29
Julie Keister University of Washington School of Oceanography What the zooplankton taught me about climate change …my education in the GLOBEC Program

Julie Keister University of Washington School of Oceanography

  • Upload
    vilina

  • View
    49

  • Download
    0

Embed Size (px)

DESCRIPTION

What the zooplankton taught me about climate change …my education in the GLOBEC Program. Julie Keister University of Washington School of Oceanography. U.S. GLOBEC Northeast Pacific Program. Long-Term Observation Program. Mesoscale Process Studies. Ocean color. - PowerPoint PPT Presentation

Citation preview

Page 1: Julie Keister University of Washington School of Oceanography

Julie KeisterUniversity of WashingtonSchool of Oceanography

What the zooplankton taught me about climate change

…my education in the GLOBEC Program

Page 2: Julie Keister University of Washington School of Oceanography

U.S. GLOBECNortheast Pacific Program

To provide climatology background and variability

Long-TermObservation Program

Mesoscale ProcessStudies

Core NEP Hypothesis:Spatial and temporal variability in mesoscale circulation is the dominant forcing on zooplankton distribution, biomass, production, retention and loss from coastal areas.

Ocean color Large scale climate variability

Mesoscale physical variability

Zooplankton variability

Ecosystem change

Page 3: Julie Keister University of Washington School of Oceanography

U.S. GLOBECNortheast Pacific Program

Newport

Cape Blanco

Crescent City

Eureka

Pt. Arena

Mesoscale Process Study Region

Surface Temperature

Page 4: Julie Keister University of Washington School of Oceanography

Cruises: June and August 2000 / 20023 vessels per cruise (Survey, Process, Fish)

NEP Mesoscale Process Studies

Survey vessel:

• SeaSoar• Bio-acoustics• ADCP• Optical Plankton

Counter• AC-9 (optics)

Process vessel:

• Zooplankton nets• CTD casts• Rate measurements• Mammal and seabird

observations

Fishing vessel:

• Nekton• Salmon prey fields• CTD casts

Page 5: Julie Keister University of Washington School of Oceanography

°C 1 August 2000

GLOBEC August 2000 CCS Mesoscale cruise Satellite SST :

RV New Horizon

Page 6: Julie Keister University of Washington School of Oceanography

6

Sea surface temperature from the AVHRR

ADCP figure from Barth et al. 2005

August 2000 Mesoscale cruise:

ADCP profile:

East component

(cm/s)(blue = west)

17m

200m 17m

200m

North component

(cm/s)(pink=north)

-20 cm/s

20-30 cm/s

Page 7: Julie Keister University of Washington School of Oceanography

August 2000Strong physical control of biological patterns

42N

43N

44N

CopepodBiomass

Ocean color

125W127W 127W

Sea Surface Temperature

125W125W127W

Calanus marshallae(cold-water, boreal

species)

Calanus pacificus(warm-water species)

125W127W 125W127W

Keister, Peterson, and Pierce, 2009

Page 8: Julie Keister University of Washington School of Oceanography

Sea surface temperature from the AVHRR

Population and biomass loss from coastal regions:0-100 m velocities from

ADCP

>1200 tons C / day

>900 tons C / day

Loss of ~2% / day

of total coastal

biomass

Keister, Peterson, and Pierce, 2009

Page 9: Julie Keister University of Washington School of Oceanography

36

38

40

42

44

46

48

Sea level anomaly along offshore + 2o line

Latitud

e

SSH (c

m)

Jan9

3

Jan9

4

Jan9

5

Jan9

6

Jan9

7

Jan9

8

Jan9

9

Jan0

0

Jan0

1

Jan0

2

Jan0

3

Jan0

4

Jan0

5

Jan0

6

-25

-20

-15

-10

-5

0

5

10

15

20

2548

46

44

42

40

38

36

Sea level anomaly (cm)

Latit

ude

(°N

)

1o

Jan July Jan-25

-20

-15

-10

-5

0

5

10

15

20

25

25

20

15

10

5

0

-5

-10

-15

-20

-25

1993

1995

1997

1999

2001

2003

2005

48

46

44

42

40

38

36

Energy (cm2)in 4-12 week periods

1o

Jan July Jan-25

-20

-15

-10

-5

0

5

10

15

20

25

25

20

15

10

5

0

1993

1995

1997

1999

2001

2003

2005

Spatial and temporal variability in mesoscale circulationJ Keister and PT Strub, J Geophys. Res., 2008

