115
Jointly distributed Random variables Multivariate distributions

Jointly distributed Random variables Multivariate distributions

Embed Size (px)

Citation preview

Page 1: Jointly distributed Random variables Multivariate distributions

Jointly distributed Random variables

Multivariate distributions

Page 2: Jointly distributed Random variables Multivariate distributions

Quite often there will be 2 or more random variables (X, Y, etc) defined for the same random experiment.

Example:

A bridge hand (13 cards) is selected from a deck of 52 cards.

X = the number of spades in the hand.

Y = the number of hearts in the hand.

In this example we will define:

p(x,y) = P[X = x, Y = y]

Page 3: Jointly distributed Random variables Multivariate distributions

The function

p(x,y) = P[X = x, Y = y]

is called the joint probability function of X and Y.

Page 4: Jointly distributed Random variables Multivariate distributions

Note:

The possible values of X are 0, 1, 2, …, 13

The possible values of Y are also 0, 1, 2, …, 13 and X + Y ≤ 13.

, ,p x y P X x Y y

13 13 26

13

52

13

x y x y

The total number of ways of choosing the 13 cards for the hand

The number of ways of choosing the x spades for the hand

The number of ways of choosing the y hearts for the hand

The number of ways of completing the hand with diamonds and clubs.

Page 5: Jointly distributed Random variables Multivariate distributions

Table: p(x,y)

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 0.0000 0.0002 0.0009 0.0024 0.0035 0.0032 0.0018 0.0006 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

1 0.0002 0.0021 0.0085 0.0183 0.0229 0.0173 0.0081 0.0023 0.0004 0.0000 0.0000 0.0000 0.0000 -

2 0.0009 0.0085 0.0299 0.0549 0.0578 0.0364 0.0139 0.0032 0.0004 0.0000 0.0000 0.0000 - -

3 0.0024 0.0183 0.0549 0.0847 0.0741 0.0381 0.0116 0.0020 0.0002 0.0000 0.0000 - - -

4 0.0035 0.0229 0.0578 0.0741 0.0530 0.0217 0.0050 0.0006 0.0000 0.0000 - - - -

5 0.0032 0.0173 0.0364 0.0381 0.0217 0.0068 0.0011 0.0001 0.0000 - - - - -

6 0.0018 0.0081 0.0139 0.0116 0.0050 0.0011 0.0001 0.0000 - - - - - -

7 0.0006 0.0023 0.0032 0.0020 0.0006 0.0001 0.0000 - - - - - - -

8 0.0001 0.0004 0.0004 0.0002 0.0000 0.0000 - - - - - - - -

9 0.0000 0.0000 0.0000 0.0000 0.0000 - - - - - - - - -

10 0.0000 0.0000 0.0000 0.0000 - - - - - - - - - -

11 0.0000 0.0000 0.0000 - - - - - - - - - - -

12 0.0000 0.0000 - - - - - - - - - - - -

13 0.0000 - - - - - - - - - - - - -

13 13 26

13

52

13

x y x y

Page 6: Jointly distributed Random variables Multivariate distributions

Bar graph: p(x,y)

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0

3

6

9

12

-

0.0100

0.0200

0.0300

0.0400

0.0500

0.0600

0.0700

0.0800

0.0900

x

y

p(x,y)

Page 7: Jointly distributed Random variables Multivariate distributions

Example:

A die is rolled n = 5 times

X = the number of times a “six” appears.

Y = the number of times a “five” appears.

Now

p(x,y) = P[X = x, Y = y]

The possible values of X are 0, 1, 2, 3, 4, 5.

The possible values of Y are 0, 1, 2, 3, 4, 5.

and X + Y ≤ 5

Page 8: Jointly distributed Random variables Multivariate distributions

A typical outcome of rolling a die n = 5 times will be a sequence F5FF6 where F denotes the outcome {1,2,3,4}. The probability of any such sequence will be:

51 1 4

6 6 6

x y x y

where

x = the number of sixes in the sequence and

y = the number of fives in the sequence

Page 9: Jointly distributed Random variables Multivariate distributions

Now

p(x,y) = P[X = x, Y = y]

51 1 4

6 6 6

x y x y

K

Where K = the number of sequences of length 5 containing x sixes and y fives.

5 5 5

5

x x y

x y x y

5 !5! 5!

! 5 ! ! 5 ! ! ! 5 !

x

x x y x y x y x y

Page 10: Jointly distributed Random variables Multivariate distributions

Thus

p(x,y) = P[X = x, Y = y]

55! 1 1 4

! ! 5 ! 6 6 6

x y x y

x y x y

if x + y ≤ 5 .

