84
Expectation for multivariate distributions

12 S241 Expectation for Multivariate Distributions

  • Upload
    amer-ap

  • View
    246

  • Download
    1

Embed Size (px)

DESCRIPTION

wew

Citation preview

Page 1: 12 S241 Expectation for Multivariate Distributions

Expectation

for multivariate distributions

Page 2: 12 S241 Expectation for Multivariate Distributions

Definition

Let X1, X2, …, Xn denote n jointly distributed random variable with joint density function

f(x1, x2, …, xn )

then 1, , nE g X X

1 1 1, , , , , ,n n ng x x f x x dx dx

Page 3: 12 S241 Expectation for Multivariate Distributions

ExampleLet X, Y, Z denote 3 jointly distributed random variable with joint density function then

2127 0 1,0 1,0 1

, ,0 otherwise

x yz x y zf x y z

Determine E[XYZ].

Page 4: 12 S241 Expectation for Multivariate Distributions

1 1 1

2

0 0 0

127

E XYZ xyz x yz dxdydz Solution:

11 1 1 14 2

2 2 2 2

0 0 0 00

12 3 27 4 2 7

x

x

x xyz y z dydz yz y z dydz

1 1 1

3 2 2

0 0 0

127

x yz xy z dxdydz

11 12 32 2

0 00

3 3 1 227 2 3 7 2 3

y

y

y yz z dz z z dz

12 3

0

3 2 3 1 2 3 17 177 4 9 7 4 9 7 36 84

z z

Page 5: 12 S241 Expectation for Multivariate Distributions

Some Rules for Expectation

Page 6: 12 S241 Expectation for Multivariate Distributions

1 11. , ,i i n nE X x f x x dx dx

i i i ix f x dx

Thus you can calculate E[Xi] either from the joint distribution of

X1, … , Xn or the marginal distribution of Xi. Proof: 1 1, , , ,i n nx f x x dx dx

1 1 1 1, ,i n i i n ix f x x dx dx dx dx dx

i i i ix f x dx

Page 7: 12 S241 Expectation for Multivariate Distributions

1 1 1 12. n n n nE a X a X a E X a E X

The Linearity property

Proof:

1 1 1 1, ,n n n na x a x f x x dx dx

1 1 1 1, , n na x f x x dx dx

1 1, ,n n n na x f x x dx dx

Page 8: 12 S241 Expectation for Multivariate Distributions

1 1, , , ,q q kE g X X h X X

In the simple case when k = 2

3. (The Multiplicative property) Suppose X1, … , Xq

are independent of Xq+1, … , Xk then

1 1, , , ,q q kE g X X E h X X

E XY E X E Y

if X and Y are independent

Page 9: 12 S241 Expectation for Multivariate Distributions

1 1, , , ,q q kE g X X h X X

Proof:

1 1 1 1, , , , , ,q q k k ng x x h x x f x x dx dx

1 1, , , ,q q kE g X X E h X X

1 1 1 1, , , , , ,q q k qg x x h x x f x x

2 1 1 1, ,q k q q kf x x dx dx dx dx

1 1 1 1, , q q q kf x x dx dx dx dx

1 2 1 1, , , , , ,q k q k qh x x f x x g x x

Page 10: 12 S241 Expectation for Multivariate Distributions

1 1, , , ,q q kE g X X E h X X

1 2 1 1, , , ,q k q k q kh x x f x x dx dx

1, , qE g X X

Page 11: 12 S241 Expectation for Multivariate Distributions

Some Rules for Variance

2 2 2Var X XX E X E X

Page 12: 12 S241 Expectation for Multivariate Distributions

1. Var Var Var 2Cov ,X Y X Y X Y

Proof

Thus

where Cov , = X YX Y E X Y

2Var X YX Y E X Y

where X Y X YE X Y

2Var X YX Y E X Y

2 22X X Y YE X X Y Y Var 2Cov , VarX X Y Y

Page 13: 12 S241 Expectation for Multivariate Distributions

and Var Var VarX Y X Y

Note: If X and Y are independent, then

Cov , = X YX Y E X Y

= X YE X E Y

= 0X YE X E Y

Page 14: 12 S241 Expectation for Multivariate Distributions

2 2and Var 2 X Y XY X YX Y

Definition: For any two random variables X and Y then define the correlation coefficient XY to be:

