43
EEL 3923C JD/ Module 2 Power Supply Design & Construction Prof. T. Nishida Fall 2010

JD Module2 V1 - University of Florida · Module 2 Diode LTSPICE Model! • Add 1N4004 diode model to LTSPICE diode model library! – Navigate to C:\Program Files\LTC\LTspiceIV\lib\cmp!

  • Upload
    others

  • View
    9

  • Download
    0

Embed Size (px)

Citation preview

Page 1: JD Module2 V1 - University of Florida · Module 2 Diode LTSPICE Model! • Add 1N4004 diode model to LTSPICE diode model library! – Navigate to C:\Program Files\LTC\LTspiceIV\lib\cmp!

EEL 3923C JD/ Module 2 Power Supply Design & Construction

Prof. T. Nishida���Fall 2010

Page 2: JD Module2 V1 - University of Florida · Module 2 Diode LTSPICE Model! • Add 1N4004 diode model to LTSPICE diode model library! – Navigate to C:\Program Files\LTC\LTspiceIV\lib\cmp!

2 EEL 3923C, Fall 2010, T. Nishida

II. General Power Supply •  Converts ac powerline voltage into DC voltage of

required magnitude and stability for the electronic system

Diode Rectifier Filter Voltage

Regulator

120 V(rms) 60 Hz ac line input

Ref:  Section 3.5, Sedra and Smith, Microelectronic Circuits, 5th Ed., Oxford, 2004.  

Page 3: JD Module2 V1 - University of Florida · Module 2 Diode LTSPICE Model! • Add 1N4004 diode model to LTSPICE diode model library! – Navigate to C:\Program Files\LTC\LTspiceIV\lib\cmp!

3 EEL 3923C, Fall 2010, T. Nishida

General Power Supply Design •  Useful reference on power supply design

Ref:  http://www.st.com/stonline/books/pdf/docs/1707.pdf  

Page 4: JD Module2 V1 - University of Florida · Module 2 Diode LTSPICE Model! • Add 1N4004 diode model to LTSPICE diode model library! – Navigate to C:\Program Files\LTC\LTspiceIV\lib\cmp!

4 EEL 3923C, Fall 2010, T. Nishida

II.1 Transformer •  Ideal loss-less transformer

– No dissipation

– Voltage step-up/down determined ratio of coil turns on secondary/primary

– Current has inverse ratio

–  Impedance transformation Ref:  http://www.mpdigest.com/issue/Articles/2009/oct/Mini/Default.asp

Page 5: JD Module2 V1 - University of Florida · Module 2 Diode LTSPICE Model! • Add 1N4004 diode model to LTSPICE diode model library! – Navigate to C:\Program Files\LTC\LTspiceIV\lib\cmp!

5 EEL 3923C, Fall 2010, T. Nishida

Real Transformer •  Real transformer

– Series resistance in windings, Rs, Rp – Stray leakage inductance, Xs, Xp – Core losses

•  Eddy current, Rc •  Magnetization, Xm

Page 6: JD Module2 V1 - University of Florida · Module 2 Diode LTSPICE Model! • Add 1N4004 diode model to LTSPICE diode model library! – Navigate to C:\Program Files\LTC\LTspiceIV\lib\cmp!

6 EEL 3923C, Fall 2010, T. Nishida

Module 2 Transformer Specs •  EI30 series laminated transformer

Ref:  http://ww2.pulseeng.com/products/datasheets/LT2010.pdf

Page 7: JD Module2 V1 - University of Florida · Module 2 Diode LTSPICE Model! • Add 1N4004 diode model to LTSPICE diode model library! – Navigate to C:\Program Files\LTC\LTspiceIV\lib\cmp!

7 EEL 3923C, Fall 2010, T. Nishida

LT SPICE Transformer Model

Ref:  h'p://ltspice.linear.com/so5ware/scad3.pdf  

Page 8: JD Module2 V1 - University of Florida · Module 2 Diode LTSPICE Model! • Add 1N4004 diode model to LTSPICE diode model library! – Navigate to C:\Program Files\LTC\LTspiceIV\lib\cmp!

8 EEL 3923C, Fall 2010, T. Nishida

Module 2 Transformer LTSPICE Model •  8:1 transformer with series resistance •  Output voltage depends on load current

File:  Module2_Transformer_+_RL.asc

Page 9: JD Module2 V1 - University of Florida · Module 2 Diode LTSPICE Model! • Add 1N4004 diode model to LTSPICE diode model library! – Navigate to C:\Program Files\LTC\LTspiceIV\lib\cmp!

