260.8 12.6 4.8 0.0028 0.0003 0.281 10.9 0.430 0.043 9.9

30% RAP Stress, psi. Strain in./in. TIU-1 274.6 0.002903 0.45U-2 241.9 0.002680 0.49U-3 266.4 0.003079 0.47 260.9 17.0 6.5 0.0029 0.0002 0.289 6.9 0.469 0.021 4.4A-1 308.5 0.002466 0.39A-2 305.6 0.002458 0.43A-3 297.5 0.002313 0.38 303.9 5.7 1.9 0.0024 0.0001 0.241 3.6 0.399 0.029 7.3

Virgin Stress, psi. Strain, in./in. TI avg std COV avg std diam strain % COV avg std. COVU-1 232.82 0.003661 0.625U-2 230.8 0.003377 0.686U-3 239.62 0.004105 0.7 234.4 4.6 2.0 0.0037 0.0004 0.371 9.9 0.670 0.040 5.9A-1 258.67 0.002925 0.531A-2 276.18 0.002803 0.56A-3 274.21 0.003056 0.52 269.7 9.6 3.6 0.0029 0.0001 0.293 4.3 0.537 0.021 3.8

10% RAP Stress, psi. Strain, in./in. TIU-1 259.81 0.003492 0.548U-2 238.52 0.003791 0.553U-3 247.39 0.003806 0.613 248.6 10.7 4.3 0.0037 0.0002 0.370 4.8 0.571 0.036 6.3A-1 289.31 0.0027 0.47A-2 276.62 0.003217 0.479A-3 285.22 0.00306 0.469 283.7 6.5 2.3 0.0030 0.0003 0.299 8.9 0.473 0.006 1.2

20% RAP Stress, psi. Strain, in./in. TIU-1 271.53 0.003354 0.4165U-2 277.94 0.003354 0.5064U-3 285.4 0.002811 0.522 278.3 6.9 2.5 0.0032 0.0003 0.317 9.9 0.482 0.057 11.8A-1 313.18 0.00264 0.4159A-2 315.11 0.002903 0.409A-3 324.51 0.002474 0.373 317.6 6.1 1.9 0.0027 0.0002 0.267 8.1 0.399 0.023 5.8

30% RAP Stress, psi. Strain, in./in. TIU-1 301.38 0.003025 0.489U-2 284.96 0.002489 0.428U-3 309.45 0.002765 0.464 298.6 12.5 4.2 0.0028 0.0003 0.276 9.7 0.460 0.031 6.7A-1 339.96 0.002589 0.352A-2 335.48 0.002489 0.325A-3 321.17 0.002742 0.434 332.2 9.8 3.0 0.0026 0.0001 0.261 4.9 0.370 0.057 15.3

4 in. IDT: PG 76-22

4 in. IDT: PG 64-22 TIStress Strain

Stress Strain TI

102

Page 115: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

0% RAP IDT Long-term Aged: PG 64-22

0

50

100

150

200

250

0 0.002 0.004 0.006 0.008 0.01Strain, in./in.

Stre

ss, p

si.

0% RAP IDT UA-1: PG 64-22

0

50

100

150

200

250

0 0.002 0.004 0.006 0.008 0.01 0.012Strain, in./in.

Stre

ss, p

si.

0% RAP IST LTA-2: PG 64-22

0

50

100

150

200

250

0 0.002 0.004 0.006 0.008 0.01Strain, in./in.

Stre

ss, p

si.

0% RAP IDT UA-2: PG 64-22

0

50

100

150

200

250

0 0.002 0.004 0.006 0.008 0.01 0.012Strain, in./in.

Stre

ss, p

si.

0% RAP IDT LTA-3: PG 64-22

0

50

100

150

200

250

0 0.002 0.004 0.006 0.008 0.01 0.012

Strain, in./in.

Stre

ss, p

si.

0% RAP IDT UA-3: PG 64-22

0

50

100

150

200

250

0 0.02 0.04 0.06 0.08 0.1 0.12Strain, in./in.

Stre

ss, p

si.

103

Page 116: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

10% RAP IDT LTA-1: PG 64-22

0

50

100

150

200

250

0 0.002 0.004 0.006 0.008 0.01Strain, in./in.

Stre

ss, p

si.

10% RAP IDT UA-1: PG 64-22

0

50

100

150

200

250

0 0.002 0.004 0.006 0.008 0.01 0.012Strain, in./in.

Stre

ss, p

si.

10% RAP IDT LTA-2: PG 64-22

0

50

100

150

200

250

300

0 0.002 0.004 0.006 0.008 0.01

Strain, in./in.

Stre

ss, p

si.

10% RAP IDT UA-2: PG 64-22

0

50

100

150

200

250

0 0.002 0.004 0.006 0.008 0.01 0.012Strain, in./in.

Stre

ss, p

si.

10% RAP IDT LTA-3: PG 64-22

0

50

100

150

200

250

0 0.002 0.004 0.006 0.008 0.01 0.012Strain, in./in.

Stre

ss, p

si.

10% RAP IDT UA-3: PG 64-22

0

50

100

150

200

250

0 0.002 0.004 0.006 0.008 0.01 0.012Strain, in./in.

Stre

ss, p

si.

104

Page 117: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

20% RAP IDT LTA-1: PG 64-22

0

50

100

150

200

250

300

0 0.002 0.004 0.006 0.008 0.01Strain, in./in.

Stre

ss, p

si.

20% RAP IDT UA-1: PG 64-22

0

50

100

150

200

250

0 0.002 0.004 0.006 0.008 0.01 0.012Strain, in./in.

Stre

ss, p

si.

20% RAP IDT LTA-2: PG 64-22

0

50

100

150

200

250

300

0 0.002 0.004 0.006 0.008 0.01 0.012Strain, in./in.

Stre

ss, p

si.

20% RAP IDT UA-2: PG 64-22

0

50

100

150

200

250

0 0.002 0.004 0.006 0.008 0.01 0.012Strain, in./in.

Stre

ss, p

si.

20% RAP IDT LTA-3: PG 64-22

0

50

100

150

200

250

300

0 0.002 0.004 0.006 0.008 0.01 0.012Strain, in./in.

Stre

ss, p

si.

20% RAP IDT UA-3: PG 64-22

0

50

100

150

200

250

0 0.002 0.004 0.006 0.008 0.01

Strain, in./in.

Stre

ss, p

si.

105

Page 118: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

30% RAP IDT LTA-1: PG 64-22

0

50

100

150

200

250

300

350

0 0.002 0.004 0.006 0.008 0.01 0.012Strain, in./in.

Stre

ss, p

si.

30% RAP IDT UA-1: PG 64-22

0

50

100

150

200

250

300

0 0.002 0.004 0.006 0.008 0.01 0.012Strain, in./in.

Stre

ss, p

si.

30% RAP IDT LTA-2: PG 64-22

0

50

100

150

200

250

300

350

0 0.002 0.004 0.006 0.008 0.01 0.012Strain, in./in.

Stre

ss, p

si.

30% RAP IDT UA-2: PG 64-22

0

50

100

150

200

250

300

0 0.002 0.004 0.006 0.008 0.01 0.012Strain, in./in.

Stre

ss, p

si.

30% RAP IDT LTA-3: PG 64-22

0

50

100

150

200

250

300

350

0 0.002 0.004 0.006 0.008 0.01 0.012Strain, in./in.

Stre

ss, p

si.

30% RAP IDT UA-3: PG 64-22

0

50

100

150

200

250

300

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014Strain, in./in.

Stre

ss, p

si.

106

Page 119: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

0% RAP IDT LTA-1: PG 76-22

0

50

100

150

200

250

300

0 0.002 0.004 0.006 0.008 0.01 0.012Strain, in./in.

Stre

ss, p

si.

0% RAP IDT UA-1: PG 76-22

0

50

100

150

200

250

300

0 0.002 0.004 0.006 0.008 0.01 0.012Strain, in./in.

Stre

ss, p

si.

0% RAP IDT LTA-2: PG 76-22

0

50

100

150

200

250

300

0 0.002 0.004 0.006 0.008 0.01 0.012Strain, in./in.

Stre

ss, p

si.

0% RAP IDT UA-2: PG 76-22

0

50

100

150

200

250

300

0 0.002 0.004 0.006 0.008 0.01 0.012Strain, in./in.

Stre

ss, p

si.

0% RAP IDT LTA-3: PG 76-22

0

50

100

150

200

250

300

0 0.002 0.004 0.006 0.008 0.01 0.012Strain, in./in.

Stre

ss, p

si.

0% RAP IDT UA-3: PG 76-22

0

50

100

150

200

250

300

0 0.002 0.004 0.006 0.008 0.01 0.012Strain, in./in.

Stre

ss, p

si.

107

Page 120: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

10% RAP IDT LTA-1: PG 76-22

0

50

100

150

200

250

300

0 0.002 0.004 0.006 0.008 0.01 0.012

Strain, in./in.

Stre

ss, p

si.

10% RAP IDT UA-1: PG 76-22

0

50

100

150

200

250

300

0 0.002 0.004 0.006 0.008 0.01 0.012

Strain, in./in.

Stre

ss, p

si.

10% RAP IDT LTA-2: PG 76-22

0

50

100

150

200

250

300

0 0.002 0.004 0.006 0.008 0.01 0.012Strain, in./in.

Stre

ss, p

si.

10% RAP IDT UA-2: PG 76-22

0

50

100

150

200

250

300

0 0.002 0.004 0.006 0.008 0.01 0.012Strain, in./in.

Stre

ss, p

si.

10% RAP LTA-3: PG 76-22

0

50

100

150

200

250

300

0 0.002 0.004 0.006 0.008 0.01 0.012Strain, in./in.

Stre

ss, p

si.

10% RAP IDT UA-3: PG 76-22

0

50

100

150

200

250

300

0 0.002 0.004 0.006 0.008 0.01 0.012Strain, in./in.

Stre

ss, p

si.

108

Page 121: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

20% RAP IDT LTA-1: PG 76-22

0

50

100

150

200

250

300

350

0 0.002 0.004 0.006 0.008 0.01 0.012Strain, in./in.

Stre

ss, p

si.

20% RAP IDT UA-1: PG 76-22

0

50

100

150

200

250

300

350

0 0.002 0.004 0.006 0.008 0.01 0.012Strain, in./in.

Stre

ss, p

si.

20% RAP IDT LTA-2: PG 76-22

0

50

100

150

200

250

300

350

0 0.002 0.004 0.006 0.008 0.01 0.012Strain, in./in.

Stre

ss, p

si.

20% RAP IDT UA-2: PG 76-22

0

50

100

150

200

250

300

350

0 0.002 0.004 0.006 0.008 0.01 0.012Strain, in./in.

Stre

ss, p

si.

20% RAP IDT LTA-3: PG 76-22

0

50

100

150

200

250

300

350

0 0.002 0.004 0.006 0.008 0.01 0.012Strain, in./in.

Stre

ss, p

si.

20% RAP IDT UA-3: PG 76-22

0

50

100

150

200

250

300

350

0 0.002 0.004 0.006 0.008 0.01 0.012Strain, in./in.

Stre

ss, p

si.

109

Page 122: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

30% RAP IDT LTA-1: PG 76-22

0

50

100

150

200

250

300

350

0 0.002 0.004 0.006 0.008 0.01 0.012

Strain, in./in.

Stre

ss, p

si.

30% RAP IDT UA-1: PG 76-22

0

50

100

150

200

250

300

350

0 0.002 0.004 0.006 0.008 0.01 0.012

Strain, in./in.

Stre

ss, p

si.

30% RAP IDT LTA-2: PG 76-22

0

50

100

150

200

250

300

350

0 0.002 0.004 0.006 0.008 0.01 0.012

Strain, in./in.

Stre

ss, p

si.

30% RAP IDT UA-2: PG 76-22

0

50

100

150

200

250

300

350

0 0.002 0.004 0.006 0.008 0.01 0.012Strain, in./in.

Stre

ss, p

si.

30% RAP IDT LTA-3: PG 76-22

0

50

100

150

200

250

300

350

0 0.002 0.004 0.006 0.008 0.01 0.012Strain, in./in.

Stre

ss, p

si.

30% RAP IDT UA-3: PG 76-22

0

50

100

150

200

250

300

350

0 0.002 0.004 0.006 0.008 0.01 0.012Strain, in./in.

Stre

ss, p

si.

110

Page 123: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Gravel Mixtures

Virgin Stress, psi. Strain in./in. TI avg std COV avg std Diam. Strain,% COV avg std. COVA-1 188.0 0.002435 0.50A-2 221.1 0.002420 0.50A-3 208.9 0.002550 0.51 206.0 16.7 8.1 0.0025 0.0001 0.247 2.9 0.503 0.004 0.8

A-1 (FT) 178.4 0.002642 0.48A-2 (FT) 193.0 0.002779 0.51A-3 (FT) 231.0 0.002573 0.47 200.8 27.2 13.5 0.0027 0.0001 0.266 3.9 0.487 0.021 4.4

10% RAP Stress, psi. Strain in./in. TIA-1 206.0 0.002144 0.45A-2 242.8 0.002588 0.41A-3 229.1 0.002504 0.42 226.0 18.6 8.2 0.0024 0.0002 0.241 9.8 0.428 0.020 4.7

A-1 (FT) 225.5 0.002297 0.46A-2 (FT) 221.1 0.002474 0.43A-3 (FT) 220.4 0.002779 0.36 222.3 2.8 1.2 0.0025 0.0002 0.252 9.7 0.418 0.050 12.0

20% RAP Stress, psi. Strain in./in. TIA-1 268.8 0.002175 0.45A-2 254.8 0.002282 0.42A-3 264.3 0.002228 0.41 262.6 7.2 2.7 0.0022 0.0001 0.223 2.4 0.425 0.021 4.9

A-1 (FT) 238.9 0.002366 0.42A-2 (FT) 242.7 0.002282 0.38A-3 (FT) 273.9 0.002175 0.41 251.8 19.2 7.6 0.0023 0.0001 0.227 4.2 0.403 0.021 5.2

30% RAP Stress, psi. Strain in./in. TIA-1 285.4 0.002037 0.44A-2 293.7 0.002351 0.40A-3 295.2 0.002083 0.39 291.4 5.3 1.8 0.0022 0.0002 0.216 7.9 0.411 0.028 6.8

A-1 (FT) 272.6 0.002010 0.36A-2 (FT) 275.8 0.002091 0.40A-3 (FT) 268.8 0.001884 0.42 272.4 3.5 1.3 0.0020 0.0001 0.199 5.2 0.392 0.033 8.4

Virgin Stress, psi. Strain, in./in. TI avg std avg std diam strain % avg std. COVA-1 239.5322 0.002481 0.5399A-2 224.8722 0.002673 0.4675A-3 234.4407 0.002795 0.4652 232.9 7.4 3.2 0.0026 0.0002 0.265 6.0 0.491 0.042 8.7

A-1 (FT) 221.0975 0.002757 0.5175A-2 (FT) 226.0573 0.002964 0.4932A-3 (FT) 240.1466 0.00268 0.4980 229.1 9.9 4.3 0.0028 0.0001 0.280 5.2 0.503 0.013 2.6

10% RAP Stress, psi. Strain, in./in. TIA-1 251.6025 0.002604 0.4617A-2 267.4915 0.002451 0.4756A-3 260.5126 0.002497 0.5132 259.9 8.0 3.1 0.0025 0.0001 0.252 3.1 0.484 0.027 5.5

A-1 (FT) 234.4407 0.002848 0.4438A-2 (FT) 255.1578 0.002941 0.4552A-3 (FT) 259.8103 0.002711 0.4839 249.8 13.5 5.4 0.0028 0.0001 0.283 4.1 0.461 0.021 4.5

20% RAP Stress, psi. Strain, in./in. TIA-1 282.8098 0.002435 0.4847A-2 275.831 0.002458 0.4627A-3 258.625 0.002512 0.4589 272.4 12.4 4.6 0.0025 0.0000 0.247 1.6 0.469 0.014 3.0

A-1 (FT) 273.899 0.00268 0.4337A-2 (FT) 265.253 0.00255 0.4145A-3 (FT) 277.147 0.002543 0.4624 272.1 6.1 2.3 0.0026 0.0001 0.259 3.0 0.437 0.024 5.5

30% RAP Stress, psi. Strain, in./in. TIA-1 300.8495 0.002351 0.4425A-2 299.6205 0.002351 0.4493A-3 321.0399 0.002504 0.4475 307.2 12.0 3.9 0.0024 0.0001 0.240 3.7 0.446 0.004 0.8

A-1 (FT) 285.3556 0.002688 0.3914A-2 (FT) 303.2197 0.002458 0.4299A-3 (FT) 295.3824 0.002474 0.4377 294.7 9.0 3.0 0.0025 0.0001 0.254 5.1 0.420 0.025 5.9

4 in. IDT: PG 76-22

4 in. IDT: PG 64-22 Stress Strain

Stress strain TI

TI

111

Page 124: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

0% RAP IDT LTA-1: PG 64-22

0

50

100

150

200

250

300

350

0 0.002 0.004 0.006 0.008 0.01Strain x, in./in.

Stre

ss, p

si.

0% RAP IDT LTA-1-FT: PG 64-22

0

50

100

150

200

250

300

350

0 0.002 0.004 0.006 0.008 0.01Strain, in./in.

Stre

ss, p

si.

0% RAP IDT LTA-2: PG 64-22

0

50

100

150

200

250

300

350

0 0.002 0.004 0.006 0.008 0.01Strain, in./in.

Stre

ss, p

si.

0% RAP IDT LTA-2-FT: PG 64-22

0

50

100

150

200

250

300

350

0 0.002 0.004 0.006 0.008 0.01Strain, in./in.

Stre

ss, p

si.

0% RAP IDT LTA-3: PG 64-22

0

50

100

150

200

250

300

350

0 0.002 0.004 0.006 0.008 0.01Strain, in./in.

Stre

ss, p

si.

0% RAP IDT LTA-3-FT: PG 64-22

0

50

100

150

200

250

300

350

0 0.002 0.004 0.006 0.008 0.01Strain, in./in.

Stre

ss, p

si.

112

Page 125: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

10% RAP IDT LTA-1: PG 64-22

0

50

100

150

200

250

300

350

0 0.002 0.004 0.006 0.008 0.01Strain, in./in.

Stre

ss, p

si.

10% RAP IDT LTA-1-FT: PG 64-22

0

50

100

150

200

250

300

350

0 0.002 0.004 0.006 0.008 0.01Strain, in./in.

Stre

ss, p

si.

10% RAP IDT LTA-1: PG 64-22

0

50

100

150

200

250

300

350

0 0.002 0.004 0.006 0.008 0.01Strain, in./in.

Stre

ss, p

si.

10% RAP IDT LTA-2-FT: PG 64-22

0

50

100

150

200

250

300

350

0 0.002 0.004 0.006 0.008 0.01

Strain, in./in.

Stre

ss, p

si.

10% RAP IDT LTA-3: PG 64-22

0

50

100

150

200

250

300

350

0 0.002 0.004 0.006 0.008 0.01Strain, in./in.

Stre

ss, p

si.

10% RAP IDT LTA-3-FT: PG 64-22

0

50

100

150

200

250

300

350

0 0.002 0.004 0.006 0.008 0.01Strain, in./in.

Stre

ss, p

si.

113

Page 126: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

20% RAP IDT LTA-1: PG 64-22

0

50

100

150

200

250

300

350

0 0.002 0.004 0.006 0.008 0.01Strain, in./in.

Stre

ss, p

si.

20% RAP IDT LTA-1-FT: PG 64-22

0

50

100

150

200

250

300

350

0 0.002 0.004 0.006 0.008 0.01Strain, in./in.

Stre

ss, p

si.

20% RAP IDT LTA-2: PG 64-22

0

50

100

150

200

250

300

350

0 0.002 0.004 0.006 0.008 0.01

Strain, in./in.

Stre

ss, p

si.

20% RAP IDT LTA-2-FT: PG 64-22

0

50

100

150

200

250

300

350

0 0.002 0.004 0.006 0.008 0.01Strain, in./in.

Stre

ss, p

si.

20% RAP IDT LTA-3: PG 64-22

0

50

100

150

200

250

300

350

0 0.002 0.004 0.006 0.008 0.01

Strain, in./in.

Stre

ss, p

si.

20% RAP IDT LTA-3-FT: PG64-22

0

50

100

150

200

250

300

350

0 0.002 0.004 0.006 0.008 0.01

Strain, in./in.

Stre

ss, p

si.

114

Page 127: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

30% RAP IDT LTA-1: PG 64-22

0

50

100

150

200

250

300

350

0 0.002 0.004 0.006 0.008 0.01

Strain, in./in.

Stre

ss, p

si.

30% RAP IDT LTA-1-FT: PG 64-22

0

50

100

150

200

250

300

350

0 0.002 0.004 0.006 0.008 0.01

Strain, in./in.

Stre

ss, p

si.

30% RAP IDT LTA-2: PG 64-22

0

50

100

150

200

250

300

350

0 0.002 0.004 0.006 0.008 0.01

Strain, in./in.

Stre

ss, p

si.

30% RAP IDT LTA-2-FT: PG 64-22

0

50

100

150

200

250

300

350

0 0.002 0.004 0.006 0.008 0.01

30% RAP IDT LTA-3: PG 64-22

0

50

100

150

200

250

300

350

0 0.002 0.004 0.006 0.008 0.01

Strain, in./in.

Stre

ss, p

si.

30% RAP IDT LTA-3-FT: PG 64-22

0

50

100

150

200

250

300

350

0 0.002 0.004 0.006 0.008 0.01Strain, in./in.

Stre

ss, p

si.

115

Page 128: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

0% RAP IDT LTA-1: PG 76-22

0

50

100

150

200

250

300

350

0 0.002 0.004 0.006 0.008 0.01Strain, in./in.

Stre

ss, p

si.

0% RAP IDT LTA-1-FT: PG 76-22

0

50

100

150

200

250

300

350

0 0.002 0.004 0.006 0.008 0.01Strain, in./in.

Stre

ss, p

si.

0% RAP IDT LTA-2: PG 76-22

0

50

100

150

200

250

300

350

0 0.002 0.004 0.006 0.008 0.01Strain, in./in.

Stre

ss, p

si.

0% RAP IDT LTA-2-FT: PG 76-22

0

50

100

150

200

250

300

350

0 0.002 0.004 0.006 0.008 0.01Strain, in./in.

Stre

ss, p

si.

0% RAP IDT LTA-3: PG 76-22

0

50

100

150

200

250

300

350

0 0.002 0.004 0.006 0.008 0.01Strain, in./in.

Stre

ss, p

si.

0% RAP IDT LTA-3-FT: PG 76-22

0

50

100

150

200

250

300

350

0 0.002 0.004 0.006 0.008 0.01Strain, in./in.

Stre

ss, p

si.

116

Page 129: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

10% RAP IDT LTA-1: PG 76-22

0

50

100

150

200

250

300

350

0 0.002 0.004 0.006 0.008 0.01

Strain, in./in.

Stre

ss, p

si.

10% RAP IDT LTA-1-FT: PG 76-22

0

50

100

150

200

250

300

350

0 0.002 0.004 0.006 0.008 0.01Strain, in./in.

Stre

ss, p

si.

10% RAP IDT LTA-2: PG 76-22

0

50

100

150

200

250

300

350

0 0.002 0.004 0.006 0.008 0.01Strain, in./in.

Stre

ss, p

si.

10% RAP IDT LTA-2-FT: PG 76-22

0

50

100

150

200

250

300

350

0 0.002 0.004 0.006 0.008 0.01Strain, in./in.

Stre

ss, p

si.

10% RAP IDT LTA-3: PG 76-22

0

50

100

150

200

250

300

350

0 0.002 0.004 0.006 0.008 0.01Strain, in./in.

Stre

ss, p

si.

10% RAP IDT LTA-3-FT: PG 76-22

0

50

100

150

200

250

300

350

0 0.002 0.004 0.006 0.008 0.01Strain, in./in.

Stre

ss, p

si.

117

Page 130: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

20% RAP IDT LTA-1: PG 76-22

0

50

100

150

200

250

300

350

0 0.002 0.004 0.006 0.008 0.01

Strain, in./in.

Stre

ss, p

si.

20% RAP IDT LTA-1-FT: PG 76-22

0

50

100

150

200

250

300

350

0 0.002 0.004 0.006 0.008 0.01Strain, in./in.

Stre

ss, p

si.

20% RAP IDT LTA-2: PG 76-22

0

50

100

150

200

250

300

350

0 0.002 0.004 0.006 0.008 0.01Strain, in./in.

Stre

ss, p

si.

20% RAP IDT LTA-2-FT: PG 76-22

0

50

100

150

200

250

300

350

0 0.002 0.004 0.006 0.008 0.01Strain, in./in.

Stre

ss, i

n.

20% RAP IDT LTA-3: PG 76-22

0

50

100

150

200

250

300

350

0 0.002 0.004 0.006 0.008 0.01Strain, in./in.

Stre

ss, p

si.

20% RAP IDT LTA-3-FT: PG 76-22

0

50

100

150

200

250

300

350

0 0.002 0.004 0.006 0.008 0.01Strain, in./in.

