26
MIT Lincoln Laboratory 20101111 EN-012 Slide 1 JDW Gp. 42 Validation of En Route Capacity Model with Peak Counts from the National Airspace System J. Welch and J. Andrews MIT Lincoln Laboratory J. Post Federal Aviation Administration 11 November 2010 * This work is sponsored by the Federal Aviation Administration under Air Force Contract #FA8721-05-C-0002. Opinions, interpretations, recommendations and conclusions are those of the author and are not necessarily endorsed by the United States Government.

J. Welch and J. Andrews · 2010. 12. 3. · Memphis ZTL Atlanta ZDC* ZNY ZJX Jacksonville ZMA Miami ZAU Chicago ZBW Boston Normalized Capacity Density NAS En Route Centers (July –August

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • MIT Lincoln Laboratory20101111 EN-012 Slide 1

    JDW Gp. 42

    Validation of En Route Capacity Model with Peak Counts from the National Airspace System

    J. Welch and J. Andrews

    MIT Lincoln Laboratory

    J. Post

    Federal Aviation Administration

    11 November 2010

    * This work is sponsored by the Federal Aviation Administration under Air Force Contract #FA8721-05-C-0002. Opinions,

    interpretations, recommendations and conclusions are those of the author and are not necessarily endorsed by the United States

    Government.

  • MIT Lincoln Laboratory20101111 EN-012 Slide 2

    JDW Gp. 42

    Overview

    • Airspace capacity estimates are important– sector design

    – air traffic management

    • Current model accounts only for ‘transit’ workload– hand-offs at sector crossings

    Capacities differ significantly center to center

    Local Capacity

  • MIT Lincoln Laboratory20101111 EN-012 Slide 3

    JDW Gp. 42

    Outline

    • Review of Capacity Model

    • Regression Process

    • Center Capacities

    • Conclusions

  • MIT Lincoln Laboratory20101111 EN-012 Slide 4

    JDW Gp. 42

    Workload Event Rates

    Workload grows with three critical traffic-dependent event rates

    Conflict ratelc = (2 N

    2/Q) Mh Mv V21sector airspace volume Q

    miss distances Mh and Mvmean closing speed V21

    Transit (boundary crossing) rate

    lt = N/T

    sector aircraft count N

    mean sector transit time T

    Recurring (scanning/monitoring) ratelr = N/P

    recurrence period P

  • MIT Lincoln Laboratory20101111 EN-012 Slide 5

    JDW Gp. 42

    Determining the unknown service times

    – Live approach

    Measure controller performance

    – Regression approach

    Observe Peak daily counts Np for many sectors

    Calculate corresponding Model capacities Nm

    Find service times that best fit Nm to Np bound

    Workload Intensity

    Workload Intensity(fraction of controller time) G = Gt + Gc + Gr

    transit conflict recurring

    Gt = tt [N/T]

    Gc = tc [(2 N2/Q) Mh MvV21]

    Gr = tr [N/P]

    Service Times(empirical )

    occurrence rates(calculated from

    airspaceparameters)

  • MIT Lincoln Laboratory20101111 EN-012 Slide 6

    JDW Gp. 42

    Conflict Distance

    Global closing speed V21 is also unknown

    Fit the product tcV21

    (separation lost while resolving a conflict)

    Conflict Workload Intensity

    Gc = tc [(2 N2/Q) Mh MvV21]

    tcV21 ~ 2 nautical miles (for NAS)

  • MIT Lincoln Laboratory20101111 EN-012 Slide 7

    JDW Gp. 42

    0

    500

    1000

    1500

    2000

    0 0.2 0.4 0.6 0.8 1

    Altitude Change Fraction F ca

    Ve

    rtic

    al

    Mis

    s D

    ista

    nc

    e M

    v,

    ft

    Effect of Altitude Changes

    Aircraft with vertical rates cause increased uncertainty

    Adapt by increasing vertical miss distance Mv• Determine fraction Fca of aircraft with ≥2000 ft altitude change• As Fca grows, increase Mv linearly from 1000 ft to Mvmax

    Mvmax ≈ 1600 ft

    (For NAS)

  • MIT Lincoln Laboratory20101111 EN-012 Slide 8

    JDW Gp. 42

    Outline

    • Review of Capacity Model

    • Regression Process

    • Center Capacities

    • Conclusions

  • MIT Lincoln Laboratory20101111 EN-012 Slide 9

    JDW Gp. 42

    Peak Daily Counts(790 NAS Sectors)

    0

    5

    10

    15

    20

    25

    30

    0 10000 20000 30000 40000 50000 60000 70000 80000

    Sector Volume (nm3)