9 EEL 3923C, Fall 2010, T. Nishida

Module 2 Transformer Implementation •  Sealed case, switch, LED power indicator, and

fuse for safety (supplied in JD lab)

Page 10: JD Module2 V1 - University of Florida · Module 2 Diode LTSPICE Model! • Add 1N4004 diode model to LTSPICE diode model library! – Navigate to C:\Program Files\LTC\LTspiceIV\lib\cmp!

10 EEL 3923C, Fall 2010, T. Nishida

II.2 Diode Rectifier •  Purpose: Convert ac transformer output

into waveform with non-zero DC component

•  What is DC component?

Page 11: JD Module2 V1 - University of Florida · Module 2 Diode LTSPICE Model! • Add 1N4004 diode model to LTSPICE diode model library! – Navigate to C:\Program Files\LTC\LTspiceIV\lib\cmp!

11 EEL 3923C, Fall 2010, T. Nishida

P/N Junction Rectifier Diode •  I-V characteristics

•  Equivalent circuit

i

v

Reverse bias Forward bias

Page 12: JD Module2 V1 - University of Florida · Module 2 Diode LTSPICE Model! • Add 1N4004 diode model to LTSPICE diode model library! – Navigate to C:\Program Files\LTC\LTspiceIV\lib\cmp!

12 EEL 3923C, Fall 2010, T. Nishida

General Purpose Rectifier Diodes •  Module 2 diode

Ref:  http://www.fairchildsemi.com/ds/1N%2F1N4001.pdf

Page 13: JD Module2 V1 - University of Florida · Module 2 Diode LTSPICE Model! • Add 1N4004 diode model to LTSPICE diode model library! – Navigate to C:\Program Files\LTC\LTspiceIV\lib\cmp!

13 EEL 3923C, Fall 2010, T. Nishida

Module 2 Diode LTSPICE Model •  Add 1N4004 diode model to LTSPICE diode model library

–  Navigate to C:\Program Files\LTC\LTspiceIV\lib\cmp –  Open standard.dio using notepad or by double-clicking and using LTSPICE –  Insert the following into the file

.MODEL 1N4004 D(IS = 3.699E-09 RS = 1.756E-02 N = 1.774 XTI = 3.0 EG = 1.110 CJO = 1.732E-11 M = 0.3353 VJ = 0.3905 FC = 0.5 ISR = 6.665E-10 NR = 2.103 BV = 400 IBV = 1.0E-03 Iave=1000m Vpk=400 mfg=Fairchild type=silicon)

–  Close and restart LTSPICE •  Insert a generic diode into your schematic •  Right-click the diode; you should see a dialog box

–  Click ‘Pick New Diode’ –  Select 1N4004 from the list of possible diodes –  The diode should now look like:

Ref:  http://www.fairchildsemi.com/models/PSPICE/Discrete/Diode.html

Page 14: JD Module2 V1 - University of Florida · Module 2 Diode LTSPICE Model! • Add 1N4004 diode model to LTSPICE diode model library! – Navigate to C:\Program Files\LTC\LTspiceIV\lib\cmp!

14 EEL 3923C, Fall 2010, T. Nishida

Half Wave Rectifier •  Circuit (LTSPICE)

Page 15: JD Module2 V1 - University of Florida · Module 2 Diode LTSPICE Model! • Add 1N4004 diode model to LTSPICE diode model library! – Navigate to C:\Program Files\LTC\LTspiceIV\lib\cmp!

15 EEL 3923C, Fall 2010, T. Nishida

Half Wave Rectifier •  Equivalent circuit using constant voltage model

•  Effect of forward voltage drop

•  Peak inverse voltage

Page 16: JD Module2 V1 - University of Florida · Module 2 Diode LTSPICE Model! • Add 1N4004 diode model to LTSPICE diode model library! – Navigate to C:\Program Files\LTC\LTspiceIV\lib\cmp!

16 EEL 3923C, Fall 2010, T. Nishida

Full Wave Rectifier •  Disadvantages of half-bridge rectifier: maximum conduction angle

of 180º •  Possible fixes:

•  Use two half-bridge rectifiers (basic concept of center-tapped transformer approach)

•  Bridge rectifier (similar to Wheatstone bridge circuit)

Page 17: JD Module2 V1 - University of Florida · Module 2 Diode LTSPICE Model! • Add 1N4004 diode model to LTSPICE diode model library! – Navigate to C:\Program Files\LTC\LTspiceIV\lib\cmp!