Stre

ss, p

si.

118

Page 131: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

30% RAP IDT LTA-1: PG 76-22

0

50

100

150

200

250

300

350

0 0.002 0.004 0.006 0.008 0.01

Strain, in./in.

Stre

ss, p

si.

30% RAP IDT LTA-1-FT: PG 76-22

0

50

100

150

200

250

300

350

0 0.002 0.004 0.006 0.008 0.01Strain, in./in.

Stre

ss, p

si.

30% RAP IDT LTA-2: PG 76-22

0

50

100

150

200

250

300

350

0 0.002 0.004 0.006 0.008 0.01Strain, in./in.

Stre

ss, p

si.

30% RAP IDT LTA-2-FT: PG 76-22

0

50

100

150

200

250

300

350

0 0.002 0.004 0.006 0.008 0.01Strain, in./in.

Stre

ss, p

si.

30% RAP IDT LTA-3: PG 76-22

0

50

100

150

200

250

300

350

0 0.002 0.004 0.006 0.008 0.01Strain, in./in.

Stre

ss, p

si.

30% RAP IDT LTA-3-FT: PG 76-22

0

50

100

150

200

250

300

350

0 0.002 0.004 0.006 0.008 0.01Strain, in./in.

Stre

ss, p

si.

119

Page 132: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Appendix C: Semi-Circular Bending Test Data

120

Page 133: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Frequency Sweep Test Limestone PG 64-22 0% RAP FS-1 Long-term AgedFrequency (Hz) T = 1 / F t2 t1 ? t = t2 - t1 θ = ((t2 - t1) / T) * 360 Y2 Y1 ? Y

0.01 100 172.05 154.05 18.00 64.80 96.74 82.58 14.160.02 50 388.11 379.61 8.50 61.20 117.07 101.70 15.370.05 20 556.58 555.18 1.40 25.20 127.54 113.04 14.500.1 10 691.53 690.33 1.20 43.20 131.92 117.83 14.090.2 5 808.63 808.08 0.55 39.60 133.44 121.17 12.270.5 2 916.13 916.01 0.12 21.60 132.78 124.58 8.201 1 1019.95 1019.89 0.06 21.60 132.06 123.20 8.852 0.5 1122.10 1122.03 0.07 50.40 131.13 123.62 7.515 0.2 1223.23 1223.22 0.01 10.80 130.33 126.13 4.20

10 0.1 1324.01 1324.01 0.01 21.60 129.78 124.27 5.51

0% RAP FS-2 Long-term AgedFrequency (Hz) T = 1 / F t2 t1 ? t = t2 - t1 θ = ((t2 - t1) / T) * 360 Y2 Y1 ? Y

0.01 100 170.40 151.90 18.50 66.60 101.53 89.89 11.650.02 50 386.26 377.26 9.00 64.80 123.20 110.59 12.610.05 20 555.76 552.96 2.80 50.38 134.88 121.58 13.300.1 10 689.79 688.29 1.50 54.00 139.95 127.51 12.440.2 5 806.89 806.34 0.55 39.60 141.81 130.95 10.850.5 2 914.44 914.28 0.16 28.80 141.50 133.44 8.061 1 1018.24 1018.18 0.06 21.60 141.19 132.75 8.442 0.5 1120.37 1120.31 0.06 46.08 140.60 133.95 6.655 0.2 1221.50 1221.49 0.01 14.40 139.95 133.85 6.10

10 0.1 1322.27 1322.26 0.01 32.40 139.50 134.61 4.89

0% RAP FS-3 Long-term AgedFrequency (Hz) T = 1 / F t2 t1 ? t = t2 - t1 θ = ((t2 - t1) / T) * 360 Y2 Y1 ? Y

0.01 100 171.67 150.67 21.00 75.60 90.96 79.34 11.610.02 50 387.10 377.60 9.50 68.40 114.42 101.91 12.510.05 20 556.89 554.49 2.40 43.20 127.03 114.56 12.470.1 10 691.17 690.17 1.00 36.00 132.99 120.69 12.300.2 5 808.38 807.93 0.45 32.40 135.50 124.65 10.850.5 2 915.73 915.61 0.12 21.60 135.43 128.13 7.301 1 1019.59 1019.52 0.07 23.40 135.05 126.65 8.412 0.5 1121.84 1121.77 0.07 50.40 134.47 127.44 7.035 0.2 1222.98 1222.97 0.01 21.60 133.71 127.58 6.13

10 0.1 1323.78 1323.77 0.01 36.00 133.09 128.58 4.51

121

Page 134: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

0% RAP FS-1 UnagedFrequency (Hz) T = 1 / F t2 t1 ? t = t2 - t1 θ = ((t2 - t1) / T) * 360 Y2 Y1 ? Y

0.01 100 177.00 153.99 23.01 82.83 50.63 47.06 3.570.02 50 389.41 379.41 10.00 72.00 62.19 59.10 3.090.05 20 557.50 554.50 3.00 54.00 71.02 67.17 3.850.1 10 691.53 690.03 1.50 54.00 75.24 71.82 3.420.2 5 808.19 807.64 0.54 39.24 77.30 73.83 3.470.5 2 915.70 915.44 0.26 46.80 77.90 75.78 2.121 1 1019.42 1019.36 0.06 21.60 78.30 75.86 2.442 0.5 1121.45 1121.40 0.05 36.00 78.33 76.50 1.835 0.2 1222.90 1222.88 0.02 36.00 78.43 77.60 0.83

10 0.1 1323.63 1323.61 0.02 72.00 78.38 77.00 1.38

0% RAP FS-2 UnagedFrequency (Hz) T = 1 / F t2 t1 ? t = t2 - t1 θ = ((t2 - t1) / T) * 360 Y2 Y1 ? Y

0.01 100 176.09 152.55 23.54 84.74 51.90 47.94 3.960.02 50 389.72 379.22 10.50 75.60 65.37 60.55 4.820.05 20 556.60 553.79 2.81 50.58 72.94 68.30 4.640.1 10 691.11 689.71 1.40 50.40 76.47 72.80 3.670.2 5 808.40 807.50 0.90 64.80 78.30 74.43 3.870.5 2 915.84 915.60 0.24 43.20 78.71 75.92 2.791 1 1019.62 1019.47 0.15 54.00 79.01 77.00 2.012 0.5 1121.67 1121.62 0.05 36.00 78.96 77.31 1.655 0.2 1222.75 1222.72 0.03 54.00 78.77 77.85 0.92

10 0.1 1323.50 1323.49 0.01 36.00 78.67 77.35 1.32

0% RAP FS-3 UnagedFrequency (Hz) T = 1 / F t2 t1 ? t = t2 - t1 θ = ((t2 - t1) / T) * 360 Y2 Y1 ? Y

0.01 100 178.20 156.20 22.00 79.20 66.08 62.87 3.210.02 50 387.07 378.07 9.00 64.80 84.24 80.36 3.880.05 20 556.70 554.09 2.61 46.98 94.71 90.20 4.510.1 10 691.34 690.44 0.90 32.40 100.30 95.74 4.560.2 5 808.26 808.06 0.20 14.40 102.99 99.59 3.400.5 2 916.04 915.86 0.18 32.40 104.25 100.88 3.371 1 1019.78 1019.75 0.03 10.80 104.66 102.44 2.222 0.5 1121.83 1121.80 0.03 21.60 105.20 102.65 2.555 0.2 1222.93 1222.92 0.01 18.00 104.97 103.16 1.81

10 0.1 1323.54 1323.53 0.01 36.00 104.15 103.55 0.60

122

Page 135: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

10% RAP FS-1 Long-term AgedFrequency (Hz) T = 1 / F t2 t1 ? t = t2 - t1 θ = ((t2 - t1) / T) * 360 Y2 Y1 ? Y

0.01 100 173.27 155.27 18.00 64.80 62.46 55.85 6.610.02 50 388.21 378.71 9.50 68.41 78.93 71.45 7.480.05 20 556.92 555.12 1.80 32.40 89.54 80.96 8.580.1 10 692.15 690.35 1.80 64.80 93.37 85.99 7.370.2 5 809.01 808.26 0.75 54.00 95.30 87.89 7.410.5 2 916.19 916.07 0.12 21.60 95.40 90.34 5.061 1 1020.14 1020.04 0.10 36.00 95.47 89.37 6.102 0.5 1122.19 1122.18 0.02 11.52 95.40 89.92 5.485 0.2 1223.39 1223.37 0.02 28.80 95.06 91.16 3.89

10 0.1 1324.13 1324.13 0.01 32.40 94.92 91.54 3.38

10% RAP FS-2 Long-term AgedFrequency (Hz) T = 1 / F t2 t1 ? t = t2 - t1 θ = ((t2 - t1) / T) * 360 Y2 Y1 ? Y

0.01 100 173.11 153.61 19.50 70.20 54.19 44.55 9.650.02 50 388.55 379.55 9.00 64.80 70.21 60.05 10.160.05 20 557.54 554.54 3.00 54.00 78.38 68.77 9.610.1 10 691.18 690.08 1.10 39.60 83.34 74.42 8.920.2 5 808.83 808.18 0.65 46.80 85.10 76.55 8.540.5 2 916.04 915.92 0.12 21.60 85.17 78.76 6.411 1 1019.95 1019.86 0.09 32.76 85.06 79.34 5.722 0.5 1122.08 1122.05 0.03 24.48 84.75 78.52 6.245 0.2 1223.29 1223.28 0.00 7.20 84.37 78.97 5.41

10 0.1 1324.07 1324.06 0.01 32.40 84.20 79.93 4.27

10% RAP FS-3 Long-term AgedFrequency (Hz) T = 1 / F t2 t1 ? t = t2 - t1 θ = ((t2 - t1) / T) * 360 Y2 Y1 ? Y

0.01 100 171.91 154.41 17.50 63.00 48.37 39.41 8.960.02 50 385.34 378.84 6.50 46.81 62.60 51.78 10.820.05 20 556.18 554.38 1.80 32.38 70.42 60.33 10.090.1 10 691.05 690.35 0.70 25.20 73.63 63.19 10.440.2 5 808.63 808.13 0.50 36.00 74.45 65.67 8.790.5 2 915.96 915.84 0.12 21.60 73.76 65.56 8.201 1 1019.87 1019.78 0.09 32.40 72.90 65.53 7.372 0.5 1122.02 1121.97 0.05 36.00 72.08 65.43 6.655 0.2 1223.16 1223.14 0.02 28.80 71.08 66.29 4.79

10 0.1 1323.97 1323.95 0.01 46.80 70.32 65.15 5.17

123

Page 136: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

10% RAP FS-1 UnagedFrequency (Hz) T = 1 / F t2 t1 ? t = t2 - t1 θ = ((t2 - t1) / T) * 360 Y2 Y1 ? Y

0.01 100 176.24 154.74 21.50 77.40 54.89 51.13 3.760.02 50 386.64 380.14 6.50 46.80 71.14 66.59 4.550.05 20 557.26 554.46 2.80 50.40 80.26 75.58 4.680.1 10 691.12 689.92 1.20 43.20 84.94 80.12 4.820.2 5 808.25 807.50 0.75 54.00 87.40 83.54 3.860.5 2 915.86 915.54 0.32 57.60 88.15 85.16 2.991 1 1019.53 1019.44 0.09 32.40 88.58 86.19 2.392 0.5 1121.53 1121.48 0.05 36.00 88.82 86.05 2.775 0.2 1222.69 1222.68 0.01 18.00 88.68 87.35 1.33

10 0.1 1323.50 1323.50 0.00 0.00 88.87 86.77 2.10

10% RAP FS-2 UnagedFrequency (Hz) T = 1 / F t2 t1 ? t = t2 - t1 θ = ((t2 - t1) / T) * 360 Y2 Y1 ? Y

0.01 100 176.51 153.51 23.00 82.80 57.47 53.57 3.900.02 50 388.40 377.41 10.99 79.13 71.87 67.25 4.620.05 20 557.46 554.86 2.60 46.80 80.00 75.07 4.930.1 10 690.87 689.57 1.30 46.80 83.82 79.15 4.670.2 5 808.40 807.60 0.80 57.60 85.46 81.50 3.960.5 2 915.56 915.12 0.44 79.20 85.87 82.93 2.941 1 1019.39 1019.29 0.10 36.00 85.92 84.01 1.912 0.5 1121.41 1121.37 0.04 28.80 85.72 83.19 2.535 0.2 1222.54 1222.51 0.03 54.00 85.37 84.18 1.19

10 0.1 1323.31 1323.29 0.02 72.00 85.06 83.27 1.79

10% RAP FS-3 UnagedFrequency (Hz) T = 1 / F t2 t1 ? t = t2 - t1 θ = ((t2 - t1) / T) * 360 Y2 Y1 ? Y

0.01 100 174.88 155.38 19.50 70.20 44.15 41.65 2.500.02 50 388.28 380.28 8.00 57.60 56.38 53.69 2.690.05 20 556.65 554.64 2.01 36.18 63.38 60.08 3.300.1 10 691.28 689.38 1.90 68.40 66.80 63.89 2.910.2 5 807.94 807.19 0.75 54.00 68.68 66.17 2.510.5 2 915.52 915.34 0.18 32.40 69.35 67.61 1.741 1 1019.28 1019.14 0.14 50.40 69.78 67.73 2.052 0.5 1121.27 1121.18 0.09 64.80 69.71 68.60 1.115 0.2 1222.39 1222.36 0.03 54.00 69.92 68.77 1.15

10 0.1 1323.13 1323.12 0.01 36.00 70.09 69.18 0.91

124

Page 137: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

20% RAP FS-1 Long-term AgedFrequency (Hz) T = 1 / F t2 t1 ? t = t2 - t1 θ = ((t2 - t1) / T) * 360 Y2 Y1 ? Y

0.01 100 173.45 153.45 20.00 72.00 73.35 60.95 12.400.02 50 386.4 379.40 7.00 50.40 85.03 72.35 12.680.05 20 556.9 554.10 2.80 50.40 91.13 79.41 11.720.1 10 690.58 689.57 1.01 36.36 93.33 82.93 10.400.2 5 807.93 807.23 0.70 50.40 93.71 84.20 9.510.5 2 915.37 915.25 0.12 21.60 92.75 84.90 7.851 1 1019.2 1019.12 0.08 28.80 91.89 84.13 7.762 0.5 1121.27 1121.27 0.00 0.00 91.20 84.44 6.765 0.2 1222.43 1222.40 0.03 54.00 90.09 85.30 4.79

10 0.1 1323.21 1323.20 0.01 36.00 89.61 85.30 4.31

20% RAP FS-1 Long-term AgedFrequency (Hz) T = 1 / F t2 t1 ? t = t2 - t1 θ = ((t2 - t1) / T) * 360 Y2 Y1 ? Y

0.01 100 172.78 152.78 20.00 72.00 56.57 46.30 10.270.02 50 385.68 379.68 6.00 43.20 71.80 61.84 9.960.05 20 556.98 553.98 3.00 54.05 80.24 69.53 10.710.1 10 691.26 689.96 1.30 46.80 83.82 73.90 9.920.2 5 808.26 807.71 0.55 39.60 84.96 76.73 8.230.5 2 915.64 915.46 0.18 32.40 84.96 78.00 6.961 1 1019.45 1019.41 0.04 14.40 84.65 78.35 6.302 0.5 1121.56 1121.54 0.02 14.40 83.31 78.17 5.145 0.2 1222.76 1222.73 0.03 54.00 83.65 79.75 3.90

10 0.1 1323.50 1323.49 0.01 36.00 83.50 79.62 3.88

20% RAP FS-3 Long-term AgedFrequency (Hz) T = 1 / F t2 t1 ? t = t2 - t1 θ = ((t2 - t1) / T) * 360 Y2 Y1 ? Y

0.01 100 172.03 156.03 16.00 57.60 94.23 81.10 13.130.02 50 385.99 378.49 7.50 54.00 111.28 97.09 14.190.05 20 557.72 555.32 2.40 43.20 120.41 106.77 13.640.1 10 691.22 690.02 1.20 43.20 124.30 111.56 12.740.2 5 808.55 808.25 0.30 21.60 125.40 114.52 10.880.5 2 916.13 916.03 0.10 18.00 124.80 114.56 10.241 1 1020.00 1019.91 0.09 32.40 124.10 115.18 8.922 0.5 1122.15 1122.14 0.01 7.20 123.30 115.93 7.375 0.2 1223.31 1223.29 0.02 36.00 122.41 116.66 5.75

10 0.1 1324.18 1324.18 0.00 0.00 121.93 116.17 5.76

125

Page 138: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

20% RAP FS-1 UnagedFrequency (Hz) T = 1 / F t2 t1 ? t = t2 - t1 θ = ((t2 - t1) / T) * 360 Y2 Y1 ? Y

0.01 100 173.18 143.68 29.50 106.20 35.48 22.63 12.850.02 50 391.24 379.24 12.00 86.40 40.96 35.38 5.580.05 20 558.51 555.31 3.20 57.60 44.96 39.80 5.160.1 10 692.30 690.90 1.40 50.40 45.99 41.41 4.580.2 5 809.38 808.83 0.55 39.60 45.99 42.45 3.540.5 2 916.81 916.50 0.31 55.80 45.82 43.17 2.651 1 1020.64 1020.48 0.16 57.60 45.68 44.09 1.592 0.5 1122.75 1122.68 0.07 50.40 45.58 43.75 1.835 0.2 1223.85 1223.80 0.05 90.00 45.37 44.78 0.59

10 0.1 1324.59 1324.57 0.02 72.00 44.03 44.17 -0.14

20% RAP FS-2 UnagedFrequency (Hz) T = 1 / F t2 t1 ? t = t2 - t1 θ = ((t2 - t1) / T) * 360 Y2 Y1 ? Y

0.01 100 176.37 154.37 22.00 79.20 50.39 46.30 4.090.02 50 387.66 378.66 9.00 64.80 60.48 56.34 4.140.05 20 556.69 553.89 2.80 50.40 66.01 61.84 4.170.1 10 691.08 689.69 1.39 50.04 68.57 64.41 4.160.2 5 808.09 807.35 0.74 53.28 69.61 66.27 3.340.5 2 915.58 915.32 0.26 46.80 69.80 67.29 2.511 1 1019.20 1019.67 -0.47 -169.20 69.83 68.32 1.512 0.5 1121.31 1121.27 0.04 28.80 69.71 67.46 2.255 0.2 1222.37 1222.36 0.01 18.00 69.40 68.64 0.76

10 0.1 1323.21 1323.21 0.00 0.00 69.34 67.88 1.46

20% RAP FS-3 UnagedFrequency (Hz) T = 1 / F t2 t1 ? t = t2 - t1 θ = ((t2 - t1) / T) * 360 Y2 Y1 ? Y

0.01 100 175.87 152.87 23.00 82.80 57.98 53.78 4.200.02 50 388.68 378.18 10.50 75.60 75.69 71.25 4.440.05 20 557.50 554.70 2.80 50.40 85.30 79.62 5.680.1 10 690.89 689.29 1.60 57.60 89.85 84.86 4.990.2 5 808.13 807.64 0.49 35.28 92.02 87.23 4.790.5 2 915.54 915.36 0.18 32.40 92.68 89.30 3.381 1 1019.25 1019.16 0.09 32.40 92.92 89.72 3.202 0.5 1121.33 1121.33 0.00 0.00 93.02 91.82 1.205 0.2 1222.47 1222.45 0.02 36.00 92.54 90.64 1.90

10 0.1 1323.32 1323.31 0.01 36.00 92.71 91.05 1.66

126

Page 139: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

30% RAP FS-1 Long-term AgedFrequency (Hz) T = 1 / F t2 t1 ? t = t2 - t1 θ = ((t2 - t1) / T) * 360 Y2 Y1 ? Y

0.01 100 168.28 153.78 14.50 52.20 69.32 62.43 6.890.02 50 385.19 380.19 5.00 35.97 82.93 75.00 7.930.05 20 557.19 554.40 2.79 50.22 90.27 81.90 8.370.1 10 691.13 690.03 1.10 39.60 93.54 85.55 7.990.2 5 808.10 807.76 0.34 24.48 94.64 87.72 6.920.5 2 915.80 915.65 0.15 27.00 93.95 89.30 4.651 1 1019.70 1019.63 0.07 25.20 94.06 88.99 5.072 0.5 1121.80 1121.73 0.07 50.40 93.70 88.68 5.025 0.2 1222.96 1222.93 0.03 54.00 93.26 89.96 3.30

10 0.1 1323.73 1323.73 0.00 0.00 93.13 89.65 3.48

30% RAP FS-2 Long-term AgedFrequency (Hz) T = 1 / F t2 t1 ? t = t2 - t1 θ = ((t2 - t1) / T) * 360 Y2 Y1 ? Y

0.01 100 172.37 152.37 20.00 72.00 58.43 48.90 9.530.02 50 388.28 379.28 9.00 64.80 68.30 58.98 9.320.05 20 557.73 554.53 3.20 57.60 73.73 64.46 9.270.1 10 691.43 690.03 1.40 50.40 75.76 66.84 8.920.2 5 808.42 808.07 0.35 25.20 76.24 68.18 8.060.5 2 916.02 915.80 0.22 39.42 75.18 69.08 6.101 1 1019.93 1019.82 0.11 39.60 74.60 68.40 6.202 0.5 1122.04 1121.99 0.05 36.00 74.14 68.53 5.615 0.2 1223.16 1223.13 0.03 54.00 73.32 68.66 4.66

10 0.1 1323.94 1323.93 0.01 36.00 72.87 69.56 3.31

30% RAP FS-3 Long-term AgedFrequency (Hz) T = 1 / F t2 t1 ? t = t2 - t1 θ = ((t2 - t1) / T) * 360 Y2 Y1 ? Y

0.01 100 173.06 152.56 20.50 73.80 81.76 67.53 14.230.02 50 387.02 381.02 6.00 43.20 91.81 79.31 12.500.05 20 556.89 555.29 1.60 28.80 95.64 84.89 10.750.1 10 691.27 690.27 1.00 36.00 97.23 87.13 10.100.2 5 808.53 808.03 0.50 36.00 97.15 89.09 8.060.5 2 916.06 915.90 0.16 28.80 95.64 89.85 5.791 1 1019.91 1019.81 0.10 36.00 95.46 89.96 5.502 0.5 1122.04 1121.97 0.07 50.40 94.71 88.71 6.005 0.2 1223.24 1223.22 0.02 36.00 93.95 88.71 5.24

10 0.1 1324.03 1324.02 0.01 36.00 93.13 88.61 4.52

127

Page 140: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

30% RAP FS-1 UnagedFrequency (Hz) T = 1 / F t2 t1 ? t = t2 - t1 θ = ((t2 - t1) / T) * 360 Y2 Y1 ? Y

0.01 100 172.73 153.73 19.00 68.40 54.36 51.75 2.610.02 50 387.63 378.63 9.00 64.80 65.15 61.50 3.650.05 20 556.17 554.17 2.00 36.00 72.93 68.29 4.640.1 10 690.13 689.53 0.60 21.60 76.14 71.80 4.340.2 5 807.78 807.13 0.65 46.80 77.73 73.52 4.210.5 2 915.24 915.12 0.12 22.14 78.00 75.45 2.551 1 1018.98 1018.88 0.10 36.00 78.20 75.45 2.752 0.5 1121.09 1121.02 0.07 50.40 78.27 76.58 1.695 0.2 1222.18 1222.16 0.02 36.00 78.17 76.59 1.58

10 0.1 1322.95 1322.94 0.01 36.00 77.89 76.80 1.09

30% RAP FS-2 UnagedFrequency (Hz) T = 1 / F t2 t1 ? t = t2 - t1 θ = ((t2 - t1) / T) * 360 Y2 Y1 ? Y

0.01 100 170.47 154.50 15.97 57.49 69.87 59.32 10.550.02 50 388.36 378.86 9.50 68.40 81.89 72.35 9.540.05 20 556.39 553.79 2.60 46.80 88.50 79.76 8.740.1 10 690.76 689.26 1.50 54.00 91.09 82.20 8.890.2 5 807.86 807.36 0.50 36.00 91.85 84.09 7.760.5 2 915.54 915.36 0.18 32.40 91.23 85.86 5.371 1 1019.26 1019.11 0.15 54.00 90.64 86.68 3.962 0.5 1121.27 1121.22 0.05 36.00 89.99 85.34 4.655 0.2 1222.42 1222.42 0.00 0.00 89.09 86.92 2.17

10 0.1 1323.20 1323.18 0.02 72.00 88.65 85.41 3.24

30% RAP FS-3 UnagedFrequency (Hz) T = 1 / F t2 t1 ? t = t2 - t1 θ = ((t2 - t1) / T) * 360 Y2 Y1 ? Y