    Air

    cra

    ft C

    ou

    nt

    Observed Peak Count July and August 2007

    Day with most operations for each center

    Peak instantaneous count for each sector

  • MIT Lincoln Laboratory20101111 EN-012 Slide 10

    JDW Gp. 42

    Peak Daily Counts and Fitted Capacities(790 NAS Sectors, July–August 2007)

    0

    5

    10

    15

    20

    25

    30

    0 10000 20000 30000 40000 50000 60000 70000 80000

    Sector Volume (nm3)

    Air

    cra

    ft C

    ou

    nt

    NAS Model Capacity

    Observed Peak Count

  • MIT Lincoln Laboratory20101111 EN-012 Slide 11

    JDW Gp. 42

    -25

    -20

    -15

    -10

    -5

    0

    5

    -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5

    Difference Between Sector Peak Count and Model Bound, Np-Nb

    Sec

    tor

    Sco

    reAsymmetric Objective Function

    (Fits Model to Peak Count Bound)

    Np < Nm Np > Nm

    Difference Between Peak Count Np and Model Capacity NmDifference between Peak Count Np and Model Capacity Nm

    Secto

    r S

    co

    re

  • MIT Lincoln Laboratory20101111 EN-012 Slide 12

    JDW Gp. 42

    -25

    -20

    -15

    -10

    -5

    0

    5

    -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5

    Difference Between Sector Peak Count and Model Bound, Np-Nb

    Sec

    tor

    Sco

    reAsymmetric Objective Function

    (Fits Model to Peak Count Bound)

    Np < Nm Np > Nm

    Difference Between Peak Count Np and Model Capacity Nm

    Close Fits

    Reward sectors

    with close fits

    Difference between Peak Count Np and Model Capacity Nm

    Secto

    r S

    co

    re

  • MIT Lincoln Laboratory20101111 EN-012 Slide 13

    JDW Gp. 42

    -25

    -20

    -15

    -10

    -5

    0

    5

    -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5

    Difference Between Sector Peak Count and Model Bound, Np-Nb

    Sec

    tor

    Sco

    reAsymmetric Objective Function

    (Fits Model to Peak Count Bound)

    Np < Nm Np > Nm

    Difference Between Peak Count Np and Model Capacity Nm

    High Counts

    Penalize sectors

    with high

    peak counts

    Difference between Peak Count Np and Model Capacity Nm

    Secto

    r S

    co

    re

    Close Fits

    Reward sectors

    with close fits

  • MIT Lincoln Laboratory20101111 EN-012 Slide 14

    JDW Gp. 42

    -25

    -20

    -15

    -10

    -5

    0

    5

    -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5

    Difference Between Sector Peak Count and Model Bound, Np-Nb

    Sec

    tor

    Sco

    reAsymmetric Objective Function

    (Fits Model to Peak Count Bound)

    Np < Nm Np > Nm

    Low Counts

    Low traffic demand

    no score assigned

    Difference Between Peak Count Np and Model Capacity NmDifference between Peak Count Np and Model Capacity Nm

    Secto

    r S

    co

    re

    High Counts

    Penalize sectors

    with high

    peak counts

    Close Fits

    Reward sectors

    with close fits

  • MIT Lincoln Laboratory20101111 EN-012 Slide 15

    JDW Gp. 42

    Fitted Capacities versus Peak Counts (790 NAS Sectors July – August 2007)

    0

    5

    10

    15

    20

    25

    30

    0 5 10 15 20 25 30

    Observed Peak Count

    NA

    S M

    od

    el C

    ap

    ac

    ity

  • MIT Lincoln Laboratory20101111 EN-012 Slide 16

    JDW Gp. 42

    Outline

    • Review of Capacity Model

    • Regression Process

    • Center Capacities

    • Conclusions

  • MIT Lincoln Laboratory20101111 EN-012 Slide 17

    JDW Gp. 42

    0

    5

    10

    15

    20

    25

    30

    0 10000 20000 30000 40000 50000 60000 70000 80000

    Sector Volume (nm3)

    Air

    cra

    ft C

    ou

    nt

    ZSE Peak Daily Count

    Peak Sector Counts, Seattle Center (ZSE)

    July and August 2007

    10 days with highest center operations

    Peak sector counts for those days

    28 ZSE sectors

    280 ZSE sector-days

  • MIT Lincoln Laboratory20101111 EN-012 Slide 18

    JDW Gp. 42

    ZSE Sector Capacity from ZSE Regression

    0

    5

    10

    15

    20

    25

    30

    0 10000 20000 30000 40000 50000 60000 70000 80000

    Sector Volume (nm3)

