319
Berichte aus dem Institut fur Umformtechnik der Universitiit Stuttgart He ra usge be r: Prof. Dr .- In g. K. Lange 85

[K. Lange (Auth.), Prof. Dr.-ing. Kurt Lange (e(BookZZ.org)

Embed Size (px)

Citation preview

  • 5/20/2018 [K. Lange (Auth.), Prof. Dr.-ing. Kurt Lange (e(BookZZ.org)

    1

    Berichte aus

    dem

    Institut fur Umformtechnik

    der

    Universitiit Stuttgart

    Herausgeber: Prof. Dr.-Ing. K. Lange

    85

  • 5/20/2018 [K. Lange (Auth.), Prof. Dr.-ing. Kurt Lange (e(BookZZ.org)

    2

    Simulation

    of

    Metal Forming Processes

    by the Finite Element Method

    (SIMOP-I)

    Proceedings of the I. International Workshop

    Stuttgart, June 3, 1985

    Springer-Verlag

    Berlin Heidelberg New York Tokyo 1986

  • 5/20/2018 [K. Lange (Auth.), Prof. Dr.-ing. Kurt Lange (e(BookZZ.org)

    3

    Dr.-Ing. Kurt

    Lange

    o. Professor an

    der

    Universitiit Stuttgart

    Institut

    fOr

    Umformtech nik

    ISBN-13:978-3-540-16592-7

    001: 10.1007/978-3-642-82810-2

    e-ISBN-13:978-3-642-8281 0-2

    Das Werk ist urheberrechtlich geschotzt. Die dadurch begrOndeten Rechte, insbesondere

    die der Obersetzung, des Nachdrucks,

    der

    Entnahme von Abbildungen, der Funksendung,

    der Wiedergabe auf photomechanischem oder iihnlichem Wege und

    der

    Speicherung in

    Datenverarbeitungsanlagen bleiben, auch bei nur auszugsweiser Verwendung, vorbehalten.

    Die VergatungsansprOche des

    54, Abs. 2 UrhG werden durch die "Verwertungsgesellschaft

    Wort", MOnchen, wahrgenommen.

    Springer-Verlag, Berlin, Heidelberg 1986.

    Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in diesem

    Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, daB solche

    Namen

    im

    Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten

    wiiren und daher von jedermann benutzt werden dOrften.

    Gesamtherstellung: Copydruck GmbH, Offsetdruckerei,lndustriestraBe 1-3,7258 Heimsheim

    Telefon

    07033/3825-26

    2362/3020-543210

  • 5/20/2018 [K. Lange (Auth.), Prof. Dr.-ing. Kurt Lange (e(BookZZ.org)

    4

    PREFACE

    The production-costs of

    formed

    workpieces are in an increasing extent fixed

    through the costs for designing

    and

    manufacturing the

    tools.

    Nowadays,

    i t

    is

    possi b1e

    to

    reduce these redundant

    tool-costs by

    app

    lyi ng modern numeri

    ca 1

    simulation techniques such as the finite element type procedures.

    In

    thi s context, the basic

    ojecti

    ve of the

    workshop

    SUtoP ( ~ i m u l ation of

    : etal F ~ r m i n g

    ~ r o c e s s e s

    by the

    Finite

    Element

    Method) was

    to determine

    and -

    especially

    -

    to

    discuss the level of finite-element-simulations of

    metal-forming processes with regard to technological utilization.

    On this purpose,

    eight presentations have

    been selected to focus the

    discussions onto the prime aspects such as:

    - technological aspects (bulk metal forming versus sheet metal forming),

    - constitutive laws (rigid-plastic

    versus elastic-plastic versus visko-plas-

    tic material laws),

    - coupled analysis (thermo-mechanical coupling),

    - kinematical description (Eulerian versus Lagrangian formulations,

    co-rota-

    tional formulations etc.),

    - numerical problems

    (incompressibility, integration

    of

    constitutive

    equa-

    tions, iterative and incremental schemas,

    etc.),

    as

    well

    as

    - contact problems (friction, heat-transfer,

    etc.).

    In

    order to promote

    discussions,

    the audience of the

    workshop

    was

    limited to

    50 participants. Due to this

    fact,

    we

    had to refuse unfortunately

    many

    app

    1

    cat ions. However, we hope that

    these proceedi

    ngs

    -

    whi

    ch also inc 1

    ude

    the discussions in an almost complete extent - will be a compensation for

    those

    who

    could not attend the workshop

    SIMOP-I.

    The

    proceedings contain the

    eight

    written manuscripts, the discussions after

    each sub-session as well as the closing

    discussions,

    the "FORUM", at the

    end

    of the workshop.

    Finally, as the organizers

    we wish

    to thank very deeply the Stiftung

    Volkswagenwerk, Hannover,

    for

    the

    financial

    support of

    this

    workshop.

    August 1985

    Kurt Lange, A.Erman

    Tekkaya

  • 5/20/2018 [K. Lange (Auth.), Prof. Dr.-ing. Kurt Lange (e(BookZZ.org)

    5

    THE

    SIMOP-PARTICIPANTS

    (Numbers

    in

    the figure correspond

    to the names

    in

    the l ist of

    part icipants)

  • 5/20/2018 [K. Lange (Auth.), Prof. Dr.-ing. Kurt Lange (e(BookZZ.org)

    6

    - 7 -

    LIST OF PARTICIPANTS

    (Names

    of the authors

    who

    presented

    the

    papers are underlined)

    1. Altan, T.,

    Dr.

    2. Argyris, J.H., em.Prof .Dr.Dr.h.c.mult.

    3. Braun-Angott, P., Dr.-lng.

    4. Dannenmann, E., Dipl.-lng.

    5.

    Doege,

    E.,

    Prof. Dr.-lng.

    6. Dohmann, F., Prof. Dr.-lng.

    7. Doltsinis, J.St., Dr.-lng.

    S. Du, G.,

    SSe.

    (Eng.)

    9.

    Dung,

    N.L., Dr.-lng.

    Battelle

    Columbus Laboratories

    Engineering

    and

    Manufact. Techn.

    Department

    505 King Avenue

    Columbus, Ohio 43201

    /

    USA

    lnstitut

    f. Computer-Anwendungen

    Universitat Stuttgart

    Pfaffenwaldring

    27

    7000 Stuttgart 80

    Betriebsforschungsinstitut

    des VDEh

    Sohnstr.

    65

    4000

    DUsseldorf

    lnstitut

    fUr Umformtechnik

    Universitat Stuttgart

    Holzgartenstr. 17

    7000 Stuttgart 1

    lnstitut

    fUr

    Umformtechnik

    und

    Umformmaschinen

    (lfUM)

    Universitat Hannover

    Welfengarten lA

    3000

    Hannover

    1

    Univ.-Gesamthochschule-Paderborn

    Fachbereich 10 -Maschinentechnik

    l

    Umformende Fertigungsverfahren

    Pohlweg

    47-49, Postfach 1621

    4790

    Paderborn

    Institut fUr

    Computer-Anwendungen

    Universitat

    Stuttgart

    Pfaffenwaldring 27

    7000

    Stuttgart SO

    Shanghai Tiao Tang University

    Shanghai /

    PR

    China

    Presently at:

    lnstitut

    fUr Umformteehnik

    Universitat Stuttgart

    Holzgartenstr. 17

    7000

    Stuttgart 1

    Arbeitsbereich Meeresteehnik

    - Strukturmeehanik -

    Teehn.Univ. Hamburg-Harburg

    EiBendorfer Str. 38, Postfaeh 901403

    2100

    Hamburg

    90

  • 5/20/2018 [K. Lange (Auth.), Prof. Dr.-ing. Kurt Lange (e(BookZZ.org)

    7

    - 8 -

    10.EL-Magd,

    E., Prof. Dr.-Ing.

    11.Forschner, A., Dr.

    12. Fugger, B.,

    Dr.

    - Ing.

    13.Gerhardt, J. , Dipl.-Ing.

    14.Grieger, I . , Dr.-Ing.

    15. Hansen, R., Dipl.-Ing.

    16. Hart 1ey, P., Dr.

    17. Herrmann, M., Dipl.-Ing.

    18. Hirt, G., Dipl.-Ing.

    19.Hopf,

    S., Dipl.-Ing.

    20.Horlacher, U., Dipl.-Ing.

    Lehrgebiet

    fUr

    Werkstoffkunde

    RWTH

    Aachen

    Augustinerbach 4

    5100 Aachen

    Stiftung

    Volkswagenwerk

    Postfach

    81

    05 09

    3000

    Hannover

    81

    Daimler-Benz

    AG

    Werk Sindelfingen, Abt. WZE

    Postfach

    226

    7032

    Sindelfingen

    Institut fUr Umformtechnik

    Universitat

    Stuttgart

    Holzgartenstr.

    17

    7000

    Stuttgart 1

    Institut f. Statik und Dynamik

    (ISD)

    Universitat Stuttgart

    Pfaffenwaldring 27

    7000

    Stuttgart 80

    AUDI AG, PKP

    Postfach 220

    8070

    Ingolstadt

    Dept. of Mechanical Engineering

    The

    University of

    Birmingham

    South West Campus, P.O. Box 363

    Birmingham B15

    2TT

    /

    GREAT BRITAIN

    Institut

    fUr

    Umformtechnik

    Universitat Stuttgart

    Holzgartenstr.

    17

    7000 Stuttgart 1

    Institut f. Bildsame

    Formgebung

    RWTH Aachen

    Intzestr. 10

    5100

    Aachen

    Daimler-Benz AG

    Werk Sindelfingen,CAD/CAM-Entwicklung

    Postfach

    226

    7032

    Sindelfingen

    Institut fUr

    Umformtechnik

    Universitat Stuttgart

    Holzgartenstr.

    17

    7000

    Stuttgart

    1

  • 5/20/2018 [K. Lange (Auth.), Prof. Dr.-ing. Kurt Lange (e(BookZZ.org)

    8/

    - 9 -

    21.Jucker,

    J. , Dr.-lng.

    22.Jung, G.,

    Dipl.-lng.

    23.Kanetake, N., Dr.

    24.Keck, P. (Student)

    25.Konig, W.,

    Dipl.-lng.

    26.Lange, K., Prof.

    Dr.-lng.

    27.L ipowsky, H.-J., Dipl.-lng.

    28.Luginsland, J.,

    Dipl.-lng.

    29.Mahrenholtz, 0.,

    Prof.Dr.-Ing.

    30.Mareczek, G., Dr.-lng.

    31.Marten, J.,

    Dipl.-lng.

    Daimler-Benz

    AG

    Werk

    Sindelfingen

    Postfach 226

    7032

    Sindelfingen

    Daimler-Benz AG

    Abt. Verfahrensentwicklung

    Mercedesstr.

    136

    7000 Stgt.

    60 - UntertUrkheim

    Nagoya University

    Nagoya / JAPAN

    Presently at:

    lnstitut

    fUr Umformtechnik

    Universitat

    Stuttgart

    Holzgartenstr.