17 EEL 3923C, Fall 2010, T. Nishida

Full Wave Rectifier •  Center-tapped transformer approach

Ref. Sedra & Smith, Fig. 3.26

vS(t), vO(t)

t

Note: Effect of VD drop.

PIV=2VS-VD

Where are the half-bridge rectifiers?

Page 18: JD Module2 V1 - University of Florida · Module 2 Diode LTSPICE Model! • Add 1N4004 diode model to LTSPICE diode model library! – Navigate to C:\Program Files\LTC\LTspiceIV\lib\cmp!

18 EEL 3923C, Fall 2010, T. Nishida

Full Wave Rectifier •  Bridge rectifier approach

vS(t), vO(t)

t

Ref. Sedra & Smith, Fig. 3.27

PIV=VS-VD

What is the voltage drop?

(a)   Positive half-cycle

Which diodes are forward-biased?

(b) Negative half-cycle

Page 19: JD Module2 V1 - University of Florida · Module 2 Diode LTSPICE Model! • Add 1N4004 diode model to LTSPICE diode model library! – Navigate to C:\Program Files\LTC\LTspiceIV\lib\cmp!

19 EEL 3923C, Fall 2010, T. Nishida

Module 2 Full Wave Rectifier •  Note the importance of the ground reference

Page 20: JD Module2 V1 - University of Florida · Module 2 Diode LTSPICE Model! • Add 1N4004 diode model to LTSPICE diode model library! – Navigate to C:\Program Files\LTC\LTspiceIV\lib\cmp!

20 EEL 3923C, Fall 2010, T. Nishida

II.3 Filter •  Purpose: Reduce voltage ripple

•  Need shunt capacitor to pass DC and filter ac frequencies

Page 21: JD Module2 V1 - University of Florida · Module 2 Diode LTSPICE Model! • Add 1N4004 diode model to LTSPICE diode model library! – Navigate to C:\Program Files\LTC\LTspiceIV\lib\cmp!

21 EEL 3923C, Fall 2010, T. Nishida

Half Wave Rectifier With Filter Cap •  Goal: First order

smoothing of output •  Approach: Filter

capacitor •  Assume capacitor

initially uncharged, vC(t=0)=0V

•  Assume ideal diode for simplicity (i.e. neglect VD drop)

vS(t), vO(t)

t

T Vr

Page 22: JD Module2 V1 - University of Florida · Module 2 Diode LTSPICE Model! • Add 1N4004 diode model to LTSPICE diode model library! – Navigate to C:\Program Files\LTC\LTspiceIV\lib\cmp!

22 EEL 3923C, Fall 2010, T. Nishida

Half Wave Rectifier With Filter Cap •  Approximate Analysis C charges up from t=0 to t=T/4 iD=iC+iL

where iL=vO/R and iC=Cdvs/dt

Diode turns off at peak. Why? vO(t=T/4) =VSpeak C discharges through R delivering load

current.

vO=VSpeake-t/RC Stops discharging when vO(t) less than vs

(t).

vO(t)

t vS (t)

Page 23: JD Module2 V1 - University of Florida · Module 2 Diode LTSPICE Model! • Add 1N4004 diode model to LTSPICE diode model library! – Navigate to C:\Program Files\LTC\LTspiceIV\lib\cmp!

23 EEL 3923C, Fall 2010, T. Nishida

Half Wave Rectifier With Filter Cap •  Approximate Analysis

Define ripple voltage, Vr: VSpeak-Vr ≅VSpeake-T/R

LC

Assuming CR>>T,

Vr ≅ VSpeak(T/RLC) Vr ≅VO (T/C)(IL/VO) 0.05VO ≅ IL T/C

•  Similar analysis for full wave rectifier with filter capacitor •  What changes?

vS(t), vO(t)

t

T Vr

Page 24: JD Module2 V1 - University of Florida · Module 2 Diode LTSPICE Model! • Add 1N4004 diode model to LTSPICE diode model library! – Navigate to C:\Program Files\LTC\LTspiceIV\lib\cmp!

24 EEL 3923C, Fall 2010, T. Nishida

Capacitors Types Capacitor  types   Capacitance  range   Accuracy  

Temperature  stability  

Leakage   Comments  

ElectrolyHc     0.1  µF  -­‐  ~1  F     V  poor     V  poor     Poor    Polarised  capacitor  -­‐  widely  used  in  power  supplies  for  smoothing,  and  bypass  where  accuracy,  etc  is  not  required.    