Cov , Cov ,=

Var Varxy

X Y

X Y X Y

X Y

Thus Cov , = XY X YX Y

if X and Y are independent

2 2X Y

Page 15: 12 S241 Expectation for Multivariate Distributions

Properties of the correlation coefficient XY

Cov , Cov ,=

Var Varxy

X Y

X Y X Y

X Y

If and are independent than 0.XYX Y

: Cov , 0 X Y Reason

The converse is not necessarily true.i.e. XY = 0 does not imply that X and Y are independent.

Page 16: 12 S241 Expectation for Multivariate Distributions

More properties of the correlation coefficient XY

1 1XY

if there exists a and b such thatand 1XY

1P Y bX a

whereXY = +1 if b > 0 and XY = -1 if b< 0

Proof: Let and . X YU X V Y

Let 2 0 g b E V bU for all b.

Consider choosing b to minimize

Page 17: 12 S241 Expectation for Multivariate Distributions

Since g(b) ≥ 0, then g(bmin) ≥ 0

or

2 g b E V bU

Consider choosing b to minimize

2 2 22 E V bVU b U 2 2 22 E V bE VU b E U

22 2 0 g b E VU bE U

min 2

E VUb b

E U

Page 18: 12 S241 Expectation for Multivariate Distributions

Hence g(bmin) ≥ 0

2 2 2min min min2 g b E V b E VU b E U

2

22 2

2E VU E VU

E V E VUE U E U

2

22

0E VU

E VE U

Hence 2

2 21

E VU

E U E V

Page 19: 12 S241 Expectation for Multivariate Distributions

or

2

22 2

1X Y

XY

X Y

E X Y

E X E Y

2 2 2min min min2 g b E V b E VU b E U

2min 0E V b U

Note

If and only if2 1XY

This will be true if min 0 1P V b U

i.e. min 0 1Y XP Y b X min min1 where Y XP Y b X a a b

Page 20: 12 S241 Expectation for Multivariate Distributions

Summary1 1XY

if there exists a and b such thatand 1XY

1P Y bX a

where

min 2

X X

X

E X Yb b

E X

minand YY X Y XY X

X

a b

2

Cov ,= =

VarXY X Y Y

XYX X

X YX

Page 21: 12 S241 Expectation for Multivariate Distributions

2 22. Var Var Var 2 Cov ,aX bY a X b Y ab X Y

Proof

Thus

2Var aX bYaX bY E aX bY

with aX bY X YE aX bY a b

2Var X YaX bY E aX bY a b

2 22 22X X Y YE a X ab X Y b Y 2 2Var 2 Cov , Vara X ab X Y b Y

Page 22: 12 S241 Expectation for Multivariate Distributions

1 13. Var n na X a X

2 21 1Var Varn na X a X

1 2 1 2 1 12 Cov , 2 Cov ,n na a X X a a X X

2 3 2 3 2 22 Cov , 2 Cov ,n na a X X a a X X

1 12 Cov ,n n n na a X X

2

1

Var 2 Cov ,n

i i i j i ji

a X a a X X

i j

21

1

Var if , , are mutually independentn

i i ni

a X X X

Page 23: 12 S241 Expectation for Multivariate Distributions

Some Applications (Rules of Expectation & Variance)

Let 11

1 1 1n

i ni

X X X Xn n n

Let X1, … , Xn be n mutually independent random variables each having mean and standard deviation (variance 2).