    17

    7000

    Stuttgart 1

    Universitat

    Stuttgart

    Lehrstuhl f. Fertigungstechnologie

    Friedrich-Alexander-Universitat

    Erlangen-NUrnberg

    Egerlandstr. 11, Postfach

    3429

    8520 Erlangen

    lnstitut

    fUr Umformtechnik

    Universitat

    Stuttgart

    Holzgartenstr. 17

    7000

    Stuttgart

    1

    AUDl AG, EGA

    Postfach 220

    8070

    lngolstadt

    lnstitut fUr Computer-Anwendungen

    Universitat

    Stuttgart

    Pfaffenwaldring

    27

    7000

    Stuttgart

    80

    Arbeitsbereich Meerestechnik

    - Strukturmechanik -

    TU Hamburg-Harburg

    EiBendorfer Str. 38, Postfach 901403

    2100

    Hamburg

    gO

    lnstitut fUr Umformtechnik

    und

    Umformverfahren

    (lfUM)

    Universitat

    Hannover

    Welfengarten lA

    3000 Hannover

    1

    Institut fUr Mechanik

    Universitat

    Hannover

    Appe

    1

    str.

    11

    3000

    Hannover

    1

  • 5/20/2018 [K. Lange (Auth.), Prof. Dr.-ing. Kurt Lange (e(BookZZ.org)

    9/

    32.Mattiasson, K.,

    Dr.

    33.Matzenmiller, A., MSc.(Eng.)

    34 .Mayer, P., Di

    P

    1. -

    I

    ng

    .

    35.Meier, M.,

    Dipl.-lng.

    36.Dberlander, Th., Dipl.-lng.

    37 .Dnate, E., Prof.

    Dr.

    38.Pillinger,

    I . ,

    Dr.

    39.pohlandt, K., Dr.-lng.

    habil.

    40.Ramm, E., Prof. Dr.-Ing.

    41

    . Ro 11, K.,

    Dr.

    - Ing.

    42.Rowe,

    G.W.,

    Prof.

    Dr.

    - 10 -

    Dept. of

    Structural Mechanics

    Chalmers University of Technology

    Sven

    Hultins Gata 8

    S-41296 Goteborg / SCHWEDEN

    Institut fUr Baustatik

    Universitat Stuttgart

    Pfaffenwaldring 7

    7000 Stuttgart

    80

    Inst.f.Kernenergetik u.Energiesysteme

    Universitat Stuttgart

    Pfaffenwaldring 31

    7000

    Stuttgart 80

    lnstitut fUr Umformtechnik

    ETH

    ZUrich

    Sonneggstr. 3

    CH-8092

    ZUrich

    / SCHWEIZ

    lnstitut

    fUr

    Umformtechnik

    Universitat

    Stuttgart

    Holzgartenstr. 17

    7000

    Stuttgart 1

    Escola Tecnica Superior D'enginyers

    de Camins,

    Canals

    I

    Ports

    Universitat Politecnica De Barcelona

    Jordi Girona Salgado,

    31

    Barcelona - 34 / SPANlEN

    Dept. of Mechanical Engineering

    The

    University of

    Birmingham

    South West Campus, P.O. Box 363

    Birmingham B15 2TT / GREAT BRITAIN

    Institut

    fUr Umformtechnik

    Universitat Stuttgart

    Holzgartenstr. 17

    7000 Stuttgart 1

    Institut

    fUr Baustatik

    Universitat

    Stuttgart

    Pfaffenwaldring 7

    7000 Stuttgart 80

    Control Data GmbH.

    Marienstr. 11-13

    7000

    Stuttgart

    1

    Dept. of Mechanical Engineering

    The University of Birmingham

    South

    West

    Campus

    P.O. Box 363

    Birmingham

    B15

    2TT / GREAT BRITAIN

  • 5/20/2018 [K. Lange (Auth.), Prof. Dr.-ing. Kurt Lange (e(BookZZ.org)

    1

    - 1 1 -

    43.Sailer, C.,

    Dipl.-Ing.

    44.Schoch, F.-W., Dr.-Ing.

    45.Schweizerhof, K., Dr.-Ing.

    46.Stalmann, A.P., Dr.-Ing.

    47.Steck, E., Prof. Dr.-Ing.

    48.Sturgess, C.E.N., Dr.

    49.Tang, S.C.,

    Dr.

    50.Tekkaya, A.E., MSc. (Eng.)

    51.Traudt, Dr.-Ing.

    52.Vu, T.C.,

    Dipl.-Ing.

    Lehrstuhl A fUr Mechanik

    TU

    MUnchen

    Arcisstr. 21, Postfach

    202420

    8000 MUnchen 2

    Staatliche

    MaterialprUfungsanstalt

    Universitat

    Stuttgart

    Pfaffenwaldring

    32

    7000 Stuttgart 80

    Institut fUr Baustatik

    Universitat

    Stuttgart

    Pfaffenwaldring 7

    7000

    Stuttgart

    80

    Institut

    fUr

    Umformtechnik und

    Umformmaschinen

    (IfUM)

    Universitat Hannover

    We lfengarten 1A

    3000 Hannover 1

    Institut f. Allgemeine Mechanik

    und

    Festigkeitslehre

    (Mechanik B)

    TU Braunschweig

    GauBstr.

    14

    3300 Braunschweig

    Dept. of Mechanical Engineering

    The

    University of Birmingham

    South

    West

    Campus

    P.O. Box 363

    Birmingham B15 2TT / GREAT BRITAIN

    Ford Motor Company

    Metallurgy Dept., S-2065

    Scientific Research Labs.

    2000 Rotunda

    Drive

    Dearborn,

    Mich. 48121-2053/USA

    Institut fUr Umformtechnik

    Universitat Stuttgart

    Holzgartenstr.

    17

    7000 Stuttgart 1

    Univ.-Gesamthochschule-Paderborn

    Fachbereich

    10

    -Maschinentechnik

    I

    Umformende

    Fertigungsverfahren

    Pohlweg

    47-49, Postfach

    1621

    4790 Paderborn

    Institut fUr Umformtechnik

    Universitat

    Stuttgart

    Holzgartenstr. 17

    7000 Stuttgart

    1

  • 5/20/2018 [K. Lange (Auth.), Prof. Dr.-ing. Kurt Lange (e(BookZZ.org)

    1

    - l2 -

    53.Wang,

    N.-M.,

    Dr.

    54.Weimar, K.,

    Dipl.-Ing.

    55.Wilhelm,

    M.

    (Student)

    56.WUstenberg, H., Dipl.-Ing.

    Ford

    Motor

    Company

    Metallurgy Dept., S-2047

    Scientific

    Research Labs.

    2000

    Rotunda

    Drive

    Dearborn,

    Mich.

    48121-2053

    I

    USA

    Institut fUr

    Baustatik

    Universitat Stuttgart

    Pfaffenwaldring 7

    7000 Stuttgart 80

    Universitat Stuttgart

    Institut fUr Computer-Anwendungen

    Universitat

    Stuttgart

    Pfaffenwaldring

    27

    7000

    Stuttgart

    80

  • 5/20/2018 [K. Lange (Auth.), Prof. Dr.-ing. Kurt Lange (e(BookZZ.org)

    1

    CON

    TEN T S

    Opening

    Address

    K.

    Lange

    SESSION 1:

    BULK METAL FORMING

    Session lao Chairman:

    E.

    Steck

    Thermomechanical Analysis of

    Metal Forming

    Processes

    Through the

    Combined Approach

    FEM/FDM

    O.

    Mahrenholtz,

    C.

    Westerling, N.L.

    Dung

    Finite-Element-Simulation of

    Metal Forming

    Processes

    Using Two

    Different Material-Laws

    A.E.

    Tekkaya,

    K.

    Roll, J. Gerhardt,

    M. Herrmann,

    G. Du

    Discussions (Session

    la)

    Session

    lb.

    Chairman: O. Mahrenholtz

    Elastic-Plastic Three-Dimensional Finite-Element

    Analysis of Bulk

    Metal Forming

    Processes

    I. Pillinger,

    P.

    Hartley, C.E.N. Sturgess, G.W. Rowe

    Three-Dimensional Thermomechanical Analysis

    of

    Metal Forming

    Processes

    J.H. Argyris,

    J.St.

    Doltsinis,

    J.

    Luginsland

    Discussions (Session lb)

    SESSION 2:

    SHEET METAL FORMING

    Session 2a. Chairman:

    E. Ramm

    Numerical Simulation of Stretch Forming Processes

    K. Mattiasson, A. Melander

    Page

    15

    19

    50

    86

    91

    125

    161

    170

  • 5/20/2018 [K. Lange (Auth.), Prof. Dr.-ing. Kurt Lange (e(BookZZ.org)

    1

    - 14 -

    Possibilities of the

    Finite

    Element Viscous Shell

    Approach

    for

    Analysis of Thin Sheet

    Metal Forming

    Problems

    E. Onate, R. Perez

    Lama

    Discussions (Session 2a)

    Session 2b. Chairman: J.H. Argyris

    Numerical Simulation of

    the

    Axisymmetric

    Deep-Drawing Process

    by

    the

    FEM

    A.P. Stalmann

    Applications of

    the

    Finite-Element-Method to

    Sheet Metal Flanging Operations

    N.-M. Wang,

    S.C.

    Tang

    Discussions (Session 2b)

    FOR U M

    Page

    214

    254

    261

    279

    307

    309

  • 5/20/2018 [K. Lange (Auth.), Prof. Dr.-ing. Kurt Lange (e(BookZZ.org)

    1

    -

    15

    -

    OPENING

    ADDRESS

    K. Lange

    It

    is

    my

    very pleasure to welcome you in Stuttgart

    and

    to open this

    workshop

    on

    "Simulation of

    Metal

    Forming

    Processes

    by the

    Finite-E1ement-Method", or

    briefly,

    "SIMOP" - SIMOP-I, hoping that others may follow.

    Let me

    at first try

    to explain the basic motivation

    for

    this workshop:

    When I started to deal with meta1forming - this was about 35 years ago - my

    colleagues

    and

    I were

    really

    proud

    to predict

    the forming load for a simple

    axi symmetri c extrusion process withi n 20% 10% accuracy just in order

    to

    select the correct press. Although the fundamentals of the theory of

    plasticity

    were

    given through in the

    meantime

    well-known -

    at

    that time

    newly

    pub 1 shed - book by Rodney

    Hi

    11, the uti 1 zati on of thi s theory was

    diminishing1y small, because

    by

    applying

    this

    theory,

    we ended up

    with

    impressive hyperbolic differential equations

    which we

    could not solve,

    however, except for very crude assumptions. Therefore, the

    theoretical

    analysis of metal forming -

    even

    in the simplified version - was a job

    for

    highly skilled bright mathematicians but not for the engineer in any

    production division of the industry, or even of a university. Hence, during

    these years

    nobody

    could imagine that i t could be possible to

    compute

    strains and stresses, or

    even

    flow patterns in a workpiece during the course

    of deformat ion, although

    e1

    ementary theori es such as the slab method had

    already

    lifted

    metal forming technology

    from

    the blacksmith shop to the

    drawing office level

    and

    hence contributed remarkably to

    its

    development.

    Yet, this situation started to change in the mid-1960's with the

    industrial

    ut il

    zati on

    of e 1

    ectri

    ca 1

    comput

    i

    n9 machi

    nes, the soca 11 ed computers. Now,

    the equi pment was

    gi

    ven to solve the di fferenti a1 equati ons without bei ng

    necessarily

    mathematically

    skilled

    or

    bright. The keyword was

    "numerical

    methods". With these numerical methods,

    which

    could be

    easily

    handled by the

    computer,

    any differential

    equation could be solved regardless of its

    toughness.