Page 11: Jointly distributed Random variables Multivariate distributions

Table: p(x,y)

0 1 2 3 4 5

0 0.1317 0.1646 0.0823 0.0206 0.0026 0.00011 0.1646 0.1646 0.0617 0.0103 0.0006 02 0.0823 0.0617 0.0154 0.0013 0 03 0.0206 0.0103 0.0013 0 0 04 0.0026 0.0006 0 0 0 05 0.0001 0 0 0 0 0

55! 1 1 4

! ! 5 ! 6 6 6

x y x y

x y x y

Page 12: Jointly distributed Random variables Multivariate distributions

0 1 2 3 4 5

0

12

34

5

0.0000

0.0200

0.0400

0.0600

0.0800

0.1000

0.1200

0.1400

0.1600

0.1800

Bar graph: p(x,y)

x

y

p(x,y)

Page 13: Jointly distributed Random variables Multivariate distributions

General properties of the joint probability function;

p(x,y) = P[X = x, Y = y]

1. 0 , 1p x y

2. , 1x y

p x y

3. , ,P X Y A p x y ,x y A

Page 14: Jointly distributed Random variables Multivariate distributions

Example:

A die is rolled n = 5 times

X = the number of times a “six” appears.

Y = the number of times a “five” appears.

What is the probability that we roll more sixes than fives

i.e. what is P[X > Y]?

Page 15: Jointly distributed Random variables Multivariate distributions

Table: p(x,y)

0 1 2 3 4 5

0 0.1317 0.1646 0.0823 0.0206 0.0026 0.00011 0.1646 0.1646 0.0617 0.0103 0.0006 02 0.0823 0.0617 0.0154 0.0013 0 03 0.0206 0.0103 0.0013 0 0 04 0.0026 0.0006 0 0 0 05 0.0001 0 0 0 0 0

55! 1 1 4

! ! 5 ! 6 6 6

x y x y

x y x y

, 0.3441P X Y p x y x y

Page 16: Jointly distributed Random variables Multivariate distributions

Marginal and conditional distributions

Page 17: Jointly distributed Random variables Multivariate distributions

Definition:

Let X and Y denote two discrete random variables with joint probability function

p(x,y) = P[X = x, Y = y]

Then

pX(x) = P[X = x] is called the marginal probability function of X.

pY(y) = P[Y = y] is called the marginal probability function of Y.

and

Page 18: Jointly distributed Random variables Multivariate distributions

Note: Let y1, y2, y3, … denote the possible values of Y.

Xp x P X x

1 2, ,P X x Y y X x Y y

1 2, ,P X x Y y P X x Y y

1 2, ,p x y p x y

, ,jj y

p x y p x y Thus the marginal probability function of X, pX(x) is obtained from the joint probability function of X and Y by summing p(x,y) over the possible values of Y.

Page 19: Jointly distributed Random variables Multivariate distributions

Also

Yp y P Y y

1 2, ,P X x Y y X x Y y

1 2, ,P X x Y y P X x Y y

1 2, ,p x y p x y

, ,ii x

p x y p x y

Page 20: Jointly distributed Random variables Multivariate distributions

Example:

A die is rolled n = 5 times

X = the number of times a “six” appears.

Y = the number of times a “five” appears.

0 1 2 3 4 5 p X (x )

0 0.1317 0.1646 0.0823 0.0206 0.0026 0.0001 0.40191 0.1646 0.1646 0.0617 0.0103 0.0006 0 0.40192 0.0823 0.0617 0.0154 0.0013 0 0 0.16083 0.0206 0.0103 0.0013 0 0 0 0.03224 0.0026 0.0006 0 0 0 0 0.00325 0.0001 0 0 0 0 0 0.0001

p Y (y ) 0.4019 0.4019 0.1608 0.0322 0.0032 0.0001

Page 21: Jointly distributed Random variables Multivariate distributions

Conditional Distributions

Page 22: Jointly distributed Random variables Multivariate distributions

Definition:

Let X and Y denote two discrete random variables with joint probability function

p(x,y) = P[X = x, Y = y]

Then

pX |Y(x|y) = P[X = x|Y = y] is called the conditional probability function of X given Y = y

and

pY |X(y|x) = P[Y = y|X = x] is called the conditional probability function of Y given X = x

Page 23: Jointly distributed Random variables Multivariate distributions

Note

X Yp x y P X x Y y

, ,

Y

P X x Y y p x y

P Y y p y

Y Xp y x P Y y X x

, ,

X

P X x Y y p x y

P X x p x

and

Page 24: Jointly distributed Random variables Multivariate distributions

• Marginal distributions describe how one variable behaves ignoring the other variable.

• Conditional distributions describe how one variable behaves when the other variable is held fixed

Page 25: Jointly distributed Random variables Multivariate distributions

Example:

A die is rolled n = 5 times

X = the number of times a “six” appears.

Y = the number of times a “five” appears.

0 1 2 3 4 5 p X (x )

0 0.1317 0.1646 0.0823 0.0206 0.0026 0.0001 0.40191 0.1646 0.1646 0.0617 0.0103 0.0006 0 0.40192 0.0823 0.0617 0.0154 0.0013 0 0 0.16083 0.0206 0.0103 0.0013 0 0 0 0.03224 0.0026 0.0006 0 0 0 0 0.00325 0.0001 0 0 0 0 0 0.0001

p Y (y ) 0.4019 0.4019 0.1608 0.0322 0.0032 0.0001

x

y

Page 26: Jointly distributed Random variables Multivariate distributions

The conditional distribution of X given Y = y.

