116
Keywords • Derive from title • Multiple word “keywords” • e.g. polysilsesquioxane low earth orbit • Brain storm synonyms • Without focus = too many unrelated hits • If you haven’t already, get it to me today.

Keywords

Embed Size (px)

DESCRIPTION

Keywords. Derive from title Multiple word “keywords” e.g. polysilsesquioxane low earth orbit Brain storm synonyms Without focus = too many unrelated hits If you haven’t already, get it to me today. Research paper topics. 3D Stereolithography with polymers - PowerPoint PPT Presentation

Citation preview

Page 1: Keywords

Keywords

• Derive from title

• Multiple word “keywords”

• e.g. polysilsesquioxane low earth orbit

• Brain storm synonyms

• Without focus = too many unrelated hits

• If you haven’t already, get it to me today.

Page 2: Keywords

Research paper topics• 3D Stereolithography with polymers• Plastic concrete – preparation, properties & applications.• Biocompatibility of silicones• Teflon and fluoropolymers –from Heaven or Hell?• Piezoelectric polymers- how they are made, why they are piezoelectric , and

applications.• Plastic in the oceans. How long do plastics last and where do they end up?• Plastic hermetic seals• Gas separation membranes through phase inversion• Thermally induced phase separation of polymeric foams.• The strongest plastic• Major catastrophe(s) due to a polymer• Replacing ivory with plastic (comparison of composition, structure and properties)• Plastic explosives and rocket fuels

Page 3: Keywords

•Polymers from soybeans•Furan based polymers from corn•Bacterial and fungal attack on polymers•Conducting polymers, new metallic materials•Semiconducting polymers for PV •Semiconducting polymers for OLED’s•Polymers for stealth •Polymers for fire protection•Smart polymers that change properties with external stimuli•Reworkable, healable or removable polymers•Photoresists

Page 4: Keywords

Homework

• Name files with your last name, and HWK#

• Within file, your name, HWK title, descriptive information (like the title of you paper topic)

-Never make your audience work

Page 5: Keywords

Bibliography homework

• Due on 27th at 11:59 PM• Based on your keyword search• J. Am. Chem. Soc. format with title

e.g. Doe, J., Smith, J. “Proper bibliographies for Professor Loy’s class,” J. Obsc. Academ. B. S. 2012, 1, 234.

Recommend endnote or pages or biblio.

Page 6: Keywords

Pseudoscience

An established body of knowledge which masquerades as science in an attempt to claim a legitimacy which it would not otherwise be able to achieve on its own terms; it is often known as fringe- or alternative science. The most important of its defects is usually the lack of the carefully controlled and thoughtfully interpreted experiments which provide the foundation of the natural sciences and which contribute to their advancement.

Johathan Hope: Theodorus' Spiral (2003)

Examples of pseudoscience:Intelligent design, polywater, cold fusion, N-rays,

Creationism, holistic medicine, etc…

Page 7: Keywords
Page 8: Keywords

Detecting Baloney

1. The discoverer pitches the claim directly to the media.• No peer review or testing of claims is possible

2. The discoverer says that a powerful establishment is trying to suppress his or her work.

3. The scientific effect involved is always at the very limit of detection.

• At signal noise & no one else can replicate• Requires unique instrumentation or experience

4. Evidence for a discovery is anecdotal.5. The discoverer says a belief is credible because it has endured

for centuries. 6. The discoverer has worked in isolation.7. The discoverer must propose new laws of nature to explain an

observation.

Page 9: Keywords

Polymer Phase Diagrams

Solid: amorphous glass (below glass trans) or crystalline& Liquid (above melting point)

Page 10: Keywords

Polymer Tacticity: Stereochemical configuration• typical for addition or chain growth polymers• not for typical condensation or step growth polymers

Me Me Me MeH H H HH H H HMe Me Me Me Me

H

Me Me H HH H Me Me MeH Me Me Me HH H H Me MeH

atactic

isotactic syndiotactic

Page 11: Keywords

MeO

OMe

n

Polymer Tacticity: Polymethylmethacrylate (PMMA)

Free radical - atacticAnionic - isotactic

Me Me Me MeO

O O OOOOO

MeMe Me Me

Me Me Me MeO

O O OOOOO

MeMe Me Me

Me

O

Me

O

isotactic syndiotactic

Page 12: Keywords

Why is this important?• Tacticity affects the physical properties

– Atactic polymers will generally be amorphous, soft, flexible materials

– Isotactic and syndiotactic polymers will be more crystalline, thus harder and less flexible