Page 10: Julie Keister University of Washington School of Oceanography

Index of Mesoscale (4-12 week period) Energy

Keister and Strub, 2008

1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005

4-12 week variability in SSH averaged over 36° to 43°N, 1° to 3° offshore

Nor

mal

ized

po

wer

0

1

Mechanisms remained unclear……

Page 11: Julie Keister University of Washington School of Oceanography

Large scale climate variability

Mesoscale physical variability and transport dynamics

Zooplankton variability

Ecosystem change

Dominance of the mesoscale?

Page 12: Julie Keister University of Washington School of Oceanography

126 124 12236

38

40

42

44

46

48

Long-Term Observation Program

Newport Hydrographic (NH) Line

U.S. GLOBECNortheast Pacific Program

Newport

Cape Blanco

Crescent City

Eureka

Pt. Arena

NH5 zooplankton time seriesNH10 mooring

Page 13: Julie Keister University of Washington School of Oceanography

El Niño distributional shifts:

Nyctiphanes simplex• Coastal, cold-water taxon

Sagitta pseudoserratodentata Sagitta hexapteraCentropages bradyi• Offshore taxa

Keister et al. 2005

Page 14: Julie Keister University of Washington School of Oceanography

El Niño distributional shifts:

Keister et al. 2005

0

0.5

1Nyctiphanes simplex abundance at NH-5

Jan 97 Jan 98 Jan 99 Jan 00 Jan 01Jan 96

12 Dec ‘9712 Nov ‘98

Kosro 2002: Anomalous poleward velocities at NH10= 13.7 cm/s (350 km/month)

• Estimated 3.3 months to arrive off Oregon• Actual arrival – 3 weeks later

Page 15: Julie Keister University of Washington School of Oceanography

1

2

Jul-9

6

Jan-

97

Jul-9

7

Jan-

98Ju

l-98

Jan-

99Ju

l-99

Jan-

00

Jul-0

0

Jan-

01

Jul-0

1

Jan-

02

Jul-0

2

Jan-

03

Jul-0

3

Jan-

04Ju

l-04

Jan-

05

Jul-0

5

Jan-

06

Jul-0

6

Jan-

07

Quantifying zooplankton community variability

Community cluster time series

Axis 1 (71%)

Axis

2 (1

3%)

Non-Metric Multidimensional ordination

Warm-water/oceanic community

Cold-water/coastal community

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

2

1

Page 16: Julie Keister University of Washington School of Oceanography

-2

-1

0

1

2

CC

I sco

re

1998 2000 2002 2004 2006 20081996

PC1

of c

opep

ods

CCI Timeseries

-2

-1

0

1

2C

CI s

core

Warm Cold Warm Cold

Monthly anomalies

1998 2000 2002 2004 2006 20081996

“Copepod Community Index” = CCIOrdination Axis 1 scores

PDO:CCI correlation R = 0.5, p<0.01

Page 17: Julie Keister University of Washington School of Oceanography

Calanus marshallae

Pseudocalanus mimus

Acartialongiremis

Paracalanus parvus

Oithonasimilis3m

m

Not all copepods are created equal!

Boreal species = larger and lipid filled

Calanus

Warm yearsCold years

Copepod Community relates to salmon survival:

Page 18: Julie Keister University of Washington School of Oceanography

170 160 150 140 130 120 11025

30

35

40

45

50

55

60

65

170 160 150 140 130 120 11025

30

35

40

45

50

55

60

65PDO - Cold Phase PDO - Warm Phase

Climate-Forcing Hypothesis: Basin-scale circulation links the PDO to local ecosystem change.

Strub, modification of Chelton and Davis, 1982

Page 19: Julie Keister University of Washington School of Oceanography

Basin-scale control of ecosystems?