Ceramic     10  pF  -­‐  1  µF     Variable     Variable     Average    Exact  performance  of  capacitor  depends  to  a  large  extent  on  the  ceramic  used.    

Tantalum     0.1  µF  -­‐  500  µF     Poor     Poor     Poor    Polarised  capacitor  -­‐  very  high  capacitance  density.  

Silver  mica     1  pF  -­‐  3000  pF     Good     Good     Good    Rather  expensive  and  large  -­‐  not  widely  used  these  days  except  when  small  value  accurate  capacitors  are  needed.    

Polyester  (Mylar)    

0.001  µF  -­‐  50  µF     Good     Poor     Good    Inexpensive,  and  popular  for  non-­‐demanding  applica@ons.  

Polystyrene     10  pF  -­‐  1  µF     V  good     Good     V  good    High  quality,  oBen  used  in  filters  and  the  like  where  accuracy  is  needed.    

Polycarbonate     100  pF  -­‐  20  µF     V  good     V  good     Good    Used  in  many  high  tolerance  and  hash  environmental  condi@ons.  Supply  now  restricted.    

Polypropylene     100pF  -­‐  50  µF     V  good     Good     V  good     High  performance  and  low  dielectric  absorp@on.    

Teflon     100  pF  -­‐  1  µF     V  good     V  v  good     V  v  good     High  performance  -­‐  lowest  dielectric  absorp@on.    

Glass     10  pF  -­‐  1000  pF     Good     Good     V  good    Excellent  for  very  harsh  environments  while  offering  good  stability.  Very  expensive.    

Porcelain     100  pF  -­‐  0.1  µF     Good     Good     Good     Good  long  term  stability    

Vacuum  and  air     1  pF  -­‐  10  000  pF    OBen  used  as  variable  capacitors  in  transmiKers  as  a  result  of  their  very  high  voltage  capability.    

Ref:  h'p://www.radio-­‐electronics.com/info/data/capacitor/capacitor_types.php  

Page 25: JD Module2 V1 - University of Florida · Module 2 Diode LTSPICE Model! • Add 1N4004 diode model to LTSPICE diode model library! – Navigate to C:\Program Files\LTC\LTspiceIV\lib\cmp!

25 EEL 3923C, Fall 2010, T. Nishida

Capacitor Applications ApplicaHon   Suitable  types   Reasons  

Power  supply  smoothing   Aluminium  electrolyHc   High  capacity,  high  ripple  current  

Audio  frequency  coupling  

Aluminium  electrolyHc  

Tantalum  

Polyester  /  polycarbonate  

High  capacitance  

High  capacitance,  small  size  

Cheap,  but  values  not  as  high  as  electrolyHcs  

RF  coupling  

Ceramic  COG  

Ceramic  X7R  

 Polystyrene  

Small,  cheap,  low  loss  

Small  cheap,  but  higher  loss  than  COG  

Very  low  loss,  but  larger  than  ceramic  

RF  decoupling  

Ceramic  COG  

Ceramic  X7R  

Small,  low  loss.  Values  limited  to  around  1000  pF  

Small,  low  loss,  higher  values  available  than  for  COG  types  

Tuned  circuits  Silver  mica  

Ceramic  COG  

Close  tolerance,  low  loss  

Close  tolerance,  low  loss,  although  not  as  good  as  silver  mica  

Ref:  h'p://www.radio-­‐electronics.com/info/data/capacitor/capacitor_types.php  

Page 26: JD Module2 V1 - University of Florida · Module 2 Diode LTSPICE Model! • Add 1N4004 diode model to LTSPICE diode model library! – Navigate to C:\Program Files\LTC\LTspiceIV\lib\cmp!

26 EEL 3923C, Fall 2010, T. Nishida

Module 2 LTSPICE Simulation Half Wave with Filter Cap

•  Caution: Make sure + terminal of electrolytic capacitor is connected to positive secondary voltage lead

•  Select standard value capacitance by right-clicking capacitor

Page 27: JD Module2 V1 - University of Florida · Module 2 Diode LTSPICE Model! • Add 1N4004 diode model to LTSPICE diode model library! – Navigate to C:\Program Files\LTC\LTspiceIV\lib\cmp!