• Polypropylene (PP) is a good example– Atactic PP is a low melting, gooey material– Isoatactic PP is high melting (176º), crystalline,

tough material that is industrially useful– Syndiotactic PP has similar properties, but is

very clear. It is harder to synthesize

Page 13: Keywords
Page 14: Keywords

Step Growth Configurations

HN

O

HN 12

3

4

5

6

OHN

O

NH

O

HN

O n

Nylon-6

Page 15: Keywords

Step Growth Configurations

HN

NH

O

O1

2

3

4

5

6

NH O

O

NH

NH

1

O

2

3

4

56

O

HN

HNO

NH

O

NH

HN

O

O n

Nylon 6,6

mp 265 °Ctg 50 °C

Page 16: Keywords

Chapter 2: Synthesis of Polymers

1) Step Growth

2) Chain Growth

Two major classes of polymerization mechanisms

Page 17: Keywords

Step Growth Polymerization: Condensation

HO2C CO2H

HOOH

terephthalic acid

ethylene glycol

O

O O

O

n

1:1 monomer ratio

Poly(ethylene terephthalate)or PET or PETE = polyester

Two equivalents of water is lost or condensed for each equivalent of monomers

Page 18: Keywords

Dacron if a fiber

Page 19: Keywords

Step Growth Polymerization: Condensation

HO2C CO2H

HOOH

terephthalic acid

ethylene glycol

O

HO O

OOH

O

HO O

OOH

HOOH

O

O O

OOH

HO

-H2O

-H2O

Biaxially stretched PETE is “Mylar”

Page 20: Keywords

Step growth systems• Epoxies• Polyurethanes & ureas• Nylon & polyesters• Kevlar• Polyaryl ethers (PEEK)• Polysulphones• Polyimides• Polythiophenes & Photovoltaic polymers• Polysulfides and polyphenyl ether

Page 21: Keywords

H2NR NH2

R'

O

Cl

O

Cl

AA BB

Mechanics of Step Growth: • Many monomers• All are reactive

Each has functionality of 2;Can make two bonds

R'

O

O

NH

R

HN

nLinear, soluble Nylon polymer

Mole fraction Conversion = 1 – [COCl]/[COCl]0

Page 22: Keywords

Mechanics of Step Growth:

NH2

R

H2N

R'

O

Cl

O

Cl

H2NR

NH2

H2NR NH2

NH2

R

H2N

H2N R NH2

H2N R NH2

H2N

R

NH2

H2NR

NH2

R'

O

Cl

O

Cl

R'

O

Cl

O

Cl

R'

O

Cl

O

Cl

R'

O

Cl

O

ClR'

O

Cl

O

Cl

R'

O

Cl

O

Cl

R'

O

Cl

O

Cl

R'

O

Cl

O

Cl

H2NR

NH2

H2N

R

NH2

R'

O

Cl

O

Cl

NH2

R

H2N

H2N R NH2

H2NR

NH2

R'

O

Cl

O

ClR'

O

Cl

O

Cl

R'

O

Cl

O

Cl

H2NR

NH2

R'

O

Cl

O

Cl

NH2R

H2N

R'

O

Cl

O

Cl

NH2

R

H2N

R'

O

Cl

O

Cl

H2NR

NH2

R' O

Cl

O

Cl

34 COCl groups; p = 1 - [COCl]/[COCl]0 = 0 conversion

Page 23: Keywords

Mechanics of Step Growth: Monomer & Dimers

NH2

R

H2N

R'

O

Cl

O

Cl

H2NR

NH2

H2NR NH2

NH2

R

HN

H2N R NH

H2N R NH2

H2N

R

NH2

H2NR

NH2

R'

O

Cl

O

Cl

R'

O

Cl

O

Cl

R'

O

O

Cl

R'

O

Cl

O

ClR'

O

Cl

O

Cl

R'

O

Cl

O

Cl

R'

O

O

Cl

R'

O

Cl

O

Cl

H2NR

NH2

H2N

R

NH2

R'

O

Cl

O

Cl

NH2

R

HN

H2N R NH2

H2NR

NH2

R'

O

Cl

O

ClR'

O

Cl

O

Cl

R'

O

O

Cl

H2NR

NH2

R'

O

Cl

O

Cl

NH2R

H2N

R'

O

Cl

O

Cl

NH2

R

H2N

R'

O

Cl

O

Cl

H2NR

NH

R' OO

Cl

30 reactive groups p = 1 - [COCl]/[COCl]0 = 1-30/34 = 0.11

Page 24: Keywords

NH

R

HN

R'

O

O

H2NR

NH2

HNR

NH2

NHR

HN

H2N R NH

HN R NH2

H2N

R

NH

H2NR

NH2

R'O

Cl

O

R'

O

Cl

O

Cl

R'

O

O

Cl

R'O

O R'

O

Cl

O

R'

O

O

Cl

R'

O

O

Cl

R'

