26
1 JT-60SA Eurat om Japan Atomic Energy Agency, 1) University of Tokyo, 2) EFDA Close Support Unit, 3) EFDA-CSU-Barcelona, 4) CEA Cadarache, 5) JET-EFDA, 6) EURATOM- ENEA, 7) Max-Planck Institut Title H. Tamai , T. Fujita, M. Kikuchi, K. Kizu, G. Kurita, K. Masaki, M. Matsukawa, Y. Miura, S. Sakurai, A. M. Sukegawa, Y. Takase 1) , K. Tsuchiya, D. Campbell 2) , S. Clement 3) , J. J. Cordier 4) , J. Pamela 5) , F. Romanelli 6) , and C. Sborchia 7) JT-60SA Eurat om JT-60SA Eurat om Prospective performances in JT-60SA towards the ITER and DEMO relevant plasmas O1A-A-360 24th SOFT Conference Sep. 2006, Warsaw, Poland

JT-60SA Euratom 1 Japan Atomic Energy Agency, 1) University of Tokyo, 2) EFDA Close Support Unit, 3) EFDA-CSU-Barcelona, 4) CEA Cadarache, 5) JET-EFDA,

Embed Size (px)

Citation preview

1

JT-60SA Euratom

Japan Atomic Energy Agency, 1) University of Tokyo, 2) EFDA Close Support Unit, 3) EFDA-CSU-Barcelona, 4) CEA Cadarache, 5) JET-EFDA, 6) EURATOM-ENEA, 7)

Max-Planck Institut

Title

H. Tamai, T. Fujita, M. Kikuchi, K. Kizu, G. Kurita,K. Masaki, M. Matsukawa, Y. Miura, S. Sakurai, A. M. Sukegawa, Y. Takase1), K. Tsuchiya, D. Campbell2), S. Clement3), J. J. Cordier4), J. Pamela5), F. Romanelli6), and C. Sborchia7)

JT-60SA Euratom

JT-60SA Euratom

Prospective performances in JT-60SA towards the ITER and DEMO relevant plasmas

O1A-A-36024th SOFT Conference

Sep. 2006, Warsaw, Poland

2

JT-60SA EuratomOUTLINE

• Mission and Concept

• Plasma Performance

• Engineering Design

• Time Schedule

• Summary

3

JT-60SA Euratom Mission and Concept

• Mission and Concept

• Plasma Performance

• Engineering Design

• Time Schedule

• Summary

4

JT-60SA Euratom

JT-60SA Project

• Japanese national project(former JT-60SC or NCT)

+• ITER satellite tokamak project

Combined project

Collaboration with Japan and EU fusion community

=

JT-60SA(JT-60 Super Advanced)

5

JT-60SA EuratomMission of JT-60SA

Support to ITER - ITER construction phase • optimization of operation scenario, auxiliary system • training of scientists, engineers and technicians - ITER operation phase

• support further development of operating scenarios and understanding of physics issues • Test of possible modifications before their implementation

Support to DEMO - to explore operational regimes and issues complementary to those being addressed in ITER • steady-state operation • advanced plasma regimes (high-beta plasma) • control of power fluxes to wall

Experimental research with ITER relevant plasma configuration - high density operation - increased heating power, plasma current

ITER similar configuration A=3.1, 95=1.7, 95=0.33, q95 =3.0

Support to ITER

divertor structure : TBDhigh-, shape for high-beta operation Time (s)

N

Test of Plasma Facing Component - Compatibility test of reduced activation ferritic steel - Test candidate divertor modules - Sample station for plasma-material research

Support to DEMO

Sustain high beta (N=3.5-5.5) non-inductive CD plasma - Explore high beta regime above no-wall limit - Develop optimized integrated scenario for DEMO for shape, aspect ratio,

SN/DN, current profile, MHD control, fuelling, pumping, divertor shape, …

Exp. in JT-60U

Target for JT-60SA

6

JT-60SA Euratom

Plasma Current Ip(MA) 3.5 / 5.5

Toroidal Field Bt (T) 2.59 / 2.72

Major Radius (m) 3.16 / 3.01

Minor Radius (m) 1.02 / 1.14

Elongation, 95 1.7 / 1. 83

Triangularity, 95 0.33 / 0. 57

Aspect Ratio, A 3.10 / 2.64

Shape Parameter, S 4.0 / 6.7

Safety Factor q95 3.0 / 3.77

Flattop Duration 100 s (8 hours)