0 1 2 3 4 5

0 0.3277 0.4096 0.5120 0.6400 0.8000 1.00001 0.4096 0.4096 0.3840 0.3200 0.2000 0.00002 0.2048 0.1536 0.0960 0.0400 0.0000 0.00003 0.0512 0.0256 0.0080 0.0000 0.0000 0.00004 0.0064 0.0016 0.0000 0.0000 0.0000 0.00005 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000

pX |Y(x|y) = P[X = x|Y = y]

x

y

Page 27: Jointly distributed Random variables Multivariate distributions

0 1 2 3 4 5

0 0.3277 0.4096 0.2048 0.0512 0.0064 0.00031 0.4096 0.4096 0.1536 0.0256 0.0016 0.00002 0.5120 0.3840 0.0960 0.0080 0.0000 0.00003 0.6400 0.3200 0.0400 0.0000 0.0000 0.00004 0.8000 0.2000 0.0000 0.0000 0.0000 0.00005 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000

The conditional distribution of Y given X = x.

pY |X(y|x) = P[Y = y|X = x]

x

y

Page 28: Jointly distributed Random variables Multivariate distributions

Example

A Bernoulli trial (S - p, F – q = 1 – p) is repeated until two successes have occurred.

X = trial on which the first success occurs

and

Y = trial on which the 2nd success occurs.

Find the joint probability function of X, Y.

Find the marginal probability function of X and Y.

Find the conditional probability functions of Y given X = x and X given Y = y,

Page 29: Jointly distributed Random variables Multivariate distributions

Solution

A typical outcome would be:

FFF…FSFFF…FSx - 1

x y

y – x - 1

1 1 2 2 if x y x yq pq p q p y x

, ,p x y P X x Y y

2 2 if

, 0 otherwise

yq p y xp x y

Page 30: Jointly distributed Random variables Multivariate distributions

p(x,y) - Table

y

1 2 3 4 5 6 7 8

x

1 0 p2 p2q p2q2 p2q3 p2q4 p2q5 p2q6

2 0 0 p2q p2q2 p2q3 p2q4 p2q5 p2q6

3 0 0 0 p2q2 p2q3 p2q4 p2q5 p2q6

4 0 0 0 0 p2q3 p2q4 p2q5 p2q6

5 0 0 0 0 0 p2q4 p2q5 p2q6

6 0 0 0 0 0 0 p2q5 p2q6

7 0 0 0 0 0 0 0 p2q6

8 0 0 0 0 0 0 0 0

Page 31: Jointly distributed Random variables Multivariate distributions

The marginal distribution of X

Xp x P X x ,y

p x y

2 1 2 2 1 2 2x x x xp q p q p q p q

2 2

1

y

y x

p q

2 1 2 31xp q q q q

2 1 11

1x xp q pq

q

This is the geometric distribution

Page 32: Jointly distributed Random variables Multivariate distributions

The marginal distribution of Y

Yp y P Y y ,x

p x y

2 21 2,3,4,

0 otherwise

yy p q y

This is the negative binomial distribution with k = 2.

Page 33: Jointly distributed Random variables Multivariate distributions

The conditional distribution of X given Y = y

X Yp x y P X x Y y

, ,

Y

P X x Y y p x y

P Y y p y

2 2

1

y

x

p q

pq

1 for 1, 2, 3y xpq y x x x

This is the geometric distribution with time starting at x.

Page 34: Jointly distributed Random variables Multivariate distributions

The conditional distribution of Y given X = x

Y Xp y x P Y y X x

, ,

X

P X x Y y p x y

P X x p x

2 2

2 2

1

1 1

y

y

p q

y p q y

This is the uniform distribution on the values 1, 2, …(y – 1)

for 1,2,3, , 1x y

Page 35: Jointly distributed Random variables Multivariate distributions

SummaryDiscrete Random Variables

Page 36: Jointly distributed Random variables Multivariate distributions

The joint probability function;

p(x,y) = P[X = x, Y = y]

1. 0 , 1p x y

2. , 1x y

p x y

3. , ,P X Y A p x y ,x y A

Page 37: Jointly distributed Random variables Multivariate distributions

Continuous Random Variables

Page 38: Jointly distributed Random variables Multivariate distributions

Definition: Two random variable are said to have joint probability density function f(x,y) if

1. 0 ,f x y

2. , 1f x y dxdy

3. , ,P X Y A f x y dxdy A

Page 39: Jointly distributed Random variables Multivariate distributions

If 0 ,f x y

,f x y dxdyA

then ,z f x y

defines a surface over the x – y plane

Page 40: Jointly distributed Random variables Multivariate distributions

Multiple Integration

Page 41: Jointly distributed Random variables Multivariate distributions

,f x y dxdyA

A

f(x,y)