O

O Cl

H2NR

NH2

H2N

R

HN

R'OO

Cl

NH2

R

HN

H2N RHN

HNR

NH2

R'

O

Cl

O

Cl

R'

O

O Cl

R'

O

O

Cl

HNR

NH2

R'

O

Cl

O

Cl

NH2R

H2N

R'

O

O

Cl

NH2

R

HN

R'

O

Cl

O

Cl

H2NR

NH

R' OO

Cl

Mechanics of Step Growth: Monomer & Dimers & Trimers

19 reactive groups p = 1 - [COCl]/[COCl]0 = 1-19/34 = 0.44

Page 25: Keywords

Mechanics of Step Growth: Monomer, Dimers, Trimers, & Tetramers

13 reactive groups p = 1 - [COCl]/[COCl]0 = 1-13/34 = 0.62

NH

R

HN

R'

O

O

HN

RNH2

HNR NH2

NHR

HN

H2N R NH

HN R NH2

H2N

R

NH

H2NR

NH2

R'O

Cl

O

R'

O

Cl

O

Cl

R'

O

O

Cl

R'O

O

R'

O

Cl

O

R'

O

O

Cl

R'

O

O

R'

O

O

H2NR

NH2

H2N

R

HN

R'OO

Cl

NH2

R

HN

H2N RHN

HNR

NH

R'O

Cl

O

R'

O

O Cl

R'

O

O

HNR

NH

R'

O

Cl

O

NH2R

NH

R'

O

O

Cl

HN

R

HN

R'

O

O Cl

HNR

NH

R' OO

Cl

Page 26: Keywords

7 reactive groups p = 1 - [COCl]/[COCl]0 = 1-7/34 = 0.80

NH

R

HN

R'

O

O

HN

RNH2

HNR

NHNHR

HN

H2NR

HN

HN R NH2

H2N

R

NH

HN

R

NH2

R'OO

R'

O

O

Cl

R'

O

OR'

OO

R'

O

O

R'

O

O

Cl

R'

O

O

R'

O

O

NHR

NH

H2N

R

HN

R'OO

NH2

R

HN

HNR

NH

HNR

NH

R'O

Cl

O

R'O

O

ClR'

O

O

HNR

NH

R'

O

Cl

O

NH

RNH

R'

O

O

NH

R

NH

R'

O

OCl

HNR

HN

R'

O

O Cl

Mechanics of Step Growth: Monomer, Dimers, Trimers, Tetramers & Higher

Page 27: Keywords

3 reactive groups p = 1 - [COCl]/[COCl]0 = 1-3/34 = 0.91

Mechanics of Step Growth: Monomer, Dimers, Trimers, Tetramers & Higher

NH

RHN

R'

O

O

HNR

NH

HNR

NH

HNR

HN

H2NR

HN

HN RNH

H2N

R

NH

NH

R NH2

R'

O

O

R'

O

O

R'

O

O

R'O

O R'

O

O

R'

O

OCl

R'O

O

R'

O

O

NHR

NH

HN

R

HN

R'OO

HN

RNH

HN

RNH

HNR

NH

R'O

O

R'

O

O

R'

O

O

HNR

NH

R'

O

O

NH

RNH

R'

O

O

NH

R

NH

R'

O

OCl

RNH

R'

O

OCl

Page 28: Keywords

1 reactive groups p = 1 - [COCl]/[COCl]0 = 1-1/34 = 0.97

Mechanics of Step Growth: Monomer, Dimers, Trimers, Tetramers & Higher

NHRHN

R'

O

O

HN

R

NH

HNR

NH

HNR

NH

HNR

HN

HNR

H2N

R

NH

NH

R

NH

R'

O

O

R'

O

O

R'

O

O

R'O

O

R'

O

O

R'

O

OCl

R'

O

O

R'

O

O

NHR

NH

HN

R

HN

R'OO

HN

RNH

HN

RNH

HN R NH

R'

O

O

R'

O

O

R'

O

O

HNR

NH

R'

O

O

NH

RNH

R'

O

O

NH

R

NH

R'

O

O

RNH

R'

O

O

Page 29: Keywords

1 reactive groups p = 1 - [COCl]/[COCl]0 = 1-1/34 = 0.97

Mechanics of Step Growth: Monomer, Dimers, Trimers, Tetramers & Higher

NHRHN

R'

O

O

HN

R

NH

HNR

NH

HNR

NH

HNR

HN

HNR

H2N

R

NH

NH

R

NH

R'

O

O

R'

O

O

R'

O

O

R'O

O

R'

O

O

R'

O

OCl

R'

O

O

R'

O

O

NHR

NH

HN

R

HN

R'OO

HN

RNH

HN

RNH

HN R NH

R'

O

O

R'

O

O

R'

O

O

HNR

NH

R'

O

O

NH

RNH

R'

O

O

NH

R

NH

R'

O

O

RNH

R'

O

O

If R = R’ = Phenylene = KevlarMw = 4014 g/mol

Page 30: Keywords

Step-Growth Polymerization• Because high polymer does not form until the end of the

reaction, high molecular weight polymer is not obtained unless high conversion of monomer is achieved.