0.01 100 167.97 151.47 16.50 59.40 48.85 44.09 4.760.02 50 386.77 377.77 9.00 64.80 60.80 55.19 5.610.05 20 556.62 552.82 3.80 68.40 67.39 62.11 5.280.1 10 689.84 688.74 1.10 39.60 69.87 65.18 4.690.2 5 807.59 806.89 0.70 50.40 70.93 66.46 4.470.5 2 914.89 914.76 0.13 23.40 71.49 68.46 3.031 1 1018.61 1018.57 0.04 14.40 71.45 69.04 2.412 0.5 1120.77 1120.71 0.06 43.20 71.28 68.87 2.415 0.2 1221.89 1221.86 0.03 54.00 71.11 69.63 1.48

10 0.1 1322.64 1322.64 0.00 0.00 71.04 68.87 2.17

128

Page 141: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Limestone PG 76-22 0% RAP FS-1 Long-term AgedFrequency (Hz) T = 1 / F t2 t1 ? t = t2 - t1 θ = ((t2 - t1) / T) * 360 Y2 Y1 ? Y

0.01 100 173.90 156.00 17.90 64.44 66.70 54.20 12.500.02 50 388.90 381.90 7.00 50.40 78.60 68.10 10.500.05 20 559.10 556.30 2.80 50.40 84.00 73.80 10.200.1 10 692.50 691.20 1.30 46.80 87.10 77.50 9.600.2 5 809.20 808.80 0.40 28.80 86.70 77.00 9.700.5 2 916.90 916.60 0.30 54.00 89.60 79.10 10.501 1 1020.60 1020.50 0.10 36.00 84.60 80.59 4.022 0.5 1122.73 1122.68 0.05 35.93 84.31 78.48 5.825 0.2 1223.85 1223.84 0.02 35.82 82.41 77.93 4.48

10 0.1 1324.68 1324.67 0.01 36.36 81.86 78.98 2.88

0% RAP FS-2 Long-term AgedFrequency (Hz) T = 1 / F t2 t1 ? t = t2 - t1 θ = ((t2 - t1) / T) * 360 Y2 Y1 ? Y

0.01 100 174.33 157.33 17.00 61.20 69.28 58.29 10.990.02 50 390.22 380.72 9.50 68.40 83.89 72.52 11.370.05 20 557.92 555.12 2.80 50.40 91.58 79.90 11.680.1 10 692.41 690.81 1.60 57.60 94.06 84.55 9.510.2 5 809.15 808.65 0.50 36.00 94.71 85.06 9.650.5 2 916.62 916.48 0.14 25.02 93.61 85.96 7.651 1 1020.45 1020.34 0.11 39.60 92.88 86.61 6.272 0.5 1122.54 1122.48 0.06 46.08 92.33 85.86 6.485 0.2 1223.65 1223.64 0.01 18.00 91.20 85.68 5.51

10 0.1 1324.44 1324.43 0.01 25.20 90.47 86.65 3.83

0% RAP FS-2 Long-term AgedFrequency (Hz) T = 1 / F t2 t1 ? t = t2 - t1 θ = ((t2 - t1) / T) * 360 Y2 Y1 ? Y

0.01 100 176.21 157.21 19.00 68.40 72.08 61.33 10.750.02 50 388.56 380.06 8.50 61.20 82.76 71.77 10.990.05 20 557.97 555.17 2.80 50.35 88.78 77.35 11.440.1 10 692.13 690.73 1.40 50.40 90.16 80.38 9.790.2 5 808.89 808.54 0.35 25.13 90.92 81.34 9.580.5 2 914.44 914.26 0.18 32.40 89.03 81.89 7.131 1 1020.30 1020.14 0.16 57.60 88.78 82.34 6.442 0.5 1122.36 1122.30 0.06 43.20 88.13 81.89 6.245 0.2 1223.46 1223.43 0.03 46.80 87.27 82.82 4.44

10 0.1 1324.30 1324.29 0.01 36.00 86.68 82.65 4.03

129

Page 142: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

0% RAP FS-1 UnagedFrequency (Hz) T = 1 / F t2 t1 ? t = t2 - t1 θ = ((t2 - t1) / T) * 360 Y2 Y1 ? Y

0.01 100 169.27 153.27 15.9998 57.60 67.04 54.50 12.540.02 50 387.24 380.24 6.9998 50.40 82.89 69.70 13.200.05 20 557.03 554.63 2.4000 43.20 91.51 78.62 12.890.1 10 690.97 689.97 1.0000 36.00 95.19 83.27 11.920.2 5 808.25 807.85 0.4000 28.80 96.40 85.96 10.440.5 2 915.83 915.55 0.2800 50.41 952.64 87.51 865.131 1 1019.60 1019.48 0.1200 43.20 95.02 87.65 7.372 0.5 1121.63 1121.59 0.0402 28.94 94.30 88.16 6.135 0.2 1222.72 1222.71 0.0121 21.78 93.13 88.41 4.72

10 0.1 1323.47 1323.46 0.0088 31.68 92.33 88.54 3.79

0% RAP FS-2 UnagedFrequency (Hz) T = 1 / F t2 t1 ? t = t2 - t1 θ = ((t2 - t1) / T) * 360 Y2 Y1 ? Y

0.01 100 171.87 157.87 14.00 50.40 62.61 53.64 8.970.02 50 386.00 379.00 7.00 50.40 72.13 63.07 9.070.05 20 557.24 554.84 2.40 43.20 76.69 68.25 8.440.1 10 691.00 690.10 0.90 32.40 78.67 71.07 7.600.2 5 808.36 808.06 0.30 21.60 78.91 72.13 6.780.5 2 916.05 915.89 0.16 28.80 78.14 73.34 4.801 1 1019.89 1019.75 0.14 48.96 77.66 73.75 3.912 0.5 1121.98 1121.91 0.07 50.40 77.08 72.98 4.105 0.2 1223.11 1223.09 0.02 36.00 76.45 73.05 3.40

10 0.1 1323.86 1323.85 0.01 46.80 75.94 73.17 2.77

0% RAP FS-3 UnagedFrequency (Hz) T = 1 / F t2 t1 ? t = t2 - t1 θ = ((t2 - t1) / T) * 360 Y2 Y1 ? Y

0.01 100 171.049 151.049 20 72 55.331 46.683 8.6480.02 50 384.96 378.461 6.499 46.7928 66.631 57.467 9.1640.05 20 556.268 554.668 1.6 28.8 72.523 63.496 9.0270.1 10 691.017 689.917 1.1 39.6 74.865 67.217 7.6480.2 5 808.486 807.736 0.75 54 75.141 68.423 6.7180.5 2 915.581 915.54 0.041 7.38 75.003 69.284 5.7191 1 1019.556 1019.436 0.12 43.2 74.624 69.215 5.4092 0.5 1121.621 1121.571 0.05 36 74.073 69.387 4.6865 0.2 1222.687 1222.669 0.018 32.4 73.315 69.835 3.48

10 0.1 1323.556 1323.554 0.002 7.2 72.867 69.801 3.066

130

Page 143: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

10% RAP FS-1 Long-term AgedFrequency (Hz) T = 1 / F t2 t1 ? t = t2 - t1 θ = ((t2 - t1) / T) * 360 Y2 Y1 ? Y

0.01 100 170.56 157.06 13.50 48.60 69.41 47.39 14.680.02 50 388.00 380.00 8.00 57.60 83.31 61.03 14.850.05 20 556.50 555.10 1.40 25.20 90.08 69.46 13.750.1 10 691.07 690.27 0.80 28.80 91.89 73.54 12.230.2 5 808.82 808.37 0.45 32.40 91.58 73.85 11.820.5 2 916.32 916.08 0.24 43.20 89.51 75.30 9.471 1 1020.03 1019.93 0.10 36.00 87.96 74.21 9.162 0.5 1122.07 1122.05 0.02 17.93 86.82 80.62 4.135 0.2 1223.24 1223.21 0.03 57.60 84.55 74.62 6.62

10 0.1 1324.05 1324.04 0.01 46.80 83.26 75.25 5.34

10% RAP FS-2 Long-term AgedFrequency (Hz) T = 1 / F t2 t1 ? t = t2 - t1 θ = ((t2 - t1) / T) * 360 Y2 Y1 ? Y

0.01 100 169.75 154.75 15.00 54.00 84.03 63.88 13.440.02 50 386.24 381.24 5.00 36.00 99.02 79.64 12.920.05 20 558.67 555.47 3.20 57.60 106.10 87.96 12.090.1 10 691.81 690.41 1.40 50.36 108.32 90.49 11.890.2 5 808.70 808.55 0.15 10.80 108.01 91.83 10.780.5 2 916.52 916.32 0.20 36.00 106.05 92.76 8.851 1 1020.25 1020.18 0.07 25.20 104.44 92.35 8.062 0.5 1122.33 1122.30 0.03 18.00 103.15 92.71 6.965 0.2 1223.46 1223.45 0.01 21.60 101.39 93.13 5.51

10 0.1 1324.26 1324.26 0.00 14.40 100.10 93.33 4.51

10% RAP FS-3 Long-term AgedFrequency (Hz) T = 1 / F t2 t1 ? t = t2 - t1 θ = ((t2 - t1) / T) * 360 Y2 Y1 ? Y

0.01 100 168.69 152.19 16.50 59.40 127.13 103.52 15.740.02 50 385.06 380.56 4.50 32.41 141.08 119.95 14.090.05 20 556.79 555.59 1.20 21.60 147.85 126.30 14.370.1 10 691.39 690.49 0.90 32.40 149.56 131.47 12.060.2 5 808.58 808.28 0.30 21.60 148.84 132.25 11.060.5 2 916.41 916.31 0.10 18.00 146.46 133.44 8.681 1 1020.24 1020.14 0.10 36.00 144.96 132.45 8.342 0.5 1122.39 1122.35 0.05 32.40 143.51 137.62 3.935 0.2 1223.50 1223.49 0.01 25.20 141.70 136.17 3.69

10 0.1 1324.31 1324.30 0.01 25.20 140.36 132.82 5.03

131

Page 144: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

10% RAP FS-1 UnagedFrequency (Hz) T = 1 / F t2 t1 ? t = t2 - t1 θ = ((t2 - t1) / T) * 360 Y2 Y1 ? Y

0.01 100 167.245 150.245 17 61.2 60.18869 49.474 10.714690.02 50 384.253 377.253 7 50.4 72.316 61.567 10.7490.05 20 554.205 551.405 2.8 50.4 78.621 67.872 10.7490.1 10 688.06 687.06 1 36 81.14 71.661 9.4790.2 5 805.306 804.706 0.6 43.2 81.791 73.419 8.3720.5 2 912.605 912.545 0.06 10.8 80.895 74.934 5.9611 1 1016.623 1016.443 0.18 64.8 80.447 75.865 4.5822 0.5 1118.652 1118.64 0.012 8.64 79.999 75.865 4.1345 0.2 1219.804 1219.786 0.018 32.4 79.2066 76.933 2.2736

10 0.1 1320.606 1320.598 0.008 28.8 78.414 75.727 2.687

10% RAP FS-2 UnagedFrequency (Hz) T = 1 / F t2 t1 ? t = t2 - t1 θ = ((t2 - t1) / T) * 360 Y2 Y1 ? Y

0.01 100 167.659 151.159 16.5 59.4 48.475 33.591 14.8840.02 50 383.054 377.554 5.5 39.6 55.23 41.136 14.0940.05 20 555.216 551.616 3.6 64.8 58.948 47.2 11.7480.1 10 688.794 687.794 1 36 60.774 49.887 10.8870.2 5 805.735 805.285 0.45 32.4 60.705 51.334 9.3710.5 2 913.332 913.092 0.24 43.2 59.913 52.644 7.2691 1 1017.113 1017.023 0.09 32.4 58.983 53.505 5.4782 0.5 1119.218 1119.198 0.02 14.4 58.122 52.265 5.8575 0.2 1220.396 1220.374 0.022 39.6 57.433 53.264 4.169

10 0.1 1321.239 1321.239 0.0003 1.08 56.847 53.126 3.721

10% RAP FS-3 UnagedFrequency (Hz) T = 1 / F t2 t1 ? t = t2 - t1 θ = ((t2 - t1) / T) * 360 Y2 Y1 ? Y

0.01 100 173.542 152.54 21.002 75.6072 50.025 42.515 7.510.02 50 385.001 378.501 6.5 46.8 61.291 52.712 8.5790.05 20 555.721 554.321 1.4 25.2 67.424 59.465 7.9590.1 10 690.776 689.576 1.2 43.2 69.973 62.325 7.6480.2 5 808.053 806.95 1.103 79.416 70.421 64.84 5.5810.5 2 915.237 915.117 0.12 21.6 70.593 65.77 4.8231 1 1019.119 1019.05 0.069 24.84 70.214 65.908 4.3062 0.5 1121.217 1121.182 0.035 25.2 69.801 65.908 3.8935 0.2 1222.291 1222.27 0.021 37.8 69.146 65.77 3.376

10 0.1 1323.152 1323.146 0.006 21.6 68.664 66.459 2.205

132

Page 145: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

20% RAP FS-1 Long-term AgedFrequency (Hz) T = 1 / F t2 t1 ? t = t2 - t1 θ = ((t2 - t1) / T) * 360 Y2 Y1 ? Y

0.01 100 170.79 157.79 13.00 46.80 122.24 93.99 14.130.02 50 390.31 382.31 8.00 57.60 140.08 113.49 13.300.05 20 559.76 557.16 2.60 46.80 147.80 121.27 13.260.1 10 693.68 692.58 1.10 39.60 149.39 125.61 11.890.2 5 810.92 810.47 0.45 32.40 148.15 128.16 9.990.5 2 918.67 918.43 0.24 43.20 145.53 127.75 8.891 1 1022.34 1022.27 0.07 25.20 143.19 130.09 6.552 0.5 1124.52 1124.48 0.04 25.20 140.98 127.68 6.655 0.2 1225.59 1225.58 0.01 14.40 138.36 132.23 3.07

10 0.1 1326.42 1326.42 0.00 7.20 136.29 127.75 4.27

20% RAP FS-2 Long-term AgedFrequency (Hz) T = 1 / F t2 t1 ? t = t2 - t1 θ = ((t2 - t1) / T) * 360 Y2 Y1 ? Y

0.01 100 168.83 156.33 12.50 45.00 90.20 64.29 12.950.02 50 387.74 378.74 9.00 64.81 105.01 79.65 12.680.05 20 557.79 555.39 2.40 43.20 112.25 86.89 12.680.1 10 691.67 690.87 0.80 28.80 113.00 90.96 11.020.2 5 808.90 808.50 0.40 28.80 112.87 91.37 10.750.5 2 916.53 916.43 0.10 18.00 109.35 93.16 8.101 1 1020.48 1020.38 0.10 36.00 107.35 90.89 8.232 0.5 1122.56 1122.51 0.05 36.00 105.01 91.92 6.555 0.2 1223.66 1223.64 0.01 21.60 102.67 90.82 5.93

10 0.1 1324.48 1324.48 0.00 18.00 100.67 91.44 4.62

20% RAP FS-3 Long-term AgedFrequency (Hz) T = 1 / F t2 t1 ? t = t2 - t1 θ = ((t2 - t1) / T) * 360 Y2 Y1 ? Y

0.01 100 167.54 153.54 14.00 50.40 158.21 124.44 16.880.02 50 385.99 378.99 7.00 50.40 179.43 146.77 16.330.05 20 556.89 555.09 1.80 32.40 187.97 156.14 15.920.1 10 690.76 690.46 0.30 10.80 190.11 162.69 13.710.2 5 808.71 808.21 0.50 36.00 189.63 164.27 12.680.5 2 916.24 916.06 0.18 32.40 186.11 164.68 10.721 1 1020.09 1020.03 0.06 21.24 183.91 166.61 8.652 0.5 1122.21 1122.17 0.04 28.80 181.43 167.23 7.105 0.2 1223.30 1223.28 0.01 25.20 178.88 167.16 5.86

10 0.1 1324.16 1324.15 0.01 28.80 177.02 167.44 4.79

133

Page 146: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

20% RAP FS-1 UnagedFrequency (Hz) T = 1 / F t2 t1 ? t = t2 - t1 θ = ((t2 - t1) / T) * 360 Y2 Y1 ? Y

0.01 100 167.333 152.833 14.5 52.2 54.228 44.237 9.9910.02 50 386.253 379.253 7 50.4 64.357 53.677 10.680.05 20 555.889 554.089 1.8 32.4 69.319 58.879 10.440.1 10 690.047 689.147 0.9 32.4 71.248 61.326 9.9220.2 5 807.459 806.809 0.65 46.8 71.454 62.6 8.8540.5 2 915.003 914.823 0.18 32.4 70.628 63.84 6.7881 1 1018.86 1018.76 0.1 36 69.869 63.255 6.6142 0.5 1120.932 1120.92 0.012 8.64 69.112 63.427 5.6855 0.2 1222.048 1222.04 0.008 14.4 68.147 63.634 4.513

10 0.1 1322.91 1322.899 0.0105 37.8 67.596 64.2196 3.3764

20% RAP FS-2 UnagedFrequency (Hz) T = 1 / F t2 t1 ? t = t2 - t1 θ = ((t2 - t1) / T) * 360 Y2 Y1 ? Y

0.01 100 171.127 153.627 17.5 63 49.473 41.688 7.7850.02 50 386.573 380.073 6.5 46.8 58.259 49.439 8.820.05 20 557.206 554.806 2.4 43.2 67.738 54.263 13.4750.1 10 690.461 690.061 0.4 14.4 64.461 56.399 8.0620.2 5 807.907 807.56 0.347 24.984 64.84 57.67 7.170.5 2 915.697 915.48 0.217 39.06 64.219 58.259 5.961 1 1019.461 1019.28 0.181 65.16 63.806 58.535 5.2712 0.5 1121.53 1121.51 0.02 14.4 63.358 58.707 4.6515 0.2 1222.68 1222.65 0.03 54 62.807 59.086 3.721

10 0.1 1323.47 1323.465 0.005 18 62.256 59.806 2.45

20% RAP FS-3 UnagedFrequency (Hz) T = 1 / F t2 t1 ? t = t2 - t1 θ = ((t2 - t1) / T) * 360 Y2 Y1 ? Y

0.01 100 169.026 156.53 12.496 44.9856 33.45 27.8966 5.55340.02 50 385.933 377.93 8.003 57.6216 41.068 33.936 7.1320.05 20 556.352 554.352 2 36 44.96 37.795 7.1650.1 10 690.837 689.636 1.201 43.236 46.235 40.171 6.0640.2 5 808.214 807.714 0.5 36 46.89 40.895 5.9950.5 2 915.604 915.443 0.161 28.98 46.579 42.102 4.4771 1 1019.41 1019.297 0.113 40.68 46.132 42.136 3.9962 0.5 1121.558 1121.498 0.06 43.2 45.856 42.067 3.7895 0.2 1222.649 1222.639 0.01 18 45.546 42.756 2.79

10 0.1 1323.485 1323.475 0.01 36 45.098 42.928 2.17

134

Page 147: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

30% RAP FS-1 Long-term AgedFrequency (Hz) T = 1 / F t2 t1 ? t = t2 - t1 θ = ((t2 - t1) / T) * 360 Y2 Y1 ? Y

0.01 100 164.00 152.50 11.50 41.40 60.81 42.72 3.620.02 50 382.84 378.84 4.00 28.80 85.27 56.16 5.820.05 20 555.34 553.94 1.40 25.20 96.12 64.08 6.410.1 10 689.79 689.09 0.70 25.20 99.05 68.56 6.100.2 5 807.11 806.86 0.25 18.00 98.88 68.98 5.980.5 2 915.02 914.82 0.20 36.00 95.78 72.87 4.581 1 1018.76 1018.72 0.04 14.40 93.71 69.94 4.752 0.5 1120.89 1120.86 0.02 18.00 91.99 69.60 4.485 0.2 1222.04 1222.03 0.01 18.00 89.75 69.08 4.13

10 0.1 1322.82 1322.82 0.01 25.20 88.37 71.15 3.45

30% RAP FS-2 Long-term AgedFrequency (Hz) T = 1 / F t2 t1 ? t = t2 - t1 θ = ((t2 - t1) / T) * 360 Y2 Y1 ? Y

0.01 100 163.24 152.24 11.00 39.60 152.80 102.33 10.090.02 50 382.77 377.77 5.00 35.99 177.60 127.82 9.960.05 20 554.31 552.71 1.60 28.80 188.63 141.60 9.410.1 10 688.75 688.35 0.40 14.40 190.52 147.97 8.510.2 5 806.60 806.40 0.20 14.40 189.83 151.42 7.680.5 2 914.44 914.32 0.12 21.60 185.53 154.00 6.301 1 1018.25 1018.18 0.07 25.20 182.08 157.45 4.932 0.5 1120.40 1120.38 0.02 14.40 179.67 151.94 5.555 0.2 1221.54 1221.52 0.02 32.40 176.40 150.04 5.27

10 0.1 1322.27 1322.27 0.00 14.40 173.99 153.66 4.07

30% RAP FS-3 Long-term AgedFrequency (Hz) T = 1 / F t2 t1 ? t = t2 - t1 θ = ((t2 - t1) / T) * 360 Y2 Y1 ? Y

0.01 100 166.70 155.20 11.50 41.40 148.11 89.30 19.600.02 50 385.64 379.14 6.50 46.80 161.76 107.80 17.980.05 20 556.80 555.00 1.80 32.40 166.41 117.31 16.370.1 10 690.91 690.21 0.70 25.20 164.34 122.07 14.090.2 5 808.71 808.26 0.45 32.40 160.41 121.96 12.820.5 2 916.22 916.04 0.18 32.40 153.49 120.21 11.091 1 1020.04 1019.94 0.10 37.44 147.91 122.38 8.512 0.5 1122.13 1122.09 0.04 28.80 143.87 120.52 7.795 0.2 1223.23 1223.22 0.02 28.80 139.43 118.45 6.99

10 0.1 1324.07 1324.06 0.01 32.40 136.85 120.00 5.62

135

Page 148: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

30% RAP FS-1 UnagedFrequency (Hz) T = 1 / F t2 t1 ? t = t2 - t1 θ = ((t2 - t1) / T) * 360 Y2 Y1 ? Y

0.01 100 166.629 155.129 11.5 41.4 65.546 48.061 17.4850.02 50 385.037 379.037 6 43.2 72.867 56.675 16.1920.05 20 556.404 554.604 1.8 32.4 76.571 50.809 25.7620.1 10 690.358 689.758 0.6 21.6 77.26 63.996 13.2640.2 5 807.941 807.641 0.3 21.6 76.829 66.149 10.680.5 2 915.657 915.497 0.16 28.8 75.021 65.805 9.2161 1 1019.538 1019.468 0.07 25.2 74.245 66.838 7.4072 0.5 1121.619 1121.534 0.085 61.2 73.384 64.082 9.3025 0.2 1222.744 1222.734 0.01 18 72.264 64.168 8.096

10 0.1 1323.502 1323.486 0.016 57.6 71.317 64.168 7.149

30% RAP FS-2 UnagedFrequency (Hz) T = 1 / F t2 t1 ? t = t2 - t1 θ = ((t2 - t1) / T) * 360 Y2 Y1 ? Y

0.01 100 166.95 155.95 11 39.6 60.723 42.98 17.7430.02 50 383.275 379.275 4 28.8 73.384 53.659 19.7250.05 20 557.75 556.15 1.6 28.8 78.38 60.378 18.0020.1 10 692.319 691.519 0.8 28.8 79.586 62.962 16.6240.2 5 809.747 809.147 0.6 43.2 79.672 65.804 13.8680.5 2 917.292 917.112 0.18 32.4 78.466 63.651 14.8151 1 1021.098 1021.088 0.01 3.6 77.346 65.718 11.6282 0.5 1123.178 1123.153 0.025 18 76.743 64.513 12.235 0.2 1224.34 1224.337 0.003 5.4 75.882 64.771 11.111

10 0.1 1325.138 1325.136 0.002 7.2 74.676 65.374 9.302

30% RAP FS-3 UnagedFrequency (Hz) T = 1 / F t2 t1 ? t = t2 - t1 θ = ((t2 - t1) / T) * 360 Y2 Y1 ? Y

0.01 100 165.582 152.582 13 46.8 48.923 38.07 10.8530.02 50 382.027 378.027 4 28.8 54.4 43.617 10.7830.05 20 555.211 553.011 2.2 39.6 57.019 46.614 10.4050.1 10 689.566 688.466 1.1 39.6 57.639 47.648 9.9910.2 5 807.217 806.366 0.851 61.272 57.295 49.233 8.0620.5 2 914.719 914.579 0.14 25.2 56.33 48.854 7.4761 1 1018.515 1018.485 0.03 10.8 55.538 48.785 6.7532 0.5 1120.596 1120.556 0.04 28.8 54.779 48.992 5.7875 0.2 1221.738 1221.73 0.008 14.4 53.849 49.956 3.893

10 0.1 1322.54 1322.529 0.011 39.6 53.195 49.991 3.204

136

Page 149: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

SCB Tensile Strength Test

0% RAP Long-term Aged SCB IDT: PG 64-22

0

500

1000

1500

2000

2500

3000

3500

4000

0 0.05 0.1 0.15 0.2Defl., in.

Load

, lbs

.