Heating & CD power 41 MW x 100 s

N-NBI 34 MW

ECRH 7 MW

PFC wall load   10 MW/m2

Neutron (year) 4 x 1021

D2 main plasma + D2 beam injection

Basic Machine Parameters of JT-60SA

ITER similarhigh-S for DEMO

Gravity Support

NBIPort

Shear Panel

Center Solenoid

Stabilizing Plates

Vacuum vessel

Diagnostics Port

In-vessel Coil

Poloidal Field Coil

Spherical Cryostat

Toroidal Field Coil

7

JT-60SA Euratom

Heating & Current Drive Equipement

N-NB (500 keV) co (2u) 10 MW

P-NB (85 keV)

co (2u) 4 MW

ctr (2u) 4 MW

perp (8u) 16 MW

EC110 GHz 3 MW

140 GHz 4 MW

total 41 MW

• Increased injection power of N-NB, and EC

• P-NB : balanced injection for toroidal rotation control

• EC : two-frequency system for flexible control of CD, MHD…

P3-B-336 : Y. Ikeda, et al.

for 100s

Ip

co

Ip

N-NB(co)

EC

Tangential P-NB (ctr)

Perpendicular P-NB

Tangential P-NB (co)

Remote HandlingSystem

Resonance layer of EC with two-frequency system

8

JT-60SA Euratom

Mission and Concept

• Plasma Performance

• Engineering Design

• Time Schedule

• Summary

Plasma Performance

9

JT-60SA Euratom

• Capability to perform operation scenarios- standard operation- hybrid operation- full non-inductive CD operation

• Break-even class plasmas

• High-beta plasma accessibility- shape and aspect ratio- MHD control

• Heat and particle control- divertor plasma performance

Prospective estimation for ITER/DEMO relevant plasmas

10

JT-60SA Euratom

Feasibility for current drive scenario like an ITER hybrid operation

Hybrid operation up to 3.7MA for 100s will be available.

Cur

rent

dis

trib

utio

n (M

A)

Plasma current (MA)

4.0

3.0

2.0

1.0

0.03.23.0 3.4 3.6 3.8 4.0 4.2

beam driven

bootstrap

ohmic

70

80

90

100

110

120

130

140

150

0.114

0.116

0.118

0.120

0.122

0.124

0.126

0.128

0.130

3.0 3.2 3.4 3.6 3.8 4.0

Loop

vol

tage

(V

)

Ava

ilabl

e fla

ttop

(s)

Plasma current (MA)

FlattopVl

ACCOME-code analysis ITER similar configuration fGW=0.85, HHy2=1.3, q95=3.1, Pin=41MW

11

JT-60SA Euratom

High- full non-inductive current drive scenario

• 2.4 MA full current drive with A = 2.65, N = 4.4, fGW = 0.86, fBS = 0.70 and HH98y2 = 1.3 is possible with the total heating power of 41 MW.

• NNB is shifted down by 0.6 m for off-axis CD in order to form a weak reversed shear q profile.

• Normalized parameters are close to those required in DEMO (J05, slim CS).• RWM will be controlled by non-axisymmetric feedback coils (sector coils).

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

2 2.2 2.4 2.6 2.8 3 3.2

f GW

f BS

Ip [MA]

fGW

fBS

-0.20

0.20.40.60.8

1

0 0.2 0.4 0.6 0.8 1

j [M

A/m

2 ]

total

BS

BDEC

OH

02468

10

0

2

4

6

8

n e [10

19 m

-3],

Ti ,

Te [

keV

]

qTe Ti

ne

q

12

JT-60SA Euratom

Access for breakeven and high- plasma with ITER and DEMO relevant parameters

A=2.6, DN, q95~3.5, HH98y2=1.5

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

0.0 0.5 1.0 1.5 2.0

N

QDT

eq

3MA1.5T

3.5MA1.8T

4MA2T

4.5MA2.3T 5MA

2.5T

2.5MA1.25T

25 MWn/nGW=0.8

40 MWn/nGW=0.8

5.5MA2.8T

Accessibility for high QDT and high N is enhanced with increased heating power.