1 1 n na X a X

Then 11 1

nX E X E X E Xn n

1 1n n

Page 24: 12 S241 Expectation for Multivariate Distributions

Also

or X n

2 2

21

1 1nX Var X Var X Var X

n n

2 22 21 1

n n

2 2

2nn n

and X X n Thus

Hence the distribution of is centered at and becomes more and more compact about as n increases

X

Page 25: 12 S241 Expectation for Multivariate Distributions

Tchebychev’s Inequality

Page 26: 12 S241 Expectation for Multivariate Distributions

Tchebychev’s InequalityLet X denote a random variable with

mean =E(X) and variance Var(X) = E[(X – )2] = 2

then

Note:Is called the standard deviation of X,

2

11P X kk

2

11P k X kk

2Var X E X

Page 27: 12 S241 Expectation for Multivariate Distributions

Proof:

dxxfxXVar 22)(

kdxxfx 2

k

k

kdxxfxdxxfx 22

k

kdxxfkdxxfk 2222

kdxxfx 2

kdxxfx 2

Page 28: 12 S241 Expectation for Multivariate Distributions

kXPkXPk 22

k

kdxxkfdxxfk 22

kXPk 22

kXPk 222 Thus

2

1or k

kXP

2

11 andk

kXP

Page 29: 12 S241 Expectation for Multivariate Distributions

Tchebychev’s inequality is very conservative

•k =1

•k = 2

•k = 3

2

11k

kXkPkXP

0111 2 XPXP

43

211222 2 XPXP

98

311333 2 XPXP

Page 30: 12 S241 Expectation for Multivariate Distributions

The Law of Large Numbers

Page 31: 12 S241 Expectation for Multivariate Distributions

The Law of Large Numbers

Let1

1 n

ii

X Xn

Let X1, … , Xn be n mutually independent random variables each having mean

Then for any > 0 (no matter how small)

1 as P X P X n

Page 32: 12 S241 Expectation for Multivariate Distributions

Proof

2

11X X X XP k X kk

and X X n Now

We will use Tchebychev’s inequality which states for any random variable X.

P X

where or X

nk k kn

2

11k

kXkP XX

Page 33: 12 S241 Expectation for Multivariate Distributions

as n

Thus

Thus

2 2

11 1 1 P Xk n

1 as P X n

Page 34: 12 S241 Expectation for Multivariate Distributions

Thus the Law of Large Numbers states

ˆ 1 as P p p p n

A Special caseLet X1, … , Xn be n mutually independent random variables each having Bernoulli distribution with parameter p

1 if repetition is (prob )0 if repetition is (prob 1 )i

pX

q p

SF

iE X p

1 ˆ proportion of successesnX XX pn

Page 35: 12 S241 Expectation for Multivariate Distributions

Thus the Law of Large Numbers states that

as n

Some people misinterpret this to mean that if the proportion of successes is currently lower that p then the proportion of successes in the future will have to be larger than p to counter this and ensure that the Law of Large numbers holds true.Of course if in the infinite future the proportion of successes is p than this is enough to ensure that the Law of Large numbers holds true.

ˆ proportion of successesp

converges to the probability of success p

Page 36: 12 S241 Expectation for Multivariate Distributions

Some more applications

Rules of expectation and Rules of Variance

Page 37: 12 S241 Expectation for Multivariate Distributions

The mean and varianceof a Binomial Random variable

We have already computed this by other methods:

1. Using the probability function p(x).2. Using the moment generating function mX(t).

Suppose that we have observed n independent repetitions of a Bernoulli trialLet X1, … , Xn be n mutually independent random variables each having Bernoulli distribution with parameter pand defined by

1 if repetition is (prob )0 if repetition is (prob )i

i pX

i q

SF

Page 38: 12 S241 Expectation for Multivariate Distributions

Now X = X1 + … + Xn has a Binomial distribution with parameters n and pX is the total number of successes in the n repetitions.