Page 42: Jointly distributed Random variables Multivariate distributions

If the region A = {(x,y)| a ≤ x ≤ b, c ≤ y ≤ d} is a rectangular region with sides parallel to the coordinate axes:

x

y

d

c

a b

,f x y dxdyA

f(x,y)

, ,d b b d

c a a c

f x y dx dy f x y dy dx

Then

Page 43: Jointly distributed Random variables Multivariate distributions

,f x y dxdyA

f(x,y)

,d b

c a

f x y dxdy

To evaluate

,d b

c a

f x y dx dy

Then evaluate the outer integral

,b

a

G y f x y dxFirst evaluate the inner integral

,d b d

c a c

f x y dxdy G y dy

Page 44: Jointly distributed Random variables Multivariate distributions

x

y

d

c

a b

y

f(x,y)

,b

a

G y f x y dx = area under surface above the line where y is constant

,d b d

c a c

f x y dxdy G y dy

dy

Infinitesimal volume under surface above the line where y is constant

Page 45: Jointly distributed Random variables Multivariate distributions

,f x y dxdyA

f(x,y)

,b d

a c

f x y dydx

The same quantity can be calculated by integrating first with respect to y, than x.

,b d

a c

f x y dy dx

Then evaluate the outer integral

,d

c

H x f x y dyFirst evaluate the inner integral

,b d b

a c a

f x y dydx H x dx

Page 46: Jointly distributed Random variables Multivariate distributions

x

y

d

c

a bx

f(x,y)

,d

c

H x f x y dy = area under surface above the line where x is constant

,b d b

a c a

f x y dydx H x dx

dx

Infinitesimal volume under surface above the line where x is constant

Page 47: Jointly distributed Random variables Multivariate distributions

f(x,y)

1 1 1 1

2 3 2 3

0 0 0 0

x y xy dxdy x y xy dydx

Example: Compute

Now

1 1 1 1

2 3 2 3

0 0 0 0

x y xy dxdy x y xy dx dy

11 3 2

3

0 03 2

x

x

x xy y dy

11 2 4

3

0 0

1 1 1 1

3 2 3 2 2 4

y

y

y yy y dy

1 1 7

6 8 24

Page 48: Jointly distributed Random variables Multivariate distributions

f(x,y)

The same quantity can be computed by reversing the order of integration

1 1 1 1

2 3 2 3

0 0 0 0

x y xy dydx x y xy dy dx

11 2 4

2

0 02 4

y

y

y yx x dx

11 3 22

0 0

1 1 1 1

2 4 2 3 4 2

x

x

x xx x dx

1 1 7

6 8 24

Page 49: Jointly distributed Random variables Multivariate distributions

Integration over non rectangular regions

Page 50: Jointly distributed Random variables Multivariate distributions

Suppose the region A is defined as follows

A = {(x,y)| a(y) ≤ x ≤ b(y), c ≤ y ≤ d}

x

y

d

c

a(y) b(y)

,f x y dxdyA

,b yd

c a y

f x y dx dy

Then

Page 51: Jointly distributed Random variables Multivariate distributions

If the region A is defined as follows

A = {(x,y)| a ≤ x ≤ b, c(x) ≤ y ≤ d(x) }

x

y

ba

d(x)

c(x)

,f x y dxdyA

,d xb

a c x

f x y dy dx

Then

Page 52: Jointly distributed Random variables Multivariate distributions

In general the region A can be partitioned into regions of either type

x

y

A1

A3

A4

A2

A

Page 53: Jointly distributed Random variables Multivariate distributions

f(x,y)

Example: Compute the volume under f(x,y) = x2y + xy3 over the region A = {(x,y)| x + y ≤ 1, 0 ≤ x, 0 ≤ y}

x

y

x + y = 1

(1, 0)

(0, 1)

Page 54: Jointly distributed Random variables Multivariate distributions

f(x,y)

Integrating first with respect to x than y

x

y

x + y = 1

(1, 0)

(0, 1)

(0, y) (1 - y, y)

11

2 3

0 0

y

x y xy dx dy

11

2 3 2 3

0 0

y

x y xy dxdy x y xy dxdy

A

Page 55: Jointly distributed Random variables Multivariate distributions

and

11

2 3

0 0

y

x y xy dx dy

11 3 2

3

0 03 2

x y

x

x xy y dy

3 21

3

0

1 1

3 2

y yy y dy

1 2 3 4 3 4 5

0

3 3 2

3 2

y y y y y y ydy

31 1 1 2 12 4 5 4 5 61

3 2

1 1 1 1 1 1 16 3 4 15 8 5 12 20 40 30 8 15 24 10 3 1

120 120 40

Page 56: Jointly distributed Random variables Multivariate distributions

Now integrating first with respect to y than x

x

y

x + y = 1

(1, 0)

(0, 1)

(x, 0)

(x, 1 – x )