    From

    this moment

    on

    the developments became drastic, in fact, I

    would like to call

    i t a revolution. This revolution

    started

    with the

    first

    attempts to computerize the

    slip-line-field

    solutions, went over to the

  • 5/20/2018 [K. Lange (Auth.), Prof. Dr.-ing. Kurt Lange (e(BookZZ.org)

    1

    - 16 -

    finite

    difference

    solutions and the weighted residual methods, and continued

    with

    the fi

    ni

    te

    element methods. Pushed forward

    by

    a

    non-stoppi ng

    des

    ire,

    many

    successfull

    fi

    nite-e1 ement-codes have been developed

    in

    the past

    15

    years

    at universities and research

    centers

    which could serve as an

    analysis

    tool for metal forming processes.

    Now,

    i t is not exceptional anymore that

    people using these

    codes speak of Almansi or Green-Lagrange

    strains,

    of

    different sorts of

    Piola-Kirchhoff-stresses,

    of Jaumann rates etc. Even our

    faithful true

    stress changed

    i ts name

    and

    became the

    "Cauchy"

    stress.

    The euphoria slowed down, however. There are

    three

    reasons

    for

    this:

    Fi rs t 1

    y, the basi

    c

    theory

    of p1ast city of

    the

    1950' s remai ned

    the

    same

    although many

    numerical procedures were

    developed.

    Being able

    to

    implement

    all

    details of

    this theory, people started to see the limitations and

    shortcomi ngs of

    thi

    s

    theory.

    Besi des,

    the

    uncertai

    nti

    es in

    the

    boundary

    conditions

    started

    to

    become

    the

    more delicate weakpoint of

    the analysis.

    Secondly,

    there was no

    diffi cul

    ty to

    grasp that

    nature

    has so

    many

    degrees

    of freedom, in

    fact

    too

    many

    for a

    conventional

    computer

    to

    handle

    economically.

    Thirdly,

    to

    use a

    ready-finite-element

    code

    in industry, specially trained

    engineers were

    s t i l l required.

    Hence,

    the application

    of

    finite-element-simulation

    in metalforming

    just

    remained an academic exercise, and industrial engineers -

    sti l l

    utilizing

    empirical heuristic

    design procedures

    - were happy

    to know that there exist

    some

    guys

    at the

    universities who can predict a priori stresses,

    strains

    and

    flow

    patterns

    in forming

    processes.

    In

    the

    past couple of

    years

    trends and

    feeling

    changed

    again,

    this time

    stimulated through

    the introduction

    of the

    new

    computer

    generation.

    Having a

    new archi tecture, such as

    for the

    array process i ng, and showi ng computa

    tional

    speeds around one giga-flops

    (instead

    of 10 to 100 mega-flops

    for the

    conventi

    ona 1 computers), the handi cap of not bei ng economi c seems starting

    to disappear.

    The

    speculations

    about

    intelligent

    computers which

    are

    claimed

    to

    be in development

    in

    Japan and

    the

    States with 10 giga-flops or even

    more, as well as the attempts to develop hardware ori ented numeri

    cal

  • 5/20/2018 [K. Lange (Auth.), Prof. Dr.-ing. Kurt Lange (e(BookZZ.org)

    1

    - 17 -

    procedures - as for

    instance,

    the element by element procedures - are just

    strengthening these

    beliefs to be

    at

    the

    end

    economic.

    However, there

    will

    be

    another aspect

    coming

    up, once the accuracy of computing

    strains,

    stresses, forces will

    be

    improved

    to errors

    of

    5%

    or

    even less:

    the lack of

    reliable,

    broadscale material

    data.

    As long as

    we

    will not

    know

    flow stress

    as

    prec i se

    as we can

    compute, our results

    wi 11 mai

    ntai n a 1arger

    scatter.

    What we need

    in my

    opi ni

    on

    is

    another round of determi nati on of p1

    ast

    i c

    properties

    of

    materials

    - metals - taking into account influences of

    microstructure

    and

    microstructural phase transformations as well as of

    process parameters such

    as strai

    ns,

    strai

    n

    rates,

    time, temperature.

    The

    goal

    wi

    11

    be

    materi al data banks

    wi

    th

    comprehensi

    ve

    "constituti

    ve

    equations"

    for

    a large

    variety

    of metals. This

    will,

    however, become a time

    and

    money

    consuming business but

    i t must be

    done.

    Finally, this new situation has been

    the basic motivation

    for us to

    organize

    thi

    s workshop. The

    aims

    herefore are

    to di

    scuss,

    to

    determi

    ne

    and,

    even

    maybe,

    to

    evaluate the present level and the trends of finite-element-simu

    lations

    of metal forming processes with a special emphasis onto the

    technological

    utilization.

    This emphasis onto the technology

    is

    also the

    reason

    for

    holding this meeting in a technological oriented research center

    for

    metal forming as this

    is

    the case

    for

    our institute.

    Now,

    for

    thi s purpose,

    we

    wi 11

    have

    ei ght presentat ions today whi ch wi 11

    focus the discussions onto the relevant aspects of the matter. I'm

    especially

    very glad that

    all

    of the

    scientists we invited

    as chairmen and

    presenters have accepted our request - although some of them are under heavy

    time pressure - so that I want to thank them here again very deeply. Also, I

    want

    to

    thank

    all

    the participants,

    from

    whom I expect

    that

    they will give

    valuable contributions through the discussions.

    In

    this context I

    want to

    inform you that

    we

    will record

    all

    the discussions

    in order to pub 1

    sh

    them together with the written manuscri pts of the

    presentations.

    The

    proceedings will be

    available

    within 3

    to

    4 months and

    every

    participant

    will receive a copy. I hope that recording the questions

    and

    answers

    wi 11

    not prevent

    you

    or damp your enthusi

    asm to participate

    in

    the discussions. I believe that the discussions -

    especially

    for our

    workshop

    today are at 1

    east as

    important

    and

    presentations

    which have to

    serve in

    fact

    - as

    interesting

    as the

    said before -

    for

    stimulating the

    discussions.

    Furthermore, i t is one of our goals to bring

    the contents of the discussions to those who are not oresent here.

  • 5/20/2018 [K. Lange (Auth.), Prof. Dr.-ing. Kurt Lange (e(BookZZ.org)

    1

    -

    18

    -

    The

    multidisciplinar character

    of the simulation of metal forming processes

    is

    also exhibited in the fields of interest of the

    participants.

    For

    examp1e, there are bes ides academi c and i ndustri a 1 metal formi ng techno 10-

    gists, representatives of computer-manufacturers, of pure and applied

    mechanics, of material science and of

    civil

    engineering present. I expect

    that this heterogeneous group will be able to discuss the rather complex

    matter in nearly every aspect. Futhermore, I

    hope that

    the metal formi

    ng

    practicers

    will give the pure

    theoreticians some inspirations

    but also

    that

    the

    theoreti

    ci

    ans and

    the

    academi

    c staff

    can

    show the practi cers the merits

    of the numerical

    analysis.

    also

    want to

    express

    my

    special

    gratitude to Frau Dr.

    Forschner

    representing the

    Stiftung

    Volkswagenwerk, Hannover,

    who,

    with their generous

    financial support made this workshop possible.

    That

    is all that

    I

    have to

    say. I

    wish for all

    of us a successful meeting.

    Thank you

    very

    much.

  • 5/20/2018 [K. Lange (Auth.), Prof. Dr.-ing. Kurt Lange (e(BookZZ.org)

    1

    -

    19

    -

    Thermomechanical

    Analysis

    of Metal Forming Processes Through

    t he Combined

    Approach FEM/FDM

    Oskar

    Mahrenhol tz*, Claus

    Wester l ing+ and Nguyen

    L.

    Dung*

    *

    s t ru c tu r a l Mechanics Divis ion ,

    Technical Univers i ty of Hamburg

    Harburg, Hamburg-Harburg, FR

    Germany

    + I n s t i t u t e of

    Mechanics, Univers i ty

    of Hanover,

    Hanover,

    FR

    Germany

    Summary

    During a

    forming

    process , the

    temperature

    of

    t he formed pa r t

    increases due to

    t he

    conversion of the

    forming energy

    and

    t he

    f r i c t i o n l osses

    i n to

    heat .

    This

    causes

    the

    thermomechanical

    behaviour

    of

    the

    mater ia l , i f

    t he ma te r i a l

    i s

    tempera ture

    sens i t ive .

    The p l a s t i c deformation and the t empera ture

    change

    are coupled with

    each

    other ,

    hence

    it

    i s

    necessary to

    develop

    an ef fec t ive and economic method to

    achieve

    the

    coupled

    ana lys i s .

    In

    t h i s

    paper ,

    the

    method,

    based

    on

    the

    f i n i t e

    element

    method

    (FEM) for t he

    p las t i c deformation and

    t he

    f i n i t e di f fe rence

    method (FDM) for the hea t

    t r a n s f e r ,

    i s found to be sa t i s fac to ry

    for the coupled ana ly s i s . This method

    inc ludes

    many s impl i f i ed

    numerical procedures of

    the FEM and the

    FDM to

    save computa

    t i ona l

    t ime.

    Both

    cold and

    hot

    forming processes

    could be

    c a l

    cu la ted s t ep

    by

    s tep in

    t h i s

    way to

    obta in the

    r e levan t

    data

    for the des ign of

    dies and

    manufactur ing t echniques .

    I

    In t roduc t ion

    Most

    of the

    forming

    process so lu t ions a re

    developed, for numeri

    ca l

    s impl ic i ty , with

    an assumption

    of

    q u a s i - s t a t i c

    and

    i s o

    thermal condi t ions . Such a method

    i s

    genera l ly sa t i s fac to ry

    for the

    ana lys i s of

    s i t u a t i o n s in

    which

    t he ma te r i a l

    i s not

    t empera ture - sens i t ive

    and

    the cold forming processes are per

    formed

    slowly.

    But , in many cases , the convers ion

    of

    forming

    energy

    i n to

    heat

    causes

    a

    high

    t empera ture

    grad ien t

    dur ing

    t he

    process .

    Then,

    t he t empera ture

    balancing in

    t he workpiece and

    t he

    hea t

    t r a n s f e r

    to

    t he

    surrounding, due to

    t he

    t empera ture

  • 5/20/2018 [K. Lange (Auth.), Prof. Dr.-ing. Kurt Lange (e(BookZZ.org)

    1

    - 20 -

    grad ien t between

    the

    workpiece and t he surrounding , occur un

    avoidably .

    The

    t emperature change i n f luences

    the p l a s t i c

    flow

    of the mate r i a l . The

    t emperature

    e f f e c t s

    must be

    taken i n to

    account

    in

    form

    of

    the

    thermomechanical

    behaviour of

    the

    mate

    r i a l .

    The

    approach to

    l a rge p l a s t i c deformat ion a t e leva ted tempera

    t u r e cons i s t s

    ge ne ra l l y of

    so lu t ions for

    p l a s t i c

    deformat ion

    and

    for

    heat t r a n s f e r in t he coupled

    manner.