A-1A-2A-3

0% RAP Unaged SCB IDT: PG 64-22

0

500

1000

1500

2000

2500

3000

3500

4000

0 0.05 0.1 0.15 0.2

Defl., in.

Load

, lbs

.

U-1U-2U-3

10% RAP Long-term Aged SCB IDT: PG 64-22

0

500

1000

1500

2000

2500

3000

3500

4000

0 0.05 0.1 0.15 0.2Defl., in.

Load

, lbs

.

A-1A-2A-3

10% RAP Unaged SCB IDT: PG 64-22

0

500

1000

1500

2000

2500

3000

3500

4000

0 0.05 0.1 0.15 0.2Defl., in.

Load

, lbs

.U-1U-2U-3

20% Long-term Aged SCB IDT: PG 64-22

0

500

1000

1500

2000

2500

3000

3500

4000

0 0.05 0.1 0.15 0.2

Defl., in.

Load

, lbs

.

A-1A-2A-3

20% RAP Unaged SCB IDT: PG 64-22

0

500

1000

1500

2000

2500

3000

3500

4000

0 0.05 0.1 0.15 0.2Defl., in.

Load

, lbs

.

U-1U-2U-3

137

Page 150: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

30% RAP Long-term Aged SCB IDT: PG 64-22

0

500

1000

1500

2000

2500

3000

3500

4000

0 0.05 0.1 0.15 0.2Defl., in.

Load

, lbs

.

A-1A-2A-3

30% Unaged SCB IDT: PG 64-22

0

500

1000

1500

2000

2500

3000

3500

4000

0 0.05 0.1 0.15 0.2Defl., in.

Load

, lbs

.

U-1U-2U-3

0% RAP SCB IDT: PG 76-22

0

500

1000

1500

2000

2500

3000

3500

4000

0 0.05 0.1 0.15 0.2Vert. Defl., in.

Load

, lbs

. 0% A-10% A-20% U-10% U-2

10% RAP SCB IDT: PG 76-22

0

500

1000

1500

2000

2500

3000

3500

4000

0 0.05 0.1 0.15 0.2Vert. Defl., in.

Load

, lbs

. 10% A-110% A-210% U-110% U-2

20% RAP SCB IDT: PG 76-22

0

500

1000

1500

2000

2500

3000

3500

4000

0 0.05 0.1 0.15 0.2Vert. Defl., in.

Load

, lbs

. 20% A-120% A-220% U-120% U-2

30% RAP SCB IDT: PG 76-22

0

500

1000

1500

2000

2500

3000

3500

4000

0 0.05 0.1 0.15 0.2

Vert. Defl., in.

Load

, lbs

. 30% A-130% A-230% U-130% U-2

138

Page 151: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

SCB Fatigue Test PG 64-22 SCB Fatigue Test Summary

LTA AVG Stdev COV UA AVG Stdev COVIDT IDT

0% 2625 21252500 2125

2742 24162742 2416

2862 27432862 2743

0%1.00 1 1.00 10.35 919 1614 1311 1310 1412 175 12.4 0.35 744 810 712 810 777 57 7.30.20 525 6614 7514 7155 7094 453 6.4 0.20 425 5715 5516 6250 8741 380 4.30.15 394 26000 16502 13502 18668 6524 35.0 0.10 213 38820 24502 38812 51067 8264 16.2

10% 10%1.00 1 1.00 10.35 960 1013 1211 1312 1179 152 12.9 0.35 846 1711 1200 1513 1475 258 17.50.20 548 10920 10020 14611 11850 2433 20.5 0.20 483 8015 7815 11515 9115 2081 22.80.15 411 25502 15002 17000 19168 5576 29.1 0.10 242 76512 94515 106513 92513 15100 16.3

20% 20%1.00 1 1.00 10.35 1002 2000 1600 1810 1803 200 11.1 0.35 960 1712 1212 1610 1511 264 17.50.20 572 15814 16900 16900 16538 627 3.8 0.20 549 8317 5916 9610 7948 1874 23.60.15 429 28000 37502 21001 28834 8282 28.7 0.10 274 146000 155000 157000 152667 5859 3.8

30% 3436 30% 29851.00 3436 1 1.00 2985 10.35 1203 1510 1911 2211 1877 352 18.7 0.35 1045 2210 2410 2410 2343 115 4.90.20 687 7818 7320 13912 9683 3671 37.9 0.20 597 14316 10620 22510 15815 6085 38.50.15 515 24500 26502 19002 23335 3883 16.6 0.15 448 48000 72000 48500 56167 13714 24.4

LTA - Long-term AgedUA - Un-aged

Cycles to Failure Cycles to Failure

139

Page 152: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Limestone SCB Fatigue PG 76-22 SCB Test Summary

Mix LTA AVG Stdev COV Mix UA AVG Stdev COV1 2 1 2

0% IDT 0% IDT1.00 2666 1 1 1.00 2265 1 10.35 933 2802 2402 2602 200 7.7 0.35 793 957 1075 1016 59 5.80.20 533 7002 8250 7626 624 8.2 0.20 453 7119 5920 6520 600 9.2

10% IDT 10% IDT1.00 3018 1 1 1.00 2622 1 10.35 1056 2102 2802 2452 350 14.3 0.35 918 2202 1602 1902 300 15.80.20 211 12202 10575 11389 814 7.1 0.20 524 10202 5202 7702 2500 32.5

020% IDT 20% IDT1.00 2934 1 1 1.00 2742 1 10.35 1027 3702 2502 3102 600 19.3 0.35 960 2602 1600 2101 501 23.80.20 205 20200 19210 19705 495 2.5 0.20 548 11000 12800 11900 900 7.6

30% IDT 30% IDT 3161 33191.00 3639 1 1 1.00 3228 1 10.35 1274 1802 1402 1602 200 12.5 0.35 1130 1100 3200 2150 1050 48.80.20 255 11402 11000 11201 201 1.8 0.20 646 9801 10800 10301 500 4.8

LTA - Long-term AgedUA - Un-aged

Cycles to Failure Cycles to Failure

140

Page 153: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

SCB Notched IDT Limestone PG 64-22

Triangle Origin Origin OriginID Area Area Area Strain Energy

in. mm in. m lbs. newtons in. mm in^2 lb-in. N-m lbs/in.^20001A(.5) 0.5 12.7 1.125 0.029 412.28 1833.91 0.051 1.300 10.548

10.3326.270

6.8376.1267.067

7.39.5739.62012.512

10.6137.7139.862

16.09.77310.93014.487

9.50010.03410.122

3.414.00219.43712.562

12.56414.88218.916

12.4875 1.41089754 11.1000002A(.5) 0.5 12.7 1.040 0.026 381.96 1699.04 0.054 1.374 12.69901 1.434794953 12.2110003A(.5) 0.5 12.7 1.030 0.026 345.44 1536.59 0.036 0.922 8.7165 0.984831905 8.463Average 0.5 12.7 1.065 0.027051 379.89333 1689.849123 0.04719 1.198626 9.049979267 11.30100333 1.276841466 10.5910693STD Dev. 0.00 0.00 0.05 0.00 33.47 148.87 0.01 0.24 2.41 2.24 0.25 1.93

COV 0.0 0.0 4.9 4.9 8.8 8.8 20.2 20.2 26.6 19.8 19.8 18.20004U(.5) 0.5 12.7 1.125 0.029 242.76 1079.85 0.056 1.431 9.5055 1.073976902 8.4490005U(.5) 0.5 12.7 1.045 0.027 206.96 920.60 0.059 1.504 9.20207 1.039693928 8.8060006U(.5) 0.5 12.7 1.035 0.026 251.04 1116.68 0.056 1.430 9.66109 1.091556205 9.334Average 0.5 12.7 1.0683333 0.0271357 233.58667 1039.044882 0.0572767 1.4548273 6.676709133 9.45622 1.068409012 8.86317614STD Dev. 0.00 0.00 0.05 0.00 23.43 104.21 0.00 0.04 0.49 0.23 0.03 0.45

COV 0.0 0.0 4.6 4.6 10.0 10.0 2.9 2.9 2.5 2.5 5.01001A(.5) 0.5 12.7 1.045 0.027 313.06 1392.56 0.061 1.553 14 1.581787032 13.3971002A(.5) 0.5 12.7 1.030 0.026 445.36 1981.06 0.043 1.097 13.11164 1.481415866 12.7301003A(.5) 0.5 12.7 1.200 0.030 522.54 2324.37 0.048 1.216 17.8797 2.020134114 14.900Average 0.5 12.7 1.0916667 0.0277283 426.98667 1899.33063 0.05075 1.28905 10.56845703 14.99711333 1.694445671 13.67554225STD Dev. 0.00 0.00 0.09 0.00 105.94 471.25 0.01 0.24 1.68 2.54 0.29 1.11

COV 0.0 0.0 8.6 8.6 24.8 24.8 18.4 18.4 15.9 16.9 16.9 8.11004U(.5) 0.5 12.7 1.180 0.030 329.59 1466.09 0.064 1.636 14.73306 1.664611661 12.4861005U(.5) 0.5 12.7 1.035 0.026 286.18 1272.99 0.054 1.369 11.65501 1.316838834 11.2611006U(.5) 0.5 12.7 1.045 0.027 337.17 1499.81 0.059 1.486 13.95904 1.577159175 13.358Average 0.5 12.7 1.0866667 0.0276013 317.64667 1412.962256 0.0589333 1.4969067 9.395857167 13.44903667 1.519536557 12.3681521STD Dev. 0.00 0.00 0.08 0.00 27.51 122.38 0.01 0.13 1.51 1.60 0.18 1.05

COV 0.0 0.0 7.5 7.5 8.7 8.7 8.9 8.9 11.9 11.9 8.52001A(.5) 0.5 12.7 1.060 0.027 348.19 1548.83 0.056 1.426 13.86538 1.56657702 13.0812002A(.5) 0.5 12.7 1.040 0.026 506.01 2250.84 0.043 1.097 15.41924 1.742139563 14.8262003A(.5) 0.5 12.7 1.180 0.030 601.10 2673.83 0.048 1.224 20.5546 2.322357123 17.419Average 0.5 12.7 1.0933333 0.0277707 485.1 2157.831522 0.049178 1.2491212 11.72965824 16.61307333 1.877024569 15.10863067STD Dev. 0.00 0.00 0.08 0.00 127.75 568.24 0.01 0.17 2.46 3.50 0.40 2.18

COV 0.0 0.0 6.9 6.9 26.3 26.3 13.3 13.3 20.9 21.1 21.1 14.42004U(.5) 0.5 12.7 1.170 0.030 345.44 1536.59 0.055 1.397 13.90619 1.571187929 11.8862005U(.5) 0.5 12.7 1.035 0.026 371.63 1653.09 0.054 1.372 14.0582 1.588362747 13.5832006U(.5) 0.5 12.7 1.030 0.026 340.62 1515.15 0.059 1.510 14.92266 1.686033576 14.488Average 0.5 12.7 1.0783333 0.0273897 352.56333 1568.279271 0.0561433 1.4260407 9.885044433 14.29568333 1.615194751 13.31881794STD Dev. 0.00 0.00 0.08 0.00 16.69 74.23 0.00 0.07 0.34 0.55 0.06 1.32

COV 0.0 0.0 7.4 7.4 4.7 4.7 5.1 5.1 3.8 3.8 9.93001A(.5) 0.5 12.7 1.045 0.027 555.62 2471.52 0.050 1.280 17.96965 2.030297096 17.1963002A(.5) 0.5 12.7 1.025 0.026 638.31 2839.34 0.061 1.547 24.20174 2.734428463 23.6113003A(.5) 0.5 12.7 1.200 0.030 574.92 2557.37 0.044 1.110 16.59323 1.874782574 13.828Average 0.5 12.7 1.09 0.027686 589.61667 2622.744649 0.0516667 1.3123333 15.3333885 19.58820667 2.213169378 18.21166088STD Dev. 0.00 0.00 0.10 0.00 43.26 192.43 0.01 0.22 3.63 4.05 0.46 4.97

COV 0.0 0.0 8.8 8.8 7.3 7.3 16.8 16.8 23.6 20.7 20.7 27.33004U(.5) 0.5 12.7 1.170 0.030 461.90 2054.63 0.054 1.382 17.81744 2.013099681 15.2293005U(.5) 0.5 12.7 1.035 0.026 541.15 2407.15 0.055 1.397 20.18994 2.281156091 19.5073006U(.5) 0.5 12.7 1.030 0.026 430.89 1916.69 0.088 2.230 24.65021 2.785098751 23.932Average 0.5 12.7 1.0783333 0.0273897 477.98 2126.16 0.07 1.67 15.45 20.89 2.36 19.56STD Dev. 0.00 0.00 0.08 0.00 56.86 252.93 0.02 0.49 3.21 3.47 0.39 4.35

COV 0.0 0.0 7.4 7.4 11.9 11.9 29.1 29.1 20.8 16.6 16.6 22.3

0%

10%

20%

30%

Defl.

.5" Notched Samples

PeakWidthNotch

Peak Load Area and Calculations

141

Page 154: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Triangle Origin Origin OriginID Area Area Area Strain Energy

in. mm in. m lbs. newtons in. mm in^2 lb-in. N-m lbs/in.^20011A(1) 1 25.4 1.020 0.026 206.93 920.47 0.036 0.919 3.743

4.7315.767

4.0294.2343.523

6.9115.9684.804

5.8375.5703.864

5.7596.6424.617

6.7445.6514.246

5.1218.0714.970

4.3618.3977.759

5.3955 0.609609424 5.2900012A(1) 1 25.4 1.025 0.026 260.68 1159.56 0.036 0.922 6.5848 0.743982232 6.4240013A(1) 1 25.4 1.190 0.030 315.12 1401.73 0.037 0.930 7.711 0.8712257 6.480Average 1 25.4 1.0783333 0.0273897 260.91067 1160.588046 0.03636 0.923544 4.7471461 6.563766667 0.741605785 6.064577646STD Dev. 0.00 0.00 0.10 0.00 54.10 240.63 0.00 0.01 1.01 1.16 0.13 0.67

COV 0.0 0.0 9.0 9.0 20.7 20.7 0.6 0.6 21.3 17.6 17.6 11.10014U(1) 1 25.4 1.180 0.030 162.14 721.23 0.050 1.262 5.925 0.669434869 5.0210015U(1) 1 25.4 1.035 0.026 172.47 767.18 0.049 1.247 5.849 0.660848025 5.6510016U(1) 1 25.4 1.035 0.026 153.18 681.39 0.046 1.168 4.9275 0.556732543 4.761Average 1 25.4 1.0833333 0.0275167 162.59733 723.2687101 0.0482667 1.2259733 3.9288345 5.567166667 0.629005146 5.144421245STD Dev. 0.00 0.00 0.08 0.00 9.65 42.93 0.00 0.05 0.37 0.56 0.06 0.46

COV 0.0 0.0 7.7 7.7 5.9 5.9 4.1 4.1 9.3 10.0 10.0 8.91011A(1) 1 25.4 1.195 0.030 319.94 1423.16 0.043 1.097 8.8269 0.997305425 7.3871012A(1) 1 25.4 1.033 0.026 326.14 1450.74 0.037 0.930 7.9683 0.900296686 7.7141013A(1) 1 25.4 1.025 0.026 266.88 1187.14 0.036 0.914 6.2983 0.71161209 6.145Average 1 25.4 1.0843333 0.0275421 304.32 1353.68231 0.0386 0.98044 5.894302 7.697833333 0.869738067 7.081652164STD Dev. 0.00 0.00 0.10 0.00 32.57 144.89 0.00 0.10 1.06 1.29 0.15 0.83

COV 0.0 0.0 8.8 8.8 10.7 10.7 10.3 10.3 17.9 16.7 16.7 11.71014U(1) 1 25.4 1.175 0.030 240.69 1070.64 0.049 1.232 8.4358 0.953117075 7.1791015U(1) 1 25.4 1.035 0.026 235.18 1046.13 0.047 1.203 7.6539 0.864774269 7.3951016U(1) 1 25.4 1.026 0.026 184.88 822.39 0.042 1.062 5.5919 0.631799636 5.450Average 1 25.4 1.0786667 0.0273981 220.25 979.720455 0.04589 1.165606 5.090320933 7.2272 0.81656366 6.67489055STD Dev. 0.00 0.00 0.08 0.00 30.75 136.80 0.00 0.09 1.07 1.47 0.17 1.07

COV 0.0 0.0 7.7 7.7 14.0 14.0 7.8 7.8 21.0 20.3 20.3 16.02011A(1) 1 25.4 1.030 0.026 309.60 1377.17 0.037 0.945 7.91053 0.893769555 7.6802012A(1) 1 25.4 1.030 0.026 349.58 1555.00 0.038 0.965 9.5694 1.08119663 9.2912013A(1) 1 25.4 1.164 0.030 384.72 1711.32 0.024 0.610 6.66147 0.752644776 5.723Average 1 25.4 1.0746667 0.0272965 347.96567 1547.827838 0.0330667 0.8398933 5.672387667 8.047133333 0.909203654 7.564572732STD Dev. 0.00 0.00 0.08 0.00 37.59 167.19 0.01 0.20 1.02 1.46 0.16 1.79

COV 0.0 0.0 7.2 7.2 10.8 10.8 23.8 23.8 17.9 18.1 18.1 23.62014U(1) 1 25.4 1.155 0.029 275.84 1227.01 0.049 1.242 9.19142 1.03849064 7.9582015U(1) 1 25.4 1.031 0.026 313.05 1392.52 0.036 0.917 7.53443 0.851275976 7.3082016U(1) 1 25.4 1.025 0.026 228.29 1015.48 0.037 0.945 5.9213 0.669016825 5.777Average 1 25.4 1.0703333 0.0271865 272.39433 1211.669921 0.0407333 1.0346267 5.54703595 7.54905 0.852927814 7.01423433STD Dev. 0.00 0.00 0.07 0.00 42.49 188.98 0.01 0.18 1.25 1.64 0.18 1.12

COV 0.0 0.0 6.9 6.9 15.6 15.6 17.4 17.4 22.6 21.7 21.7 16.03011A(1) 1 25.4 1.030 0.026 350.75 1560.23 0.029 0.742 6.40195 0.723322964 6.2153012A(1) 1 25.4 1.032 0.026 461.21 2051.56 0.035 0.889 10.69507 1.208380217 10.3633013A(1) 1 25.4 1.154 0.029 365.43 1625.50 0.027 0.691 6.92041 0.781901057 5.997Average 1 25.4 1.072 0.0272288 392.46367 1745.764731 0.0304667 0.7738533 6.053996867 8.00581 0.904534746 7.52527148STD Dev. 0.00 0.00 0.07 0.00 59.99 266.83 0.00 0.10 1.75 2.34 0.26 2.46

COV 0.0 0.0 6.6 6.6 15.3 15.3 13.3 13.3 28.9 29.3 29.3 32.73014U(1) 1 25.4 1.158 0.029 320.64 1426.26 0.027 0.691 5.61123 0.633983632 4.8463015U(1) 1 25.4 1.030 0.026 413.66 1840.05 0.041 1.031 11.33472 1.280650936 11.0053016U(1) 1 25.4 1.032 0.026 373.007 1659.22 0.042 1.057 11.59807 1.31040548 11.238Average 1 25.4 1.0733333 0.0272627 369.10067 1641.840967 0.0364667 0.9262533 6.838826533 9.514673333 1.075013349 9.029548069STD Dev. 0.00 0.00 0.07 0.00 46.64 207.44 0.01 0.20 2.17 3.38 0.38 3.63

COV 0.0 0.0 6.8 6.8 12.6 12.6 22.0 22.0 31.7 35.6 35.6 40.1

1" Notched Samples

Defl.Peak

10%

Notch Width

20%

30%

0%

142

Page 155: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Triangle Origin Origin OriginID Area Area Area Strain Energy

in. mm in. m lbs. newtons in. mm in^2 lb-in. N-m lbs/in.^20021A(1.5) 1.5 38.1 0.935 0.024 147.66 656.82 0.026 0.650 1.890

1.7221.594

2.0092.3681.837

1.3502.3391.658

1.6432.0971.903

1.9421.5661.807

2.5143.9112.937

1.5132.8882.477

3.1362.4222.017

2.94846 0.333131128 3.1530022A(1.5) 1.5 38.1 0.955 0.024 149.70 665.90 0.023 0.584 2.50112 0.282588513 2.6190023A(1.5) 1.5 38.1 0.960 0.024 144.91 644.59 0.022 0.559 2.49739 0.28216708 2.601Average 1.5 38.1 0.95 0.02413 147.42333 655.7714198 0.0235333 0.5977467 1.735202667 2.64899 0.299295574 2.791284965STD Dev. 0.00 0.00 0.01 0.00 2.40 10.69 0.00 0.05 0.15 0.26 0.03 0.31

COV 0.0 0.0 1.4 1.4 1.6 1.6 7.9 7.9 8.6 9.8 9.8 11.20024U(1.5) 1.5 38.1 0.940 0.024 132.50 589.39 0.030 0.770 2.97141 0.335724129 3.1610025U(1.5) 1.5 38.1 0.945 0.024 129.75 577.16 0.037 0.927 3.80356 0.42974442 4.0250026U(1.5) 1.5 38.1 0.965 0.025 115.28 512.79 0.032 0.809 2.65248 0.29968989 2.749Average 1.5 38.1 0.95 0.02413 125.84333 559.7788322 0.0328967 0.8355753 2.0712081 3.142483333 0.355052813 3.311563208STD Dev. 0.00 0.00 0.01 0.00 9.25 41.15 0.00 0.08 0.27 0.59 0.07 0.65

COV 0.0 0.0 1.4 1.4 7.4 7.4 9.8 9.8 13.1 18.9 18.9 19.71021A(1.5) 1.5 38.1 0.975 0.025 142.16 632.34 0.019 0.483 2.01184 0.227307316 2.0631022A(1.5) 1.5 38.1 0.975 0.025 175.23 779.47 0.027 0.678 3.4222 0.386656541 3.5101023A(1.5) 1.5 38.1 0.902 0.023 177.30 788.67 0.019 0.475 2.53533 0.286453723 2.811Average 1.5 38.1 0.9506667 0.0241469 164.89633 733.4951679 0.0214667 0.5452533 1.782532517 2.656456667 0.300139193 2.7947205STD Dev. 0.00 0.00 0.04 0.00 19.72 87.72 0.00 0.12 0.51 0.71 0.08 0.72

COV 0.0 0.0 4.4 4.4 12.0 12.0 21.1 21.1 28.4 26.8 26.8 25.91024U(1.5) 1.5 38.1 0.935 0.024 143.53 638.45 0.023 0.582 2.48416 0.280672291 2.6571025U(1.5) 1.5 38.1 0.945 0.024 152.49 678.31 0.028 0.699 2.93918 0.332082629 3.1101026U(1.5) 1.5 38.1 0.960 0.024 135.95 604.74 0.028 0.711 2.85436 0.322499259 2.973Average 1.5 38.1 0.9466667 0.0240453 143.99 640.4991978 0.0261333 0.6637867 1.881152 2.759233333 0.311751393 2.913463556STD Dev. 0.00 0.00 0.01 0.00 8.28 36.83 0.00 0.07 0.23 0.24 0.03 0.23

COV 0.0 0.0 1.3 1.3 5.8 5.8 10.8 10.8 12.1 8.8 8.8 8.02021A(1.5) 1.5 38.1 0.992 0.025 242.76 1079.85 0.016 0.406 2.5079 0.28335455 2.5282022A(1.5) 1.5 38.1 0.965 0.025 180.05 800.90 0.017 0.442 2.28852 0.258567947 2.3722023A(1.5) 1.5 38.1 0.971 0.025 204.17 908.19 0.018 0.450 2.32987 0.263239868 2.399Average 1.5 38.1 0.976 0.0247904 208.99333 929.6483252 0.0170333 0.4326467 1.7718065 2.37543 0.268387455 2.433034162STD Dev. 0.00 0.00 0.01 0.00 31.63 140.71 0.00 0.02 0.19 0.12 0.01 0.08

COV 0.0 0.0 1.5 1.5 15.1 15.1 5.3 5.3 10.7 4.9 4.9 3.42024U(1.5) 1.5 38.1 0.970 0.025 184.19 819.32 0.027 0.693 3.60231 0.407006232 3.7142025U(1.5) 1.5 38.1 0.964 0.024 200.04 889.82 0.039 0.993 5.52244 0.623951713 5.7292026U(1.5) 1.5 38.1 0.930 0.024 177.99 791.74 0.033 0.838 4.13431 0.467114139 4.445Average 1.5 38.1 0.9546667 0.0242485 187.40667 833.6260828 0.0331333 0.8415867 3.1206035 4.419686667 0.499357361 4.629296157STD Dev. 0.00 0.00 0.02 0.00 11.37 50.58 0.01 0.15 0.72 0.99 0.11 1.02

COV 0.0 0.0 2.3 2.3 6.1 6.1 17.8 17.8 23.0 22.4 22.4 22.03021A(1.5) 1.5 38.1 0.831 0.021 169.03 751.89 0.018 0.455 2.2653 0.25594444 2.7263022A(1.5) 1.5 38.1 1.002 0.025 240.69 1070.64 0.024 0.610 3.64711 0.41206795 3.6403023A(1.5) 1.5 38.1 1.014 0.026 248.96 1107.43 0.020 0.505 3.11092 0.351486637 3.068Average 1.5 38.1 0.949 0.0241046 219.56033 976.6526659 0.0206 0.52324 2.29275315 3.007776667 0.339833009 3.144597187STD Dev. 0.00 0.00 0.10 0.00 43.95 195.52 0.00 0.08 0.71 0.70 0.08 0.46

COV 0.0 0.0 10.8 10.8 20.0 20.0 15.1 15.1 30.8 23.2 23.2 14.73024U(1.5) 1.5 38.1 0.964 0.024 164.20 730.40 0.038 0.970 3.81585 0.431133003 3.9583025U(1.5) 1.5 38.1 0.956 0.024 212.44 944.98 0.023 0.579 3.53177 0.399036285 3.6943026U(1.5) 1.5 38.1 0.938 0.024 160.07 712.03 0.025 0.640 2.79789 0.316119008 2.983Average 1.5 38.1 0.9526667 0.0241977 178.90333 795.8013854 0.0287333 0.7298267 2.524972667 3.381836667 0.382096099 3.545165289STD Dev. 0.00 0.00 0.01 0.00 29.12 129.52 0.01 0.21 0.57 0.53 0.06 0.50

COV 0.0 0.0 1.4 1.4 16.3 16.3 28.8 28.8 22.4 15.5 15.5 14.2

1.5" Notched Samples

Notch Width Peak Defl.