    Air

    cra

    ft C

    ou

    nt

    Capacity, ZSE Regression

    ZSE Peak Daily Count

  • MIT Lincoln Laboratory20101111 EN-012 Slide 19

    JDW Gp. 42

    ZSE Sector Capacity from NAS Regression

    0

    5

    10

    15

    20

    25

    30

    0 10000 20000 30000 40000 50000 60000 70000 80000

    Sector Volume (nm3)

    Air

    cra

    ft C

    ou

    nt

    Capacity, NAS Regression

    Capacity, ZSE Regression

    ZSE Peak Daily Count

  • MIT Lincoln Laboratory20101111 EN-012 Slide 20

    JDW Gp. 42

    Normalized Capacity Density

    Normalized capacity density

    KNC = SCS / QZ / NS

    SCS = Sum of local capacities of all sectors

    QZ = Center airspace volume (10,000 nmi3)

    NS = Sector count

    • Local center capacities differ significantly

    • Meaningful capacity comparisons must normalize for

    – center size

    – sector count

    (KNC for Seattle is 0.11 aircraft per 10,000 nmi3)

  • MIT Lincoln Laboratory20101111 EN-012 Slide 21

    JDW Gp. 42

    0

    5

    10

    15

    20

    25

    30

    0 10000 20000 30000 40000 50000 60000 70000 80000

    Sector Volume (nm3)

    Air

    cra

    ft C

    ou

    nt

    ZDC

    Peak CountsWashington DC Center

    ZDC

    46 sectors

    KNC = 0.41

    Calendar Year 2007

    8 days with highest ZDC operations

    (in March, April May, June, and November)

  • MIT Lincoln Laboratory20101111 EN-012 Slide 22

    JDW Gp. 42

    0

    5

    10

    15

    20

    25

    30

    0 10000 20000 30000 40000 50000 60000 70000 80000

    Sector Volume (nm3)

    Air

    cra

    ft C

    ou

    nt

    ZDC

    ZMA

    Peak CountsWashington DC and Miami Centers

    ZMA

    40 sectors

    KNC = 0.07

    ZDC

    46 sectors

    KNC = 0.41

    Calendar Year 2007

  • MIT Lincoln Laboratory20101111 EN-012 Slide 23

    JDW Gp. 42

    ZSE

    Seattle

    ZOA

    Oakland

    ZLA

    ZDV

    Denver

    ZLC

    Salt Lake city

    ZKC

    Kansas City

    ZAB

    Albuquerque

    ZID

    Indianapolis

    ZFW

    Dallas

    ZHU

    Houston

    ZOB

    Cleveland

    ZMP

    Minneapolis

    ZME

    Memphis ZTL

    Atlanta

    ZDC*

    ZNY

    ZJX

    Jacksonville

    ZMA

    Miami

    ZAU

    Chicago

    ZBW

    Boston

    Normalized Capacity DensityNAS En Route Centers (July – August 2007)

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    0.4

    0.45

    ZDC ZID ZNY ZAU ZTL ZOB ZM E ZFW ZKC ZOA ZJX ZLA ZAB NAS ZDV ZBW ZSE ZM P ZLC ZHU ZM A

    Center

    Air

    cra

    ft /

    10,0

    00 n

    m3 /

    Secto

    r

    * ZDC not

    restricted to

    July-August

  • MIT Lincoln Laboratory20101111 EN-012 Slide 24

    JDW Gp. 42

    Equation for NAS Sector Capacity

    Sector Capacity

    where

    • a = 5.4(1+0.6 Fca)/Q, b = (a + 0.013 + 13/T), c = -0.7

    • Fca = fraction of daily sector flights with ≥2000 ft altitude change

    • Q (nm3) = sector volume based on min and max daily altitudes

    • T (s) = mean transit time for aircraft in sector at time of peak

    a

    acbbNm

    2

    42

  • MIT Lincoln Laboratory20101111 EN-012 Slide 25

    JDW Gp. 42

    Conclusions

    • NAS regression provides inherent sector capacity

    • Individual center regressions provide local sector capacity– can be significantly less than inherent capacity

    • Peak count data reflect wide range of– Complexity

    – Demand

    – Airspace characteristics

    • Single set of capacity parameters cannot capture current operations– Individual center regressions necessary

    • July - August 2007 peaks do not give peak demand for all Centers – Southern operations peak in winter

    • We plan to refine capacity calculations– Choose actual peak demand periods for all centers

    – Increase data sets in all regressions

  • MIT Lincoln Laboratory20101111 EN-012 Slide 26

    JDW Gp. 42

    End