    There have

    been

    many f i n i t e

    element

    methods

    which

    were employed for ca lcu la t ion

    of

    the

    forming processes

    under

    cons ide ra t ion of t he temperature

    i n f luence .

    Zienkiewicz

    e t

    a l

    / 1 / have

    developed

    a

    coupled

    ana lys i s of

    thermomechanical problems

    in ext rus ion . Rebelo and

    Kobayashi

    / 4 / inco rpora ted

    t emperature and

    s t r a i n - r a t e

    e f f ec t s

    in to

    a

    v i scop la s t i c

    t r ea tmen t of

    an

    axisymmetr ic problem,

    while

    P i l l i n g e r e t a l / 2 / made the f i r s t

    s tage

    in

    the

    development of

    a thermomechanical f i n i t e element

    ana lys i s for th ree-d imens ional

    forming

    proces ses .

    The

    previous

    works

    t r e a t e d

    the

    l a rge

    p l a s t i c

    deformat ion

    a t

    e leva ted t emperature

    using

    the f i n i t e

    element

    t echnique ex

    c lus ive ly .

    But , if

    t he p l a s t i c deformat ion

    and

    t he

    heat t r an s fe r

    are ca lcu la ted separa te ly

    using

    t he f i n i t e di f fe rence

    method

    for

    the hea t t r a n s f e r i ns t ead of FEM, the

    computat ional

    e f fo r t s

    a re l e s s . Also,

    l e s s computer core s torage i s necessary . Altan

    and Kobayashi / 3 / have

    model led

    t he heat t r a n s f e r problem

    with

    cen t r a l d i f f e r ence method t o p red ic t

    the

    t emperature

    d i s t r i

    but ion

    in

    ext rus ion .

    A

    combined

    approach

    FEM +

    FDM

    has been

    developed

    by

    the presen t authors / 7 , 8 / to

    study

    t empera tu re

    e f f e c t s in wire drawing and r i ng compression. In

    t he presen t work, t h i s combined approach i s

    ex tended

    to

    the

    thermomechanical

    ana lys i s of hot forming processes with heated

    dies .

    Such

    a metal forming

    t echnique

    al lows a lower ing of the

    product ion

    cos t s .

    Thus,

    the workpiece i s

    not

    cooled during the

    process , the flow

    behaviour

    of mate r i a l and

    t he compl icated

    gap

    f i l l i n g

    a re promoted. A pre l imina ry comparison

    between

    the

    coupled ana lys i s only wi th

    the FEM

    and

    the coupled

    ana lys i s

    with

    the

    FEM

    +

    FDM i s a l so at tempted .

  • 5/20/2018 [K. Lange (Auth.), Prof. Dr.-ing. Kurt Lange (e(BookZZ.org)

    2

    - 21 -

    2 F in i t e Element Method

    for

    P l a s t i c Deformation

    The

    unsteady forming

    processes

    a r e ca l cu l a t ed by

    means

    of

    t he

    f i n i t e

    element

    method

    us ing t he

    r i g id -p l a s t i c

    technique . The

    FEM

    i s

    based

    on

    t he

    modif ied

    var ia t iona l pr inc ip le

    1T =

    D

    J

    y dV + J m ~ . . dv+ J ' [ Ivtl

    dS

    -

    V V II SA

    F

    ( 1 )

    The i ncompr es s ib i l i t y

    condi t ion

    ( ~ . . 0)

    i s

    mainta ined by

    II

    means

    of

    t he Lagrangian mu l t i p l i e r

    am

    which i d e n t i f i e s t he

    mean s t r e s s .

    The

    f r i c t i on s t r e s s ' [ ac t s a n t i p a r a l l e l to

    t he

    t angen t ia l

    ve loc i ty v

    t

    on t he i n t e r f a c i a l area S ~ between the

    die

    and

    the

    workpiece,

    whi le

    t he sur face

    t r a c t i o n

    po

    ac t s

    on

    S ~

    with ve loc i ty v

    k

    . The

    f r i c t i o n l osses

    are

    L = j

    T l v t l d S

    Sa

    F

    (2 )

    The so lu t ions

    of

    t he var ia t iona l problem (1) are the admiss ib le

    ve loc i ty

    f i e ld and t he f i e l d

    of mean

    s t r e s s . The

    va r i a t iona l

    problem i s then t ransformed

    in to

    t he f i n i t e element equat ions :

    (3 )

    o

    where R

    i s

    the vec tor of the nodal

    f r i c t i on

    forces ; po the

    vec tor of

    the nodal forces . The

    vec tor

    ~ I

    and

    Qm

    inc lude

    the

    nodal

    v e lo c i t i e s

    and mean s t r e s ses .

    The matr ix

    0 has only zero

    e lements .

    The FEM

    has

    two

    types

    of l i n e a r e lements : t r i angu la r and quadr i

    l a t e r a l . In t he t r i a n g u la r e lement , l i n e a r

    func t ion

    for ve lo

    c i t i e s i s used;

    t he

    mean s t r e s s , yie ld

    s t r e s s

    Y and s t r a i n

    r a t e s

    E are cons tan t . The quadr i l a te ra l element

    i s

    a combination of

    two

    t r i a n g u la r

    elements , where

    t he

    mean

    s t r e s s

    and

    s t r a i n

    ra tes

    are a l so assumed to have

    t he

    same

    value

    in

    each

    pa i r

    of

    t r iangu

    l a r

    e lements .

    The

    hypermatr ices

    ~ o

    and fa

    are obta ined from t he

    compat ib i l i ty

    and incompress ib i l i ty

    condi t ions .

    Because

    t he matr ix K

    O

    i s

    a

  • 5/20/2018 [K. Lange (Auth.), Prof. Dr.-ing. Kurt Lange (e(BookZZ.org)

    2

    - 22 -

    func t ion

    of the

    ve loc i ty

    f i e l d , t he nonl inea r se t of

    equations

    (3) should be computed

    in

    an i t e r a t i v e way.

    The

    unsteady

    forming

    processes

    a r e

    s imula ted

    by

    means

    of

    an

    inc rementa l so lu t ion . The method

    analyses t he

    l a rge p las t i c

    deformat ion by div id ing

    it in to

    many

    quas i - s t a t iona ry small

    deformat ion

    s teps .

    Therefore , the

    ve loc i ty and

    s t r e s s f i e ld

    could be determined s tep by s tep . The mate r i a l flow i s displayed

    by

    the ve loc i ty

    f i e l d

    and

    t he

    displacement of

    t he FE mesh

    which

    i s

    updated

    a f t e r each deformation

    s tep .

    The

    t echn ica l

    d e t a i l s

    of

    the

    FEM

    are

    publ ished

    in the

    previous

    works / 6 , 8 / and documented

    in

    t he u s e r ' s manual

    of

    the

    programme

    FARM / 5 / .

    3 Fin i te Difference Method for Heat

    Transfer

    3.1 Coupled Analys i s

    In

    addi t i on

    to the ca lcu la t ion

    of t he

    p l a s t i c deformation,

    t he

    heat genera t ion and heat t r a n s f e r a r e ana lysed

    in

    each t ime

    increment

    to

    obta in the

    temperature

    d i s t r ibu t ion .

    During

    the

    forming processes , the

    tempera ture increases

    within the

    work

    piece due to the hea t genera t ion from t he

    forming energy

    E

    = Iv

    Y

    ~ dV

    ( 4 )

    In

    the inhomogeneous cases , the f r i c t i o n

    losses

    (2) cause a

    t empera ture grad ien t

    on t he i n t e r f a c i a l area

    add i t iona l ly .

    The

    heat genera t ion

    in

    the workpiece

    and

    the hea t t r a n s f e r in

    work

    piece

    and

    between

    the

    workpiece

    and surrounding

    occur

    simul

    t aneously .

    The t empera ture changes

    in

    each deformation s tep of the

    inc re

    mental so lu t ion

    i n f luence the mechanical behaviour

    of the

    mate r i a l . Then, t he

    mater ia l behaviour

    i s updated due

    to

    the

    j u s t

    pred ic t ed f i e l d of tempera ture . The

    heat

    ca l cu l a t i on

    method i s based on

    t he

    FDM which i s modif ied

    so

    t h a t

    it

    i s

    able to run compara t ive ly in the

    programme FARM.

  • 5/20/2018 [K. Lange (Auth.), Prof. Dr.-ing. Kurt Lange (e(BookZZ.org)

    2

    I

    n

    -

    G

    om

    e

    r

    c

    d

    a

    -

    B

    y

    c

    o

    o

    -

    P

    c

    c

    o

    a

    n

    s

    -

    F

    a

    n

    F

    D

    m

    h

    Q

    u

    -

    s

    a

    o

    y

    t

    r

    e

    m

    e

    n

    o

    p

    o

    (

    F

    E

    M

    )

    r

    i

    -

    F

    m

    s

    r

    u

    u

    a

    s

    f

    n

    m

    a

    r

    x

    J

    c

    -

    _

    r

    F

    m

    o

    d

    m

    a

    r

    x

    c

    o

    d

    n

    f

    c

    o

    I

    T

    .

    S

    v

    h

    s

    e

    o

    e

    q

    o

    .

    S

    u

    o

    V

    e

    o

    y

    a

    n

    m

    n

    s

    r

    e

    f

    e

    d

    j

    C

    c

    u

    a

    e

    s

    r

    e

    a

    n

    s

    r

    a

    n

    f

    e

    d

    o

    d

    C

    k

    b

    y

    c

    o

    o

    (

    c

    o

    a

    p

    o

    e

    m

    I

    n

    L

    S

    v

    a

    p

    o

    m

    a

    o

    I

    y

    ~

    1

    D

    -

    L

    o

    d

    o

    m

    a

    o

    s

    e

    p

    I

    E

    N

    r

    1 1

    I

    y

    C

    c

    u

    a

    o

    o

    e

    m

    p

    a

    u

    e

    I

    f

    e

    d

    n

    w

    o

    k

    e

    o

    w

    i

    h

    F

    D

    M

    .

    F

    m

    n

    e

    n

    g

    F

    c

    o

    o

    e

    H

    g

    n

    a

    o

    hT

    =

    h

    T

    +

    h

    T

    =

    T

    Y

    l

    ,

    )

    I

    _

    H

    r

    a

    n

    e

    T

    =

    F

    o

    o

    T

    z

    o

    g

    o

    m

    r

    y

    a

    h

    t

    T

    I

    T

    m

    n

    e

    m

    e

    n

    s

    L

    I

    n

    1

    I

    I I

    I

    I

    I I

    I

    I

    t

    -

    1

    _

    _

    _

    _

    _

    _

    _

    _

    _

    _

    _

    _

    _

    _

    _

    _

    _

    _

    -

    -

    I

    ~

    F

    g

    1

    F

    ow

    d

    a

    g

    a

    m

    o

    h

    m

    o

    m

    e

    h

    n

    c

    a

    n

    y

    s

    h

    o

    c

    om

    b

    n

    d

    a

    p

    o

    h

    F

    M

    /

    F

    D

    M

    '

    w

  • 5/20/2018 [K. Lange (Auth.), Prof. Dr.-ing. Kurt Lange (e(BookZZ.org)

    2

    - 24 -

    Fi r s t l y , a f t e r a t ime s tep ~ t

    t he mechanical

    quan t i t i e s l ike

    s t r e s ses ,

    forces , disp lacements , e tc . a re pred ic t ed on

    the

    f ixed

    poin t s (nodes , e lements) by t he FEM. Subsequent ly, the

    r e su l t ing heat genera t ion i s computed from the diss ipa t ive

    forming and f r i c t i o n a l force

    fo r the concerning

    t ime s tep . The

    r e su l t s

    of t h i s computat ion show

    an

    inhomogeneous

    temperature

    f i e ld with a t ime dependent t empera ture

    compensat ion.