1 1

2 3

0 0

x

x y xy dy dx

1 1

2 3 2 3

0 0

x

x y xy dydx x y xy dydx

A

Page 57: Jointly distributed Random variables Multivariate distributions

Hence

1 1

2 3

0 0

x

x y xy dy dx

11 2 4

2

0 02 4

y x

y

y yx x dx

2 412

0

1 1

2 4

x xx x dx

1 2 3 4 2 3 4 5

0

2 4 6 4

2 4

x x x x x x x xdx

1 2 3 4 5

0

2 2 2

4

x x x x xdx

15 20 15 12 61 1 1 1 1 48 6 8 10 20 120 120

Page 58: Jointly distributed Random variables Multivariate distributions

Continuous Random Variables

Page 59: Jointly distributed Random variables Multivariate distributions

Definition: Two random variable are said to have joint probability density function f(x,y) if

1. 0 ,f x y

2. , 1f x y dxdy

3. , ,P X Y A f x y dxdy A

Page 60: Jointly distributed Random variables Multivariate distributions

Definition: Let X and Y denote two random variables with joint probability density function f(x,y) then

the marginal density of X is

,Xf x f x y dy

the marginal density of Y is

,Yf y f x y dx

Page 61: Jointly distributed Random variables Multivariate distributions

Definition: Let X and Y denote two random variables with joint probability density function f(x,y) and marginal densities fX(x), fY(y) then

the conditional density of Y given X = x

,

Y XX

f x yf y x

f x

conditional density of X given Y = y

,

X YY

f x yf x y

f y

Page 62: Jointly distributed Random variables Multivariate distributions

The bivariate Normal distribution

Page 63: Jointly distributed Random variables Multivariate distributions

Let

2 2

1 1 1 1 2 2 2 2

1 1 2 2

1 2 2

2

,1

x x x x

Q x x

1 21

,2

1 2 21 2

1, e

2 1

Q x xf x x

where

This distribution is called the bivariate Normal distribution.

The parameters are 1, 2 , 1, 2 and

Page 64: Jointly distributed Random variables Multivariate distributions

Surface Plots of the bivariate Normal distribution

Page 65: Jointly distributed Random variables Multivariate distributions

Note:

2 2

1 1 1 1 2 2 2 2

1 1 2 2

1 2 2

2

,1

x x x x

Q x x

1 21

,2

1 2 21 2

1, e

2 1

Q x xf x x

is constant when

is constant.

This is true when x1, x2 lie on an ellipse centered at 1, 2 .

Page 66: Jointly distributed Random variables Multivariate distributions

x

y

f(x,y)

x

y

f(x,y)

x

y

f(x,y)

The Bivariate Normal Distribution

x

y y y

x x1

2

1 1

2 2

Contour Plots of the Bivariate Normal Distribution

x

y y y

x x1

2

1 1

2 2

Scatter Plots of data from the Bivariate Normal Distribution

1 2 1 2 1 2

1 2 1 2 1 2

1 21 2

1 2

Page 67: Jointly distributed Random variables Multivariate distributions

Marginal and Conditional distributions

Page 68: Jointly distributed Random variables Multivariate distributions

1 1 1 2 2,f x f x x dx

Marginal distributions for the Bivariate Normal distribution

Recall the definition of marginal distributions for continuous random variables:

and

It can be shown that in the case of the bivariate normal distribution the marginal distribution of xi is Normal with mean i and standard deviation i.

2 2 1 2 1,f x f x x dx

Page 69: Jointly distributed Random variables Multivariate distributions

The marginal distributions of x2 is

2 2 1 2 1,f x f x x dx

1 2

1,

212

1 2

1e

2 1

Q x xdx

where

2 2

1 1 1 1 2 2 2 2

1 1 2 2

1 2 2

2

,1

x x x x

Q x x

Proof:

Page 70: Jointly distributed Random variables Multivariate distributions

Now:

2 2

1 1 1 1 2 2 2 2

1 1 2 2

1 2 2

2

,1

x x x x

Q x x

2 2 2

1 112 2 2

2x a x a a

c x cb b b b

21 1 2 2

12 2 22 1

21 1 1

x xx

22

2 2 2 2112 2 2 2 2

1 2 1 2

21 1 1

x x

Page 71: Jointly distributed Random variables Multivariate distributions

Hence 2 2 211 or 1 b b

Also

1 2 22 2 2

2 11 1

xa

b

11 22

2

1

1x

and 11 2

2

a x

Page 72: Jointly distributed Random variables Multivariate distributions

Finally

222

2 2 2 2112 2 2 2 2 2

1 2 1 2

21 1 1

x xac

b

22 2

2 2 2 211 22 2 2 2 2

1 2 1 2

21 1 1

x x ac

b

22

2 2 2 2112 2 2 2 2

1 2 1 2

21 1 1

x x

2

11 2

2

21

x

Page 73: Jointly distributed Random variables Multivariate distributions

and

2

22 1 11 1 2 2 2 222 2

2 21

12

1c x x

2

11 2 2

2

x

2

2212 222 2

21

11

1x

2

2 2

2

x

Page 74: Jointly distributed Random variables Multivariate distributions

Summarizing

2 2

1 1 1 1 2 2 2 2

1 1 2 2

1 2 2

2

,1

x x x x

Q x x

2

1x ac

b

where 21 1 b

11 2

2

a x

2

2 2

2

xc

and

Page 75: Jointly distributed Random variables Multivariate distributions

Thus 2 2 1 2 1,f x f x x dx

1 2

1,

212

1 2

1e

2 1

Q x xdx

211

2

121 2

1e

2 1

x ac

bdx

2112

212

1 2

2 1e

22 1

x acbbe

dxb

22 2

2

1

2

2

1

2

x

e

Page 76: Jointly distributed Random variables Multivariate distributions

Thus the marginal distribution of x2 is Normal with mean 2 and standard deviation 2.