0.00 0.02 0.04 0.06 0.08 0.10 0.12

Normalized collision frequency e*

41MW, HH98y2=1.3

ITER (Steady state)

DEMO (J05)

3MA, fGW=0.56

25MW, HH98y2=1.50.010

0.008

0.006

0.004

0.002

0.000

Nor

mal

ized

Lar

mor

rad

ius

i*

2.4MA, fGW=0.86

Non-dimensional parameters with ITER and DEMO relevant region are expected.

A~2.6, ~1.8, q95~5.5, N~4 (2.4MA, fGW=0.86)

break-even class plasma

TFTR

ITER

JT-60

DIII-D

FTU

LHD

C-Mod JET

Ti(0) (K)

JT-60SA

KSTAR

Self-ignitionCondition

1021

1020

1019EAST

DEMO

Break-evenCondition

108 109107

nD(0

) E

(s

ec/m

3)

collisionless /small normalized Larmor radius

13

JT-60SA Euratom

SIp

aBT

q95 A-11+2(1+22)

4 5 6 7 8

2.5

3.0

3.5

Shape parameter S

Asp

ect

rat

io 

A

Divertor pumping(m3/s)≥100 <100

Double nullSingle null

ITER

Flexibility in aspect ratio and plasma shape for high- plasma accessibility

*M. R. Wade, et al., Phys. Plasmas 8 (2001) 2208.

JT-60SA

S=2.0-2.2S=3.1-3.6

JT-60 ASDEX-U JET DIII-D

6

5

4

3

2

Nor

mal

ized

bet

a

N

2 3 4 5 6 7Shape parameter S

DIII-D Experiment *

ITERJT-60

Target of JT-60SAN: 3.5~5.5

S=2-8S=3.0-5.4

S=2.3-7.4

Shape parameter

Flexibility in S and A is extended, which enhances the research capability for high- plasma operation.

14

JT-60SA Euratom

Achievable N depends very much on the location of sector coil

   outside stabliser plates : N~3.8 inside stabiliser plates :

N~5.6

・ Sector coils are located on the port entrance in the present design

(Analysis ongoing)

100

101

102

103

104

2 3 4 5 6 7

gro

wth

rat

e [1

/s]

N

RWM stabilisation by feedback control of sector coils (VALEN code analysis*)

100

101

102

103

104

2 3 4 5 6 7

Gp = 0

Gp = 10

7

Gp = 108

Gp = 10

9

ideal wall

gro

wth

ra

te [

1/s

]

N

Ideal limit

Outside

Inside

Controllability for resistive wall mode (RWM)

*G. Kurita, et al., Nucl. Fusion 46 (2006) 383.

15

JT-60SA Euratom

0

25

50

0 50 100 150

j=2,f(i)_II_12,15,18ne

puff

=0.5e22 s-1,Spump

=50 m3/s

puff

=3.0e22 s-1

Spump

=200 m3/s

x (mm)

nedo

(1019

m-3

)

0

25

50

050100150

j=119,f(i)_II_12,15,18ne

puff

=0.5e22 s-1,Spump

=50 m3/s

puff

=3.0e22 s-1

Spump

=200 m3/s

x (mm)

nedi

(1019

m-3

)

0

10

20

30

40

0 50 100 150

j=2,f(i)_II_12,15,18Te

Te

Te

Te

x (mm)

Tedo

(eV)

0

10

20

30

40

050100150

j=119,f(i)_II_12,15,18Te

Te

Te

Te

x (mm)

Tedi

(eV)

- ~1.83, dicertor leg ~ 0.8 m

- Cryopanel under the dome (200 m3/s)- Vertical divertor target (60-80˚)

Qtotal=12 MW, ion= 1 x1022s-1, puff =0.5 x1022s-1 ,

Spump = 50 m3/s, e=i=1 m2/s, D=0.3 m2/s , Cimp=1 %

Heat & particle control with semi-closed divertor

Divertor plasma simulation with SOLDOR/NEUT2D code

Detachment control will be available with a strong gas puff.