    The tem

    pera ture compensation i s ana lysed for

    the

    same t ime

    s t ep

    ~ t by

    t he

    FDM. With the

    help

    of

    t he

    y ie ld

    s t r e s s Y

    =

    Y

    (E,

    I , T), the

    coupl ing

    on

    the

    mechanical

    behaviour

    i s

    ensued.

    The

    procedures

    of

    the

    ca lcu la t ion of p las t i c deformation and

    heat t r ans fe r

    and

    t he

    coupled

    ana lys i s

    are

    shown

    in

    Fig .

    1.

    For the hea t c a l c u l a t i o n , i t i s necessary to ass ign the element

    t empera tures to d i sc r e t e re ference

    poin ts .

    These re ference

    poin t s are the

    middle

    poin t s of t he f i n i t e e lements . To ca lcu

    l a t e t he

    temperature a t the

    boundary

    of

    t he

    workpiece,

    more

    addi t iona l t empera ture po in t s are needed a t the bound-

    ary: All

    boundary elements

    have two and

    t he

    corner

    elements

    have

    th ree

    re fe rence

    poin t s .

    The boundary re fe rence

    poin t s a re

    placed on the center

    of the boundary s ides of t he f i n i t e e lements . For ca l cu l a t i on

    of

    heat genera t ion and hea t t r a n s f e r , imaginary volumes

    are

    ass igned

    to the

    temperature poin t s a t

    the boundary. All othe r

    t empera ture poin t s ly ing

    in

    the cen te r

    of t he

    elements are

    a l l o t t e d to the rea l element

    volumes.

    Fig . 2 shows the meshes

    of

    FEM

    and

    FDM

    in

    case

    of

    cy l inder upse t t ing .

    3.2 The Basic Equat ions

    of the

    Heat Calcu la t ion

    The

    t o t a l t empera ture i nc rease ~ T o f each element or

    reference

    poin t

    i s

    obta ined from the heat

    balance:

    ~ Q

    -

    G

    ~ Q o

    ~ Q

    with

    ~ Q G

    ~

    +

    ~ Q u

    and

    6Q

    c ~

    6T

    (5 )

    ~ t

  • 5/20/2018 [K. Lange (Auth.), Prof. Dr.-ing. Kurt Lange (e(BookZZ.org)

    2

    z

    i

    L

    T i

    T

    r

    T

    - 25 -

    ~

    J}

    =

    I

    , ~ / ~

    Die

    t - - -Workpiece

    FE -

    mesh

    FO- mesh

    to

    calculate

    the

    temperatu re fiel

    r

    Fig. 2: FE

    mesh

    and

    mesh

    of

    t he

    FDM

    on workpiece

    and die

    llTu(81

    IH

    u

    (12)

    +ll TR(1

    +ll T

    R

    (

  • 5/20/2018 [K. Lange (Auth.), Prof. Dr.-ing. Kurt Lange (e(BookZZ.org)

    2

    - 26 -

    lIQ

    R

    and lIOu a r e hea t f lows due

    to

    the d i s s i p a t e d f r i c t i o n

    and

    forming energy ; lIOo t he hea t t r a n s f e r e d

    over

    the element ; c

    t he s p e c i f i c hea t capac i ty ; p t h e dens i ty and V t he volume of

    t he

    examined

    e lement .

    The s o l u t i on fo r

    h e a t conduct ion

    problems shown

    in

    t he l i t e r a

    t u r e

    i s ,

    in c o n t r a s t to the here r e p r e s e n t e d method, formulated

    fo r l o c a l l y f i xed

    f i n i t e

    d i f f e r e nc e

    mesh.

    The FD mesh

    o f

    t he

    developed

    method i s changed wi th

    the f i n i t e

    e lement

    mesh.

    3 .3 Calcu la t ion of Heat Gen era t i o n

    The f r i c t i o n

    lo s ses

    and

    the

    forming energy

    a r e

    t rans fo rmed

    i n t o

    h e a t .

    The

    tempera ture inc rease

    dur ing

    a t ime increment i s

    c a l

    cu la ted as fo l lowing :

    The t empe ra tu re

    i n c r e a s e

    llTR due

    to

    f r i c t i o n between workpiece

    and too l can be given

    wi th

    and

    T

    as

    FR lis = T llA ~ l i t

    l i t

    my/ 3

    l i s / l i t

    =

    v

    2 m Y llA v l i t

    (6

    )

    fo r

    an

    area

    llA. V means t he volume o f t he f r i c t i o n element

    d iv ided

    i n t o

    two

    equal ha lves

    on t he workp iece

    and

    t he

    t o o l

    s i d e ;

    c

    w

    ' c

    t

    and Pw' P

    t

    are t he s p e c i f i c hea t c a pa c i t i e s

    and

    dens i t i e s of t he workp iece and t oo l m a t e r i a l r e s pe c t i ve l y . The

    va lue

    v

    i s

    the

    s l i d i n g

    ve l oc i t y

    o f

    the

    node

    a t

    the

    i n t e r f ace .

    The tempera ture i n c r e a s e llTU due to

    t he

    d i s s i p a t e d forming

    energy

    i s

    c a l c u l a t e d wi th

    lIQ

    U

    = lIWU = n Y

    I

    lIV

    liT = Y l i t

    U

    n

    C

    w

    P

    w

    as

    (7 )

    The f a c t o r n (0 .85 :;; n :;;0.95) i s the thermal e f f i c i e nc y ; I i s t he

    e q u i v a l e n t s t r a i n r a t e .

  • 5/20/2018 [K. Lange (Auth.), Prof. Dr.-ing. Kurt Lange (e(BookZZ.org)

    2

    - 27 -

    The determined

    tempera ture

    increase

    i s ass igned

    to the re ference

    poin t of the e lement , Fig.

    3.

    At the i n t e r f ac i a l area , it i s

    t he

    sum

    of 6T

    R

    and ~ T U .

    3.4 Equat ions of Heat Transfer

    As

    it has been mentioned

    ea r l i e r ,

    t he developed

    equations

    of

    hea t

    t r a n s f e r a r e based on the temporar i ly changing f i n i t e e l e

    ments . The

    de r iva t ion

    of the equat ion of hea t

    t r a n s f e r

    was

    done

    not

    as usua l by compensat ing t he corresponding

    di f fe rences

    in

    t he d i f f e r e n t i a l equat ion

    of

    the hea t conduc t ion ,

    but

    by

    es t ab l i sh ing hea t

    balances

    t o the f i n i t e elements .

    The hea t

    balance

    i s

    es t ab l i s hed f o r each element . At

    t he

    addi

    t iona l

    r e fe rence po in t s

    on t he boundary,

    the

    hea t

    ba lances

    es tab l i shed

    cons ide r t he hea t conduc t ion and hea t convec t ion

    as shown

    in Fig. 4.

    The s t a r t i n g

    poin t

    of t he fol lowing

    cons idera t ion i s

    the hea t

    ba lance

    equat ion :

    By t he use of the

    forward

    d i f f e r ences ~ T O =

    Tgt

    - TO ' the

    e x p l i c i t equat ion

    of hea t ba lance

    y ie ld s

    from

    equat ion (8):

    (8 )

    (9 )

    The

    tempera ture

    T ~ t

    a f t e r

    the

    t ime

    increment 6 t

    i s

    ca l cu l a t ed

    o

    due to the hea t t r ans fe r to t he ne ighbour ing elements j . KOj

    i s

    the fac to r

    of hea t t r a n s f e r and

    i s given

    as

    AOJ

    k

    LOj

    in case

    of

    heat conduct ion

    between

    i nne r e lements ;

    (10

    )

    (11 )

    in case of hea t t r a n s f e r

    a t

    flow QOj'

    it becomes

    boundary.

    With a

    presc r ibed

    hea t

  • 5/20/2018 [K. Lange (Auth.), Prof. Dr.-ing. Kurt Lange (e(BookZZ.org)

    2

    - 28 -

    interior

    element

    boundary

    element

    Die l

    l ~ ~

    I-t-+----i

    Air

    ~

    Free

    Surface

    corner element

    -

    heat conduction

    heat convection

    Fig .

    4: Scheme of a coupled ana lys i s through

    combined

    approach

    FEM+FDM

    ~ Fluid/Air

    Fig .

    5: Contact

    sur face

    with

    t he t empera ture

    path

    due

    to t he hea t t r a n s f e r

  • 5/20/2018 [K. Lange (Auth.), Prof. Dr.-ing. Kurt Lange (e(BookZZ.org)

    2

    -

    29

    -

    (12)

    Here,

    k

    i s

    hea t conduc t iv i ty

    c o e f f i c i e n t ;

    a the average hea t

    t r a n s f e r

    c o e f f i c i e n t on

    the

    sur face

    AOj ; AOj the average su r

    face perpendicular

    to t he di rec t ion of

    hea t flow; and

    LOj

    the

    d i s t ance

    between

    two tempera ture l eve l s a t 0

    and

    j .

    The

    Eq. (9) can be

    wri t t en as

    T ~ t

    o

    (13

    )

    Due to

    t he s t a b i l i t y and

    convergence condi t ion , the t ime s t ep

    ~ t

    of the

    so lu t ion method

    has

    to

    f u l f i l l the fo l lowing equat ion

    ( 14 )

    3.5 Boundary Condi t ions

    The

    hea t t r a n s f e r due to the convec t ion appears

    mainly on

    the

    f ree boundar ies of the workpiece and t oo l . The hea t f low through

    these boundary sur faces

    i s

    given by

    (15

    )

    The

    heat f low q

    depends

    on the d i f f e rence

    between t he

    surround

    ing tempera ture

    Ta

    and

    t he tempera ture

    TR

    of

    the

    boundary

    su r

    face and

    on t he

    average

    hea t t r a n s f e r c o e f f i c i e n t

    na

    of the

    surrounding

    medium

    ( a i r ) .

    Some problems a r e

    appear ing

    on f ix ing the boundary condi t ion

    for the

    hea t

    t r a n s f e r i n to the d ie , Fig. 5. At the

    i n t e r f a c i a l

    area , the

    l u b r i c a t i o n ,

    the con tac t p res sure

    and t he ox ida t ion

    l ayer a f f e c t the hea t t r a n s f e r in add i t i on

    to t he in f luences

    o f

    tempera ture

    and

    t he sur face f i n i sh .

    The hea t

    f low

    across

    the

    area A a t t he i n t e r f a c e between

    workpiece

    and d ie

    i s

  • 5/20/2018 [K. Lange (Auth.), Prof. Dr.-ing. Kurt Lange (e(BookZZ.org)

    2

    - 30 -

    (16

    )

    whereby

    Tt

    and

    Tw

    a re the su r face t emperatures

    of

    the d ie

    and

    workpiece ; ~ the

    contac t

    conduc tance d a t a

    / 10 / . The

    con tac t

    conduc tance da ta

    i s

    chosen under the

    assumpt ion

    of

    an idea l

    m a t e r i a l

    c on t a c t .