10%

20%

30%

0%

143

Page 156: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Notched IDT 0001LTA(.5): PG 64-22

0

100

200

300

400

500

600

700

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16Defl., in.

Load

, lbs

.

Notched IDT 0004UA(.5): PG 64-22

0

100

200

300

400

500

600

700

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16Defl., in.

Load

, lbs

.

Notched IDT 0002LTA(.5): PG 64-22

0

100

200

300

400

500

600

700

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16Defl., in.

Load

, lbs

.

Notched IDT 0005UA(.5): PG 64-22

0

100

200

300

400

500

600

700

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Defl., in.

Load

, lbs

.

Notched IDT 0003LTA(.5): PG 64-22

0

100

200

300

400

500

600

700

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16Defl., in.

Load

, lbs

.

Notched IDT 0006UA(.5): PG 64-22

0

100

200

300

400

500

600

700

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Defl., in.

Load

, lbs

.

144

Page 157: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Notched IDT 1001LTA(.5): PG 64-22

0

100

200

300

400

500

600

700

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16Defl., in.

Load

, lbs

.

Notched IDT 1004UA(.5): PG 64-22

0

100

200

300

400

500

600

700

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16Defl., in.

Load

, lbs

.

Nothced IDT 1002LTA(.5): PG 64-22

0

100

200

300

400

500

600

700

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16Defl., in.

Load

, lbs

.

Notched IDT 1005UA(.5): PG 64-22

0

100

200

300

400

500

600

700

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16Defl., in.

Load

, lbs

.

Notched IDT 1003LTA(.5): PG 64-22

0

100

200

300

400

500

600

700

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16Defl., in.

Load

, lbs

.

Nothced IDT 1006UA(.5): PG 64-22

0

100

200

300

400

500

600

700

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16Defl., in.

Load

, lbs

.

145

Page 158: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Notched IDT 2001LTA(.5): PG 64-22

0

100

200

300

400

500

600

700

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16Defl., in.

Load

, lbs

.

Notched IDT 2004UA(.5): PG 64-22

0

100

200

300

400

500

600

700

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16Defl., in.

Load

, lbs

.

Notched IDT 2002LTA(.5): PG 64-22

0

100

200

300

400

500

600

700

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16Defl., in.

Load

, lbs

.

Notched IDT 2005UA(.5): PG 64-22

0

100

200

300

400

500

600

700

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16Defl., in.

Load

, lbs

.

Notched IDT 2003LTA(.5): PG 64-22

0

100

200

300

400

500

600

700

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16Defl., in.

Load

, lbs

.

Notched IDT 2006UA(.5): PG 64-22

0

100

200

300

400

500

600

700

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16Defl., in.

Load

, lbs

.

146

Page 159: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Notched IDT 3001LTA(.5): PG 64-22

0

100

200

300

400

500

600

700

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16Defl., in.

Load

, lbs

.

Notched IDT 3004UA(.5): PG 64-22

0

100

200

300

400

500

600

700

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16Defl., in.

Load

, lbs

.

Notched IDT 3002LTA(.5): PG 64-22

0

100

200

300

400

500

600

700

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16Defl., in.

Load

, lbs

.

Notched IDT 3005UA(.5): PG 64-22

0

100

200

300

400

500

600

700

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16Defl., in.

Load

, lbs

.

Notched IDT 3003LTA(.5): PG 64-22

0

100

200

300

400

500

600

700

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16Defl., in.

Load

, lbs

.

Notched IDT 3006UA(.5): PG 64-22

0

100

200

300

400

500

600

700

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16Defl., in.

Load

, lbs

.

147

Page 160: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Notched IDT 0011LTA(1): PG 64-22

0

50

100

150

200

250

300

350

400

450

500

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16Defl., in.

Load

, lbs

.

Notched IDT 0014UA(1): PG 64-22

0

50

100

150

200

250

300

350

400

450

500

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16Defl., in.

Load

, lbs

.

Notched IDT 0012LTA(1): PG 64-22

0

50

100

150

200

250

300

350

400

450

500

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16Defl., in.

Load

, lbs

.

Notched IDT 0015UA(1): PG 64-22

0

50

100

150

200

250

300

350

400

450

500

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16Defl., in.

Load

, lbs

.

Notched IDT 0013LTA(1): PG 64-22

0

50

100

150

200

250

300

350

400

450

500

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16Defl., in.

Load

, lbs

.

Notched IDT 0016UA(1): PG 64-22

0

50

100

150

200

250

300

350

400

450

500

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16Defl., in.

Load

, lbs

.

148

Page 161: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Notched IDT 1011LTA(1): PG 64-22

0

50

100

150

200

250

300

350

400

450

500

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16Defl., in.

Load

, lbs

.

Notched IDT 1014UA(1): PG 64-22

0

50

100

150

200

250

300

350

400

450

500

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16Defl., in.

Load

, lbs

.

Notched IDT 1012LTA(1): PG 64-22

0

50

100

150

200

250

300

350

400

450

500

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Defl., in.

Load

, lbs

.

Notched IDT 1015UA(1): PG 64-22

0

50

100

150

200

250

300

350

400

450

500

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Defl., in.

Load

, lbs

.

Notched IDT 1013LTA(1): PG 64-22

0

50

100

150

200

250

300

350

400

450

500

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16Defl., in.

Load

, lbs

.

Notched IDT 1016UA(1): PG 64-22

0

50

100

150

200

250

300

350

400

450

500

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16Defl., in.

Load

, lbs

.

149

Page 162: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Notched IDT 2011LTA(1): PG 64-22

0

50

100

150

200

250

300

350

400

450

500

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Defl., in.

Load

, lbs

.

Notched IDT 2014UA(1): PG 64-22

0

50

100

150

200

250

300

350

400

450

500

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16Defl,. in.

Load

, lbs

.

Notched IDT 2012LTA(1): PG 64-22

0

50

100

150

200

250

300

350

400

450

500

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Defl., in.

Load

, lbs

.

Notched IDT 2015UA(1): PG 64-22

0

50

100

150

200

250

300

350

400

450

500

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Defl., in.

Load

, lbs

.

Notched IDT 2013LTA(1): PG 64-22

0

50

100

150

200

250

300

350

400

450

500

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16Defl., in.

Load

, lbs

.

Notched IDT 2016UA(1): PG 64-22

0

50

100

150

200

250

300

350

400

450

500

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16Defl., in.

Load

, lbs

.

150

Page 163: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Notched IDT 3011LTA(1): PG 76-22

0

50

100

150

200

250

300

350

400

450

500

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16Defl., in.

Load

, lbs

.

Notched IDT 3014UA(1): PG 64-22

0

50

100

150

200

250

300

350

400

450

500

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16Defl., in.

Load

, lbs

.

Notched IDT 3012LTA(1): PG 64-22

0

50

100

150

200

250

300

350

400

450

500

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Defl., in.

Load

, lbs

.

Notched IDT 3015UA(1): PG 64-22

0

50

100

150

200

250

300

350

400

450

500

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Defl., in.

Load

, lbs

.

Notched IDT 3013LTA(1): PG 64-22

0

50

100

150

200

250

300

350

400

450

500

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16Defl., in.

Load

, lbs

.

Notched IDT 3016UA(1): PG 64-22

0

50

100

150

200

250

300

350

400

450

500

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16Defl., in.

Load

, lbs

.

151

Page 164: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Notched IDT 0021LTA(1.5): PG 64-22

0

50

100

150

200

250

300

0 0.02 0.04 0.06 0.08 0.1Defl., in.

Load

, lbs

.

Notched IDT 0024UA(1.5): PG 64-22

0

50

100

150

200

250

300

0 0.02 0.04 0.06 0.08 0.1Defl., in.

Load

, lbs

.

Notched IDT 0022LTA(1.5): PG 64-22

0

50

100

150

200

250

300

0 0.02 0.04 0.06 0.08 0.1

Defl., in.

Load

, lbs

.

Notched IDT 0025UA(1.5): PG 64-22

0

50

100

150

200

250

300

0 0.02 0.04 0.06 0.08 0.1

Defl., in.

Load

, lbs

.

Notched IDT 0023LTA(1.5): PG 64-22

0

50

100

150

200

250

300

0 0.02 0.04 0.06 0.08 0.1Defl., in.

Load

, lbs

.

Notched IDT 0026UA(1.5): PG 64-22

0

50

100

150

200

250

300

0 0.02 0.04 0.06 0.08 0.1Defl., in.

Load

, lbs

.

152

Page 165: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Notched IDT 1021LTA(1.5): PG 64-22

0

50

100

150

200

250

300

0 0.02 0.04 0.06 0.08 0.1Defl., in.

Load

, lbs

.

Notched IDT 1024UA(1.5): PG 64-22

0

50

100

150

200

250

300

0 0.02 0.04 0.06 0.08 0.1Defl., in.

Load

, lbs

.

Notched IDT 1022LTA(1.5): PG 64-22

0

50

100

150

200

250

300

0 0.02 0.04 0.06 0.08 0.1

Defl., in.

Load

, lbs

.

Notched IDT 1025UA(1.5): PG 64-22

0

50

100

150

200

250

300

0 0.02 0.04 0.06 0.08 0.1

Defl., in.

Load

, lbs

.

Notched IDT 1023LTA(1.5): PG 64-22

0

50

100

150

200

250

300

0 0.02 0.04 0.06 0.08 0.1Defl., in.

Load

, lbs

.

Notched IDT 1026UA(1.5): PG 64-22

0

50

100

150

200

250

300

0 0.02 0.04 0.06 0.08 0.1Defl., in.

Load

, lbs

.

153

Page 166: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Notched IDT 2021LTA(1.5): PG 64-22

0

50

100

150

200

250

300

0 0.02 0.04 0.06 0.08 0.1Defl., in.

Load

, lbs

.

Notched IDT 2024UA(1.5): PG 64-22

0

50

100

150

200

250

300

0 0.02 0.04 0.06 0.08 0.1Defl., in.

Load

, lbs

.

Notched IDT 2022LTA(1.5): PG 64-22

0

50

100

150

200

250

300

0 0.02 0.04 0.06 0.08 0.1

Defl., in.

Load

, lbs

.

Notched IDT 2025UA(1.5): PG 64-22

0

50

100

150

200

250

300

0 0.02 0.04 0.06 0.08 0.1

Defl., in.

Load

, lbs

.

Notched IDT 2023LTA(1.5): PG 64-22

0

50

100

150

200

250

300

0 0.02 0.04 0.06 0.08 0.1Defl., in.

Load

, lbs

.

Notched IDT 2026UA(1.5): PG 64-22

0

50

100

150

200

250

300

0 0.02 0.04 0.06 0.08 0.1Defl., in.

Load

, lbs

.

154

Page 167: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Notched IDT 3021LTA(1.5): PG 64-22

0

50

100

150

200

250

300

0 0.02 0.04 0.06 0.08 0.1

Defl., in.

Load

, lbs

.

Notched IDT 3024UA(1.5): PG 64-22

0

50

100

150

200

250

300

0 0.02 0.04 0.06 0.08 0.1Defl., in.

Load

, lbs

.

Notched IDT 3022LTA(1.5): PG 64-22

0

50

100

150

200

250

300

0 0.02 0.04 0.06 0.08 0.1

Defl., in.

Load

, lbs

.

Notched IDT 3025UA(1.5): PG 64-22

0

50

100

150

200

250

300

0 0.02 0.04 0.06 0.08 0.1

Defl., in.

Load

, lbs

.

Notched IDT 3023LTA(1.5): PG 64-22

0

50

100

150

200

250

300

0 0.02 0.04 0.06 0.08 0.1Defl., in.

Load

, lbs

.

Notched IDT 3026UA(1.5): PG 64-22

0

50

100

150

200

250

300

0 0.02 0.04 0.06 0.08 0.1Defl., in.

Load

, lbs

.

155

Page 168: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Limestone PG 76-22

Origin Origin Origin OriginID Area Area Strain Energy Strain Energy

in. mm in. m lbs. newtons in. mm lb-in. N-m lbs/in.^2 J/m0101 0.5 12.7 1.190 0.030 298.98 1329.95 0.064 1.632 10.99 1.24170282 9.235 41.0810102 0.5 12.7 1.170 0.030 391.61 1741.97 0.066 1.685 15.3662 1.736146849 13.134 58.4210103 0.5 12.7 0.920 0.023 246.90 1098.27 0.058 1.479 13.25 1.497048441 14.402 64.064

Average 0.5 12.7 1.0933333 0.0277707 312.49833 1390.061336 0.0629433 1.5987607 13.20206667 1.491632703 12.25699077 54.52179147STD Dev. 0.00 0.00 0.15 0.00 73.29 326.03 0.00 0.11 2.19 0.25 2.69 11.98

COV 0.0 0.0 13.8 13.8 23.5 23.5 0.1 6.7 16.6 16.6 22.0 22.00104 0.5 12.7 1.140 0.029 345.44 1536.61 0.065 1.645 17.304 1.955088772 15.179 67.5190105 0.5 12.7 1.150 0.029 397.82 1769.57 0.054 1.361 13.99772 1.581529427 12.172 54.1430105 0.5 12.7 1.120 0.028 433.65 1928.97 0.048 1.214 15.33 1.7320568 13.688 60.885

Average 0.5 12.7 1.1366667 0.0288713 392.30233 1745.047085 0.05539 1.4069052 15.54390667 1.756224999 13.67945927 60.8492443STD Dev. 0.00 0.00 0.02 0.00 44.36 197.33 0.01 0.22 1.66 0.19 1.50 6.69

COV 0.0 0.0 1.3 1.3 11.3 11.3 15.6 15.6 10.7 10.7 11.0 11.010101 0.5 12.7 1.130 0.029 293.07 1303.64 0.057 1.453 14.12 1.595345207 12.496 55.58310102 0.5 12.7 1.050 0.027 345.44 1536.59 0.072 1.820 16.10858 1.820024496 15.342 68.24210103 0.5 12.7 1.140 0.029 313.06 1392.54 0.063 1.589 13.48136 1.523188602 11.826 52.604

Average 0.5 12.7 1.1066667 0.0281093 317.1887 1410.925119 0.0638047 1.6206385 14.56998 1.646186101 13.22094479 58.80967103STD Dev. 0.00 0.00 0.05 0.00 26.43 117.56 0.01 0.19 1.37 0.15 1.87 8.30

COV 0.0 0.0 4.5 4.5 8.3 8.3 11.5 11.5 9.4 9.4 14.1 14.110104 0.5 12.7 1.150 0.029 412.29 1833.94 0.054 1.366 13.86303 1.566311506 12.055 53.62210105 0.5 12.7 1.140 0.029 450.28 2002.93 0.055 1.400 15.19587 1.71690215 13.330 59.29310106 0.5 12.7 1.110 0.028 575.60 2560.42 0.070 1.790 18.22352 2.058980544 16.418 73.029

Average 0.5 12.7 1.1333333 0.0287867 479.38917 2132.428479 0.059798 1.5188692 15.76080667 1.7807314 13.93403494 61.98165288STD Dev. 0.00 0.00 0.02 0.00 85.46 380.16 0.01 0.24 2.23 0.25 2.24 9.98

COV 0.0 0.0 1.8 1.8 17.8 17.8 15.5 15.5 14.2 14.2 16.1 16.120101 0.5 12.7 1.150 0.029 412.00 1832.66 0.093 2.359 13.7672 1.555484173 11.971 53.25220102 0.5 12.7 1.140 0.029 387.48 1723.59 0.072 1.825 17.66059 1.995378017 15.492 68.91120103 0.5 12.7 1.020 0.026 442.61 1968.81 0.060 1.532 17.51909 1.97939067 17.176 76.401

Average 0.5 12.7 1.1033333 0.0280247 414.0277 1841.686296 0.075013 1.9053302 16.31562667 1.84341762 14.87960077 66.18773773STD Dev. 0.00 0.00 0.07 0.00 27.62 122.86 0.02 0.42 2.21 0.25 2.66 11.81

COV 0.0 0.0 6.6 6.6 6.7 6.7 22.0 22.0 13.5 13.5 17.8 17.820104 0.5 12.7 1.050 0.027 514.96 2290.67 0.014 0.350 18.27304 2.064575551 17.403 77.41220105 0.5 12.7 1.170 0.030 508.07 2260.02 0.050 1.269 17.3969 1.965585058 14.869 66.14120106 0.5 12.7 1.160 0.029 465.35 2069.97 0.052 1.322 17.16265 1.939118372 14.795 65.813

Average 0.5 12.7 1.1266667 0.0286173 496.12753 2206.884416 0.038593 0.9802622 17.61086333 1.98975966 15.68914282 69.78875889STD Dev. 0.00 0.00 0.07 0.00 26.88 119.56 0.02 0.55 0.59 0.07 1.48 6.60

COV 0.0 0.0 5.9 5.9 5.4 5.4 55.7 55.7 3.3 3.3 9.5 9.530101 0.5 12.7 1.170 0.030 430.20 1913.64 0.097 2.469 22.32 2.521820468 19.077 84.85830102 0.5 12.7 1.160 0.029 453.63 2017.86 0.073 1.847 23.13913 2.614369698 19.948 88.73130103 0.5 12.7 1.020 0.026 503.74 2240.74 0.071 1.794 24.86927 2.809849199 24.382 108.455

Average 0.5 12.7 1.1166667 0.0283633 462.52453 2057.41088 0.0801817 2.0366143 23.4428 2.648679788 21.13536206 94.01474024STD Dev. 0.00 0.00 0.08 0.00 37.56 167.10 0.01 0.38 1.30 0.15 2.84 12.65

COV 0.0 0.0 7.5 7.5 8.1 8.1 18.4 18.4 5.6 5.6 13.5 13.530104 0.5 12.7 1.130 0.029 588.70 2618.66 0.070 1.773 27.07379 3.058926424 23.959 106.57530105 0.5 12.7 1.160 0.029 512.21 2278.41 0.055 1.400 24.33 2.748919892 20.974 93.29830106 0.5 12.7 1.030 0.026 624.53 2778.05 0.065 1.650 28.31128 3.198743969 27.487 122.267

Average 0.5 12.7 1.1066667 0.0281093 575.15 2558.37 0.06 1.61 26.57 3.00 24.14 107.38STD Dev. 0.00 0.00 0.07 0.00 57.38 255.22 0.01 0.19 2.04 0.23 3.26 14.50

COV 0.0 0.0 6.2 6.2 10.0 10.0 11.8 11.8 7.7 7.7 13.5 13.5

0%

10%

20%

30%

Defl.

.5" Notched Samples

PeakWidthNotch

Peak Load

156

Page 169: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Origin Origin Origin OriginID Area Area Strain Energy Strain Energy

in. mm in. m lbs. newtons in. mm lb-in. N-m lbs/in.^2 J/m0201 1 25.4 1.130 0.029 191.09 850.02 0.051 1.288 6.8398 0.772793353 6.053 26.9250202 1 25.4 1.150 0.029 207.62 923.54 0.049 1.252 6.905 0.780159961 6.004 26.7090203 1 25.4 1.010 0.026 221.40 984.85 0.049 1.252 6.904 0.780046976 6.836 30.406

Average 1 25.4 1.0966667 0.0278553 206.70567 919.4722806 0.0497477 1.2635907 6.882933333 0.777666763 6.297637248 28.01327596STD Dev. 0.00 0.00 0.08 0.00 15.18 67.51 0.00 0.02 0.04 0.00 0.47 2.08

COV 0.0 0.0 6.9 6.9 7.3 7.3 1.6 1.6 0.5 0.5 7.4 7.40204 1 25.4 1.170 0.030 229.67 1021.62 0.028 0.704 4.083 0.461316889 3.490 15.5230205 1 25.4 1.150 0.029 249.65 1110.50 0.035 0.892 4.67 0.52763896 4.061 18.0640206 1 25.4 1.050 0.027 275.83 1226.95 0.038 0.967 4.9 0.553625461 4.667 20.758

Average 1 25.4 1.1233333 0.0285327 251.71667 1119.691111 0.0336253 0.8540835 4.551 0.51419377 4.072426607 18.11504948STD Dev. 0.00 0.00 0.06 0.00 23.15 102.97 0.01 0.14 0.42 0.05 0.59 2.62

COV 0.0 0.0 5.7 5.7 9.2 9.2 15.9 15.9 9.3 9.3 14.5 14.510201 1 25.4 1.060 0.027 235.18 1046.13 0.059 1.501 9.26 1.046239137 8.736 38.85910202 1 25.4 1.170 0.030 142.00 631.65 0.021 0.523 3.65 0.412394476 3.120 13.87710203 1 25.4 1.110 0.028 229.67 1021.62 0.063 1.600 7.73 0.873372411 6.964 30.977

Average 1 25.4 1.1133333 0.0282787 202.28333 899.800769 0.0475653 1.2081595 6.88 0.777335341 6.273157047 27.90438264STD Dev. 0.00 0.00 0.06 0.00 52.28 232.55 0.02 0.60 2.90 0.33 2.87 12.77

COV 0.0 0.0 4.9 4.9 25.8 25.8 49.3 49.3 42.2 42.2 45.8 45.810204 1 25.4 1.150 0.029 - - - - - - - -10205 1 25.4 1.130 0.029 377.14 1677.61 0.038 0.973 9.79 1.106121075 8.664 38.53810206 1 25.4 1.070 0.027 368.18 1637.76 0.033 0.845 7.99 0.902748456 7.467 33.216

Average 1 25.4 1.1166667 0.0283633 372.663 1657.69 0.0357715 0.9085961 8.89 1.004434765 8.065503267 35.87713294STD Dev. 0.00 0.00 0.04 0.00 6.33 28.18 0.00 0.09 1.27 0.14 0.85 3.76

COV 0.0 0.0 3.7 3.7 1.7 1.7 10.0 10.0 14.3 14.3 10.5 10.520201 1 25.4 1.150 0.029 242.76 1079.85 0.030 0.766 4.29 0.484704741 3.730 16.59420202 1 25.4 1.160 0.029 237.00 1054.23 0.055 1.392 7.19 0.812360626 6.198 27.57120203 1 25.4 0.980 0.025 285.49 1269.93 0.046 1.168 7.49 0.846256062 7.643 33.997

Average 1 25.4 1.0966667 0.0278553 255.08367 1134.668268 0.0436527 1.1087794 6.323333333 0.714440476 5.857189263 26.05406642STD Dev. 0.00 0.00 0.10 0.00 26.49 117.84 0.01 0.32 1.77 0.20 1.98 8.80

COV 0.0 0.0 9.2 9.2 10.4 10.4 28.6 28.6 27.9 27.9 33.8 33.820204 1 25.4 1.130 0.029 334.00 1485.71 0.051 1.302 6.99 0.789763668 6.186 27.51620205 1 25.4 1.180 0.030 337.00 1499.05 0.031 0.791 5.61 0.633844661 4.754 21.14820206 1 25.4 1.130 0.029 449.00 1997.25 0.041 1.033 11.61 1.311753389 10.274 45.703

Average 1 25.4 1.1466667 0.0291253 373.33333 1660.6688 0.0410217 1.0419503 8.07 0.911787239 7.071471426 31.45546063STD Dev. 0.00 0.00 0.03 0.00 65.55 291.56 0.01 0.26 3.14 0.36 2.86 12.74

COV 0.0 0.0 2.5 2.5 17.6 17.6 24.5 24.5 38.9 38.9 40.5 40.530201 1 25.4 1.180 0.030 302.00 1343.36 0.056 1.426 7.436 0.840154884 6.302 28.03130202 1 25.4 1.170 0.030 240.00 1067.57 0.033 0.836 4.63 0.523119568 3.957 17.60330203 1 25.4 0.970 0.025 315.80 1404.75 0.028 0.721 4.85 0.547976222 5.000 22.241