Xn =1

1− p

Xn = Degree of polymerizationp = mole fraction monomer conversion

1

10

100

1000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Mole Fraction Conversion (p)

Degree of Polymerization

Page 31: Keywords

Degree of Polymerization for step growth polymers

X = [COCl]0/[COCl] = 1/1-p

Page 32: Keywords

X or DP = 1/(1-p) = 1/1-0.97 = 1/0.03 = 33

Mechanics of Step Growth: Monomer, Dimers, Trimers, Tetramers & Higher

NHRHN

R'

O

O

HN

R

NH

HNR

NH

HNR

NH

HNR

HN

HNR

H2N

R

NH

NH

R

NH

R'

O

O

R'

O

O

R'

O

O

R'O

O

R'

O

O

R'

O

OCl

R'

O

O

R'

O

O

NHR

NH

HN

R

HN

R'OO

HN

RNH

HN

RNH

HN R NH

R'

O

O

R'

O

O

R'

O

O

HNR

NH

R'

O

O

NH

RNH

R'

O

O

NH

R

NH

R'

O

O

RNH

R'

O

O

If R = R’ = Phenylene = KevlarMw = 4014 g/mol

Page 33: Keywords

Impact of percent reaction, p, on DP

if p = DP =

0.5 2

0.7 3.3

0.9 10

0.95 20

0.99 100

0.999 1000

Degree of Polymerization, D.P. = No / N = 1 / (1 - p)Assuming perfect stoichiometry

DPmax= (1 + r) / (1 - r) where r molar ratio of reactants

if r = [Diacid] / [diol] = 0.99, then DPmax= 199

Page 34: Keywords

Effect of Extent of reaction on Number distribution

Page 35: Keywords

Effect of Extent of reaction on weight distribution

Page 36: Keywords

Problems in Achieving High D. P.

1. Non-equivalence of functional groups

a. Monomer impurities1. Inert impurities (adjust stoichiometry)2. Monofunctional units terminate chain

b. Loss of end groups by degradation

c. Loss of end groups by side reactions with media

d. Physical losses e. Non-equivalent reactivity

f. Cyclization

. Unfavorable Equilibrium Constant

Page 37: Keywords

Impact of Thermodynamics

• Esters from Acids and alcohols Keq = 1-10

• Amides from Acids and amines Keq = 10-1000

• Amides or esters from acid chlorides, Keq >104

Page 38: Keywords

Interfacial Polymerization: Nylon Rope trick

Diamine, NaOH, in H2O

Adipoyl chloridein hexane

Nylon 6,6

Driving Reactions forward with physics

O

Cl

O

ClH2N

NH2

hexane-1,6-diaminehexanedioyl dichloride

or adipoyl chloride

O

O

HNNH n

Page 39: Keywords

Biaxially stretched PETE is “Mylar”

Tg = 70 °CTm = 265 °C

O

O O

O

n

OO

O

O n

Tg < 0 °CTm = 50 °C

Page 40: Keywords

O

HO O

OOH

O

O O

O

HO

O

HO O

OOH

-H2O

O

OH

OO

Step Growth Polymerization: Condensation

Each reaction occurs at approximately the same rate.Any monomer or growing oligomer can participate

Page 41: Keywords

O

HO

O

O O

O

HO

O

HO O

OOH

-H2O

OO

Step Growth Polymerization: Condensation

Impurities will kill growth and limit molecular weightDelayed commercialization of condensation polymers

Page 42: Keywords

Dr. Wallace Hume CaruthersHead of DuPont Organic research Labs50 patents

NylonPolyesterPolychoroprene (Neoprene)

The Guy who got the ball rolling

Page 43: Keywords

More Step Growth (Condensation) Polymers & their monomers

HO2C CO2H

terephthalic acid

diaminobenzene

O

NH O

HN

n

Kevlar

NH2H2N

Tg = NATm = 500 °C

Nomex and Technora

Twaron (AKZO)Stephanie Louise Kwolek (DuPont)