27 EEL 3923C, Fall 2010, T. Nishida

Module 2 LTSPICE Simulation Half Wave with Filter Cap

•  Note: Need to simulate long enough to reach steady-state – Start to save data after steady-state is reached

Page 28: JD Module2 V1 - University of Florida · Module 2 Diode LTSPICE Model! • Add 1N4004 diode model to LTSPICE diode model library! – Navigate to C:\Program Files\LTC\LTspiceIV\lib\cmp!

28 EEL 3923C, Fall 2010, T. Nishida

Module 2 LTSPICE Simulation Half Wave with Filter Cap

•  Note: Positive current defined down in RL •  Calculate percent ripple in output voltage

– Percent ripple = 100(Vr /VOmax )

Page 29: JD Module2 V1 - University of Florida · Module 2 Diode LTSPICE Model! • Add 1N4004 diode model to LTSPICE diode model library! – Navigate to C:\Program Files\LTC\LTspiceIV\lib\cmp!

29 EEL 3923C, Fall 2010, T. Nishida

Module 2 LTSPICE Simulation Full Wave with Filter Cap

•  Caution: Make sure + terminal of electrolytic capacitor is connected to positive secondary voltage lead

Page 30: JD Module2 V1 - University of Florida · Module 2 Diode LTSPICE Model! • Add 1N4004 diode model to LTSPICE diode model library! – Navigate to C:\Program Files\LTC\LTspiceIV\lib\cmp!

30 EEL 3923C, Fall 2010, T. Nishida

II.4 Regulator •  Purpose: Active circuit to achieve nearly

constant output voltage up to a max load current

•  Approaches – Open-circuit

•  Zener diode – Closed-circuit

•  Op-amp, transistor •  Specialized regulator ICs

Page 31: JD Module2 V1 - University of Florida · Module 2 Diode LTSPICE Model! • Add 1N4004 diode model to LTSPICE diode model library! – Navigate to C:\Program Files\LTC\LTspiceIV\lib\cmp!

31 EEL 3923C, Fall 2010, T. Nishida

Operation at Reverse Breakdown—���Zener Diodes

•  Operation at reverse bias •  Define VZ and IZ with opposite polarity

•  Circuit symbol

•  I-V characteristic

i

v -VZ -VZK

-IZK

-IZT

Figure 3.21, Sedra & Smith

Page 32: JD Module2 V1 - University of Florida · Module 2 Diode LTSPICE Model! • Add 1N4004 diode model to LTSPICE diode model library! – Navigate to C:\Program Files\LTC\LTspiceIV\lib\cmp!

32 EEL 3923C, Fall 2010, T. Nishida

Zener Diodes •  Parameters: Identify on I-V characteristic

•  Q point (i=IZT and v=VZ) •  Zz= incremental resistance (slope = 1/Zz) •  ΔV=Zz Δ I •  IZK = minimum reverse current for operation in breakdown

region •  Equivalent circuit (piece-wise linear)

•  VZ = VZ0 + ZzIZ for IZ > IZK

+ VZ _

Page 33: JD Module2 V1 - University of Florida · Module 2 Diode LTSPICE Model! • Add 1N4004 diode model to LTSPICE diode model library! – Navigate to C:\Program Files\LTC\LTspiceIV\lib\cmp!

33 EEL 3923C, Fall 2010, T. Nishida

Zener Shunt Regulator •  Zener diode placed in parallel with load (shunt)

Ref:  http://www.st.com/stonline/books/pdf/docs/1707.pdf  

Page 34: JD Module2 V1 - University of Florida · Module 2 Diode LTSPICE Model! • Add 1N4004 diode model to LTSPICE diode model library! – Navigate to C:\Program Files\LTC\LTspiceIV\lib\cmp!

34 EEL 3923C, Fall 2010, T. Nishida

Zener Shunt Regulator •  Line regulation: Defined as change in output voltage, VO

for change in line voltage, V+, for no load •  ΔVO=(rz/(rz+R)) ΔV+

•  What is the effect of connecting a load? •  Load regulation: Defined as ΔVo per 1mA when RL

chosen to draw IL=1mA •  If ΔIL=+1mA, what is ΔIZ? •  Effect of ΔIZ on ΔVO? Check zener I-V curve. •  ΔVO = Zz ΔIZ

•  What limits the lowest RL for the shunt regulator?

Page 35: JD Module2 V1 - University of Florida · Module 2 Diode LTSPICE Model! • Add 1N4004 diode model to LTSPICE diode model library! – Navigate to C:\Program Files\LTC\LTspiceIV\lib\cmp!