Similarly the marginal distribution of x1 is Normal with mean 1 and standard deviation 1.

Page 77: Jointly distributed Random variables Multivariate distributions

1 2

1 2122 2

,f x xf x x

f x

Conditional distributions for the Bivariate Normal distribution

Recall the definition of conditional distributions for continuous random variables:

and

It can be shown that in the case of the bivariate normal distribution the conditional distribution of xi given xj is Normal with:

1 2

2 1211 1

,f x xf x x

f x

andmean

standard deviation

ii j ji j

j

x

21ii j

Page 78: Jointly distributed Random variables Multivariate distributions

Proof

1 2

2 1211 1

,f x xf x x

f x

1 2

22 2

2

1,

2

21 2

1

2

2

e

2 1

1

2

Q x x

x

e

222

1 2 22 21 2

22

1 11 1,

2 22 2

2 21 1

e e

2 1 2 1

x a xx cQ x xb

Page 79: Jointly distributed Random variables Multivariate distributions

where 21 1 b

11 2

2

a x

2

2 2

2

xc

and

2

11

21 212

1

2

x a

bf x x eb

Hence

Thus the conditional distribution of x2 given x1 is Normal with:

andmean

standard deviation

11 2 212

2

a x

2112 1b

Page 80: Jointly distributed Random variables Multivariate distributions

Bivariate Normal Distribution with marginal distributions

Page 81: Jointly distributed Random variables Multivariate distributions

Bivariate Normal Distribution with conditional distribution

Page 82: Jointly distributed Random variables Multivariate distributions

(1, 2)

x2

x1

Regression

Regression to the mean

22 1 221

1

x

Major axis of ellipses

Page 83: Jointly distributed Random variables Multivariate distributions

Suppose that a rectangle is constructed by first choosing its length, X and then choosing its width Y.

Its length X is selected form an exponential distribution with mean = 1/ = 5. Once the length has been chosen its width, Y, is selected from a uniform distribution form 0 to half its length.

Find the probability that its area A = XY is less than 4.

Example:

Page 84: Jointly distributed Random variables Multivariate distributions

Solution:

, X Y Xf x y f x f y x

151

5 for 0xXf x e x

1 if 0 2

2Y Xf y x y xx

1 15 51 2

5 5

1= if 0 2, 0

2x x

xe e y x xx

Page 85: Jointly distributed Random variables Multivariate distributions

xy = 4y = x/2

2 4y x x 2 8 or 8 2 2x x

2 2 2 2 2y x

2 2, 2

Page 86: Jointly distributed Random variables Multivariate distributions

2 2, 2

4

2 2 2

0 0 02 2

4 , ,

xx

P XY f x y dydx f x y dydx

Page 87: Jointly distributed Random variables Multivariate distributions

4

2 2 2

0 0 02 2

4 , ,

xx

P XY f x y dydx f x y dydx

1 15 5

42 2 2

2 25 5

0 0 02 2

xx

x x

x xe dydx e dydx

1 15 5

2 22 2 4

5 2 50 2 2

x xxx x xe dx e dx

1 15 5

2 2281

5 50 2 2

x xe dx x e dx

This part can be

evaluated

This part may require Numerical evaluation

Page 88: Jointly distributed Random variables Multivariate distributions
Page 89: Jointly distributed Random variables Multivariate distributions

multivariate distributions

k ≥ 2

Page 90: Jointly distributed Random variables Multivariate distributions

Definition

Let X1, X2, …, Xk denote k discrete random variables, then

p(x1, x2, …, xk )

is joint probability function of X1, X2, …, Xk if

1

12. , , 1n

nx x

p x x

11. 0 , , 1np x x

1 13. , , , ,n nP X X A p x x 1, , nx x A

Page 91: Jointly distributed Random variables Multivariate distributions

Definition

Let X1, X2, …, Xk denote k continuous random variables, then

f(x1, x2, …, xk )

is joint density function of X1, X2, …, Xk if

1 12. , , , , 1n nf x x dx dx

11. , , 0nf x x

1 1 13. , , , , , ,n n nP X X A f x x dx dx

A

Page 92: Jointly distributed Random variables Multivariate distributions

Example: The Multinomial distribution

Suppose that we observe an experiment that has k possible outcomes {O1, O2, …, Ok } independently n times.