Polyaramides

O

HN

HN

On

Page 44: Keywords

Polyamides via Condensation -- Nylon 66

C-(CH2)4-C

OO

OOH

H

CH2-(CH2)4

-CH2 NH2NH2

+

slight excess

C-(CH2)4-C

OO

O- O-

(CH2)4

CH2 CH2

NH3+ NH3

+

Nylon Salt

60% Slurry

200 C, 15 Atm. 1 hr

NH3+(CH2)6

-NH-C-(CH2)4-C-NH-(CH2)6

-NH-C-(CH2)4-C

O

OO

OO-

8-10

270-300 C, 1hr

- H2O

NH-(CH2)6-NH-C-(CH2)4

-C

O

O

Nylon 6 6

mp. 265C, Tg 50C, MW 12-15,000Unoriented elongation 780%

Page 45: Keywords

More Step Growth (Condensation) Polymers & their monomers

Tg = 150 °CTm = 267 °C

Me

Me

HO OH

Cl Cl

O

Bisphenol A

phosgene

Me

Me

O O

O

n

PolycarbonateLexan

Two phase: interfacial polymerization

Page 46: Keywords

More Step Growth (Condensation) Polymers & their monomers

Tg = 200 °C; Films pressed at 250 °CUse temperature < 175 °CStable in air to 500 °CSelf-extinguishing

Me

Me

O O

S ClClO

O

Me

Me

O O S

O

O n

Na

Na

-2n NaCl

Polysulfone

Mw = 60-250K

Page 47: Keywords

More Step Growth (Non-condensation) Polymers & their monomers

ONC CNO

n

PolyurethaneHO OH

HN

HN

OO

O O

isocyanates

Page 48: Keywords

Polyphenylene Oxide (PPO)

R1

R2

OH + n/2 O2

R1

R2

O O

R2

R1

+ n H2O

cat

cat =

NN

CH3

CH3N

CH3

CH3

3 : 1

or

10:1

Cu+

Amine Complex

Noryl is a blend with polystyrene

Oxidative Coupling Process

Mn 30,000 to 120,000Amorphous , Tg 210C Crystalline, Tm 270CBrittle point -170CThermally Stable to 370C

Page 49: Keywords

Step Growth Polymers

• Polyesters, polyamides, engineering plastics such as polysulfones, polyetherether ketones (PEEK), polyurethanes.

• Condensation often occurs.

• Polymerization affords high MW late in the game

Page 50: Keywords

Me

NCO

HO OH

OCNMe

NH

NH

O

O

O

On

Step-GrowthNon-Condensation Polymerization

Polyurethanes

1,4-toluenediisocyanate + 1,3-propanediol

[RCO2]2SnBu2

Page 51: Keywords

OCN

OCN

NCO

HO OH

OH

NH

HN

NH

O

O

O

OO

O

O O

O

O

NH

HN

NH

O O

O

O O

O

1 1

Functionalities > 2: Crosslinking into networks

f = 3

Polyurethanes(thermoset)

Page 52: Keywords

Thermosets

• Urethanes

• Epoxies

• Polyesters (2-stage)

• Formaldehyde-aromatic

• Melamine-formaldehyde

Generally: Start as low viscosity liquids (low Mw)And set or cure to form glassy “vitrified” solids.

Page 53: Keywords

Gelation: f > 2

• If f > 2

• No cyclics form

then an infinite network is possible

(unless it phase separates!!!)

Page 54: Keywords

f = 3f = 4

f = 4

f = 3

f = 4 f = 6

f = 6

f = 4 f = 8

f = 8 f = 8 f = 14

Functionality Higher than Two

Phase separation = gels, glasses, or precipitates

Due to chemical bonding

Page 55: Keywords

Functionality = Two: Linear polymers

f = 2f = 2

f = 2

f = 2

f = 2 f = 2

Physical gels may form due to poor solubility of polymer

Page 56: Keywords

Functionality = Three: Cyclization

Lowers functionality & delays (or even prevents) gelation

f - 14 f = 8

Gel point = 1/(f -1) = 1/2 or 50% conversionIf cyclics present, gel point is higher.

Page 57: Keywords

Addition Polymerizations

R Rn

1) Catalyzed polymerization free radicalcationicanioniccoordination

2) Active group on end of polymer3) MW increases more rapidly4) Cheap & easier than step growth5) Enthalpically favorable

Page 58: Keywords

Free Radical Polymerizations

• Initiators (catalyst): – Thermal: azo compounds, peroxides, – Redox: persulfates– Photochemical: azo, peroxides,

amine/ketone mixtures

• Monomers

R R

R

R

R

RR

R

R

RR

R

R

R

Usually polymerize

Almost never polymerize

Polymerize fine Almost never polymerize

Seldom polymerize

Page 59: Keywords

Free radical Mechanism

Initiation: N

NNC

NC

Δ

NC CN

N2

or hν

Ea = 140 – 160 kJ mol-1

Kd = 8 x 10-5 s-1

t1/2 = 10 h at 64 °C

Propagation:

RR

NCkp

R

CN

R

Termination:

R

CN

R R

NC

R R

CN

R

R

NC

R

R

CN

R R

NC

R R

CN

R

R

NC

R

H

H

]M][•M[kR pp =

kp = 102 - 104 L/mol s

kt = 106 - 108 L/mol s

2tt ]•M[k2R =

Page 60: Keywords

Free Radical Polymerization Kinetics

MW

TIME

•MOST POLYMERS FORM IN SECONDS OR LESS• POLYMERIZATIONS TAKE HRS

Rp [M]; R∝ p [I]∝ 1/2

Page 61: Keywords

Living Radical Polymerizations:

1) Atom TransfeR Polymerization (ATRP)2) Polymerization (RAFT)3) TEMPO

MW increases linearly with timeNarrow Mw distributionsBlock copolymers

Lower concentration of propagating species Lower termination rate

Page 62: Keywords

Cationic Polymerizations:

R

cat

R

cat Rcat

R R

catR R

catR R

-H+

R = OR, NR2, Ph, vinyl, alkyl

H+O OH

O

HO OO n

Ring opening polymerization

Vinyl polymerization

Page 63: Keywords

Anionic Polymerizations:

R Rn

R = Ph, vinyl, CO2R, CN

Rn

nR

R

H, Me,

cat

cat

cat = Alkyl or aryl Lithium, sodium naphalide, alkyl Grignard, some alkoxides

Vinyl polymers

Diene polymers

Page 64: Keywords

Anionic Polymerizations:

OR

HO

Rn

cat.

R = H, Alkyl

O

R

cat

R = H, MeO

Rn

Polyacetals or carbonyls

Poly ethers

Page 65: Keywords

Anionic Polymerizations:

Si

OSi O

Si

OSiO

MeMe

Me

Me

MeMeMe

Me SiO

SiO

SiO

SiO

Me Me Me MeMe MeMe Me

n

Alkoxides

Polysiloxanes

Page 66: Keywords

Coordination Polymerizations:

Transition Metal Mediated Polymerizations-Ziegler Natta polymerizations (Early TM)-ring opening metathesis polymerization (metal Alkylidenes)-Insertion polymerizations (mid to late TM’s)

Page 67: Keywords

Ziegler Natta Polymerizations

• ZN are heterogeneous; solid catalysts• Catalytic polymerizations• Early TM halide, AlR3 on MgCl2• Polypropylene and HDPE• Highly productive: 106g polymer/gram

catalyst-hour• 10,000 turn overs/second (enzyme like

speed)-diffusion limited• Stereochemical control:

RR

nTiCl4, AlMe3

Karl Ziegler (1898-1973)

Giulio Natta (1903-1979)iso or syndiotactic polymers

Page 68: Keywords

Ziegler Natta Monomers

R

α-olefinsstyrenes

R

R = alkyl, aryl

Not compatible with heteroatoms (O,N,S,etc)

Page 69: Keywords

Polymers Synthesized with Complex Coordination Catalysts

Plastics• Polyethylene, high

density (HDPE)

• Polypropylene, isotactic

• Polystyrene, syndiotactic

Bottles, drums, pipes, sheet, film, etc.

Automobile and appliance parts, rope, carpeting

Specialty plastics

Page 70: Keywords

Ring Opening Metathesis

• Strained Rings with C=C bonds

• Metal alkylidene catalysts– Ti, Mo, W alkylidenes (Schrock catalysts)– Ruthenium alkylidenes (Grubbs catalysts)

• Living polymerizations

Ru

PCy3

Ph

NN

ClCl

n

Page 71: Keywords

Examples of ROMP

Me

No Reaction

R

Rn

R ≠ OH, NH, CO2H,

No strain, no polymer

n

OO

n

Page 72: Keywords
Page 73: Keywords
Page 74: Keywords

Acyclic Diene Metathesis Polymerization

R

Schrock or Grubbs catalyst

-CH2=CH2

Rn

Coordination-Condensation polymerizationEthylene gas is producedNot commerciallized

Page 75: Keywords

Redox Polymerizations

HN

anodic oxidativepolymerization

HN

n

HN

HN

n

[O]HN N

H

N

H

N

H

N

HH

H

N

H

N

HH

H

-2H+ N

H

N

H

Polypyrrole

Page 76: Keywords

Redox Polymerizations

-2H+

NH2 NH2 NH2 N NH2

H

H

H

N NH2

H

N NH2

H

n

Polyaniline

When acid doped: conducting polymer

Page 77: Keywords

Polymerization Techniques

• Bulk-no solvent just monomer + catalysts

• Solution Polymerization-in solvent

• Suspension-micron-millimeter spheres

• Emulsion-ultrasmall spheres

Page 78: Keywords

Less Common Polymerization Techniques

• Solid state polymerization– Polymerization of crystalline monomers

• Diacetylene crystals

• Gas Phase polymerization– Parylene polymerizations

• Plasma polymerization– Put anything in a plasma

Page 79: Keywords

Plasma Polymerization

Page 80: Keywords

Characterization of Polymers

• 1H & 13C Nuclear Magnetic Resonance spectroscopy (NMR)