    The h e a t t r a n s f e r a t the contac t su r face i s t r e a t e d l i ke the

    hea t convec t ion a t

    t h e

    f ree sur face . Heat r ad i a t i on i s neg lec t ed

    in the s o l u t i on method.

    The

    con tac t conductance

    da ta

    a

    K

    i s

    a

    func t ion of

    t h e

    c o n t a c t pressure ,

    t emperature

    and su r face

    roughness , but , fo r s i m p l i f i c a t i o n , the va lues

    a

    K

    and

    aa a re

    assumed to be cons tan t in the c a l c u l a t i o n .

    During an uns teady forming proces s , the change of the boundary

    cond i t ions due to

    the

    contac t problem i s

    a l s o

    checked.

    Since

    t he re

    a re some

    nodes

    on

    the

    f r ee su r face

    o f

    the

    workpiece

    touch

    t h e

    d i e

    as t h i s

    su r face i s bu lg ing

    so

    much. This causes an

    inc rease

    of

    the i n t e r f a c e

    between

    d i e and workpiece . such a

    con tac t

    problem (normal and

    f r i c t i o n a l

    c on t a c t problem) i s

    cons ide red

    in

    the

    s o l u t i on

    methods

    fo r p l a s t i c deformat ion

    and

    hea t t r a n s f e r . The

    i n c r e a s e

    of t he

    i n t e r f a c i a l

    area

    a l s o

    means t h e i n c r e a s e

    of

    the f r i c t i o n lo s ses and

    of

    the hea t

    t r a n s f e r

    between

    dice and

    workpiece .

    3.6 Model of FDM for Heat Trans fe r

    (Supplement)

    The

    e lement

    fo r hea t ca l cu l a t i on

    with

    the FDM i s developed as

    fo l lowing:

    For

    elements in t h e i n t e r i o r of the workpiece and the t oo l , t h e

    equa t ion

    (9)

    for hea t conduc t ion changes with

    KOj

    k

    AOj

    AOj SOj

    "TSOj" Vo AO

    11

    TAO

    11

    LOj

    to

    TLlt

    LIt

    (

    SOj

    ITT ,11

    (T

    j - TO

    +

    TO

    (17 )

    a

    AO

    LOj

    J J

    The va lue

    a

    i s

    the

    the rmal

    conduc t iv i ty

    (

    k/cp

    )

    .

  • 5/20/2018 [K. Lange (Auth.), Prof. Dr.-ing. Kurt Lange (e(BookZZ.org)

    3

    - 31 -

    The s t a b i l i t y and convergence condi t ion

    becomes

    lit

    :;;

    1

    AO

    a

    l: SOi

    liT

    .11

    i

    LOi

    J

    (18)

    In these

    equa t ions ,

    AO

    and

    Vo

    i nd ica t e the sur face

    and

    volume

    of t he

    e lement ;

    SOj i s t he s ide

    where the hea t

    flow goes

    through; LOj means the dis tance between two

    temperature l eve ls

    a t

    0 and j ; "TSOj" and "TAO" are

    t he

    "depths" of the cen te r of

    t he edge

    s ide

    and

    of

    t he sur face of

    an element .

    "T "

    SOj

    {

    "1"

    2nr

    SOj

    _ E l ~ ~ e ____

    _

    axisymmetr ic

    as :

    itT II

    J

    "T

    "

    SOj

    "TAO"

    The

    geometr ica l

    dimensions of the preceeding equat ions are

    shown

    in

    Fig. 6.

    ( 1 9

    )

    (20 )

    (

    21)

    For boundary elements ,

    one

    has

    in

    add i t i on t he

    hea t convec t ion:

    wi th

    the tempera ture T

    of

    surrounding medium

    and

    t he

    assoc ia ted

    depths ,

    t he

    equa t ion

    (9 )

    can

    be wri t t en

    as :

    TLlt

    l i t

    4

    SRj

    (k l:

    "TRj"

    (T

    j

    - T

    R

    )

    R

    PRCRA

    IR

    j=2

    L

    Rj

    (22 )

    for

    the

    tempera ture

    T ~ t a t

    boundary

    poin t

    no.

    1.

  • 5/20/2018 [K. Lange (Auth.), Prof. Dr.-ing. Kurt Lange (e(BookZZ.org)

    3

    -

    32

    -

    FDM

    Point - - + - - ~ ' - ?

    YIzI =-ro

    c - r snO. j . - - - - -1

    x/r

    FEM: Four-Node

    Element

    Fig .

    6: Geometr ical d imensions for t he hea t

    conduct ion between two

    ne ighbor ing

    poin t s

    4

    2

    Air/Die

    3

    '''L

    /r

  • 5/20/2018 [K. Lange (Auth.), Prof. Dr.-ing. Kurt Lange (e(BookZZ.org)

    3

    - 33 -

    The assoc ia ted c r i t e r i o n of

    convergence i s

    given by

    1

    (k

    4

    E

    j=2

    "T "

    Rj

    In the

    above

    given

    equa t ions , one

    has

    "T "

    Rj

    {

    ~ r

    I ~ R ~ - ' p ~ a E ~ - - -- -

    axisymmetr ic

    (23)

    (24)

    The geometr ica l dimensions used a r e

    i l l u s t r a t ed in

    Fig . 7 . The

    developed

    element of

    the

    FDM

    i s

    r e l a t e d

    to

    t he quadr i l a te ra l

    l i n e a r

    element o f the FEM

    / 6 / .

    The imaginary sur face AIR

    i s

    se lec ted to

    be

    a ha l f o f

    the

    sur face Ao of

    the

    observed

    bound

    ary e lement . The

    surrounding medium (c ,

    p,

    a,

    T)

    i s

    e i t h e r a i r

    (c

    a

    '

    P

    a

    ' a a '

    Ta)

    o r too l (c

    t

    '

    P

    t

    ,

    at'

    T

    t

    )

    i f

    t he boundary

    poin t

    1

    of the workpiece

    i s

    concerned.

    The

    corner

    e lement , wi th s ides

    no. 1

    and 2 belonging

    to t he

    f r i c t i on i n t e r f ac i a l area ,

    i s shown

    in Fig.

    8.

    In

    t h i s case ,

    the sur face

    and volume of

    t he

    element are given as :

    (25 )

    wl

    "th { ' : ~ I ___

    I 2 . . I ~ . . n ~

    ___ _

    "T

    SR

    "= 2nr

    SR

    axisymmetr ic

    to i n s e r t

    in

    Eq. (6) .

    3.7 Convergence Condi t ion

    The cons ide rab le i n f luence of t he

    convergence

    c r i t e r i a ,

    given

    in

    Eqs. (9) &

    (14) ,

    could

    be

    exp la ined

    in

    Fig .

    9

    for

    a t e s t

    ca lcu la t ion . In a

    simple conf igura t ion

    of a volume

    element ,

    the tempera ture of the cen t r a l element

    i s

    determined

    with

  • 5/20/2018 [K. Lange (Auth.), Prof. Dr.-ing. Kurt Lange (e(BookZZ.org)

    3

    u

    o

    90

    ~

    70

    E

    '"

    Jj

    -

    34

    -

    E

    r-""*,.,ml----,--...}i

    ' - - - - ' I - - - ' - . . L ~

    j:7900

    kg/rJ

    c :0.477 kJ/kg

    \ k:36.0 W/moC

    ~ S 0 t - - - - t ~ ~ ~ ~ ~ ~ ~ = = - - - - - - - - - - -

    "U

    "U

    ~

    '0 30

    : l

    ~

    '"

    10

    a.

    Convergence Criterion

    ~ t < 0 . 0 4 1

    \

    \

    \

    \

    \

    O + - ~ ~ ~ ~ ~ ~ - + ~ + - - + ~ ~ - + ~ \ _ + ~ + _ ~

    f- 0,05

    0.10 0.15

    ,0.20

    -10

    t [s] \

    Fig.

    9: Convergence condi t ion of a t e s t ca l cu l a t i on

    us ing the

    developed

    FDM

    1-----90---1

    Thermoelement

    -j ~ 1 ~ , ~ :

    ~ . . . , . :

    : 7 : : ~ :.,..,.: ~ l

    o

    1--+----

    _--

    -----

    1

    1 - - - - - - - -200 - - - - - - - -1

    Geometry:

    Mater ia l :

    60 x 60 x 200

    rnm

    C22 Stee l

    o

    w

    ; J \

    1- - -+ - -+ - ' -

    60

    Fig . 10: Geometry

    of

    the t e s t piece

    and

    t he

    pos i t ions

    of

    t he thermoelements

    a t

    the c r os s - s ec t i on

  • 5/20/2018 [K. Lange (Auth.), Prof. Dr.-ing. Kurt Lange (e(BookZZ.org)

    3

    - 35 -

    var ious t ime increment

    ~ t .

    A worse r e s u l t i s obta ined for a

    l a rge r t ime inc rement . And,

    the re i s a n

    o s c i l l a t o r y t empera ture

    path pred ic ted , as t he maximal al lowable t ime increment i s

    exceeded.

    The maximal al lowable t ime

    increment i s

    r e l a t e d

    with

    t he

    f i n e ~

    ness

    of t he

    FO mesh and

    t he

    FE

    mesh

    r e spec t ive ly . It

    i s

    propor

    t i o n a l

    to

    t he s i z e of

    the element , i . e .

    a f ine mesh renders

    smal l t ime inc rement . The increas ing d i s t o r t i o n

    of t he

    mesh

    could lead to a convergence problem. With regard to the g re a t e s t

    poss ib le t ime inc rement , we pre fe r to use the equ i la te ra l tri

    angles

    and

    quadrangles .

    By

    ca lcu la t ing

    the

    temperature

    d i s t r i

    but ion , t he maximal

    al lowable

    t ime

    increment

    6 t

    i s

    es t imated

    by the

    Eq. (23)

    for

    t he

    smal les t i n t e r i o r element .

    The t ime

    increment

    6 t of the hea t

    ca lcu la t ion could

    be d i f f e r e n t

    to t he

    t ime

    s t ep of t he p las t i c deformat ion . To i nc rease the

    accuracy

    of t he

    hea t

    ca lcu la t ion , a smal le r t ime

    s tep i s

    chosen

    for t h i s ca lcu la t ion . That means the t ime s t ep

    of

    p las t i c

    deformation

    i s

    normal ly

    div ided

    in to many

    t ime

    s teps

    in

    order

    t o p red ic t the tempera ture

    f i e l d .

    4 Numerical

    Resul t s

    4.1

    Tes t Calcu la t ion

    As t e s t example for the developed FD method, the process of

    convect ive

    cool ing of a q u a s i - i n f i n i t e l y long

    rod i s analysed .

    The i n i t i a l

    tempera ture of the rod i s a t 102S

    o

    C.

    The exper imen

    t a l

    r e su l t s

    of

    t h i s

    t e s t

    are

    obta ined

    a t

    t he

    RWTH

    Aachen

    /11 / .