Let p1, p2, …, pk denote probabilities of O1, O2, …, Ok respectively.

Let Xi denote the number of times that outcome Oi occurs in the n repetitions of the experiment.

Then the joint probability function of the random variables X1, X2, …, Xk is

1 21 1 2

1 2

! , ,

! ! !kxx x

n kk

np x x p p p

x x x

Page 93: Jointly distributed Random variables Multivariate distributions

Note:

is the probability of a sequence of length n containing

x1 outcomes O1

x2 outcomes O2

xk outcomes Ok

1 21 2

kxx xkp p p

Page 94: Jointly distributed Random variables Multivariate distributions

1 21 2

!

! ! ! kk

nnx x xx x x

is the number of ways of choosing the positions for the x1 outcomes O1, x2 outcomes O2, …, xk outcomes Ok

1 21

31 2

k

k

n x x xn n x

x xx x

1 1 2

1 1 2 1 2 3 1 2 3

! !!

! ! ! ! ! !

n x n x xn

x n x x n x x x n x x x

1 2

!

! ! !k

n

x x x

Page 95: Jointly distributed Random variables Multivariate distributions

is called the Multinomial distribution

1 21 1 2

1 2

! , ,

! ! !kxx x

n kk

np x x p p p

x x x

1 21 2

1 2

kxx xk

k

np p p

x x x

Page 96: Jointly distributed Random variables Multivariate distributions

Example:Suppose that a treatment for back pain has three possible outcomes:

O1 - Complete cure (no pain) – (30% chance)

O2 - Reduced pain – (50% chance)

O3 - No change – (20% chance)

Hence p1 = 0.30, p2 = 0.50, p3 = 0.20. Suppose the treatment is applied to n = 4 patients suffering back pain and let X = the number that result in a complete cure, Y = the number that result in just reduced pain, and Z = the number that result in no change.Find the distribution of X, Y and Z. Compute P[X + Y ≥ Z]

4! , , 0.30 0.50 0.20 4

! ! !

x y zp x y z x y z

x y z

Page 97: Jointly distributed Random variables Multivariate distributions

Table: p(x,y,z)z

x y 0 1 2 3 4

0 0 0 0 0 0 0.00160 1 0 0 0 0.0160 00 2 0 0 0.0600 0 00 3 0 0.1000 0 0 00 4 0.0625 0 0 0 01 0 0 0 0 0.0096 01 1 0 0 0.0720 0 01 2 0 0.1800 0 0 01 3 0.1500 0 0 0 01 4 0 0 0 0 02 0 0 0 0.0216 0 02 1 0 0.1080 0 0 02 2 0.1350 0 0 0 02 3 0 0 0 0 02 4 0 0 0 0 03 0 0 0.0216 0 0 03 1 0.0540 0 0 0 03 2 0 0 0 0 03 3 0 0 0 0 03 4 0 0 0 0 04 0 0.0081 0 0 0 04 1 0 0 0 0 04 2 0 0 0 0 04 3 0 0 0 0 04 4 0 0 0 0 0

Page 98: Jointly distributed Random variables Multivariate distributions

P [X + Y ≥ Z]z

x y 0 1 2 3 4

0 0 0 0 0 0 0.00160 1 0 0 0 0.0160 00 2 0 0 0.0600 0 00 3 0 0.1000 0 0 00 4 0.0625 0 0 0 01 0 0 0 0 0.0096 01 1 0 0 0.0720 0 01 2 0 0.1800 0 0 01 3 0.1500 0 0 0 01 4 0 0 0 0 02 0 0 0 0.0216 0 02 1 0 0.1080 0 0 02 2 0.1350 0 0 0 02 3 0 0 0 0 02 4 0 0 0 0 03 0 0 0.0216 0 0 03 1 0.0540 0 0 0 03 2 0 0 0 0 03 3 0 0 0 0 03 4 0 0 0 0 04 0 0.0081 0 0 0 04 1 0 0 0 0 04 2 0 0 0 0 04 3 0 0 0 0 04 4 0 0 0 0 0

= 0.9728

Page 99: Jointly distributed Random variables Multivariate distributions

Example: The Multivariate Normal distribution

Recall the univariate normal distribution

2121

2

x

f x e

the bivariate normal distribution

221

22 12

2

1 ,

2 1

x xx x y yx xx x y y

x y

f x y e

Page 100: Jointly distributed Random variables Multivariate distributions

The k-variate Normal distribution

112

1 / 2 1/ 2

1 , ,

2k kf x x f e

x μ x μx

where

1

2

k

x

x

x

x

1

2

k

μ

11 12 1

12 22 2

1 2

k

k

k k kk

Page 101: Jointly distributed Random variables Multivariate distributions

Marginal distributions

Page 102: Jointly distributed Random variables Multivariate distributions

Definition

Let X1, X2, …, Xq, Xq+1 …, Xk denote k discrete random variables with joint probability function

p(x1, x2, …, xq, xq+1 …, xk )