1 0iE X p q p

1X nE X E X p p np

2 22 1 0iVar X p p p q pq

21var varX nX X pq pq npq

Page 39: 12 S241 Expectation for Multivariate Distributions

The mean and varianceof a Hypergeometric distribution

The hypergeometric distribution arises when we sample with replacement n objects from a population of N = a + b objects. The population is divided into to groups (group A and group B). Group A contains a objects while group B contains b objects

Let X denote the number of objects in the sample of n that come from group A. The probability function of X is:

a bx n x

p xa b

n

Page 40: 12 S241 Expectation for Multivariate Distributions

Then

Let X1, … , Xn be n random variables defined by

1 if object selected comes from group 0 if object selected comes from group

th

i th

i AX

i B

1 nX X X

1 and 0i ia bP X P X

a b a b

Proof

1 1

1 !1 1 !

1 !

!

a b ni

a b n

a ba

a P a b n aP Xa bP a b

a b n

Page 41: 12 S241 Expectation for Multivariate Distributions

and

Therefore

1 1 0 0 i i iaE X P X P X

a b

2 2 21 1 0 0 i i iaE X P X P X

a b

2

22var - i i ia aX E X E X

a b a b

1- a a a ba b a b a b a b

Page 42: 12 S241 Expectation for Multivariate Distributions

Thus

bna b

1 nE X E X X

1

n

ii

E X

Page 43: 12 S241 Expectation for Multivariate Distributions

and

Also

var ia bX

a b a b

1Var Var nX X X

1

Var 2 Cov ,n

i i ji

X X X

We need to also calculate Cov ,i jX X

Note: Cov , U VU V E U V U V U VE UV V U

U V V U U VE UV

U VE UV E UV E U E V

Page 44: 12 S241 Expectation for Multivariate Distributions

and iaE X

a b

Thus Cov ,i j i j i jX X E X X E X E X

Note:

1 1 0 0i j i j i jE X X P X X P X X 1 1, 1i j i jP X X P X X

2 2

2

11, 1 a b n

i ja b n

a a PP X X

P

2 !1

2 2 ! 1

! 1!

a ba a

a b n a aa b a b a b

a b n

Page 45: 12 S241 Expectation for Multivariate Distributions

and

Thus

Cov ,i j i j i jX X E X X E X E X

11i j

a aE X X

a b a b

211

a a aa b a b a b

11

a a aa b a b a b

1 11

a a b a a baa b a b a b

21ab

a b a b

Page 46: 12 S241 Expectation for Multivariate Distributions

with

Thus

2var i

a b abXa b a b a b

1Var Var nX X X

1

Var 2 Cov ,n

i i ji

X X X

and 2Cov ,

1i j

abX Xa b a b

1

Var Var 2 Cov ,n

i i ji

X X X X

2 2

12

2 1

n nab abna b a b a b

i j

i j

Page 47: 12 S241 Expectation for Multivariate Distributions

Thus

1

Var Var 2 Cov ,n

i i ji

X X X X

2 2

12

2 1

n nab abna b a b a b

i j

2

11

1nabn

a ba b

1A Bnp p f

1 1where , and 1 1A B

a b n np p fa b a b a b N

Page 48: 12 S241 Expectation for Multivariate Distributions

Thus if X has a hypergeometric distribution with parameters a, b and n then

Var 1A BX np p f

1 1where , and 1 1A B

a b n np p fa b a b a b N

AaE X n np

a b

Page 49: 12 S241 Expectation for Multivariate Distributions

The mean and varianceof a Negative Binomial distribution

The Negative Binomial distribution arises when we repeat a Bernoulli trial until k successes (S) occur. Then X = the trial on which the kth success occurred.

The probability function of X is:

1 , 1, 2,...

1k x kx

p x p q x k k kk

Let X1= the number of trial on which the 1st success occurred.

and Xi = the number of trials after the (i -1)st success on which the ith success occurred (i ≥ 2)

Page 50: 12 S241 Expectation for Multivariate Distributions

Xi each have a geometric distribution with parameter p.