Average 1 25.4 1.1066667 0.0281093 285.93333 1271.894372 0.0391557 0.9945539 5.638666667 0.637083558 5.086319958 22.62507016STD Dev. 0.00 0.00 0.12 0.00 40.37 179.59 0.01 0.38 1.56 0.18 1.17 5.22

COV 0.0 0.0 10.7 10.7 14.1 14.1 38.0 38.0 27.7 27.7 23.1 23.130204 1 25.4 1.160 0.029 428.00 1903.84 0.035 0.888 8.701 0.98308064 7.501 33.36530205 1 25.4 1.140 0.029 324.00 1441.22 0.060 1.536 12.53 1.415699394 10.991 48.89130206 1 25.4 1.090 0.028 463.28 2060.77 0.052 1.330 16.701 1.886958944 15.322 68.156

Average 1 25.4 1.13 0.028702 405.09333 1801.944267 0.0492737 1.2515511 12.644 1.428579659 11.2713695 50.13753122STD Dev. 0.00 0.00 0.04 0.00 72.41 322.10 0.01 0.33 4.00 0.45 3.92 17.43

COV 0.0 0.0 3.2 3.2 17.9 17.9 26.4 26.4 31.6 31.6 34.8 34.8

20%

30%

0%

10%

Notch Width

1" Notched Samples

Defl.Peak

157

Page 170: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Origin Origin Origin OriginID Area Area Strain Energy Strain Energy

in. mm in. m lbs. newtons in. mm lb-in. N-m lbs/in.^2 J/m0301 1.5 38.1 1.130 0.029 148.35 659.89 0.036 0.910 3.21 0.362681169 2.841 12.6360302 1.5 38.1 1.100 0.028 145.60 647.66 0.037 0.950 3.34 0.377369192 3.036 13.5060303 1.5 38.1 1.140 0.029 142.57 634.18 0.044 1.128 4.07 0.459848087 3.570 15.881

Average 1.5 38.1 1.1233333 0.0285327 145.50667 647.2456648 0.039209 0.9959086 3.54 0.39996615 3.149082347 14.00781108STD Dev. 0.00 0.00 0.02 0.00 2.89 12.86 0.00 0.12 0.46 0.05 0.38 1.68

COV 0.0 0.0 1.9 1.9 2.0 2.0 11.6 11.6 13.1 13.1 12.0 12.00304 1.5 38.1 1.150 0.029 176.61 785.60 0.031 0.796 3.86 0.436121282 3.357 14.9310305 1.5 38.1 1.130 0.029 159.50 709.49 0.031 0.792 2.92 0.329915581 2.584 11.4950306 1.5 38.1 1.010 0.026 211.75 941.91 0.031 0.783 3.523 0.398045408 3.488 15.516

Average 1.5 38.1 1.0966667 0.0278553 182.62 812.3339364 0.031125 0.790575 3.434333333 0.388027424 3.142903782 13.98032746STD Dev. 0.00 0.00 0.08 0.00 26.64 118.49 0.00 0.01 0.48 0.05 0.49 2.17

COV 0.0 0.0 6.9 6.9 14.6 14.6 0.0 0.8 13.9 13.9 15.5 15.510301 1.5 38.1 1.130 0.029 138.02 613.94 0.027 0.674 2.331 0.263367541 2.063 9.17610302 1.5 38.1 0.980 0.025 153.80 684.14 0.036 0.917 4.09 0.462107783 4.173 18.56510303 1.5 38.1 1.170 0.030 134.57 598.60 0.026 0.665 2.178 0.246080868 1.862 8.281

Average 1.5 38.1 1.0933333 0.0277707 142.13 632.2255086 0.0296077 0.7520347 2.866333333 0.323852064 2.699279903 12.00699085STD Dev. 0.00 0.00 0.10 0.00 10.25 45.61 0.01 0.14 1.06 0.12 1.28 5.70

COV 0.0 0.0 9.2 9.2 7.2 7.2 19.0 19.0 37.1 37.1 47.4 47.410304 1.5 38.1 1.170 0.030 200.04 889.82 0.027 0.687 3.303 0.373188755 2.823 12.55810305 1.5 38.1 1.140 0.029 233.80 1039.99 0.035 0.879 4.728 0.534192078 4.147 18.44810306 1.5 38.1 1.040 0.026 282.73 1257.65 0.028 0.712 5.24 0.592040289 5.038 22.412

Average 1.5 38.1 1.1166667 0.0283633 238.85667 1062.487002 0.0298967 0.7593753 4.423666667 0.499807041 4.002968961 17.80608659STD Dev. 0.00 0.00 0.07 0.00 41.58 184.94 0.00 0.10 1.00 0.11 1.11 4.96

COV 0.0 0.0 6.1 6.1 17.4 17.4 13.7 13.7 22.7 22.7 27.8 27.820301 1.5 38.1 1.040 0.026 174.50 776.21 0.025 0.639 2.625 0.296585069 2.524 11.22720302 1.5 38.1 1.160 0.029 118.03 525.02 0.027 0.696 2.267 0.256136514 1.954 8.69320303 1.5 38.1 1.130 0.029 159.38 708.96 0.046 1.164 4.45 0.502782307 3.938 17.517

Average 1.5 38.1 1.11 0.028194 150.63667 670.0650334 0.03279 0.832866 3.114 0.35183463 2.805467301 12.47933576STD Dev. 0.00 0.00 0.06 0.00 29.23 130.03 0.01 0.29 1.17 0.13 1.02 4.54

COV 0.0 0.0 5.6 5.6 19.4 19.4 34.6 34.6 37.6 37.6 36.4 36.420304 1.5 38.1 1.130 0.029 120.00 533.79 0.020 0.498 1.741 0.196706516 1.541 6.85320305 1.5 38.1 1.180 0.030 258.60 1150.31 0.038 0.965 5.55 0.627065573 4.703 20.92220306 1.5 38.1 1.100 0.028 250.30 1113.39 0.025 0.643 3.49 0.39431691 3.173 14.113

Average 1.5 38.1 1.1366667 0.0288713 209.63333 932.495186 0.02764 0.702056 3.593666667 0.406029666 3.138941689 13.9627032STD Dev. 0.00 0.00 0.04 0.00 77.74 345.79 0.01 0.24 1.91 0.22 1.58 7.04

COV 0.0 0.0 3.6 3.6 37.1 37.1 34.1 34.1 53.1 53.1 50.4 50.430301 1.5 38.1 1.150 0.029 137.33 610.87 0.023 0.594 2.05 0.231618815 1.783 7.92930302 1.5 38.1 1.150 0.029 164.90 733.50 0.035 0.888 3.84 0.433861586 3.339 14.85330303 1.5 38.1 1.020 0.026 114.00 507.10 0.023 0.573 1.67 0.188684596 1.637 7.283

Average 1.5 38.1 1.1066667 0.0281093 138.74233 617.156422 0.0269817 0.6853343 2.52 0.284721666 2.252998011 10.02183081STD Dev. 0.00 0.00 0.08 0.00 25.48 113.33 0.01 0.18 1.16 0.13 0.94 4.20

COV 0.0 0.0 6.8 6.8 18.4 18.4 25.7 25.7 46.0 46.0 41.9 41.930304 1.5 38.1 1.160 0.029 259.30 1153.42 0.027 0.687 4.07 0.459848087 3.509 15.60730305 1.5 38.1 1.180 0.030 300.60 1337.13 0.037 0.949 6.82 0.770556254 5.780 25.70930306 1.5 38.1 1.040 0.026 292.32 1300.30 0.030 0.772 4.97 0.561534396 4.779 21.257

Average 1.5 38.1 1.1266667 0.0286173 284.07333 1263.620683 0.03161 0.802894 5.286666667 0.597312913 4.68904262 20.85789316STD Dev. 0.00 0.00 0.08 0.00 21.85 97.19 0.01 0.13 1.40 0.16 1.14 5.06

COV 0.0 0.0 6.7 6.7 7.7 7.7 16.7 16.7 26.5 26.5 24.3 24.3

20%

30%

0%

10%

1.5" Notched Samples

Notch Width Peak Defl.

158

Page 171: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Notched IDT 0101UA(.5): PG 76-22

0

100

200

300

400

500

600

700

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Defl., in.

Load

, lbs

.

Notched IDT 0104LTA(.5): PG 76-22

0

100

200

300

400

500

600

700

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Defl., in.

Load

, lbs

.

Notched IDT 0102UA: PG 76-22

0

100

200

300

400

500

600

700

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Defl.,in.

Load

, lbs

.

Notched IDT 0105LTA(.5): PG 76-22

0

100

200

300

400

500

600

700

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Defl.,in.

Load

, lbs

.

Notched IDT 0103UA(.5): PG 76-22

0

100

200

300

400

500

600

700

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Defl., in.

Load

, lbs

.

Notched IDT 0106LTA(.5): PG 76-22

0

100

200

300

400

500

600

700

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Defl.,in.

Load

, lbs

.

159

Page 172: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Notched IDT 10101UA(.5): PG 76-22

0

100

200

300

400

500

600

700

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Defl., in.

Load

, lbs

.

Notched IDT 10104LTA(.5): PG 76-22

0

50

100

150

200

250

300

350

400

450

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Defl., in.

Load

, lbs

.

Notched IDT 10102UA(.5): PG 76-22

0

100

200

300

400

500

600

700

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Defl., in.

Load

, lbs

.

Notched IDT 10105LTA(.5): PG 76-22

0

100

200

300

400

500

600

700

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Defl., in.

Load

, lbs

.

Notched IDT 10103UA(.5): PG 76-22

0

100

200

300

400

500

600

700

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Defl., in.

Load

, lbs

.

Notched IDT 10106LTA(.5): PG 76-22

0

100

200

300

400

500

600

700

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Defl., in.

Load

, lbs

.

160

Page 173: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Notched IDT 20101UA(.5): PG 76-22

0

100

200

300

400

500

600

700

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Defl., in.

Load

, lbs

.

Notched IDT 20104LTA(.5): PG 76-22

0

100

200

300

400

500

600

700

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Defl., in.

Load

, lbs

.

Notched IDT 20102UA(.5): PG 76-22

0

100

200

300

400

500

600

700

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Defl., in.

Load

, lbs

.

Notched IDT 20105LTA(.5): PG 76-22

0

100

200

300

400

500

600

700

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Defl., in.

Load

, lbs

.

Notched IDT 20103UA(.5): PG 76-22

0

100

200

300

400

500

600

700

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Defl., in.

Load

, lbs

.

Notched IDT 20106LTA(.5): PG 76-22

0

100

200

300

400

500

600

700

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Defl., in.

Load

, lbs

.

161

Page 174: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Notched IDT 30101UA(.5): PG 76-22

0

100

200

300

400

500

600

700

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Defl., in.

Load

, lbs

.

Notched IDT 30104LTA(.5): PG 76-22

0

100

200

300

400

500

600

700

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Defl., in.

Load

, lbs

.

Notched IDT 30102UA(.5): PG 76-22

0

100

200

300

400

500

600

700

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Defl., in.

Load

, lbs

.

Notched IDT 30105LTA(.5): PG 76-22

0

100

200

300

400

500

600

700

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Defl., in.

Load

, lbs

.

Notched IDT 30103UA(.5): PG 76-22

0

100

200

300

400

500

600

700

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Defl., in.

Load

, lbs

.

Notched IDT 30106LTA(.5): PG 76-22

0

100

200

300

400

500

600

700

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Defl., in.

Load

, lbs

.

162

Page 175: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Notched IDT 0201UA(1): PG 76-22

0

50

100

150

200

250

300

350

400

450

500

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Defl., in.

Load

, lbs

.

Notched IDT 0204LTA(1): PG 76-22

0

50

100

150

200

250

300

350

400

450

500

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Defl., in.

Load

, lbs

.

Notched IDT 0202UA(1): PG 76-22

0

50

100

150

200

250

300

350

400

450

500

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Defl.,in.

Load

, lbs

.

Notched IDT 0205LTA(1): PG 76-22

0

50

100

150

200

250

300

350

400

450

500

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Defl., in.

Load

, lbs

.

Notched IDT 0203UA(1): PG 76-22

0

50

100

150

200

250

300

350

400

450

500

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Defl., in.

Load

, lbs

.

Notched IDT 0206LTA(1): PG 76-22

0

50

100

150

200

250

300

350

400

450

500

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Defl., in.

Load

, lbs

.

163

Page 176: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Notched IDT 10201UA(1): PG 76-22

0

50

100

150

200

250

300

350

400

450

500

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Defl., in.

Load

, lbs

.

Notched IDT 10205LTA(1): PG 76-22

0

50

100

150

200

250

300

350

400

450

500

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Defl., in.

Load

, lbs

.

Notched IDT 10202UA(1): PG 76-22

0

50

100

150

200

250

300

350

400

450

500

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Defl., in.

Load

, lbs

.

Notched IDT 10205LTA(1): PG 76-22

0

50

100

150

200

250

300

350

400

450

500

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Defl., in.

Load

, lbs

.

Notched IDT 10203(1): PG 76-22

0

50

100

150

200

250

300

350

400

450

500

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Defl., in.

Load

, lbs

.

Notched IDT 10206LTA(1): PG 76-22

0

50

100

150

200

250

300

350

400

450

500

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Defl., in.

Load

, lbs

.

164

Page 177: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Notched IDT 20201UA(1): PG 76-22

0

50

100

150

200

250

300

350

400

450

500

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Defl., in.

Load

, lbs

.

Notched IDT 20204LTA(1): PG 76-22

0

50

100

150

200

250

300

350

400

450

500

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Defl., in.

Load

, lbs

.

Notched IDT 20202UA(1): PG 76-22

0

50

100

150

200

250

300

350

400

450

500

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Defl., in.

Load

, lbs

.

Notched IDT 20205LTA(1): PG 76-22

0

50

100

150

200

250

300

350

400

450

500

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Defl., in.

Load

, lbs

.

Notched IDT 20203UA(1): PG 76-22

0

50

100

150

200

250

300

350

400

450

500

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Defl., in.

Load

, lbs

.

Notched IDT 20206LTA(1): PG 76-22

0

50

100

150

200

250

300

350

400

450

500

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Defl., in.

Load

, lbs

.

165

Page 178: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Notched IDT 30201UA(1): PG 76-22

0

50

100

150

200

250

300

350

400

450

500

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Defl., in.

Load

, lbs

.

Notched IDT 30204LTA(1): PG 76-22

0

50

100

150

200

250

300

350

400

450

500

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Defl., in.

Load

, lbs

.

Notched IDT 30202UA(1): PG 76-22

0

50

100

150

200

250

300

350

400

450

500

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Defl., in.

Load

, lbs

.

Notched IDT 30205LTA(1): PG 76-22

0

50

100

150

200

250

300

350

400

450

500

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Defl., in.

Load

, lbs

.

Notched IDT 30203UA(1): PG 76-22

0

50

100

150

200

250

300

350

400

450

500

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Defl., in.

Load

, lbs

.

Notched IDT 30206LTA(1): PG 76-22

0

50

100

150

200

250

300

350

400

450

500

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Defl., in.

Load

, lbs

.

166

Page 179: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Notched IDT 0301UA(1.5): PG 76-22

0

50

100

150

200

250

300

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Defl., in.

Load

, lbs

.

Notched IDT 0304LTA(1.5): PG 76-22

0

50

100

150

200

250

300

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Defl., in.

Load

, lbs

.

Notched IDT 0302UA(1.5): PG 76-22

0

50

100

150

200

250

300

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Defl., in.

Load

, lbs

.

Notched IDT 0305LTA(1.5): PG 76-22

0

50

100

150

200

250

300

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Defl., in.

Load

, lbs

.

Notched IDT 0303UA(1.5): PG 76-22

0

50

100

150

200

250

300

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Defl., in.

Load

, lbs

.

Notched IDT 0306LTA(1.5): PG 76-22

0

50

100

150

200

250

300

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Defl., in.

Load

, lbs

.

167

Page 180: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Notched IDT 10301UA(1.5): PG 76-22

0

50

100

150

200

250

300

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Defl., in.

Load

, lbs

.

Notched IDT 10304LTA(1.5): PG 76-22

0

50

100

150

200

250

300

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Defl., in.

Load

, lbs

.

Notched IDT 10302UA(1.5): PG 76-22

0

50

100

150

200

250

300

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Defl., in.

Load

, lbs

.

Notched IDT 10305LTA(1.5): PG 76-22

0

50

100

150

200

250

300

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Defl., in.

Load

, lbs

.

Notched IDT 10303UA(1.5): PG 76-22

0

50

100

150

200

250

300

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Defl.,in.

Load

, lbs

.

Notched IDT 10306LTA(1.5): PG 76-22

0

50

100

150

200

250

300

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Defl., in.

Load

, lbs

.

168

Page 181: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Notched IDT 20301UA(1.5): PG 76-22

0

50

100

150

200

250

300

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Defl., in.

Load

, lbs

.

Notched IDT 20304LTA(1.5): PG 76-22

0

50

100

150

200

250

300

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Defl., in.

Load

, lbs

.

Notched IDT 20302UA(1.5): PG 76-22

0

50

100

150

200

250

300

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Defl., in.

Load

, lbs

.

Notched IDT 20305LTA(1.5): PG 76-22

0

50

100

150

200

250

300

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Defl., in.

Load

, lbs

.

Notched IDT 20303UA(1.5): PG 76-22

0

50

100

150

200

250

300

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Defl., in.

Load

, lbs

.

Notched IDT 20306LTA(1.5): PG 76-22

0

50

100

150

200

250

300

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Defl., in.

Load

, lbs

.

169

Page 182: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Notched IDT 30301UA(1.5): PG 76-22

0

50

100

150

200

250

300

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Defl., in.

Load

, lbs

.

Notched IDT 30304LTA(1.5): PG 76-22

0

50

100

150

200

250

300

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Defl., in.

Load

, lbs

.

Notched IDT 30302UA(1.5): PG 76-22

0

50

100

150

200

250

300

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Defl., in.

Load

, lbs

.

Notched IDT 30305LTA(1.5): PG 76-22

0

50

100

150

200

250

300

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Defl., in.

Load

, lbs

.

Notched IDT 30303UA(1.5): PG 76-22

0

50

100

150

200

250

300

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Defl., in.

Load

, lbs

.

Notched IDT 30306LTA(1.5): PG 76-22

0

50

100

150

200

250

300

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Defl., in.

Load

, lbs

.

170

Page 183: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Appendix D: Flexural Beam Fatigue Test Data

171

Page 184: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Limestone Mixtures

Percent Rap Specimen Cycles, N

Cummulative Dissipated Energy

(in-lbf/in^3)Stiffnes Specimen Cycles, N

Cummulative Dissipated Energy

(in-lbf/in^3)Stiffnes

1 16,196 2,703.168 410,000.000 1 12,917 2,011.37 310,000.0002 10,364 1,804.834 425,000.000 2 9,345 1,517.61 315,000.0003 12,613 2,048.549 500,000.000 3 23,634 3,712.48 320,000.000

Avg. 13,058 2,186 445,000 Avg. 15,299 2,414 315,000Std. 2,941 465 48,218 Std. 7,436 1,151 5,000COV 23 21 11 COV 49 48 2

1 56,229 11,761.071 610,000.000 1 19,456 4,010.991 450,000.0002 32,324 5,903.875 560,000.000 2 4,645 769.007 325,000.0003 65,002 12,863.054 570,000.000 3 17,419 3,352.042 430,000.000

Avg. 51,185 10,176.000 580,000.000 Avg. 13,840 2,710.680 401,666.667Std. 16,913 3,740.572 26,457.513 Std. 8,028 1,713.512 67,144.124COV 33 36.759 4.562 COV 58 63.213 16.716

1 84,324 17,102.993 690,000.000 1 21,886 4,496.125 630,000.0002 22,307 4,015.847 580,000.000 2 22,306 4,808.246 650,000.0003 39,575 7,814.909 650,000.000 3 31,598 6,057.998 450,000.000

Avg. 48,735 9,644.583 640,000.000 Avg. 25,263 5,120.790 576,666.667Std. 32,007 6,732.691 55,677.644 Std. 5,490 826.513 110,151.411COV 66 69.808 8.700 COV 22 16.140 19.101

1 107,604 22,365.632 750,000.000 1 104,033 21,246.412 780,000.0002 88,402 17,294.130 700,000.000 2 93,103 20,099.014 650,000.0003 26,692 4,670.672 620,000.000 3 59,788 12,770.259 670,000.000

Avg. 74,232.67 14,776.81 690,000.00 Avg. 85,641.33 18,038.56 700,000.00Std. 42,276.06 9,112.11 65,574.39 Std. 23,046.96 4,598.41 70,000.00COV 56.95 61.66 9.50 COV 26.91 25.49 10.00

PG 64-22 Beam Fatigue Test Summary

20%

30%

Aged Specimens Unaged Specimens

0%

10%

172

Page 185: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Flexural Stiffness vs. Loading Cycles

0.000E+00

5.000E+04

1.000E+05

1.500E+052.000E+05

2.500E+05

3.000E+05

3.500E+05

100 2,100 4,100 6,100 8,100 10,100 12,100 14,100

Loading Cycles

Flex

ural

Stif

fnes

s (lb

f/in^

2)

001u64

173

Flexural Stiffness vs. Loading Cycles

0.000E+00

5.000E+04

1.000E+05

1.500E+052.000E+05

2.500E+05

3.000E+05

3.500E+05

100 2,100 4,100 6,100 8,100 10,100

Loading Cycles

Flex

ural

Stif

fnes

s (lb

f/in^

2)

002u64

Flexural Stiffness vs. Loading Cycles

0.000E+00

5.000E+04

1.000E+05

1.500E+052.000E+05

2.500E+05

3.000E+05

3.500E+05

100 5,100 10,100 15,100 20,100 25,100

Loading Cycles

Flex

ural

Stif

fnes

s (lb

f/in^

2)

003u64

Page 186: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Flexural Stiffness vs. Loading Cycles

0.000E+00

1.000E+05

2.000E+05

3.000E+05

4.000E+05

5.000E+05

100 5,100 10,100 15,100 20,100 25,100

Loading Cycles

Flex

ural

Stif

fnes

s (lb

f/in^

2)

101u64

Flexural Stiffness vs. Loading Cycles

0.000E+00

5.000E+04

1.000E+05

1.500E+052.000E+05

2.500E+05

3.000E+05

3.500E+05

100 1,100 2,100 3,100 4,100 5,100

Loading Cycles

Flex

ural

Stif

fnes

s (lb

f/in^

2)

102u64

Flexural Stiffness vs. Loading Cycles

0.000E+005.000E+041.000E+051.500E+052.000E+052.500E+053.000E+053.500E+054.000E+054.500E+05

100 5,100 10,100 15,100 20,100

Loading Cycles

Flex

ural

Stif

fnes

s (lb

f/in^

2)

103u64

174

Page 187: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Flexural Stiffness vs. Loading Cycles

0.000E+00

1.000E+05

2.000E+05

3.000E+054.000E+05

5.000E+05

6.000E+05

7.000E+05

100 5,100 10,100 15,100 20,100 25,100

Loading Cycles

Flex

ural

Stif

fnes

s (lb

f/in^

2)

201u64

175

Flexural Stiffness vs. Loading Cycles

0.000E+00

1.000E+05

2.000E+05

3.000E+054.000E+05

5.000E+05

6.000E+05

7.000E+05

100 5,100 10,100 15,100 20,100 25,100

Loading Cycles

Flex

ural

Stif

fnes

s (lb

f/in^

2)

202u64

Flexural Stiffness vs. Loading Cycles

0.000E+00

1.000E+05

2.000E+05

3.000E+05

4.000E+05

5.000E+05

100 5,100 10,100 15,100 20,100 25,100 30,100 35,100

Loading Cycles

Flex

ural

Stif

fnes

s (lb

f/in^

2)

203u64

Page 188: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Flexural Stiffness vs. Loading Cycles

0.000E+001.000E+052.000E+053.000E+054.000E+055.000E+056.000E+057.000E+058.000E+059.000E+05

100 20,100 40,100 60,100 80,100 100,100 120,100

Loading Cycles

Flex

ural

Stif

fnes

s (lb

f/in^

2)

3011u64

176

Flexural Stiffness vs. Loading Cycles

0.000E+00

1.000E+05

2.000E+05

3.000E+054.000E+05

5.000E+05

6.000E+05

7.000E+05

100 20,100 40,100 60,100 80,100 100,100

Loading Cycles

Flex

ural

Stif

fnes

s (lb

f/in^

2)

302u64

Flexural Stiffness vs. Loading Cycles

0.000E+00

1.000E+05

2.000E+05

3.000E+054.000E+05

5.000E+05

6.000E+05

7.000E+05

100 10,100 20,100 30,100 40,100 50,100 60,100 70,100

Loading Cycles

Flex

ural

Stif

fnes

s (lb

f/in^

2)

303u64

Page 189: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Flexural Stiffness vs. Loading Cycles