1

12 1 1 , , , ,q n

q q nx x

p x x p x x

then the marginal joint probability function

of X1, X2, …, Xq is

Page 103: Jointly distributed Random variables Multivariate distributions

Definition

Let X1, X2, …, Xq, Xq+1 …, Xk denote k continuous random variables with joint probability density function

f(x1, x2, …, xq, xq+1 …, xk )

12 1 1 1 , , , ,q q n q nf x x f x x dx dx

then the marginal joint probability function

of X1, X2, …, Xq is

Page 104: Jointly distributed Random variables Multivariate distributions

Conditional distributions

Page 105: Jointly distributed Random variables Multivariate distributions

Definition

Let X1, X2, …, Xq, Xq+1 …, Xk denote k discrete random variables with joint probability function

p(x1, x2, …, xq, xq+1 …, xk )

1

1 11 11 1

, , , , , ,

, ,k

q q kq q kq k q k

p x xp x x x x

p x x

then the conditional joint probability function

of X1, X2, …, Xq given Xq+1 = xq+1 , …, Xk = xk is

Page 106: Jointly distributed Random variables Multivariate distributions

Definition

Let X1, X2, …, Xq, Xq+1 …, Xk denote k continuous random variables with joint probability density function

f(x1, x2, …, xq, xq+1 …, xk )

then the conditional joint probability function

of X1, X2, …, Xq given Xq+1 = xq+1 , …, Xk = xk is

Definition

11 11 1

1 1

, , , , , ,

, ,k

q q kq q kq k q k

f x xf x x x x

f x x

Page 107: Jointly distributed Random variables Multivariate distributions

Definition

Let X1, X2, …, Xq, Xq+1 …, Xk denote k continuous random variables with joint probability density function

f(x1, x2, …, xq, xq+1 …, xk )

then the variables X1, X2, …, Xq are independent of Xq+1, …, Xk if

Definition – Independence of sets of vectors

1 1 1 1 1 , , , , , ,k q q q k q kf x x f x x f x x

A similar definition for discrete random variables.

Page 108: Jointly distributed Random variables Multivariate distributions

Definition

Let X1, X2, …, Xk denote k continuous random variables with joint probability density function

f(x1, x2, …, xk )

then the variables X1, X2, …, Xk are called mutually independent if

Definition – Mutual Independence

1 1 1 2 2 , , k k kf x x f x f x f x

A similar definition for discrete random variables.

Page 109: Jointly distributed Random variables Multivariate distributions

Example

Let X, Y, Z denote 3 jointly distributed random variable with joint density function then

2 0 1,0 1,0 1, ,

0 otherwise

K x yz x y zf x y z

Find the value of K.

Determine the marginal distributions of X, Y and Z.

Determine the joint marginal distributions of

X, Y

X, Z

Y, Z

Page 110: Jointly distributed Random variables Multivariate distributions

Solution

1 1 1

2

0 0 0

1 , ,f x y z dxdydz K x yz dxdydz

Determining the value of K.

11 1 1 13

0 0 0 00

1

3 3

x

x

xK xyz dydz K yz dydz

11 12

0 00

1 1 1

3 2 3 2

y

y

yK y z dz K z dz

12

0

1 1 71

3 4 3 4 12

z zK K K

12if

7K

Page 111: Jointly distributed Random variables Multivariate distributions

1 1

21

0 0

12, ,

7f x f x y z dydz x yz dydz

The marginal distribution of X.

11 122 2

0 00

12 12 1

7 2 7 2

y

y

yx y z dz x z dz

12

2 2

0

12 12 1 for 0 1

7 4 7 4

zx z x x

Page 112: Jointly distributed Random variables Multivariate distributions

1

212

0

12, , ,

7f x y f x y z dz x yz dz

The marginal distribution of X,Y.

122

0

12

7 2

z

z

zx z y

212 1 for 0 1,0 1

7 2x y x y

Page 113: Jointly distributed Random variables Multivariate distributions

Find the conditional distribution of:

1. Z given X = x, Y = y,

2. Y given X = x, Z = z,

3. X given Y = y, Z = z,

4. Y , Z given X = x,

5. X , Z given Y = y

6. X , Y given Z = z

7. Y given X = x,

8. X given Y = y

9. X given Z = z

10. Z given X = x,

11. Z given Y = y

12. Y given Z = z

Page 114: Jointly distributed Random variables Multivariate distributions

The marginal distribution of X,Y.

212

12 1, for 0 1,0 1

7 2f x y x y x y

Thus the conditional distribution of Z given X = x,Y = y is

2

212

12, , 7

12 1,7 2

x yzf x y z

f x yx y

2

2

for 0 112

x yzz

x y

Page 115: Jointly distributed Random variables Multivariate distributions

The marginal distribution of X.

21

12 1 for 0 1

7 4f x x x

Thus the conditional distribution of Y , Z given X = x is

2

21

12, , 7

12 17 4

x yzf x y z

f xx

2

2

for 0 1,0 114

x yzy z

x