Then X = X1 + … + Xk

and X1, … , Xk are mutually independent

2

1thus and Vari iqE X X

p p

1

hence k

ii

kE X E Xp

21

and Var Vark

ii

kqX Xp

Page 51: 12 S241 Expectation for Multivariate Distributions

Thus if X has a negative binomial distribution with parameters k and p then

2Var kqXp

kE Xp

Page 52: 12 S241 Expectation for Multivariate Distributions

Multivariate Moments

Non-central and Central

Page 53: 12 S241 Expectation for Multivariate Distributions

DefinitionLet X1 and X2 be a jointly distirbuted random variables (discrete or continuous), then for any pair of positive integers (k1, k2) the joint moment of (X1, X2) of order (k1, k2) is defined to be:

1 2

1 2 1 2k k

k k E X X

1 2

1 2

1 2

1 2 1 2 1 2

1 2 1 2 1 2 1 2-

, if , are discrete

, if , are continuous

k k

x x

k k

x x p x x X X

x x f x x dx dx X X

Page 54: 12 S241 Expectation for Multivariate Distributions

DefinitionLet X1 and X2 be a jointly distirbuted random variables (discrete or continuous), then for any pair of positive integers (k1, k2) the joint central moment of (X1, X2) of order (k1, k2) is defined to be:

1 2

1 2

0, 1 1 2 2

k kk k E X X

1 2

1 2

1 2

1 1 2 2 1 2 1 2

1 1 2 2 1 2 1 2 1 2-

, if , are discrete

, if , are continuous

k k

x x

k k

x x p x x X X

x x f x x dx dx X X

where 1 = E [X1] and 2 = E [X2]

Page 55: 12 S241 Expectation for Multivariate Distributions

Note

01,1 1 1 2 2 1 2 Cov ,E X X X X

= the covariance of X1 and X2.

Definition: For any two random variables X and Y then define the correlation coefficient XY to be:

Cov , Cov ,=

Var Varxy

X Y

X Y X Y

X Y

Page 56: 12 S241 Expectation for Multivariate Distributions

Properties of the correlation coefficient XY

Cov , Cov ,=

Var Varxy

X Y

X Y X Y

X Y

If and are independent than 0.XYX Y

: Cov , 0 X Y Reason

The converse is not necessarily true.i.e. XY = 0 does not imply that X and Y are independent.

Page 57: 12 S241 Expectation for Multivariate Distributions

More properties of the correlation coefficient

1 1XY

if there exists a and b such thatand 1XY

1P Y bX a

whereXY = +1 if b > 0 and XY = -1 if b< 0

Page 58: 12 S241 Expectation for Multivariate Distributions

Some Rules for Expectation

Page 59: 12 S241 Expectation for Multivariate Distributions

1 11. , ,i i n nE X x f x x dx dx

i i i ix f x dx

Thus you can calculate E[Xi] either from the joint distribution of

X1, … , Xn or the marginal distribution of Xi.

1 1 1 12. n n n nE a X a X a E X a E X

The Linearity property

Page 60: 12 S241 Expectation for Multivariate Distributions

1 1, , , ,q q kE g X X h X X

In the simple case when k = 2

3. (The Multiplicative property) Suppose X1, … , Xq

are independent of Xq+1, … , Xk then

1 1, , , ,q q kE g X X E h X X

E XY E X E Y

if X and Y are independent

Page 61: 12 S241 Expectation for Multivariate Distributions

Some Rules for Variance

2 2 2Var X XX E X E X

Page 62: 12 S241 Expectation for Multivariate Distributions

1. Var Var Var 2Cov ,X Y X Y X Y

where Cov , = X YX Y E X Y

and Var Var VarX Y X Y

Note: If X and Y are independent, then

Cov , = X YX Y E X Y

= X YE X E Y

= 0X YE X E Y

Page 63: 12 S241 Expectation for Multivariate Distributions

2 2and Var 2 X Y XY X YX Y

Definition: For any two random variables X and Y then define the correlation coefficient XY to be:

Cov , Cov ,=

Var Varxy

X Y

X Y X Y

X Y

Thus Cov , = XY X YX Y

if X and Y are independent

2 2X Y

Page 64: 12 S241 Expectation for Multivariate Distributions

2 22. Var Var Var 2 Cov ,aX bY a X b Y ab X Y

Proof

Thus

2Var aX bYaX bY E aX bY

with aX bY X YE aX bY a b

2Var X YaX bY E aX bY a b

2 22 22X X Y YE a X ab X Y b Y 2 2Var 2 Cov , Vara X ab X Y b Y

Page 65: 12 S241 Expectation for Multivariate Distributions

1 13. Var n na X a X

2 21 1Var Varn na X a X

1 2 1 2 1 12 Cov , 2 Cov ,n na a X X a a X X

2 3 2 3 2 22 Cov , 2 Cov ,n na a X X a a X X

1 12 Cov ,n n n na a X X

2

1

Var 2 Cov ,n

i i i j i ji

a X a a X X

i j

21

1

Var if , , are mutually independentn

i i ni

a X X X

Page 66: 12 S241 Expectation for Multivariate Distributions

Distribution functions, Moments,

Moment generating functions in the Multivariate case

Page 67: 12 S241 Expectation for Multivariate Distributions

The distribution function F(x)

This is defined for any random variable, X.

F(x) = P[X ≤ x]

Properties

1. F(-∞) = 0 and F(∞) = 1.

2. F(x) is non-decreasing(i. e. if x1 < x2 then F(x1) ≤ F(x2) )

3. F(b) – F(a) = P[a < X ≤ b].

Page 68: 12 S241 Expectation for Multivariate Distributions

4. Discrete Random Variables

F(x) is a non-decreasing step function with

u x

F x P X x p u

jump in at .p x F x F x F x x

0 and 1F F

0

0.2

0.4

0.6

0.8

1

1.2

-1 0 1 2 3 4

F(x)

p(x)

Page 69: 12 S241 Expectation for Multivariate Distributions

5. Continuous Random Variables Variables

F(x) is a non-decreasing continuous function with

x

F x P X x f u du

.f x F x

0 and 1F F

F(x)

f(x) slope

0

1

-1 0 1 2x

To find the probability density function, f(x), one first finds F(x) then .f x F x

Page 70: 12 S241 Expectation for Multivariate Distributions

The joint distribution function F(x1, x2, …, xk)

is defined for k random variables, X1, X2, … , Xk.

F(x1, x2, … , xk) = P[ X1 ≤ x1, X2 ≤ x2 , … , Xk ≤ xk ]

for k = 2

F(x1, x2) = P[ X1 ≤ x1, X2 ≤ x2]

(x1, x2)

x1

x2

Page 71: 12 S241 Expectation for Multivariate Distributions

Properties

1. F(x1 , -∞) = F(-∞ , x2) = F(-∞ , -∞) = 0

2. F(x1 , ∞) = P[ X1 ≤ x1, X2 ≤ ∞] = P[ X1 ≤ x1] = F1 (x1) = the marginal cumulative distribution

function of X1

F(∞, ∞) = P[ X1 ≤ ∞, X2 ≤ ∞] = 1

= the marginal cumulative distribution function of X2

F(∞, x2) = P[ X1 ≤ ∞, X2 ≤ x2] = P[ X2 ≤ x2] = F2 (x2)

Page 72: 12 S241 Expectation for Multivariate Distributions

3. F(x1, x2 ) is non-decreasing in both the x1 direction and the x2 direction.

i.e. if a1 < b1 if a2 < b2 then

i. F(a1, x2) ≤ F(b1 , x2)

ii. F(x1, a2) ≤ F(x1 , b2)

iii. F( a1, a2) ≤ F(b1 , b2) (b1, b2)

x1

(b1, a2)(a1, a2)

(a1, b2)x2

Page 73: 12 S241 Expectation for Multivariate Distributions

4. P[a < X1 ≤ b, c < X2 ≤ d] =

F(b,d) – F(a,d) – F(b,c) + F(a,c).