    The

    geometry

    of

    t he

    c ros s - sec t ion and

    t he pos i t i ons

    of the

    thermoelements are

    given

    in Fig . 10. For t he

    purpose

    of com

    par ing, the

    tempera tures

    a t the survey poin t s 1 and 5 are

    determined t heore t i ca l ly with both FEM and FOM. Therefore , the

    top

    r i g h t quar te r of

    the c ros s - sec t iona l area i s

    div ided

    i n to

    36 l inea r

    four-node

    elements (49 nodes) in the FEM. Accordingly ,

    the FO mesh i s

    composed of

    60

    represen ta t ive

    nodes (36 middle

    nodes

    of

    t he

    f i n i t e

    elements

    and 24

    add i t i ona l

    nodes

    a t

    the

    boundar ies) .

  • 5/20/2018 [K. Lange (Auth.), Prof. Dr.-ing. Kurt Lange (e(BookZZ.org)

    3

    I

    F

    S

    I

    I

    ~

    ,

    P

    n

    N

    1

    ,

    ~

    ~

    ,

    E

    m

    e

    a

    ,

    F

    l

    a

    u

    ~

    .

    a

    9

    ~

    c E

    ~

    e

    7

    2

    ,

    B

    1

    1

    1

    I

    S

    O

    B

    2

    T

    m

    e

    [

    s

    F

    g

    1

    T

    p

    e

    d

    c

    e

    d

    a

    n

    e

    x

    m

    e

    n

    a

    y

    d

    e

    m

    i

    n

    d

    e

    m

    p

    a

    u

    e

    p

    h

    fo

    a

    s

    h

    m

    e

    T

    O

    [

    9

    E

    m

    e

    a

    9

    F

    M

    F

    N

    E

    e

    m

    n

    /

    1

    I

    n

    e

    g

    m

    t

    o

    n

    P

    n

    -

    9

    S

    v

    P

    n

    N

    .

    5

    5

    6

    7

    I

    I

    ,

    P

    n

    N

    O

    .

    5

    ,

    1

    \

    l

    O

    '

    9

    ,

    U

    e

    B

    ,

    ~

    '

    \

    0

    .

    t

    .

    '

    -

    F

    D

    M

    -

    .

    I

    ~

    .

    3

    e

    ~

    6

    E

    ~

    5

    I

    -

    3

    t

    s

    ~

    I

    2

    4

    .

    -S

    8

    I

    F

    6

    T

    m

    e

    [

    s

    F

    g

    1

    T

    p

    e

    d

    c

    e

    d

    a

    n

    e

    x

    m

    e

    n

    t

    a

    y

    d

    e

    m

    i

    n

    d

    e

    m

    p

    a

    u

    e

    p

    h

    a

    s

    u

    v

    y

    p

    n

    n

    S

    f

    o

    a

    l

    o

    m

    e

    b

    h

    v

    o

    ,

    -

    F

    g

    1

    C

    m

    p

    s

    o

    b

    w

    e

    n

    h

    e

    x

    m

    e

    n

    a

    a

    n

    t

    h

    o

    e

    c

    r

    e

    u

    s

    f

    o

    h

    t

    h

    m

    o

    e

    m

    e

    n

    n

    S

    r

    O

    w

    (

  • 5/20/2018 [K. Lange (Auth.), Prof. Dr.-ing. Kurt Lange (e(BookZZ.org)

    3

    - 37 -

    The

    ca lcu la t ion

    of

    hea t t r a n s f e r with the FDM

    y ie ld s

    a

    s t a b i l

    and

    nonosc i l l a to ry

    temperature path if

    t he t ime increment i s

    se lec ted to be 0.5

    sec .

    The

    FEM

    r equ i res a

    t ime

    increment

    t l t

    =

    0.467

    sec .

    The

    exper imen ta l ly

    pred ic ted

    and

    with

    FDM

    de

    termined

    tempera ture

    paths a r e plo t ted in Fig. 11 (a t poin t

    no.

    1) and Fig .

    12 (a t

    poin t no. 5) for a shor t t ime behaviour.

    They show

    an

    exce l l en t

    agreement between t he experiments

    and

    the FD so lu t ions . But , if

    t he t ime

    per iod

    observed

    i s

    longer ,

    there wi l l be a cons ide rab le depa r ture between

    both

    r e s u l t s ,

    Fig . 12. From

    800

    0

    e,

    t he t h e o re t i c a l l y

    pred ic ted t empera tures

    could

    not

    be

    compared

    with t he exper imenta l data , s ince the

    physica l cons t an t s

    of

    t he ma te r i a l

    are

    assumed

    to

    be

    t he

    same

    as those

    a t

    1025

    0

    e dur ing

    t he cool ing

    process . Whereas the FD

    so lu t ion

    i s smooth

    and always l e s s

    than

    t he

    exac t

    so lu t ion for

    a l l nodes

    a t a l l t imes .

    In

    Fig . 13

    it

    can be shown t h a t t he FEM

    y ie ld s

    t he upper

    bound

    for the

    tempera ture

    path.

    Although

    the eigenvalues

    of

    the FEM

    obta ined from t he r e su l t i n g d i f f e r ence equat ions a re usua l ly

    somewhat

    c loser

    to

    the

    t rue

    values

    than

    those

    of

    t he

    FDM,

    t he

    FEM

    i s

    prone

    to

    t he problem of

    tempera ture overshoots

    for a

    shor t t ime

    behaviour /14 ,15 / .

    The er ro r of t he FEM i s always

    maximum a t

    t he nodal

    poin t neares t to

    t he boundary, such as

    a t

    t he survey

    poin t

    no.

    5. But

    t hen ,

    a good

    agreement

    between

    t he

    exper imenta l r e s u l t s and the FEM/FDM so lu t ions i s ensured

    a t

    t he

    survey poin t s near the cen t r e

    of t he

    cross -sec t ion (points

    I , 2,7) .

    4.2 Forging an

    Engine

    Disk

    The metal flow in forg ing

    a Titanium a l loy

    engine

    disk,

    Fig . 14,

    i s

    s imula ted

    with the combined

    approach FEM

    + FDM.

    Such

    a pro

    cess

    has been ana lysed before by

    Oh

    e t

    a l

    /12 /

    using

    the r i g id

    v i scop la s t i c f i n i t e element

    technique .

    In

    t he

    observed uns teady

    process , the preform a t the

    i n i t i a l

    temperature Tow

    = gOOOe

    i s

    forged

    between

    curved

    symmetric

    dies with a

    cons t an t

    die

    ve lo

    c i t y

    1.27

    mm/s.

  • 5/20/2018 [K. Lange (Auth.), Prof. Dr.-ing. Kurt Lange (e(BookZZ.org)

    3

    - 38 -

    Upper Die V

    I"

    152.4 ~ . p ( 6 . 0 i n . l - - - - - t ,

    rLtLtCLLL1.CLLL1.""'"lrr.---r

    12

    .7

    mm

    (0.5)

    fl.l..WUJ.=UI.J

    1 /

    '---132mm(5.2 in.) --=-=-----I

    zt

    Preform - "I r

    f - - - - 1 5 8 . 8 m m ( 6 . 2 5 ) - - - - o l

    Air 20C

    Fig .

    14:

    Schematic

    drawing

    of

    di sk

    forging die

    and preform / 1 2 /

    ------ Equation

    Experimental

    150

    0

    n..

    ::E

    "'

    100

    "'

    II

    "-

    if)

    '

    ::I

    40

    .

    t-

    20

    0.0

    0.2

    0.4

    0.6

    True Plastic

    Strain

    Fig . 15:

    Flow

    s t r e s se s o f

    Titanium a l l oy / 13 /

  • 5/20/2018 [K. Lange (Auth.), Prof. Dr.-ing. Kurt Lange (e(BookZZ.org)

    3

    - 39 -

    Two cases of forg ing processes

    are

    analysed: i so thermal forg ing

    and ho t - d i e forging.

    In

    the i so thermal ana ly s i s , t he i n i t i a l

    temperature of the

    preform and of

    the

    dies a re the same and,

    dur ing

    t he

    process ,

    t he

    temperature

    dependence of t he flow

    s t r e s s

    i s

    accounted

    fo r .

    The ho t - d i e

    forging

    process

    i s per

    formed with

    t he

    i n i t i a l tempera ture

    Tot

    = 371

    0

    C

    and

    t he

    a i r

    temperature a t

    20

    o

    C.

    The FE mesh

    cons i s t s

    60 l i n e a r

    quadr i la

    t e r a l

    elements .

    The f r i c t i o n f ac to r m =

    0.3

    i s

    chosen, f r i c t i o n

    s t r e s s

    T

    =

    my/l3.

    The values of t he phys i ca l cons t an t s fo r hea t

    ca lcu la t ion are

    taken from t he

    papers

    / 7 , 1 2 / . But t he flow

    s t r e s s

    da ta

    of Ti-6Al-2Sn-4Zr-2Mo-0. lSi a r e given by Dadras and

    Thomas / 1 3 / ,

    Fig.

    15.

    In

    Fig . 16, t he

    tempera ture

    d i s t r i b u t i o n wi th in

    the workpiece

    dur ing t he

    i so thermal forg ing process

    i s shown

    v i s - a -v i s those

    of

    the ho t - d i e forging process . The reduc t ion

    in

    he igh t

    i s 70%

    a t t h i s

    i n t e rmedia t e s tage .

    A

    severe

    temperature grad ien t can

    be seen

    in

    t he

    workpiece

    in

    t he ho t - d i e forg ing . The heat

    t r a n s f e r , due to

    t he

    temperature

    grad ien t

    between t he workpiece

    and

    the

    dies ,

    i s

    a lso

    i n t ens ive

    and

    it

    cool s t he

    workpiece

    p a r t i a l l y .

    Logica l ly , t he forg ing load

    in

    t he

    ho t - d i e forging

    should be higher

    than

    the forg ing load requi red

    in

    t he

    i so th e r

    mal forg ing process

    in

    which

    the tempera ture

    grad ien t

    within

    the workpiece i s obvious ly unimportant . Simi l a r t empera ture

    d i s t r i b u t i o n s

    can be

    found

    in

    t he

    paper

    of

    Oh e t

    a l / 1 2 / . But

    d i r e c t comparison i s not a t tempted for lack of exac t

    in format ion

    on

    mater ia l

    proper t i e s .

    The mater ia l f lows

    a t

    some i n t e rmedia t e s teps

    are p lo t t ed in

    Fig .

    17

    for t he ho t - d i e

    forging process . The bulge of

    t he

    outer

    sur face can be observed s tep by s tep . I t i nd ica t e s the

    contac t

    problem s ince the

    sur face

    folding

    i s

    l imi ted

    to

    t he

    top and

    bottom dies . The p a r t i c u l a r l y compl ica ted

    die

    p r o f i l e d ic t a t e s

    t he

    l a rge

    number of t he

    deformation s teps to be chosen.

    The

    computer

    s imula t ions wi l l enable

    t he process des igner

    to

    modify

    the

    die

    and

    manufac tur ing

    technique

    for

    t he

    purpose

    of

    yie ld ing

    the des i red mater ia l

    f low.