35 EEL 3923C, Fall 2010, T. Nishida

1N4728A – 1N4758A Zener Diodes

Ref:  http://www.fairchildsemi.com/ds/1N%2F1N4745A.pdf

Page 36: JD Module2 V1 - University of Florida · Module 2 Diode LTSPICE Model! • Add 1N4004 diode model to LTSPICE diode model library! – Navigate to C:\Program Files\LTC\LTspiceIV\lib\cmp!

36 EEL 3923C, Fall 2010, T. Nishida

Module 2 Zener Diode LTSPICE Model •  Add 1N4733A zener diode model to LTSPICE diode model library

–  Navigate to C:\Program Files\LTC\LTspiceIV\lib\cmp –  Open standard.dio using notepad or by double-clicking and using LTSPICE –  Insert the following into the file

* 1N4733 * Motorola 5.1V 1W Si Zener pkg:DO-41 1,2 .MODEL 1N4733 D(IS=7.03E-16 RS=0.871 TT=5.01E-8 CJO=1.89E-10 VJ=0.75 M=0.33

BV=5.059 IBV=0.049 Vpk=5.1 mfg=Fairchild type=zener)

–  Close and restart LTSPICE •  Insert a generic diode into your schematic •  Right-click the diode; you should see a dialog box

–  Click ‘Pick New Diode’ –  Select 1N4733 zener diode from the list of possible diodes –  The zener diode should now look like:

Ref:  http://www.duncanamps.com/spice/diodes/zener.mod

Page 37: JD Module2 V1 - University of Florida · Module 2 Diode LTSPICE Model! • Add 1N4004 diode model to LTSPICE diode model library! – Navigate to C:\Program Files\LTC\LTspiceIV\lib\cmp!

37 EEL 3923C, Fall 2010, T. Nishida

Module 2 Zener LTSPICE Model •  Zener diode placed in parallel with load (shunt)

Ref:  http://www.st.com/stonline/books/pdf/docs/1707.pdf  

Page 38: JD Module2 V1 - University of Florida · Module 2 Diode LTSPICE Model! • Add 1N4004 diode model to LTSPICE diode model library! – Navigate to C:\Program Files\LTC\LTspiceIV\lib\cmp!

38 EEL 3923C, Fall 2010, T. Nishida

LM2940 Low Dropout Pos Regulator

Ref:  http://www.national.com/ds/LM/LM2940.pdf

Page 39: JD Module2 V1 - University of Florida · Module 2 Diode LTSPICE Model! • Add 1N4004 diode model to LTSPICE diode model library! – Navigate to C:\Program Files\LTC\LTspiceIV\lib\cmp!

39 EEL 3923C, Fall 2010, T. Nishida

LM2940 Low Dropout Pos Regulator

Ref:  http://www.national.com/ds/LM/LM2940.pdf

Page 40: JD Module2 V1 - University of Florida · Module 2 Diode LTSPICE Model! • Add 1N4004 diode model to LTSPICE diode model library! – Navigate to C:\Program Files\LTC\LTspiceIV\lib\cmp!

40 EEL 3923C, Fall 2010, T. Nishida

LT1086 Low Dropout Pos Regulator

Ref:  h'p://cds.linear.com/docs/Datasheet/1086ffs.pdf  

Page 41: JD Module2 V1 - University of Florida · Module 2 Diode LTSPICE Model! • Add 1N4004 diode model to LTSPICE diode model library! – Navigate to C:\Program Files\LTC\LTspiceIV\lib\cmp!

41 EEL 3923C, Fall 2010, T. Nishida

LT1086 Low Dropout Pos Regulator

Ref:  h'p://cds.linear.com/docs/Datasheet/1086ffs.pdf  

Page 42: JD Module2 V1 - University of Florida · Module 2 Diode LTSPICE Model! • Add 1N4004 diode model to LTSPICE diode model library! – Navigate to C:\Program Files\LTC\LTspiceIV\lib\cmp!

42 EEL 3923C, Fall 2010, T. Nishida

LM2940 Standard Pos Regulator

Ref:  http://www.fairchildsemi.com/ds/LM/LM7805.pdf

Page 43: JD Module2 V1 - University of Florida · Module 2 Diode LTSPICE Model! • Add 1N4004 diode model to LTSPICE diode model library! – Navigate to C:\Program Files\LTC\LTspiceIV\lib\cmp!

43 EEL 3923C, Fall 2010, T. Nishida

LM3940 Regulator 5V to 3.3V Converter

Ref:  http://www.national.com/ds/LM/LM3940.pdf