22

l20 Nutrient Rem

Embed Size (px)

DESCRIPTION

Nutrient

Citation preview

  • Figure by MIT OCW.

    Adapted from: G. Tchobanoglous, F. L. Burton, and H. D. Stensel. Wastewater Engineering: Treatment

    and Reuse. 4th ed. Metcalf & Eddy Inc., New York, NY: McGraw-Hill, 2003, p. 617.

    Organic Nitrogen(proteins; urea)

    Ammonia Nitrogen Nitrate (NO2) Nitrate (NO3)

    Organic Nitrogen(bacterial cells)

    Organic Nitrogen(net growth)

    Nitrogen Gas (N2)

    Denitrification

    O2 O2

    Nitrification

    Lysis and AutooxidationAssimilation

    - -

    Bacterial Decompositionany hydrolysis

    Organic Carbon

  • Cell wall

    Short-chain

    fatty acids

    Facultative bacteria

    Substrate

    Fermentation Products

    Phosphorus removing bacteria

    Soluble COD

    PHB

    Carbon

    storage

    Carbon

    storage

    CO2 + H2O

    Ener

    gy

    P

    P

    New cell production

    O2

    PHB

    ANAEROBIC AEROBIC

    Removal mechanisms for excess biological phosphorus (COD = chemical oxygen demand, PHB = poly--hydroxybuty-rate).

    +

    Energy

    Figure by MIT OCW.

    Adapted from: Rittman, Bruce E., and Perry L. McCarty. Environmental Biotechnology: Principals

    and Applications. New York, NY: McGraw-Hill, 2001.

  • Figure by MIT OCW.

    Adapted from: Rittman, Bruce E., and Perry L. McCarty. Environmental Biotechnology: Principals

    and Applications. New York, NY: McGraw-Hill, 2001.

    15

    10

    10

    20

    30

    40

    50

    5

    1

    0 05 10 15 20

    Ortho Phosphorus

    ADP + PO4

    Bacteria absorb BOD byreleasing phosphorusATP ADP + PO4 + energy

    Soluble BOD

    Solu

    ble

    BO

    D, m

    g/L

    Influent ortho phosphorusconcentration

    Bacteria store phosphorusduring growth to competefor BOD when they getback to anaerobic zone

    ATPenergy

    First Anoxic Aerobic SecondAnoxic

    Reaeration

    Stored phosphorus in bacteria is removed in waste sludge

    Anaerobic

    Typical profile of soluble phosphorus concentrations in a biological nutrient removal process (ATP = adenosine triphosphate, ADP = adenosine diphosphate).

    Nom

    inal

    ort

    ho p

    hosp

    horu

    s co

    ncen

    trat

    ion,

    mg/

    L a

    s P

    Nominal Hydraulic Retention Time, Hours (Based on Influent Flow only)

  • Anaerobic Aerobic

    OrthophosphorusSoluble BOD

    TIME

    CO

    NC

    EN

    TR

    AT

    ION

    Fate of soluble BOD and phosphorus in nutrient removal reactor.

    Figure by MIT OCW.

    Adapted from: G. Tchobanoglous, F. L. Burton, and H. D. Stensel. Wastewater Engineering: Treatment

    and Reuse. 4th ed. Metcalf & Eddy Inc., New York, NY: McGraw-Hill, 2003, p. 626.

  • Chemical

    Inorganic Chemicals Used Most Commonly for Coagulation and Precipitation Processes in Wastewater Treatment

    Formula Molecular WeightEquivalent Weight Form Percent

    Alum

    594.4 114

    Liquid

    Lump

    Liquid

    Lump

    8.5 (Al2O3)

    17 (Al2O3)

    8.5 (Al2O3)

    17 (Al2O3)

    63-73 as CaO

    85-99

    15-20

    20 (Fe)

    20 (Fe)

    Al2(SO4)3.18H2O#

    Aluminum Chloride

    Calcium Hydroxide(lime)

    Ferric Chloride

    133.3

    56.1 as CaO

    162.2

    44

    40

    91

    Liquid

    Lump

    Powder

    Slurry

    Liquid

    Lump

    AlCl3

    Ca(OH)2

    FeCl3

    18.5 (Fe)Ferric Sulfate 400 51.5 GranularFe2(SO4)3

    20 (Fe)Ferrous Sulfate(copperas)

    278.1 139 GranularFeSO4.7H2O

    46 (Al2O3)Sodium Aluminate

    # Number of bound water molecules will typically vary from 14 to 18

    163.9

    666.5

    100 FlakeNa2Al2O4

    Al2(SO4)3.14H2O#

    AVAILABILITY

    Figure by MIT OCW.