H. Kawashima, et al., Fus. Eng. Design 81 (2006) 1613.

16

JT-60SA Euratom Engineering Design

Mission and Concept

• Plasma Performance

• Engineering Design

• Time Schedule

• Summary

17

JT-60SA Euratom

Cryostat• Structure design • Structure analysis• Thermal shielding

Engineering Design and Procurement Allocation

First Wall• PFC Ferrite (F82H)• Structure design • Baking/Cooling

Divertor• Target design• Heat removal• Particle pumping• Cooling system

Power Supply

Cryogenic System

Radiation Shielding• R&D of shielding material   Boron doped resin etc.• Shielding analysis   2D/3D code

Vacuum Vessel• Structure design • Structure analysis• Baking • Thermal shielding

Superconducting Magnet• Cable-in-conduit conductor• Structure analysis• Support structure

Remote Handling System

TFPF

ECH System

18

JT-60SA Euratom

conductor EF

TF CS

TF CS EF strand NbTi Nb3Sn NbTiconductor cable-in-conduit Bmax (T) 6.4 10 5.0 Top (K) 4.6 5.0 4.8 Iop (kA) 26.5 20 20

Superconducting Coils

P1-E-328 : K. Tsuchiya, et al

P1-E-286 : K. Kizu, et al.

19

JT-60SA Euratom

Vacuum vessel

VV support leg structure

VV is supported with 9 legs.

VV has a double-wall structure.cylindrical: toroidally, polygonal:poloidally140mm 2424

Low cobalt SS316L

(Boronic acid Water)

Bird’s-eye view of vacuum vessel

31

40

mm

9926 mm

one turn resistance: ~15µΩ

baking temp. : ~200˚C (TBD)

Shielding water

VV is covered with a thermal shield.

Helium gas

consists of 18 sections

spring plates (AISI660) for baking

Connection plate to restrain the horizontal swing of VV

SS316

weight: ~300 ton without in-vessel components

3mm

20

JT-60SA Euratom

Plasma facing components

• First wall, divertor modules will be feasible for the maintenance by remote handling system.

• Mono-block target (15MW/m2) will be adopted after the relliability is established bysignficant R&D.

• Exchange with full metal plasma facing components will be decided after experimental and computational analyses.

P2-F-341 : S. Sakurai, et al.

Header(permanent)

Bellows for thermal expansion of heat sink

Pipe connection for laser cutter/welder

Bolted exchangeable armor tiles

Exchangeable heat sink

~0.3m

~1.6m

Total thickness ~ 7cm

Example of FW with exchangeable heat sink

Example of divertor cassette with crank support

Crank support for allowing large thermal expansion

Width 10deg, Weight <500kg

Divertor target

Heat sink for bolted armor

Divertor and dome geometry will be determined.

21

JT-60SA Euratom

SS304 SS304

SS316L SS316L

Radiation Shield

P3-J-302 : A. M. Sukegawa, et al.

DD neutron emission rate

4x1017 n/sec

5x1020 n/week

3x1021 n/3M

4x1021 n/year

22

JT-60SA Euratom Time Schedule

Mission and Concept

• Plasma Performance

• Engineering Design

• Time Schedule

• Summary

23

JT-60SA EuratomTime Schedule

2006 Completeion of Conceptual Design with the collaboration of JA and EU design teams

2007 Detailed Design and Starts of Construction

BA year

Tokamak device

Auxiliary system in-vessel,H&CD,Diag./PS

installationOperation

integrated cold test+OH H&CD up

6 7

Significant H&CD

9 108

H&CD,Diag re-install

1 2 3 4 5

Schedule of construction and operation agreed in JA-EU WGConstruction: 7 years + exploitation: 3 years

24

JT-60SA EuratomSummary

• Prospective performance in JT-60SA plasma is estimated on the viewpoint of ITER / DEMO support.

• ITER operation scenario will be investigated with the ITER similar configuration (shape, ne, etc.) by

increased heating power and plasma current.

• Steady-state, high beta plasma controllability will be foreseen (support to DEMO).

• Engineering design will be performed with JA and EU, and the construction is planned to start next year.

25

JT-60SA Euratom

Thank you for your attention.

Dziekuje !!

Acknowledgement

P1-E-286 : K. Kizu, et al. R&D of superconducting coil conductor

P1-E-328 : K. Tsuchiya, et al. Superconducting coil system

P2-F-341 : S. Sakurai, et al. Plasma facing components

P3-J-302 : A. M. Sukegawa, et al.Safety design

P3-B-336 : Y. Ikeda, et al. NBI system

Related Poster PresentationJT-60SA Euratom

26

JT-60SA Euratom