2
1 2 3 4 5 6 7 8 9 10 1 1 12 1 3 14 15 0 5 10 15 20 25 30 35 40 AbsoluteMean Relative Error and Standard Deviation RelativeError of Direct Sound AverageInstantaneous Intensity by each Position using thep p probe Position Number [ ]    R   e    l   a    t    i   v   e    E   r   r   o   r   o    f    A   n   g    l   e   o    f   a   r   r    i   v   a    l    [    %     ] 45º 15º -45º -75º Direct Sound First Reection 1st 14th 1st 14th -90º 180º 90º Horizontal Plane oriented on the x-z plane 1 2 3 4 5 6 7 8 9 10 11 1 2 13 14 15 0 5 10 15 20 25 30 35 40 AbsoluteMean RelativeError and Standard Deviation RelativeError of First Reflection AverageInstantaneous Intensity by each Position using thepp probe Position Number [ ]    R   e    l   a    t    i   v   e    E   r   r   o   r   o    f    A   n   g    l   e   o    f   a   r   r    i   v   a    l    [    %     ] 6.- References: [1] Heyser, R., Instantaneous intensity , in AES 81st Convention Nov 12-16 1986, Los An geles, CA, U. S.A.1986. [2] Merimaa, J., et al.,  Measurement, Analysis, and Visualization of Directional Room Responses , i n AES 111th Convention, New York, N.Y., U.S.A., 2001 September 21–24, 2001. [3] Müller, S. and P. Massarani, 'Transfer-Function Measurement with Sweeps' .  Journal of the Audio Engineering  Society , 2001. 49(6): p. 443-471. Fourth Laser pointer on a railway trolley perpendicular to the metal ruler Third Laser pointer used to measured the acoustic centre of the speaker Fourth Laser pointer used aligned with the rope of the plumb bob Laser pointer combined with plumb bob accuracy ± 1 mm Detail of plumb bob at origin of the speaker and mic stand vibration decoupler 1 0 1 2 3 4 5 6 7 8 9 10 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5  DiffusenessEstimate(   )at theplaneXZ in ERB bands Time [ ms]     F   r   e   q   u   e   n   c   y    [    k    H   z    ] 100%Specular 90% 80% 70% 60% 50%Specular 40% 30% 20%    D    i   r   e   c   t   s   o   u   n    d    F    i   r   s   t    R   e    fl   e   c   t    i   o   n The use of Sound Intensity for Characterisation of Reected Energy in Small Rooms 1.- Objectives: a) T o develop a measurement system aiming t o measure the strength, tempor al and spatial properties of Early sound eld in Small Rooms with a spherical resolution similar to the Minimum Audible Angle (  MAA = ± 2º at the front). b) To nd out useful descriptors to characterise the acoustic of the Early Reection energy in small rooms. Julián Romero-Pérez, Bruno Fazenda, Mark R. Avis Acoustics Research Centre University of Salford Acoustics Research Centre University of Salford Email:  [email protected] 3.- Results: a) Time Domain method applied to Position 1 : 2.- Methods: 4.- Discussion: Absolute Relative Errors as a percentage. • Use of a Custom Rotation Cradle for the p-p probe. • Cross Laser alignment for the measurement of real positions at the receiver. • Calculation of Instantaneous Intensity in Time Domain. • Computation of Active Complex Instantaneous Intensity in Time Domain by applying the Hilbert transform H (  f  (t )) [1]. Use of Short Time Fourier Transform ( STFT ) with Equivalent Rectangular Bands (ERB) and Diffuseness Estimate ψ ( ) [2].   i active complex t ( ) = Re 1 2  p t ( ) + jH p t  ( ) ( ) u t ( ) jH  u t ( ) ( ) Precise location geometric centre of the p-p probe with the aid of a rectied Location Pin with 45º taper that acts like a mechanical pointer.  _______________________________ 1 http://www.minalum.com.mx/ Assembly detail o f pieces of the Rotation Cradle. It was manufactured using a CNC milling machine on High grade Aluminum within tolerances of ± 1 Octagonal prole for rotating: 45º, 90º 135º, 180º, 225º and 270º xed µ m Manufactured in Minalum de México S.A. de C.V . 1 Female thread for tripod mounting b) Short Time Fourier Transform ( STFT ) Method applied to Position 1: 0 1 2 3 4 5 6 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Time[ ms ]    I   n   s    t   a   n    t   a   n   e   o   u   s    I   n    t   e   n   s    i    t   y    i   n    X   a   x    i   s    [    W     /   m    2     ] Graph of the Instantaneous Intensity arrivals at plane XZ from 0 ms to 12.4375 ms  Envelope Intensity X H Envelope Intensity Z H Active instantaneous Intensity X Heyser ! Time of arrival Direct Sound = 0.208 ms Time of arrival First Reection = 5.385 ms Outsider values Outsider values For the Direct Sound both component signals  x and  z have same polarity. By simple trigonometry the modulus of the intensity yie lds a direc tion estimation of 45º. For the First Reection both components have opposite polarity , therefore the estimated angle becomes negative: -75º 10 20 30 30 210 60 240 90 270 120 300 150 330 180 0 Graph of the Instantaneous Intensity at plane XZ (Logarithmic scale) ! Direct Sound First Reection Less accurate estimation of First Reection 10 20 30 30 210 60 240 90 270 120 300 150 330 180 0 Graph of the Active Complex Instantaneous Intensity at plane XZ (Logarithmic scale) ! First Reection Direct Sound More Accurate estimation of First Reection Time Window resolution = 2.667 ms 1 0 1 2 3 4 5 6 7 8 9 10 1 0 1 2 3 4 5 6 7 8 9 10 Mean D irection ofsoundarrivals atthe planeXZ in ERB bands Time [ ms]    F   r   e   q   u   e   n   c   y    [    k    H   z    ]    D    i   r   e   c   t   s   o   u   n    d    F    i   r   s   t    R   e    fl   e   c   t    i   o   n 16 Equivalent Rectangular Bands (ERB ) in the frequency domain  z 14 measurement positions were tested in steps of 1º, 2º and 5º covering an angle range of 30º. 1 Receiver Positions 14 12 13 11 10 9 8 7 6 5 4 2 3 Source Position  x Rigid Floor in the semi-anechoic chamber Rotation cradle aligned at its geometric centre with a Laser Cross 5.- Conclusions: T wo methods had been presented to characterise the Time of Ar rival, S trength and Direction of Arrival of Early Reections: a) Time Domain ( TD) and b) Short Time Fourier Transform ( STFT ) method. Using these methods two variants had been compared: Instantaneous Intensity and a more accurate method based on Complex Instantaneous Intensity. The accuracy of the angle of arrival of Direct Sound and First Reection case had been validated using two measurement probes: a) p-p probe with a Mean error = 2.36º ±1.27º compared with a ST350 Soundeld Microphone, which has a mean error =18.79º ±0.256º(results not shown). The average err or was performed using the ERB bands of STFT method. B oth methods TD and STFT are c omplementary .

Julian Romero Poster Salford 2011 Final Corrected

Embed Size (px)

Citation preview

Page 1: Julian Romero Poster Salford 2011 Final Corrected

8/3/2019 Julian Romero Poster Salford 2011 Final Corrected

http://slidepdf.com/reader/full/julian-romero-poster-salford-2011-final-corrected 1/1