  • 5/20/2018 [K. Lange (Auth.), Prof. Dr.-ing. Kurt Lange (e(BookZZ.org)

    3

    a

    s

    h

    m

    a

    F

    g

    n

    T

    D

    e

    9

    9

    I

    9

    b

    H

    D

    i

    e

    F

    g

    n

    I

    7

    T

    D

    i

    e

    3

    o

    F

    g

    1

    T

    m

    p

    a

    u

    e

    d

    s

    r

    b

    o

    [

    O

    a

    7

    %

    r

    e

    d

    o

    n

    h

    g

    n

    s

    o

    h

    m

    a

    a

    n

    h

    -

    d

    e

    f

    o

    g

    n

    F

    g

    1

    G

    r

    d

    d

    s

    o

    o

    a

    n

    v

    o

    y

    f

    e

    d

    a

    s

    o

    m

    e

    i

    n

    e

    m

    e

    d

    a

    e

    s

    a

    g

    n

    h

    -

    d

    e

    f

    o

    g

    n

    a

    A

    t

    h

    B

    e

    g

    n

    n

    1

    1

    /

    =

    I

    b

    A

    t

    3

    4

    %

    H

    e

    g

    R

    e

    d

    o

    I

    c

    A

    t

    7

    %

    H

    e

    g

    R

    e

    d

    o

    I

    I

    +

    >

    o

  • 5/20/2018 [K. Lange (Auth.), Prof. Dr.-ing. Kurt Lange (e(BookZZ.org)

    4

    - 41 -

    4.3 Closed-Die Forging

    In

    t he

    l a s t

    numerical example, the

    technica l and

    economical

    as

    pects of

    t he

    d i f f e r e n t manufacturing

    techniques

    are

    discussed

    by means

    of

    the

    forg ing

    process

    in

    Fig .

    21.

    The

    i so thermal

    fo r

    gings

    of

    axis

    ymmetrica

    1 disk a re ana lysed for purpose of

    com

    par ing

    with the

    of t - u s ed

    cold

    forg ings .

    The

    condi t ions

    of

    four

    forging

    processes concerned are :

    l.

    Cold

    forg ing process

    with

    T

    ow

    T

    o t

    20

    0

    C

    and f r i c t i o n

    fac to r

    m = 1 . 0,

    2.

    Cold

    forg ing

    process wi th

    T

    T

    o t

    20

    0

    C

    ow

    and m

    =

    0 .3 ,

    3 .

    Iso thermal

    forg ing process

    with

    T =T

    =900

    o C=constow

    o t

    .

    and m

    =

    1 .

    0,

    4.

    Iso thermal

    forg ing

    process

    with

    T

    ow

    Tot

    900

    0

    C

    and m

    =

    1 . 0,

    S.

    Iso thermal

    forg ing process with T

    T

    ow

    o t

    900

    0

    C

    and

    m =

    0 .3 .

    In

    a l l processes the

    formed

    pa r t

    (Tow) and

    t he dies

    (Tot)

    have

    the

    same

    tempera ture

    a t

    the

    beginning .

    The

    tempera ture

    e f f e c t s

    are

    considered through the combined

    approach FEM + FDM,

    except

    the case no. 3 (cons t an t

    temperature

    assumed

    dur ing

    the process) .

    The

    t empera ture - sens i t ive mater ia l of

    t he

    formed pa r t i s CIS

    s t e e l

    with i t s f low s t r e s s curves shown

    in

    Fig. 18 for

    cold

    forgings

    and in Fig . 19 for i so thermal forg ings /17 / . The heat

    t r a n s f e r

    prope r t i e s

    are

    i l l u s t r a t ed

    in

    Fig.

    20.

    Fig .

    22

    shows

    t he

    temperature

    d i s t r ibu t ions

    pred ic ted

    a t

    40%

    reduct ion

    in

    he igh t

    in

    four

    forg ing

    processes .

    For

    the

    f r i c t i o n

    f ac tor m =

    1.0

    (Figs . 22a,d) the

    temperature

    grad ien t in the

    formed

    pa r t and dies

    are s l i g h t l y higher

    than

    those with

    m = 0.3

    (Figs . 22b,c)

    due

    to the in tens ive deformation of the mater ia l

    in the formed p a r t

    and

    the high

    d i s s ipa ted f r i c t i on

    energy. In

    both

    cases

    of

    t he f r i c t i o n condi t ions , the m ater ia l , in the

    zone

    near the round corner

    of

    t he bottom

    d i e , i s shear ing to

    flow

    toward

    the

    two

    openings and press s t rongly

    on t he bottom

    die

    (Fig. 22f) . Temperature peak can a l so be seen

    in

    t h i s zone. It

    means t h a t the

    die

    corner

    i s

    a p a r t sub jec t

    to

    wear . At the

  • 5/20/2018 [K. Lange (Auth.), Prof. Dr.-ing. Kurt Lange (e(BookZZ.org)

    4

    E

    E

    1

    Z

    8

    0

    0

    >

    :

    ~

    6

    0

    0

    -

    0

    Q

    >

    4

    0

    0

    2

    0

    0

    E

    :

    =

    1

    6

    5

    2

    C

    3

    C

    [

    ?

    t

    2

    C

    1

    1

    e

    1

    /

    ~

    V

    I

    -

    4

    e

    /

    ~

    -

    r

    5

    C

    I

    I

    -

    t

    -

    6

    C

    7

    C

    /

    8

    e

    -

    e

    {

    1

    C

    ;

    1

    e

    -

    -

    I

    1

    1

    e

    0

    2

    0

    4

    0

    6

    0

    8

    S

    t

    r

    a

    n

    E

    1

    0

    1

    1 8

    ~

    6

    E

    ~

    5

    z >

    4

    U

    U

    ~

    3

    V

    0

    2

    Q

    >

    2

    1

    1

    1

    F

    g

    1

    F

    o

    w

    s

    r

    e

    e

    o

    C

    S

    e

    1

    f

    o

    c

    c

    u

    a

    o

    o

    c

    o

    d

    f

    o

    g

    n

    =

    5

    2

    e

    ~

    -

    -

    -

    -

    ,

    -

    I

    -

    -

    6

    -

    -

    -

    -

    -

    -

    -

    -

    -

    r

    I

    -

    -

    -

    -

    7

    -

    -

    -

    -

    :

    8

    I

    -

    k

    9

    =

    -

    -

    -

    1

    -

    -

    -

    -

    -

    -

    -

    -

    -

    1

    V

    -

    -

    -

    -

    -

    -

    v

    /

    1

    .

    -

    ~

    -

    -

    V

    /

    /

    1

    6

    2

    5

    4

    6

    3

    1

    1

    2

    4

    6

    1

    S

    t

    r

    a

    n

    R

    a

    e

    F

    g

    1

    F

    o

    w

    s

    r

    e

    e

    o

    C

    S

    e

    1

    f

    o

    c

    c

    u

    a

    o

    o

    h

    f

    o

    g

    n

    .

    >

    N

  • 5/20/2018 [K. Lange (Auth.), Prof. Dr.-ing. Kurt Lange (e(BookZZ.org)

    4

    M

    d

    u

    m

    C

    m

    a

    o

    p

    a

    m

    e

    e

    S

    m

    F

    g

    e

    u

    1

    -

    -

    -

    -

    -

    -

    -

    -

    _

    _

    D

    m

    n

    o

    H

    B

    8

    2

    n

    m

    -

    D

    n

    y

    P

    w

    7

    5

    (

    7

    7

    k

    e

    m

    -

    -

    -

    W

    o

    k

    e

    S

    f

    c

    h

    c

    p

    y

    c

    0

    6

    (

    0

    4

    k

    k

    g

    d

    w

    -

    H

    c

    o

    v

    y

    c

    o

    -

    k

    2

    (5

    W

    /

    m

    g

    d

    c

    e

    n

    w

    1

    -

    T

    m

    e

    c

    e

    n

    y

    1

    0

    8

    -

    r

    ~

    -

    I

    n

    a

    e

    m

    p

    a

    u

    e

    T

    9

    (

    2

    M

    -

    T

    c

    k

    S

    R

    0

    0

    n

    m

    C

    a

    a

    y

    C

    a

    c

    o

    a

    n

    d

    a

    a

    K

    1

    k

    W

    /

    m

    g

    d

    -

    -

    -

    D

    e

    n

    y

    P

    0

    0

    k

    e

    m

    -

    -

    -

    A

    i

    r

    S

    f

    c

    h

    c

    p

    y

    c

    1

    1

    (

    1

    0

    k

    k

    g

    d

    a

    H

    r

    a

    n

    e

    c

    o

    c

    e

    n

    a

    a

    0

    0

    k

    w

    m

    g

    d

    D

    e

    n

    y

    P

    7

    7

    (

    7

    7

    k

    e

    m

    S

    f

    c

    h

    c

    p

    y

    c

    t

    0

    5

    (

    0

    4

    k

    k

    g

    d

    T

    H

    c

    o

    v

    y

    c

    o

    -

    k

    2

    (1

    W

    /

    m

    g

    d

    c

    e

    n

    V

    e

    o

    y

    o

    o

    d

    e

    v

    1

    I

    1

    s

    F

    g

    2

    P

    c

    c

    o

    an

    s

    f

    o

    c

    c

    u

    a

    o

    o

    e

    m

    p

    a

    u

    e

    f

    e

    d

    V

    a

    u

    (

    a

    2

    C

    i

    I

    -

    (

    o

  • 5/20/2018 [K. Lange (Auth.), Prof. Dr.-ing. Kurt Lange (e(BookZZ.org)

    4

    - 44 -

    /

    ):/

    280= B

    v

    "I Top Oil'

    /

    /

    ///

    //

    / /

    /

    //////////

    m

    "+r

    I

    co

    11

    m

    /

    /

    / /

    ///////

    -15

    /

    . .

    H-h

    Air

    20C I

    65

    J Bottom Oil'

    Height Reduction =

    -H -

    i , f

    (v.tcitY',O)

    /

    Fig .

    21: Schematic drawing of c losed-d ie

    forg ings

    b)

    Tow

    = 20

    C

    m =

    0.3

    @

    25

    40

    SO

    50

    40

    50

    25

    Fig . 22:

    Temperature d i s t r i b u t i o n s

    rOc]

    a t 40%

    reduct ion

    in

    he igh t

    dur ing

    var ious

    forg ing processes

  • 5/20/2018 [K. Lange (Auth.), Prof. Dr.-ing. Kurt Lange (e(BookZZ.org)

    4

    c

    T

    =

    9

    C

    =

    c

    o

    m

    =

    1

    0

    w

    f

    )

    @

    M

    a

    e

    a

    F

    o

    w

    a

    4

    %

    H

    g

    R

    d

    o

    9

    C

    d

    T

    w

    =

    g

    O

    O

    O

    e

    ;

    m

    =

    1

    0

    J

    e

    T

    w

    =

    9

    C

    m

    =

    0

    3

    .

    >

    U

    9

    9

    9

    C

    -

    A

    r

    2

    9

    =

    9

    '

    9

    9

    9

    9

    -

    9

    z

    F

    g

    2

    (

    c

    o

    n

    d

    r

    O

  • 5/20/2018 [K. Lange (Auth.), Prof. Dr.-ing. Kurt Lange (e(BookZZ.org)

    4

    - 46 -

    oute r opening,

    the

    r e l a t i v e movement of