E. Di LorenzoJ. KeisterA. ThomasPT StrubWT PetersonS. BogradP. FranksF. SchwingK. ChaakA. Bracco

International collaborators: Japanese: (Chiba, Sasai, Sagaki, Tagushi, Ishidi, Nonaha), Chilean: (Escribano, Hormazabal, Pizarro, Rutllait, Montecino); Canadian (Mackas, Foreman, Pena, Crawford) collaborators on physics and biological variability

Page 20: Julie Keister University of Washington School of Oceanography

Transport pathways explain an important part of copepod community structure:

Page 21: Julie Keister University of Washington School of Oceanography

The test?Compare modeled transport to zoop. observations

Nested ROMS model http://www.myroms.org/)• 10 km resolution• 30 vertical layers• boundary conditions from World Ocean Atlas

climatology• nudged at open boundaries• forced by NCEP winds and SST• 1950-2008

Passive tracers released continuously along the 4 regional domain boundaries (NORTH, SOUTH, EAST, WEST) with 12-month decay scales.

Time series integrated over 1x2 degree region centered on zooplankton observations.

Page 22: Julie Keister University of Washington School of Oceanography

FromEAST

FromSOUTH

FromNORTH

FromWEST

1955 1965 1975 1985 1995 2005

-2-10123

-3-2-1012

-1

0

1

2

3

4

-10123

Model hindcast CCI =

NORTH tracer +

SOUTH tracer+

EAST tracer+

WEST tracer+ ε

Passive Tracer Time Series

Keister et al. 2011

Page 23: Julie Keister University of Washington School of Oceanography

1998 2000 2002 2004 2006 2008

R = 0.36

Model hindcast CCIObserved CCI

(5 year lowpass)

R = 0.95

Model hindcast CCIObserved CCI

1998 2000 2002 2004 2006 2008

(5 yearlowpass)

1960 1970 1980 1990 2000

R = 0.9

Model hindcast CCIModel PDO

Keister et al. 2011

Advective control of zooplankton communities?

Page 24: Julie Keister University of Washington School of Oceanography

How do large-scale climate modes drive coherent ecosystem changes around ocean basins?

Page 25: Julie Keister University of Washington School of Oceanography

1960-1975 1981-1999

Low-Frequency Zooplankton and Transport Dynamics in the KOE

S. Chiba (JAMSTEC, Japan) A. Davis (GaTech, USA)J. Keister (UW, USA) H. Song (UCSD)B. Taguchi (JAMSTEC)E. Di Lorenzo (GaTech)

OFES Model10 km resolution 1950-2009

Change in distributions of warm and cold-water copepods pre- and post- regime shift

Chiba et al. 2010

Abundance

Page 26: Julie Keister University of Washington School of Oceanography
Page 27: Julie Keister University of Washington School of Oceanography

What I we learned

A LOT !!Large scale climate modes

Mesoscale transport dynamics

Basin-scale transport dynamics

Zooplankton variability

Ecosystem change

Page 28: Julie Keister University of Washington School of Oceanography

Looking ahead:

• Interdisciplinary science is necessary to understand complex systems and problems

• Time series observations are gold“You can learn a lot by looking”

• Need big thinkers, synthesis ideas

• Trend toward larger collaborative, or smaller, individual, projects?

Looking forward to future collaborations !

Page 29: Julie Keister University of Washington School of Oceanography

Emanuel Di LorenzoGA Tech U

ROMS Modeler

Rodger Harvey, Se-Jong JuUniversity of Maryland

Euphausiid aging

Steve Bograd, Frank SchwingNOAA SWFSC

Jane Huyer, Bob Smith, Pat Wheeler, Ev and Barry Sherr, Mike Kosro

NEP GLOBEC LTOP

Patrick ResslerNOAA AFSCBioacoustics

Tim Cowles, Hal Batchelder, Ted Strub, Bill Peterson

Ph D Committee

Ric Brodeur, Kym Jacobson, Bob Emmett, Bill Peterson, Tom

Wainwright, Peter Lawson, Ed CasillasNOAA NWFSC, Salmon biology

Collaborations developed, friends made

Cynthia SuchmanNPRB

Dave MackasFish and Oceans Canada

Zooplankton ecology

The Peterson Lab!Zooplankton ecology

Jaime GomezCICIMAR, MexicoEuphausiid ecology

Sanae Chiba, Hiro SugisakiJAMSTEC, Japan

Andy Thomas, Jack Barth, Steve Pierce, Ricardo Letelier, Yvette Spitz, Mike Kosro, Meng ZhouGLOBEC Mesoscale Studies