(b, d)

x1

(b, c)(a, c)

(a, d)

x2

Page 74: 12 S241 Expectation for Multivariate Distributions

4. Discrete Random Variables

F(x1, x2) is a step surface

2 2 1 1

1 2 1 1 2 2 1 2, , ,u x u x

F x x P X x X x p u u

1 2 1 2 1 2, jump in , at , .p x x F x x x x

(x1, x2)

x1

x2

Page 75: 12 S241 Expectation for Multivariate Distributions

5. Continuous Random Variables

F(x1, x2) is a surface

1 1

1 2 1 1 2 2 1 2 1 2, , ,x x

F x x P X x X x f u u du du

2 21 2 1 2

1 21 2 2 12

, ,,

F x x F x xf x x

x x x x

(x1, x2)

x1

x2

Page 76: 12 S241 Expectation for Multivariate Distributions

Multivariate Moments

Non-central and Central

Page 77: 12 S241 Expectation for Multivariate Distributions

DefinitionLet X1 and X2 be a jointly distirbuted random variables (discrete or continuous), then for any pair of positive integers (k1, k2) the joint moment of (X1, X2) of order (k1, k2) is defined to be:

1 2

1 2 1 2k k

k k E X X

1 2

1 2

1 2

1 2 1 2 1 2

1 2 1 2 1 2 1 2-

, if , are discrete

, if , are continuous

k k

x x

k k

x x p x x X X

x x f x x dx dx X X

Page 78: 12 S241 Expectation for Multivariate Distributions

DefinitionLet X1 and X2 be a jointly distirbuted random variables (discrete or continuous), then for any pair of positive integers (k1, k2) the joint central moment of (X1, X2) of order (k1, k2) is defined to be:

1 2

1 2

0, 1 1 2 2

k kk k E X X

1 2

1 2

1 2

1 1 2 2 1 2 1 2

1 1 2 2 1 2 1 2 1 2-

, if , are discrete

, if , are continuous

k k

x x

k k

x x p x x X X

x x f x x dx dx X X

where 1 = E [X1] and 2 = E [X2]

Page 79: 12 S241 Expectation for Multivariate Distributions

Note

01,1 1 1 2 2 1 2 Cov ,E X X X X

= the covariance of X1 and X2.

Page 80: 12 S241 Expectation for Multivariate Distributions

Multivariate Moment Generating functions

Page 81: 12 S241 Expectation for Multivariate Distributions

Recall

The moment generating function

if is discrete

if is continuous

tx

xtX

Xtx

e p x X

m t E ee f x dx X

Page 82: 12 S241 Expectation for Multivariate Distributions

DefinitionLet X1, X2, … Xk be a jointly distributed random variables (discrete or continuous), then the joint moment generating function is defined to be:

1 1

1 , , 1, , k k

k

t X t XX X km t t E e

1 1

1

1 1

1 1

1 1 1-

, , if , , are discrete

, , if , , are continuous

k k

k

k k

t x t xk k

x x

t x t xk k k

e p x x X X

e f x x dx dx X X

Page 83: 12 S241 Expectation for Multivariate Distributions

DefinitionLet X1, X2, … Xk be a jointly distributed random variables (discrete or continuous), then the joint moment generating function is defined to be:

1 1

1 , , 1, , k k

k

t X t XX X km t t E e

1 1

1

1 1

1 1

1 1 1-

, , if , , are discrete

, , if , , are continuous

k k

k

k k

t x t xk k

x x

t x t xk k k

e p x x X X

e f x x dx dx X X

1 , ,: 0, ,0 1

kX Xm Note

1 , ,

0, , , 0k iX X X

i

m t m t

Page 84: 12 S241 Expectation for Multivariate Distributions

Power Series expansion the joint moment generating function (k = 2)

, , tX sY tX sYX Ym t s E e E e e

2 3 4

using 12! 3! 4!

u u u ue u

2 2

1 12! 2!

tX sYE tX sY

2 22 21

2! 2! ! !

k mk mt s t sE Xt Ys X XYts Y X Y

k m

2 2

1,0 0,1 2,0 1,1 2,0 ,12! 2! ! !

k m

k mt s t st s ts

k m

2,0 0,2 ,2 21,0 0,1 1,11

2! 2! ! !k m k mt s t ts s t s

k m