0.000E+005.000E+041.000E+051.500E+052.000E+052.500E+053.000E+053.500E+054.000E+054.500E+05

100 5,100 10,100 15,100 20,100

Loading Cycles

Flex

ural

Stif

fnes

s (lb

f/in^

2)

001-a-64

Flexural Stiffness vs. Loading Cycles

0.000E+005.000E+041.000E+051.500E+052.000E+052.500E+053.000E+053.500E+054.000E+054.500E+05

100 2,100 4,100 6,100 8,100 10,100 12,100

Loading Cycles

Flex

ural

Stif

fnes

s (lb

f/in^

2)

002-a-64

Flexural Stiffness vs. Loading Cycles

0.000E+00

1.000E+05

2.000E+05

3.000E+05

4.000E+05

5.000E+05

6.000E+05

100 2,100 4,100 6,100 8,100 10,100 12,100 14,100

Loading Cycles

Flex

ural

Stif

fnes

s (lb

f/in^

2)

004-a-64

177

Page 190: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Flexural Stiffness vs. Loading Cycles

0.000E+00

1.000E+05

2.000E+05

3.000E+054.000E+05

5.000E+05

6.000E+05

7.000E+05

100 10,100 20,100 30,100 40,100 50,100 60,100

Loading Cycles

Flex

ural

Stif

fnes

s (lb

f/in^

2)

101-a-64

178

Flexural Stiffness vs. Loading Cycles

0.000E+00

1.000E+05

2.000E+05

3.000E+05

4.000E+05

5.000E+05

6.000E+05

100 5,100 10,100 15,100 20,100 25,100 30,100 35,100

Loading Cycles

Flex

ural

Stif

fnes

s (lb

f/in^

2)

102-a-64

Flexural Stiffness vs. Loading Cycles

0.000E+00

1.000E+05

2.000E+05

3.000E+05

4.000E+05

5.000E+05

6.000E+05

100 10,100 20,100 30,100 40,100 50,100 60,100 70,100

Loading Cycles

Flex

ural

Stif

fnes

s (lb

f/in^

2)

103-a-64

Page 191: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Flexural Stiffness vs. Loading Cycles

0.000E+001.000E+052.000E+053.000E+054.000E+055.000E+056.000E+057.000E+058.000E+05

100 20,100 40,100 60,100 80,100 100,100

Loading Cycles

Flex

ural

Stif

fnes

s (lb

f/in^

2)

201-a-64

179

Flexural Stiffness vs. Loading Cycles

0.000E+00

1.000E+05

2.000E+05

3.000E+054.000E+05

5.000E+05

6.000E+05

7.000E+05

100 5,100 10,100 15,100 20,100 25,100

Loading Cycles

Flex

ural

Stif

fnes

s (lb

f/in^

2)

202-a-64

Flexural Stiffness vs. Loading Cycles

0.000E+00

1.000E+05

2.000E+05

3.000E+054.000E+05

5.000E+05

6.000E+05

7.000E+05

100 10,100 20,100 30,100 40,100 50,100

Loading Cycles

Flex

ural

Stif

fnes

s (lb

f/in^

2)

203-a-64

Page 192: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Flexural Stiffness vs. Loading Cycles

0.000E+001.000E+052.000E+053.000E+054.000E+055.000E+056.000E+057.000E+058.000E+05

100 20,100 40,100 60,100 80,100 100,100 120,100

Loading Cycles

Flex

ural

Stif

fnes

s (lb

f/in^

2)

301-a-64

Flexural Stiffness vs. Loading Cycles

0.000E+001.000E+052.000E+053.000E+054.000E+055.000E+056.000E+057.000E+058.000E+05

100 20,100 40,100 60,100 80,100 100,100

Loading Cycles

Flex

ural

Stif

fnes

s (lb

f/in^

2)

302-a-64

Flexural Stiffness vs. Loading Cycles

0.000E+00

1.000E+05

2.000E+05

3.000E+054.000E+05

5.000E+05

6.000E+05

7.000E+05

100 5,100 10,100 15,100 20,100 25,100 30,100

Loading Cycles

Flex

ural

Stif

fnes

s (lb

f/in^

2)

303-a-64

180

Page 193: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Flexural Stiffness vs. Loading Cycles

0.000E+00

1.000E+05

2.000E+05

3.000E+054.000E+05

5.000E+05

6.000E+05

7.000E+05

100 20,100 40,100 60,100 80,100 100,100 120,100 140,100 160,100

Loading Cycles

Flex

ural

Stif

fnes

s (lb

f/in^

2)

001U76

181

Flexural Stiffness vs. Loading Cycles

0.000E+00

1.000E+05

2.000E+05

3.000E+054.000E+05

5.000E+05

6.000E+05

7.000E+05

100 50,100 100,100 150,100 200,100 250,100

Loading Cycles

Flex

ural

Stif

fnes

s (lb

f/in^

2)

002u76

Flexural Stiffness vs. Loading Cycles

0.000E+005.000E+041.000E+051.500E+052.000E+052.500E+053.000E+053.500E+054.000E+054.500E+05

100 50,100 100,100 150,100 200,100 250,100 300,100 350,100

Loading Cycles

Flex

ural

Stif

fnes

s (lb

f/in^

2)

003u76

Page 194: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Flexural Stiffness vs. Loading Cycles

0.000E+00

1.000E+05

2.000E+05

3.000E+054.000E+05

5.000E+05

6.000E+05

7.000E+05

100 10,100 20,100 30,100 40,100 50,100 60,100 70,100 80,100

Loading Cycles

Flex

ural

Stif

fnes

s (lb

f/in^

2)

101U76

182

Flexural Stiffness vs. Loading Cycles

0.000E+00

1.000E+05

2.000E+05

3.000E+05

4.000E+05

5.000E+05

100 10,100 20,100 30,100 40,100 50,100 60,100 70,100 80,100

Loading Cycles

Flex

ural

Stif

fnes

s (lb

f/in^

2)

102u76

Flexural Stiffness vs. Loading Cycles

0.000E+00

1.000E+05

2.000E+05

3.000E+054.000E+05

5.000E+05

6.000E+05

7.000E+05

100 20,100 40,100 60,100 80,100 100,100 120,100

Loading Cycles

Flex

ural

Stif

fnes

s (lb

f/in^

2)

103u76

Page 195: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Flexural Stiffness vs. Loading Cycles

0.000E+001.000E+052.000E+053.000E+054.000E+055.000E+056.000E+057.000E+058.000E+05

100 50,100 100,100 150,100 200,100 250,100 300,100 350,100

Loading Cycles

Flex

ural

Stif

fnes

s (lb

f/in^

2)

201u76

Flexural Stiffness vs. Loading Cycles

0.000E+00

1.000E+05

2.000E+05

3.000E+05

4.000E+05

5.000E+05

6.000E+05

100 5,100 10,100 15,100 20,100 25,100 30,100 35,100 40,100

Loading Cycles

Flex

ural

Stif

fnes

s (lb

f/in^

2)

203u76

Flexural Stiffness vs. Loading Cycles

0.000E+00

1.000E+05

2.000E+05

3.000E+05

4.000E+05

5.000E+05

100 5,100 10,100 15,100 20,100 25,100

Loading Cycles

Flex

ural

Stif

fnes

s (lb

f/in^

2)

205u76

183

Page 196: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Flexural Stiffness vs. Loading Cycles

0.000E+001.000E+052.000E+053.000E+054.000E+055.000E+056.000E+057.000E+058.000E+05

100 20,100 40,100 60,100 80,100 100,100 120,100 140,100 160,100

Loading Cycles

Flex

ural

Stif

fnes

s (lb

f/in^

2)

301u76

184

Flexural Stiffness vs. Loading Cycles

0.000E+001.000E+052.000E+053.000E+054.000E+055.000E+056.000E+057.000E+058.000E+05

100 50,100 100,100 150,100 200,100 250,100 300,100

Loading Cycles

Flex

ural

Stif

fnes

s (lb

f/in^

2)

304u76

Flexural Stiffness vs. Loading Cycles

0.000E+00

1.000E+05

2.000E+05

3.000E+054.000E+05

5.000E+05

6.000E+05

7.000E+05

100 10,100 20,100 30,100 40,100 50,100 60,100

Loading Cycles

Flex

ural

Stif

fnes

s (lb

f/in^

2)

305u76

Page 197: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Flexural Stiffness vs. Loading Cycles

0.000E+00

1.000E+05

2.000E+05

3.000E+05

4.000E+05

5.000E+05

100 50,100 100,100 150,100 200,100 250,100

Loading Cycles

Flex

ural

Stif

fnes

s (lb

f/in^

2)

001-a-76

185

Flexural Stiffness vs. Loading Cycles

0.000E+005.000E+041.000E+051.500E+052.000E+052.500E+053.000E+053.500E+054.000E+054.500E+05

100 600 1,100 1,600 2,100

Loading Cycles

Flex

ural

Stif

fnes

s (lb

f/in^

2)

002-a-76

Flexural Stiffness vs. Loading Cycles

0.000E+00

1.000E+05

2.000E+05

3.000E+05

4.000E+05

5.000E+05

6.000E+05

100 10,100 20,100 30,100 40,100 50,100

Loading Cycles

Flex

ural

Stif

fnes

s (lb

f/in^

2)

003-a-76

Page 198: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Flexural Stiffness vs. Loading Cycles

0.000E+00

1.000E+05

2.000E+05

3.000E+05

4.000E+05

5.000E+05

6.000E+05

100 50,100 100,100 150,100 200,100

Loading Cycles

Flex

ural

Stif

fnes

s (lb

f/in^

2)

101-a-76

Flexural Stiffness vs. Loading Cycles

0.000E+00

1.000E+05

2.000E+05

3.000E+054.000E+05

5.000E+05

6.000E+05

7.000E+05

100 50,100 100,100 150,100 200,100 250,100

Loading Cycles

Flex

ural

Stif

fnes

s (lb

f/in^

2)

102-a-76

Flexural Stiffness vs. Loading Cycles

0.000E+00

1.000E+05

2.000E+05

3.000E+054.000E+05

5.000E+05

6.000E+05

7.000E+05

100 50,100 100,100 150,100 200,100 250,100

Loading Cycles

Flex

ural

Stif

fnes

s (lb

f/in^

2)

103-a-76

186

Page 199: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Flexural Stiffness vs. Loading Cycles

0.000E+00

1.000E+05

2.000E+05

3.000E+05

4.000E+05

5.000E+05

100 10,100 20,100 30,100 40,100 50,100

Loading Cycles

Flex

ural

Stif

fnes

s (lb

f/in^

2)

201-a-76

187

Flexural Stiffness vs. Loading Cycles

0.000E+00

1.000E+05

2.000E+05

3.000E+05

4.000E+05

5.000E+05

6.000E+05

100 10,100 20,100 30,100 40,100 50,100 60,100 70,100

Loading Cycles

Flex

ural

Stif

fnes

s (lb

f/in^

2)

202-a-76

Flexural Stiffness vs. Loading Cycles

0.000E+00

1.000E+05

2.000E+05

3.000E+05

4.000E+05

5.000E+05

6.000E+05

100 10,100 20,100 30,100 40,100 50,100 60,100 70,100

Loading Cycles

Flex

ural

Stif

fnes

s (lb

f/in^

2)

202-a-76

Page 200: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Flexural Stiffness vs. Loading Cycles

0.000E+001.000E+052.000E+053.000E+054.000E+055.000E+056.000E+057.000E+058.000E+05

100 20,100 40,100 60,100 80,100 100,100 120,100 140,100

Loading Cycles

Flex

ural

Stif

fnes

s (lb

f/in^

2)

301-a-76

188

Flexural Stiffness vs. Loading Cycles

0.000E+001.000E+052.000E+053.000E+054.000E+055.000E+056.000E+057.000E+058.000E+059.000E+05

100 50,100 100,100 150,100 200,100 250,100 300,100 350,100

Loading Cycles

Flex

ural

Stif

fnes

s (lb

f/in^

2)

302-a-76

Flexural Stiffness vs. Loading Cycles

0.000E+001.000E+052.000E+053.000E+054.000E+055.000E+056.000E+057.000E+058.000E+05

100 50,100 100,100 150,100 200,100 250,100 300,100 350,100

Loading Cycles

Flex

ural

Stif

fnes

s (lb

f/in^

2)

303-a-76

Page 201: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Gravel Mixtures

Percent Rap Specimen Cycles, N

Cummulative Dissipated Energy

(in-lbf/in^3)Stiffnes Specimen Cycles, N

Cummulative Dissipated Energy

(in-lbf/in^3)Stiffnes

1 19,778 4,211.429 540,000.000 1 4,443 948.15 560,000.0002 23,541 5,560.499 660,000.000 2 6,288 1,389.30 560,000.0003 10,159 2,255.543 610,000.000 3 4,239 901.61 490,000.000

Avg. 17,826 4,009 603,333 Avg. 4,990 1,080 536,667Std. 6,901 1,662 60,277 Std. 1,129 269 40,415COV 39 41 10 COV 23 25 8

1 7,506 1,529.435 570,000.000 1 11,694 2,755.658 620,000.0002 15,370 3,120.721 660,000.000 2 17,004 3,633.505 490,000.0003 24,142 5,321.412 570,000.000 3 16,389 3,433.561 490,000.000

Avg. 15,673 3,323.856 600,000.000 Avg. 15,029 3,274.241 533,333.333Std. 8,322 1,904.132 51,961.524 Std. 2,905 460.099 75,055.535COV 53 57.287 8.660 COV 19 14.052 14.073

1 66,238 15,924.691 760,000.000 1 7,508 1,441.844 610,000.0002 40,292 9,186.100 690,000.000 2 14,046 2,753.662 600,000.0003 34,268 6,959.164 560,000.000 3 12,919 2,334.500 510,000.000

Avg. 46,933 10,689.985 670,000.000 Avg. 11,491 2,176.669 573,333.333Std. 16,988 4,668.128 101,488.916 Std. 3,495 670.000 55,075.705COV 36 43.668 15.148 COV 30 30.781 9.606

1 44,157 8,097.088 640,000.000 1 38,641 8,045.471 710,000.0002 26,192 5,348.758 620,000.000 2 31,902 5,752.847 600,000.0003 86,104 15,304.217 780,000.000 3 36,819 7,066.024 640,000.000

Avg. 52,151.00 9,583.35 680,000.00 Avg. 35,787.33 6,954.78 650,000.00Std. 30,745.57 5,141.45 87,177.98 Std. 3,485.94 1,150.35 55,677.64COV 58.95 53.65 12.82 COV 9.74 16.54 8.57

30%

PG 64-22 Beam Fatigue Test SummaryLong-term Aged Freeze Thaw Specimens

20%

0%

10%

Long-term Aged Specimens

189

Page 202: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Flexural Stiffness vs. Loading Cycles

0.000E+00

1.000E+05

2.000E+05

3.000E+05

4.000E+05

5.000E+05

6.000E+05

100 5,100 10,100 15,100 20,100 25,100

Loading Cycles

Flex

ural

Stif

fnes

s (lb

f/in

L064

Flexural Stiffness vs. Loading Cycles

0.000E+00

1.000E+05

2.000E+05

3.000E+054.000E+05

5.000E+05

6.000E+05

7.000E+05

100 5,100 10,100 15,100 20,100 25,100

Loading Cycles

Flex

ural

Stif

fnes

s (lb

f/in

m064

Flexural Stiffness vs. Loading Cycles

0.000E+00

1.000E+05

2.000E+05

3.000E+054.000E+05

5.000E+05

6.000E+05

7.000E+05

100 2,100 4,100 6,100 8,100 10,100 12,100

Loading Cycles

Flex

ural

Stif

fnes

s (lb

f/in

NL064

190

Page 203: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Dissipated Energy vs. Loading Cycles

0.000E+00

5.000E-02

1.000E-01

1.500E-01

2.000E-01

2.500E-01

100 1,100 2,100 3,100 4,100 5,100 6,100 7,100 8,100

Loading Cycles

Dis

sipa

ted

Ener

gy (i

n-lb

f/i

L1064

Flexural Stiffness vs. Loading Cycles

0.000E+00

1.000E+05

2.000E+05

3.000E+054.000E+05

5.000E+05

6.000E+05

7.000E+05

100 5,100 10,100 15,100 20,100

Loading Cycles

Flex

ural

Stif

fnes

s (lb

f/in

M1064

Flexural Stiffness vs. Loading Cycles

0.000E+001.000E+052.000E+053.000E+054.000E+055.000E+056.000E+057.000E+058.000E+05

100 5,100 10,100 15,100 20,100 25,100 30,100

Loading Cycles

Flex

ural

Stif

fnes

s (lb

f/in

NL1064

191

Page 204: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Flexural Stiffness vs. Loading Cycles

0.000E+001.000E+052.000E+053.000E+054.000E+055.000E+056.000E+057.000E+058.000E+05

100 10,100 20,100 30,100 40,100 50,100 60,100 70,100

Loading Cycles

Flex

ural

Stif

fnes

s (lb

f/in

L2064

Flexural Stiffness vs. Loading Cycles

0.000E+001.000E+052.000E+053.000E+054.000E+055.000E+056.000E+057.000E+058.000E+05

100 10,100 20,100 30,100 40,100 50,100

Loading Cycles

Flex

ural

Stif

fnes

s (lb

f/in

M2064

Flexural Stiffness vs. Loading Cycles

0.000E+00

1.000E+05

2.000E+05

3.000E+05

4.000E+05

5.000E+05

6.000E+05

100 5,100 10,100 15,100 20,100 25,100 30,100 35,100 40,100

Loading Cycles

Flex

ural

Stif

fnes

s (lb

f/in

R2064

192

Page 205: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Flexural Stiffness vs. Loading Cycles

0.000E+00

1.000E+05

2.000E+05

3.000E+054.000E+05

5.000E+05

6.000E+05

7.000E+05

100 10,100 20,100 30,100 40,100 50,100

Loading Cycles

Flex

ural

Stif

fnes

s (lb

f/in

L3064

Flexural Stiffness vs. Loading Cycles

0.000E+00

1.000E+05

2.000E+05

3.000E+054.000E+05

5.000E+05

6.000E+05

7.000E+05

100 5,100 10,100 15,100 20,100 25,100 30,100

Loading Cycles

Flex

ural

Stif

fnes

s (lb

f/in

M306411

Flexural Stiffness vs. Loading Cycles

0.000E+001.000E+052.000E+053.000E+054.000E+055.000E+056.000E+057.000E+058.000E+059.000E+05

100 20,100 40,100 60,100 80,100 100,100

Loading Cycles

Flex

ural

Stif

fnes

s (lb

f/in

R3064

193

Page 206: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Flexural Stiffness vs. Loading Cycles

0.000E+00

1.000E+05

2.000E+05

3.000E+05

4.000E+05

5.000E+05

6.000E+05

100 1,100 2,100 3,100 4,100 5,100

Loading Cycles

Flex

ural

Stif

fnes

s (lb

f/in

L064FT

Dissipated Energy vs. Loading Cycles

0.000E+00

5.000E-02

1.000E-01

1.500E-01

2.000E-01

2.500E-01

100 1,100 2,100 3,100 4,100 5,100 6,100 7,100

Loading Cycles

Dis

sipa

ted

Ener

gy (i

n-lb

f/i

M064FT

Flexural Stiffness vs. Loading Cycles

0.000E+00

1.000E+05

2.000E+05

3.000E+05

4.000E+05

5.000E+05

6.000E+05

100 1,100 2,100 3,100 4,100 5,100

Loading Cycles

Flex

ural

Stif

fnes

s (lb

f/in

NM064FT

194

Page 207: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Flexural Stiffness vs. Loading Cycles

0.000E+00

1.000E+05

2.000E+05

3.000E+054.000E+05

5.000E+05

6.000E+05

7.000E+05

100 2,100 4,100 6,100 8,100 10,100 12,100 14,100

Loading Cycles

Flex

ural

Stif

fnes

s (lb

f/in

L1064FT

Flexural Stiffness vs. Loading Cycles

0.000E+00

1.000E+05

2.000E+05

3.000E+05

4.000E+05

5.000E+05

6.000E+05

100 1,000 10,000 100,000

Loading Cycles

Flex

ural

Stif

fnes

s (lb

f/in

NM1064FT

Flexural Stiffness vs. Loading Cycles

0.000E+00

1.000E+05

2.000E+05

3.000E+05

4.000E+05

5.000E+05

6.000E+05

100 1,000 10,000 100,000

Loading Cycles

Flex

ural

Stif

fnes

s (lb

f/in

NR1064FT

195

Page 208: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Flexural Stiffness vs. Loading Cycles

0.000E+00

1.000E+05

2.000E+05

3.000E+054.000E+05

5.000E+05

6.000E+05

7.000E+05

100 1,100 2,100 3,100 4,100 5,100 6,100 7,100 8,100

Loading Cycles

Flex

ural

Stif

fnes

s (lb

f/in

L2064FT

Flexural Stiffness vs. Loading Cycles

0.000E+00

1.000E+05

2.000E+05

3.000E+054.000E+05

5.000E+05

6.000E+05

7.000E+05

100 2,100 4,100 6,100 8,100 10,100 12,100 14,100 16,100

Loading Cycles

Flex

ural

Stif

fnes

s (lb

f/in

M2064FT

Flexural Stiffness vs. Loading Cycles

0.000E+00

1.000E+05

2.000E+05

3.000E+05

4.000E+05

5.000E+05

6.000E+05

100 2,100 4,100 6,100 8,100 10,100 12,100 14,100

Loading Cycles

Flex

ural

Stif

fnes

s (lb

f/in

R2064FT

196

Page 209: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Flexural Stiffness vs. Loading Cycles

0.000E+001.000E+052.000E+053.000E+054.000E+055.000E+056.000E+057.000E+058.000E+05

100 10,100 20,100 30,100 40,100 50,100

Loading Cycles

Flex

ural

Stif

fnes

s (lb

f/in

L3064FT

Flexural Stiffness vs. Loading Cycles

0.000E+00

1.000E+05

2.000E+05

3.000E+054.000E+05

5.000E+05

6.000E+05

7.000E+05

100 5,100 10,100 15,100 20,100 25,100 30,100 35,100

Loading Cycles

Flex

ural

Stif

fnes

s (lb

f/in

M3064FT

Flexural Stiffness vs. Loading Cycles

0.000E+00

1.000E+05

2.000E+05

3.000E+054.000E+05

5.000E+05

6.000E+05

7.000E+05

100 5,100 10,100 15,100 20,100 25,100 30,100 35,100 40,100

Loading Cycles

Flex

ural

Stif

fnes

s (lb

f/in

R3064FT

197

Page 210: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Percent Rap Specimen Cycles, N

Cummulative Dissipated Energy

(in-lbf/in^3)Stiffnes Specimen Cycles, N

Cummulative Dissipated Energy

(in-lbf/in^3)Stiffnes

1 56,151 8,757.028 670,000.000 12 135,398 30,926.331 630,000.000 2 66,339 11,965.57 490,0003 84,301 18,236.245 540,000.000 3 65,506 13,602.00 550,000.000

Avg. 91,950 19,307 613,333 Avg. 65,923 12,784 520,000Std. 40,173 11,123 66,583 Std. 589 1,157 42,426COV 44 58 11 COV 1 9 8

1 58,163 12,877.079 600,000.000 1 92,469 20,357.32 660,000.0002 91,151 19,535.876 620,000.000 2 90,230 19,471.070 600,000.0003 91,954 21,262.021 670,000.000 3 27,613 5,203.218 530,000.000

Avg. 80,423 17,891.659 630,000.000 Avg. 70,104 15,010.535 596,666.667Std. 19,282 4,427.686 36,055.513 Std. 36,815 8,504.938 65,064.071COV 24 24.747 5.723 COV 53 56.660 10.905

1 99,316 17,055.561 710,000.000 1 135,455 28,584.126 620,000.0002 96,272 19,783.464 610,000.000 2 33,857 6,386.977 500,000.0003 66,539 9,279.480 580,000.000 3 27,417 5,423.445 510,000.000

Avg. 87,376 15,372.835 633,333.333 Avg. 65,576 13,464.849 543,333.333Std. 18,109 5,450.422 68,068.593 Std. 60,602 13,102.538 66,583.281COV 21 35.455 10.748 COV 92 97.309 12.255

1 201,577 36,621.648 760,000.000 1 102,993 22,228.418 690,000.0002 2 27,221 5,194.660 590,000.0003 299,952 42,697.205 630,000.000 3 36,922 6,856.946 560,000.000

Avg. 167,176.33 39,659.43 695,000.00 Avg. 55,712.00 11,426.67 613,333.33Std. 69,561.63 4,296.07 91,923.88 Std. 41,232.84 9,391.43 68,068.59COV 41.61 10.83 13.23 COV 74.01 82.19 11.10

PG 76-22 Beam Fatigue Test SummaryLong-term Aged Freeze Thaw SpecimensLong-term Aged Specimens

20%

30%

0%

10%

198

Page 211: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Flexural Stiffness vs. Loading Cycles