    Adapted from : Metcalf, and Eddy. 2003

  • 00

    % C

    OD

    Rem

    oval

    20Ferric Chloride Sulfate Concentration (mg/l)

    (no polymer)

    North Budapest Wastewater Treatment PlantComparison of Influent vs. Pre-aeration Raw Water

    Topolcany Wastewater Treatment PlantBOD and COD % Removal vs. Ferric Chloride Concentration

    40 60 80 100

    20

    40

    COD Influent Conc. = 515 mg/lCOD Pre-aeration Conc. = 594 mg/l

    60

    80

    100

    00

    % R

    emov

    al

    20Ferric Chloride Concentration (mg/l)

    (no polymer)

    40 30 40 50 60

    20

    10

    30

    40

    50

    60

    70

    Jar Test - Influent

    Jar Test - Pre-aeration

    Primary Effluent: Cin = 515 mg/l

    Primary Effluent: Cin = 594 mg/l

    BOD % Removal

    COD % Removal

    Figure by MIT OCW.

    Adapted from: Murcott, and Hurleman. 1994, p. 24

  • Low dose

    Fe/Al

    Cationic

    Polymer

    Anionic

    Polyme

    r

    High dose

    Fe/Al

    Possibly

    Anionic

    Polymer

    a. Existing primary treatment plant

    b. CEPT (left) and primary precipitation (right)

    Fe/Al

    c. Preprecipitation (or CEPT) followed by ASP

    Fe/Al

    Carbon

    source

    DD

    d. Preprecipitation with ASP and postdenitrification

    Multi-stage upgrading of an existing

    primary treatment plant

    Grit

    chamber

    Grit

    chamber

    Grit

    chamber

    Grit

    chamber

    Primary

    Clarifier

    Primary

    Clarifier

    Primary

    ClarifierPrimary

    Clarifier

    Primary

    Clarifier

    Grit

    chamber

    Secondary

    Clarifier

    Secondary

    Clarifier

    AST

    Aeration

    AST

    AerationMixer

    Mixer

    Optional

    Mixer

    Denitrification

  • 020

    40

    6080

    100Without Chemical Addition

    0

    Susp

    ende

    d So

    lid R

    emov

    al (%

    )

    20

    40

    6080

    100Ferric Chloride Addition

    050

    Overflow Rate

    Overflow Rate Verses TSS Removal for Sarnia Treatment Plant

    100150 cu m/sq.m/d

    20

    40

    6080

    100Ferric Chloride Plus Polymer Addition

    Figure by MIT OCW.

    /ColorImageDict > /JPEG2000ColorACSImageDict > /JPEG2000ColorImageDict > /AntiAliasGrayImages false /DownsampleGrayImages true /GrayImageDownsampleType /Bicubic /GrayImageResolution 150 /GrayImageDepth -1 /GrayImageDownsampleThreshold 1.50000 /EncodeGrayImages true /GrayImageFilter /DCTEncode /AutoFilterGrayImages true /GrayImageAutoFilterStrategy /JPEG /GrayACSImageDict > /GrayImageDict > /JPEG2000GrayACSImageDict > /JPEG2000GrayImageDict > /AntiAliasMonoImages false /DownsampleMonoImages true /MonoImageDownsampleType /Bicubic /MonoImageResolution 300 /MonoImageDepth -1 /MonoImageDownsampleThreshold 1.50000 /EncodeMonoImages true /MonoImageFilter /CCITTFaxEncode /MonoImageDict > /AllowPSXObjects true /PDFX1aCheck false /PDFX3Check false /PDFXCompliantPDFOnly false /PDFXNoTrimBoxError true /PDFXTrimBoxToMediaBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXSetBleedBoxToMediaBox true /PDFXBleedBoxToTrimBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXOutputIntentProfile (None) /PDFXOutputCondition () /PDFXRegistryName (http://www.color.org) /PDFXTrapped /False

    /DetectCurves 0.100000 /EmbedOpenType false /ParseICCProfilesInComments true /PreserveDICMYKValues true /PreserveFlatness true /CropColorImages true /ColorImageMinResolution 150 /ColorImageMinResolutionPolicy /OK /ColorImageMinDownsampleDepth 1 /CropGrayImages true /GrayImageMinResolution 150 /GrayImageMinResolutionPolicy /OK /GrayImageMinDownsampleDepth 2 /CropMonoImages true /MonoImageMinResolution 1200 /MonoImageMinResolutionPolicy /OK /CheckCompliance [ /None ] /PDFXOutputConditionIdentifier () /Description >>> setdistillerparams> setpagedevice