• Infrared spectroscopy (Fourier Transform IR)

• Elemental or combustion analyses

• Molecular weight

Page 81: Keywords

Polymerization Techniques

• Bulk-no solvent just monomer + catalysts

• Solution Polymerization-in solvent

• Suspension-micron-millimeter spheres

• Emulsion-ultrasmall spheres

Page 82: Keywords

Bulk Polymerizations

RareOverheat & explode with scale upNo solvent-just monomerPolymer usually vitrifies before doneBroad MW distribution

Acrylic sheets by Bulk polymerization of MMA

Page 83: Keywords

Storage of vinyl monomers in air = peroxide initiated polymerizations

Tankcar of styrene2005 in Ohio

Page 84: Keywords

Solution Polymerization • Better control of reaction temperature• Better control of polymerization• Slower• Not very green-residual solvent

Page 85: Keywords

Suspension Polymerization

• Oil droplets dispersed in water

• Initiator soluble in oil

• Greener than solution polymerization

Filter off particles of polymer

Page 86: Keywords

Emulsion Polymerization

Still oil in water (or the reverse)Initiator in waterSmaller particles (latex)Excellent control of tempSolution turns white

Polystyrene latex

Page 87: Keywords

Suspension Emulsion Mini-emulsion Micro-emulsion

Monomer in oil Monomer in oil Monomer in oil Monomer in oil

Initiator in oil Initiator in water Initiator in waterInitiator in water

Page 88: Keywords

Less Common Polymerization Techniques

• Solid state polymerization– Polymerization of crystalline monomers

• Diacetylene crystals

• Gas Phase polymerization– Parylene polymerizations

• Plasma polymerization– Put anything in a plasma

Page 89: Keywords

Solid State Polymerizations

Heating Oligomeric Condensation Polymers

Tg < X < Tm

Nylons, Polyesters

O

O

O

O

O

HO O

O

O

n

O

O

O

O

O

O O

O

On

OH

250 °C

HOOH

Nylon 66 Tg = 70 °C and Tm = 264 °C

Tg = 67 °C and Tm = 265 °C

Page 90: Keywords

Solid State Polymerizations

Topological Polymerizations: Polymerization of crystals

Quinodimethane polymerizations

Di- and Triacetylene polymerizationsIn single crystals

Page 91: Keywords

Solid State Polymerizations of Fullerenes

Topological polymerization in 3-D

Page 92: Keywords

Gas Phase Polymerization

1) Light olefins2) Parylenes

Page 93: Keywords

LIGHT OLEFINS

Ethylene and propylene

2004 Global PE Demand: 136 Billion Pounds

• Food Packaging• Hygiene & Medical• Consumer & Ind. Liners• Stretch Films• Agricultural Films• HDSS

Film

SOURCE: Nexant/ChemSystems 2005, PTAI 1/05

Page 94: Keywords

Types of Polyethylene

O

OOO

O O

OO

O

O

C-OH

O

HDPE (0.940-0.965)“High Density”

LLDPE (0.860-0.926)“Linear Low Density”

LDPE (0.915-0.930)“Low Density”

High Pressure Copolymers(AA, VA, MA, EA)

Page 95: Keywords

Gas Phase Polymerization: Light olefins

Oxygen initiator2-3K atmospheres250 °C

Page 96: Keywords

Gas Phase Polymerization: Light olefins

Fluidized bed polymerization

MORE FLEXIBLE

Page 97: Keywords

Gas Phase Polymerization: Paralene

Gas phasePolymerizes on contactConformal coatingsPinhole freePreserving artifacts (paper)MicroelectronicsMedical devices

Page 98: Keywords

Plasma Polymerization

•500 Å - 1 micron thick films•Continuous coatings•Solvent free•High cohesion to surface•Highly cross-linked•Generally amorphous

Page 99: Keywords

Plasma Polymerization

Monomers: HydrocarbonsDouble or triple bonds nice, not necessaryFluorocarbonTetraalkoxysilanes (for silica)

Page 100: Keywords

P- pumps; PS-power supply; S-substrate

M-feed gas inlet; G-vacuum gauge

Fig1. Bell-jar type reactors Fig 2. Tubular-type reactors

Plasma Polymerization

Page 101: Keywords

Plasma Polymerization

PET [Poly(Ethylene Terephthalate)]Multi-layer bottlesNo loss of fizz

Page 102: Keywords

Characterization of Polymers

• 1H & 13C Nuclear Magnetic Resonance spectroscopy (NMR)

• Infrared spectroscopy (Fourier Transform IR)

• Elemental or combustion analyses

• Molecular weight

Page 103: Keywords

13C NMR is a very powerful way to determine the microstructure of a polymer.