0.000E+00

1.000E+05

2.000E+05

3.000E+054.000E+05

5.000E+05

6.000E+05

7.000E+05

100 10,100 20,100 30,100 40,100 50,100 60,100

Loading Cycles

Flex

ural

Stif

fnes

s (lb

f/in

L076

Flexural Stiffness vs. Loading Cycles

0.000E+00

1.000E+05

2.000E+05

3.000E+054.000E+05

5.000E+05

6.000E+05

7.000E+05

100 20,100 40,100 60,100 80,100 100,100 120,100 140,100 160,100

Loading Cycles

Flex

ural

Stif

fnes

s (lb

f/in

M076

Flexural Stiffness vs. Loading Cycles

0.000E+00

1.000E+05

2.000E+05

3.000E+05

4.000E+05

5.000E+05

6.000E+05

100 20,100 40,100 60,100 80,100 100,100

Loading Cycles

Flex

ural

Stif

fnes

s (lb

f/in

NR076

199

Page 212: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Flexural Stiffness vs. Loading Cycles

0.000E+00

1.000E+05

2.000E+05

3.000E+054.000E+05

5.000E+05

6.000E+05

7.000E+05

100 10,100 20,100 30,100 40,100 50,100 60,100 70,100

Loading Cycles

Flex

ural

Stif

fnes

s (lb

f/in

NL1076

Flexural Stiffness vs. Loading Cycles

0.000E+00

1.000E+05

2.000E+05

3.000E+054.000E+05

5.000E+05

6.000E+05

7.000E+05

100 20,100 40,100 60,100 80,100 100,100

Loading Cycles

Flex

ural

Stif

fnes

s (lb

f/in

NM1076

Flexural Stiffness vs. Loading Cycles

0.000E+00

1.000E+05

2.000E+05

3.000E+054.000E+05

5.000E+05

6.000E+05

7.000E+05

100 1,000 10,000 100,000

Loading Cycles

Flex

ural

Stif

fnes

s (lb

f/in

NR1076

200

Page 213: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Flexural Stiffness vs. Loading Cycles

0.000E+001.000E+052.000E+053.000E+054.000E+055.000E+056.000E+057.000E+058.000E+05

100 20,100 40,100 60,100 80,100 100,100 120,100

Loading Cycles

Flex

ural

Stif

fnes

s (lb

f/in

L2076

Flexural Stiffness vs. Loading Cycles

0.000E+00

1.000E+05

2.000E+05

3.000E+054.000E+05

5.000E+05

6.000E+05

7.000E+05

100 20,100 40,100 60,100 80,100 100,100 120,100

Loading Cycles

Flex

ural

Stif

fnes

s (lb

f/in

M2076

Flexural Stiffness vs. Loading Cycles

0.000E+00

1.000E+05

2.000E+05

3.000E+054.000E+05

5.000E+05

6.000E+05

7.000E+05

100 10,100 20,100 30,100 40,100 50,100 60,100 70,100

Loading Cycles

Flex

ural

Stif

fnes

s (lb

f/in

r2076

201

Page 214: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Flexural Stiffness vs. Loading Cycles

0.000E+001.000E+052.000E+053.000E+054.000E+055.000E+056.000E+057.000E+058.000E+05

100 50,100 100,100 150,100 200,100 250,100

Loading Cycles

Flex

ural

Stif

fnes

s (lb

f/in

L3076

Flexural Stiffness vs. Loading Cycles

0.000E+00

1.000E+05

2.000E+05

3.000E+054.000E+05

5.000E+05

6.000E+05

7.000E+05

100 1,000 10,000 100,000 1,000,000

Loading Cycles

Flex

ural

Stif

fnes

s (lb

f/in

R3076

202

Page 215: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Flexural Stiffness vs. Loading Cycles

0.000E+00

1.000E+05

2.000E+05

3.000E+05

4.000E+05

5.000E+05

6.000E+05

100 10,100 20,100 30,100 40,100 50,100 60,100 70,100

Loading Cycles

Flex

ural

Stif

fnes

s (lb

f/in

M076FT

Flexural Stiffness vs. Loading Cycles

0.000E+00

1.000E+05

2.000E+05

3.000E+05

4.000E+05

5.000E+05

6.000E+05

100 10,100 20,100 30,100 40,100 50,100 60,100 70,100

Loading Cycles

Flex

ural

Stif

fnes

s (lb

f/in

R076FT

203

Page 216: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Flexural Stiffness vs. Loading Cycles

0.000E+00

1.000E+05

2.000E+05

3.000E+054.000E+05

5.000E+05

6.000E+05

7.000E+05

100 20,100 40,100 60,100 80,100 100,100

Loading Cycles

Flex

ural

Stif

fnes

s (lb

f/in

L1076FT

Flexural Stiffness vs. Loading Cycles

0.000E+00

1.000E+05

2.000E+05

3.000E+054.000E+05

5.000E+05

6.000E+05

7.000E+05

100 20,100 40,100 60,100 80,100 100,100

Loading Cycles

Flex

ural

Stif

fnes

s (lb

f/in

M1076FT

Flexural Stiffness vs. Loading Cycles

0.000E+00

1.000E+05

2.000E+05

3.000E+05

4.000E+05

5.000E+05

6.000E+05

100 5,100 10,100 15,100 20,100 25,100 30,100

Loading Cycles

Flex

ural

Stif

fnes

s (lb

f/in

R1076FT

204

Page 217: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Flexural Stiffness vs. Loading Cycles

0.000E+001.000E+052.000E+053.000E+054.000E+055.000E+056.000E+057.000E+05

100 20,100 40,100 60,100 80,100 100,100

120,100

140,100

160,100

Loading Cycles

Flex

ural

Stif

fnes

s (lb

f/in

L2076FT

Flexural Stiffness vs. Loading Cycles

0.000E+00

1.000E+05

2.000E+05

3.000E+05

4.000E+05

5.000E+05

6.000E+05

100 1,000 10,000 100,000

Loading Cycles

Flex

ural

Stif

fnes

s (lb

f/in

NM2076

Flexural Stiffness vs. Loading Cycles

0.000E+00

1.000E+05

2.000E+05

3.000E+05

4.000E+05

5.000E+05

6.000E+05

100 1,000 10,000 100,000

Loading Cycles

Flex

ural

Stif

fnes

s (lb

f/in

NR2076FT

205

Page 218: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Flexural Stiffness vs. Loading Cycles

0.000E+001.000E+052.000E+053.000E+054.000E+055.000E+056.000E+057.000E+058.000E+05

100 20,100 40,100 60,100 80,100 100,100 120,100

Loading Cycles

Flex

ural

Stif

fnes

s (lb

f/in

L3076FT

Flexural Stiffness vs. Loading Cycles

0.000E+00

1.000E+05

2.000E+05

3.000E+054.000E+05

5.000E+05

6.000E+05

7.000E+05

100 1,000 10,000 100,000

Loading Cycles

Flex

ural

Stif

fnes

s (lb

f/in

NL3076FT

Flexural Stiffness vs. Loading Cycles

0.000E+00

1.000E+05

2.000E+05

3.000E+05

4.000E+05

5.000E+05

6.000E+05

100 1,000 10,000 100,000

Loading Cycles

Flex

ural

Stif

fnes

s (lb

f/in

NM3076FT

206

Page 219: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Appendix E: MTS Test Templates

207

Page 220: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Indirect Tensile Strength Test Template (IDT) TestWare-SX Procedure Name = IDT Default Procedure File Specification = C:\WINNT\Profiles\All Users\Start Menu\Programs\MTS Pavement Testing\4 in. IDT.000 IDT : Step Step Done Trigger 1 = Retract Step Done Trigger 2 = Stop Pre-load : Monotonic Command Start Trigger = Step Start End Trigger = <none> Segment Shape = Ramp Rate = 5 ( lbf/Sec ) Control Channel 1 Control Mode = Force sg End level = -10 ( lbf ) Hold : Hold Command Start Trigger = Pre-load End Trigger = <none> Hold Time = 1 ( Sec ) Control Channel 1 Control Mode = Force sg Dectect : Operator Event Start Trigger = Hold End Trigger = <none> Button ID = Button 2 Single Shot = Yes Button Label = Start Description = Begin IDT Grab Focus = Yes IDT Test : Monotonic Command Start Trigger = Dectect End Trigger = Fail Segment Shape = Ramp Rate = 2 in/Min Control Channel 1 Control Mode = Disp sg End level = -1.0 ( in )

208

Page 221: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Data : Data Acquisition Start Trigger = Hold End Trigger = <none> Mode = Timed Buffer Type = Single Master Channel = Force Slave Channel 1 = Time Slave Channel 2 = Displacement Data Header = IDT Time Increment = 0.1 ( Sec ) Buffer Size = 1024 Peak : Data Acquisition Start Trigger = Hold End Trigger = <none> Mode = Valley / Peak Buffer Type = Single Master Channel = Force Data Header = Ultimate Force Sensitivity = 100 ( lbf ) Buffer Size = 1024 Fail : Failure Detector Start Trigger = Hold End Trigger = <none> Input Signal = Force Record Data = 0 Data Header = Event Type = Minimum Noise Bandwidth = 100 ( lbf ) Event Trigger = 10 % Retract : Monotonic Command Start Trigger = IDT Test End Trigger = <none> Segment Shape = Ramp Rate = 2 in/Min Control Channel 1 Control Mode = Disp sg End level = 0.1 ( in ) Stop : Operator Event Start Trigger = Step Start End Trigger = <none>

209

Page 222: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Button ID = Button 1 Single Shot = Yes Button Label = Stop Description = Grab Focus = Yes Recovery : Step Step Done Trigger 1 = Recover Recover : Monotonic Command Start Trigger = Step Start End Trigger = <none> Segment Shape = Ramp Rate = 1.0 ( in/Sec ) Control Channel 1 Control Mode = Disp sg End level = 0.1 ( in )

210

Page 223: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Semi-Circular Bending Strength Test Template (SCB IDT) TestWare-SX Procedure Name = Idt_Semi Default Procedure File Specification = C:\WINNT\Profiles\All Users\Start Menu\Programs\MTS Pavement Testing\SCB IDT.000 SCB IDT : Step Step Done Trigger 1 = Retract Step Done Trigger 2 = Stop Plot : Run-time Plotting Start Trigger = Step Start End Trigger = <none> Title = Plot Title X Axis = X Channel = Time Scaling = Linear Minimum = 0.000000 Sec Maximum = 1.000000 Sec Y Axis = Y Channel 1 = Force Color = Red Style = Solid Channel 2 = <none> Color = Blue Style = Solid Channel 3 = <none> Color = Black Style = Solid Scaling = Linear Minimum = 0.000000 lbf Maximum = 224.808945 lbf X Axis Level Cross = Not Enabled Y Axis Level Cross = Not Enabled Reduce Rate on Decimation = Not Enabled Pre-load : Monotonic Command Start Trigger = Step Start End Trigger = <none> Segment Shape = Ramp Rate = 5 ( lbf/Sec ) Control Channel 1 Control Mode = Force sg

211

Page 224: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

End level = -10 ( lbf ) Dectect : Operator Event Start Trigger = Pre-load End Trigger = <none> Button ID = Button 2 Single Shot = Yes Button Label = Start Description = Begin IDT Grab Focus = Yes IDT Test : Monotonic Command Start Trigger = Dectect End Trigger = Fail Segment Shape = Ramp Rate = 2 in/Min Control Channel 1 Control Mode = Disp sg End level = -0.5 ( in ) Data : Data Acquisition Start Trigger = Dectect End Trigger = <none> Mode = Timed Buffer Type = Single Master Channel = Force Slave Channel 1 = Time Slave Channel 2 = Displacement Data Header = IDT Time Increment = 0.2 ( Sec ) Buffer Size = 16000 Peak : Data Acquisition Start Trigger = Pre-load End Trigger = <none> Mode = Valley / Peak Buffer Type = Single Master Channel = Force Data Header = Ultimate Force Sensitivity = 100 ( lbf ) Buffer Size = 1024 Fail : Failure Detector Start Trigger = Pre-load End Trigger = <none>

212

Page 225: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Input Signal = Force Record Data = 0 Data Header = Event Type = Minimum Noise Bandwidth = 100 ( lbf ) Event Trigger = 10 % Retract : Monotonic Command Start Trigger = IDT Test End Trigger = <none> Segment Shape = Ramp Rate = 2 in/Min Control Channel 1 Control Mode = Disp sg End level = 0.1 ( in ) Stop : Operator Event Start Trigger = Step Start End Trigger = <none> Button ID = Button 1 Single Shot = Yes Button Label = Stop Description = Grab Focus = Yes Recovery : Step Step Done Trigger 1 = Recover Recover : Monotonic Command Start Trigger = Step Start End Trigger = <none> Segment Shape = Ramp Rate = 1.0 ( in/Sec ) Control Channel 1 Control Mode = Disp sg End level = 0.1 ( in )

213

Page 226: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Semi-Circular Bending Fatigue Test Template (SCB Fatigue) TestWare-SX Procedure Name = 5 Hz SCB Fatigue Default Procedure File Specification = C:\WINNT\Profiles\All Users\Start Menu\Programs\MTS Pavement Testing\5 Hz SCB Fatigue.000 5 Hz SCB Fatigue Test : Step Step Done Trigger 1 = Unload Real Time Plot : Run-time Plotting Start Trigger = Step Start End Trigger = <none> Title = Plot Title X Axis = X Channel = Time Scaling = Linear Minimum = 0.000000 Sec Maximum = 1.000000 Sec Y Axis = Y Channel 1 = LVDT B Color = Red Style = Solid Channel 2 = <none> Color = Blue Style = Solid Channel 3 = <none> Color = Black Style = Solid Scaling = Linear Minimum = 0.000000 in Maximum = 0.039370 in X Axis Level Cross = Not Enabled Y Axis Level Cross = Not Enabled Reduce Rate on Decimation = Not Enabled Pre Load : Monotonic Command Start Trigger = Step Start End Trigger = <none> Segment Shape = Ramp Rate = 5 ( lbf/Sec ) Control Channel 1 Control Mode = Force sg End level = -10 ( lbf )

214

Page 227: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Initial Cycles : Cyclic Command Start Trigger = Pre Load End Trigger = <none> Segment Shape = Haversine Frequency = 5 ( Hz ) Repeats = 2 cycles Compensation = None Control Channel 1 Control Mode = Force sg End level 1 = -Enter Desired Load (From SCB IDT Test), ( lbf ) End level 2 = -10 ( lbf ) Initial Data : Data Acquisition Start Trigger = Pre Load End Trigger = <none> Mode = Peak / Valley Buffer Type = Single Master Channel = Force Slave Channel 1 = Time Slave Channel 2 = Displacement Slave Channel 3 = LVDT B Slave Channel 4 = Control Channel 1 Segments Data Header = Initial Data Sensitivity = 100 ( lbf ) Buffer Size = 6 Cycle Process : Cyclic Command Start Trigger = Initial Cycles End Trigger = <none> Segment Shape = Haversine Frequency = 5 ( Hz ) Repeats = 200000 cycles Compensation = None Control Channel 1 Control Mode = Force sg End level 1 = - Enter Desired Load (From SCB IDT Test), ( lbf ) End level 2 = -10 ( lbf ) Counting Process : Data Acquisition Start Trigger = Initial Cycles End Trigger = <none> Mode = Level Crossing Buffer Type = Trigger only Master Channel = Control Channel 1 Segments

215

Page 228: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Slave Channel 1 = Time Slave Channel 2 = Displacement Slave Channel 3 = Force Slave Channel 4 = LVDT A Data Header = Count Segments Level Increment = 100 cycles Buffer Size = 1 Data Acquisition Process : Data Acquisition Start Trigger = Counting Process End Trigger = <none> Mode = Peak / Valley Buffer Type = Single Master Channel = Force Slave Channel 1 = Time Slave Channel 2 = Displacement Slave Channel 3 = LVDT B Slave Channel 4 = Control Channel 1 Segments Data Header = Cycles of Data Sensitivity = 100 ( lbf ) Buffer Size = 6 Unload : Monotonic Command Start Trigger = Cycle Process End Trigger = <none> Segment Shape = Ramp Rate = 1.0 ( in/Sec ) Control Channel 1 Control Mode = Disp sg End level = 0.1 ( in )

216

Page 229: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Semi-Circular Bending Notched IDT Test Template (SCB Notched IDT) TestWare-SX Procedure Name = Notched IDT Default Procedure (modified) File Specification = C:\WINNT\Profiles\All Users\Start Menu\Programs\MTS Pavement Testing\Notched IDT.000 SCB Notched IDT : Step Step Done Trigger 1 = Retract Step Done Trigger 2 = Stop Plot : Run-time Plotting Start Trigger = Step Start End Trigger = <none> Title = Plot Title X Axis = X Channel = Time Scaling = Linear Minimum = 0.000000 Sec Maximum = 1.000000 Sec Y Axis = Y Channel 1 = Force Color = Red Style = Solid Channel 2 = <none> Color = Blue Style = Solid Channel 3 = <none> Color = Black Style = Solid Scaling = Linear Minimum = 0.000000 lbf Maximum = 224.808945 lbf X Axis Level Cross = Not Enabled Y Axis Level Cross = Not Enabled Reduce Rate on Decimation= Not Enabled Pre-load : Monotonic Command Start Trigger = Step Start End Trigger = <none> Segment Shape = Ramp Rate = 5 ( lbf/Sec ) Control Channel 1

217

Page 230: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Control Mode = Force sg End level = -10 ( lbf ) Dectect : Operator Event Start Trigger = Pre-load End Trigger = <none> Button ID = Button 2 Single Shot = Yes Button Label = Start Description = Begin IDT Grab Focus = Yes IDT Test : Monotonic Command Start Trigger = Dectect End Trigger = Fail Segment Shape = Ramp Rate = 0.02 in/Min Control Channel 1 Control Mode = Disp sg End level = -0.5 ( in ) Data : Data Acquisition Start Trigger = Dectect End Trigger = <none> Mode = Timed Buffer Type = Single Master Channel = Force Slave Channel 1 = Time Slave Channel 2 = Displacement Data Header = IDT Time Increment = 0.2 ( Sec ) Buffer Size = 16000 Peak : Data Acquisition Start Trigger = Pre-load End Trigger = <none> Mode = Valley / Peak Buffer Type = Single Master Channel = Force Data Header = Ultimate Force Sensitivity = 100 ( lbf ) Buffer Size = 1024 Fail : Failure Detector Start Trigger = Pre-load

218

Page 231: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

End Trigger = <none> Input Signal = Force Record Data = 0 Data Header = Event Type = Minimum Noise Bandwidth = 100 ( lbf ) Event Trigger = 10 % Retract : Monotonic Command Start Trigger = IDT Test End Trigger = <none> Segment Shape = Ramp Rate = 2 in/Min Control Channel 1 Control Mode = Disp sg End level = 0.1 ( in ) Stop : Operator Event Start Trigger = Step Start End Trigger = <none> Button ID = Button 1 Single Shot = Yes Button Label = Stop Description = Grab Focus = Yes Recovery : Step Step Done Trigger 1 = Recover Recover : Monotonic Command Start Trigger = Step Start End Trigger = <none> Segment Shape = Ramp Rate = 0.9999999 ( in/Sec ) Control Channel 1 Control Mode = Disp sg End level = 0.1 ( in )

219

Page 232: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Flexural Beam Fatigue Test TestWare-SX Procedure Name = Asphalt Flexural Fatigue Test Default Procedure File Specification = C:\TS2\MTS Pavement Testing\Asphalt Flexural Fatigue Test.000 Software Version = 4.0C Pre-test Information : Step Step Done Trigger 1 = Operator Initiate Test Record Test Type : Program Control Start Trigger = Step Start End Trigger = <none> Action = Message Only Message = KEY_TEST_TYPE ASPHALT_FLEX_FATIGUE This is a keyword phrase that gets written to the data file only. Do not change it. Send To: Screen = No LUC Display = No Data File = Yes Pre-test Information : Operator Information Start Trigger = Step Start End Trigger = <none> Form fields Label = ~~~Pre-test Specimen Characteristics~~~ Default Entry = Type = String Attribute = Non-Editable Label = Identifier Default Entry = Type = String Attribute = Non-Blank Label = Age Default Entry = Type = String Attribute = None Label = Width

220

Page 233: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Default Entry = 2.5 ( in ) Minimum = 0 ( in ) Type = Real Attribute = Non-Blank Label = Height Default Entry = 1.968504 ( in ) Minimum = 0 ( in ) Type = Real Attribute = Non-Blank Label = Distance Between Outside Clamps [L] Default Entry = 14.05512 ( in ) Minimum = 0 ( in ) Type = Real Attribute = Non-Blank Label = Distance Between Inside Clamps [a] Default Entry = 4.68504 ( in ) Minimum = 0 ( in ) Type = Real Attribute = Non-Blank Label = ~~~Additional Pre-test Information~~~ Default Entry = Type = String Attribute = Non-Editable Label = Test Date Default Entry = Type = String Attribute = Non-Blank Label = Test Temperature Default Entry = 67.99995 ( deg_F ) Type = Real Attribute = Non-Blank Operator Initiate Test : Operator Event Start Trigger = Pre-test Information End Trigger = <none> Button ID = Button 1 Single Shot = Yes Button Label = Start

221

Page 234: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Description = Press to start the test. Grab Focus = Yes Test Execution : Step Step Done Trigger 1 = Cyclic Command Step Done Trigger 2 = Operator Terminate Test Cyclic Command : Cyclic Command Start Trigger = Step Start End Trigger = Dynamic Properties Monitor Segment Shape = Haversine Frequency = 5 -10 ( Hz ) Repeats = 1000000 cycles Compensation = Phase/Amplitude (PAC) Control Channel 1 Control Mode = Disp sg End level 1 = -Enter Desired Strain Level ( in ) End level 2 = Enter Desired Strain Level ( in ) Trigger Dynamic Properties Monitor : Data Limit Detector Start Trigger = Step Start End Trigger = <none> Data Channel = Control Channel 1 Segments Limit Value = 50 cycles Limit Value is = Relative Detector Options = Greater than Limit Value Trigger Option = Trigger Once Dynamic Properties Monitor : Dynamic Property Monitor Start Trigger = Trigger Dynamic Properties Monitor End Trigger = <none> Control Channel = Control Channel 1 Force Sensor = Force Length Sensor = Displacement Plot Update Rate = 20 cycles Reduce Plot Rate When Decimation Occurs = Yes Save Data = Yes X Axis Scaling = Logarithmic K* Axis Scaling Minimum = 0 ( lbf/in ) Maximum = 5.710147 ( lbf/in ) Limit Detector = Relative Minimum = 50 %

222

Page 235: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Maximum = Off Auto Scaling = Yes Phase Axis Scaling Minimum = -1 ( deg ) Maximum = 1 ( deg ) Limit Detector = Absolute Minimum = Off Maximum = Off Auto Scaling = Yes Displacement Axis Scaling Minimum = 0 ( in ) Maximum = 0.0003937008 ( in ) Limit Detector = Absolute Minimum = Off Maximum = Off Auto Scaling = Yes Load Axis Scaling Minimum = 0 ( lbf ) Maximum = 2.248089 ( lbf ) Limit Detector = Absolute Minimum = Off Maximum = Off Auto Scaling = Yes Total Energy Axis Scaling Minimum = 0 ( in-lbf ) Maximum = 0.0008850746 ( in-lbf ) Limit Detector = Absolute Minimum = Off Maximum = Off Auto Scaling = Yes Operator Terminate Test : Operator Event Start Trigger = Step Start End Trigger = <none> Button ID = Button 1 Single Shot = Yes Button Label = Terminate Description = Press to terminate the test. Grab Focus = Yes

223

Page 236: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Go To Zero Load : Step Step Done Trigger 1 = Go To Zero Load Go To Zero Load : Monotonic Command Start Trigger = Step Start End Trigger = <none> Segment Shape = Ramp Time = 2 ( Sec ) Control Channel 1 Control Mode = Disp sg End level = 0 ( in ) Post-test Information : Step Step Done Trigger 1 = Post-test Information Post-test Information : Operator Information Start Trigger = Step Start End Trigger = <none> Form fields Label = ~~~Post-test Observations~~~ Default Entry = Type = String Attribute = Non-Editable Label = Specimen Appearance Default Entry = Type = String Attribute = None Label = Test Completion Status Default Entry = Normal Type = String Attribute = None Label = Additional Comments Default Entry = Type = String Attribute = None

224

Page 237: Laboratory Study of Fatigue Characteristics of HMA Surface Mixtur

Vita

William R. Kingery III was born in Roanoke, Virginia on October 18, 1978. He

attended Franklin County High School where he graduated in 1997. Upon completion of

high school he attended Virginia Western Community College for one year. In the fall of

1998 he enrolled at the University of Tennessee, Knoxville (UTK) to pursue a degree in

Civil Engineering. While in college he worked part time for Stone Engineering, Inc. of

Rocky Mount, VA. In May of 2002 he received a Bachelor of Science degree in Civil

Engineering from UTK. After graduation he enrolled in graduate school at UTK to

pursue a degree in Pavement Engineering. He received his Master’s of Science in Civil

Engineering from UTK in May 2004.

225