13C NMR shift is sensitive to the two stereocenters on either side on sptectrometers > 300 MHz. This is called pentad resolution.

r mm rmr

mmrm pentad

m = meso (same orientation)r = racemic (opposite orientation)

12 1 2

13C NMR spectrum of CH3 region of atactic polypropylene

Page 104: Keywords

Infrared Spectroscopy: Bond vibrations

2-16 Micron wavelength range

polystyreneC=C-H

C-H

C=Cstretch

Page 105: Keywords

Infrared Spectroscopy: Bond vibrations

Poly(methyl methacrylate)

C=O

C-O

C-Hstretch

C-H bend

Page 106: Keywords

Types of Addition Polymerizations

Ph

Anionic

C3H7 Li C4H9

Ph

Li+ Phn

C4H9

Ph Ph

Li+

n

Ph

Radical

PhCO2•Ph

n

Ph

Cationic

Cl3Al OH2H

PhHOAlCl3

Phn

H

Ph Phn

HOAlCl3

PhCO2

PhPhCO2

Ph Phn

Page 107: Keywords

Chemical Modification of Polymers

1) Hydrolysis

2) Oxidation

3) Photochemistry (can be oxidation or not)

4) Chemical crosslinking

5) Chemical modification

O

OCH3

n NaOH

H2O OHn

O

O

H3Cn

Na+

Polyvinylacetate polyvinyl alcohol

On

H

Poly ethylene oxidehv, O2

or ascorbic acid

Me

O

H

SiSi

SiSi

SiR R

R R

R R

R R

R R

Polysilane

hν: UV

O2

SiOSi O

SiO

SiO

R RR

R

RR

R

R

H

polybutadiene

S8

Δ SS

S

See next slide

Page 108: Keywords

Chemical Modification of Polyvinyl Alcohol to make Polyvinyl butyral for safety glass

polyvinyl alcohol

OH OH OH OH OH

CH3CH2CH2CHO

O O OH O O

poly vinyl butyral

No PVB

With PVB

Page 109: Keywords

Bullet Proof Glass

Page 110: Keywords

glass, laminates and polycarbonate sheets are interlaid in a clean room to ensure clarity. In our large autoclave, superheated steam seals the layers together.

Making bullet proof glass

Page 111: Keywords

Polycarbonate is Strong Material

Young's modulus (E) 2-2.4 Gpa

Tensile strength (σt) 55-75 Mpa

Page 112: Keywords

Exploding CD’s

Mythbusters:> 23,000 rpm CD will shatterScratches or defects are the culprit

52X drive -MAX: 27,500 rpm typical: 11,000 rpm

10,000 RPM = 65 m/s = 145 mph7200 gravities of accelerationAnd approx. 5 MPa stressYield Strength 60 MPa

Page 113: Keywords

Nalgene

Page 114: Keywords

Polycarbonate Properties

Density: 1.2 g/cc

Young's modulus (E) 2-2.4 Gpa

Tensile strength (σt) 55-75 Mpa

Elongation (ε) @ break 80-150%

Glass transition (Tg) 150 °C

Melting (Tm) 267 °C

Upper working temperature 115-130 °C

$7.3-11/kg

Page 115: Keywords

Bisphenol and Endocrine System

100-250 g bisphenol per Liter water in water bottles20 g/Liter per day can disrupt mouse development

vom Saal, F.S., Richter, C.A., Ruhlen, R.R. Nagel, S.C. and Welshons, W.V. Disruption of laboratory experiments due to leaching of bisphenol a from polycarbonate cages and bottles and uncontrolled variability in components of animal feed. Proceedings from the International Workshop on Development of Science-Based Guidelines for Laboratory Animal Care, National Academies Press, Washington DC, 65-69, 2004.

Immune systemAntioxidant enzymesDecreases plasma testosteroneLearning disabilities

vom Saal, F.S., Nagel, S.C., Timms, B.G. and Welshons, W.V. Implications for human health of the extensive bisphenol A literature showing adverse effects at low doses: A response to attempts to mislead the public. Toxicology, 212:244-252, 2005.

Page 116: Keywords

Nalgene Substitutes-food and water

• Glass (blender, pitchers, glasses)

• Metal (water bottles)

• Polyethylene (water bottles)

• Polyamide or Nylon (baby bottles)