1000
N° 43 – February 2020 Italian Journal of Pure and Applied Mathematics ISSN 2239-0227 EDITOR-IN-CHIEF Piergiulio Corsini Editorial Board Saeid Abbasbandy Praveen Agarwal Bayram Ali Ersoy Reza Ameri Luisa Arlotti Alireza Seyed Ashrafi Krassimir Atanassov Vadim Azhmyakov Malvina Baica Federico Bartolozzi Rajabali Borzooei Carlo Cecchini Gui-Yun Chen Domenico Nico Chillemi Stephen Comer Irina Cristea Mohammad Reza Darafsheh Bal Kishan Dass Bijan Davvaz Mario De Salvo Alberto Felice De Toni Franco Eugeni Mostafa Eslami Giovanni Falcone Yuming Feng Antonino Giambruno Furio Honsell Luca Iseppi James Jantosciak Tomas Kepka David Kinderlehrer Sunil Kumar Andrzej Lasota Violeta Leoreanu-Fotea Maria Antonietta Lepellere Mario Marchi Donatella Marini Angelo Marzollo Antonio Maturo Fabrizio Maturo Sarka Hozkova-Mayerova Vishnu Narayan Mishra M. Reza Moghadam Syed Tauseef Mohyud-Din Petr Nemec Vasile Oproiu Livio C. Piccinini Goffredo Pieroni Flavio Pressacco Sanja Jancic Rasovic Vito Roberto Gaetano Russo Paolo Salmon Maria Scafati Tallini Kar Ping Shum Alessandro Silva Florentin Smarandache Sergio Spagnolo Stefanos Spartalis Hari M. Srivastava Yves Sureau Carlo Tasso Ioan Tofan Aldo Ventre Thomas Vougiouklis Hans Weber Shanhe Wu Xiao-Jun Yang Yunqiang Yin Mohammad Mehdi Zahedi Fabio Zanolin Paolo Zellini Jianming Zhan FORUM

Italian Journal of Pure and Applied Mathematicsijpam.uniud.it/online_issue/IJPAM_no-43-2020.pdf · [email protected] Giovanni Falcone Dipartimento di Metodi e Modelli Matematici

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

  • N° 43 – February 2020

    Italian Journal of Pure and

    Applied Mathematics

    ISSN 2239-0227

    EDITOR-IN-CHIEF

    Piergiulio Corsini

    Editorial Board

    Saeid Abbasbandy

    Praveen Agarwal

    Bayram Ali Ersoy

    Reza Ameri

    Luisa Arlotti

    Alireza Seyed Ashrafi

    Krassimir Atanassov

    Vadim Azhmyakov

    Malvina Baica

    Federico Bartolozzi

    Rajabali Borzooei

    Carlo Cecchini

    Gui-Yun Chen

    Domenico Nico Chillemi

    Stephen Comer

    Irina Cristea

    Mohammad Reza Darafsheh

    Bal Kishan Dass

    Bijan Davvaz

    Mario De Salvo

    Alberto Felice De Toni

    Franco Eugeni

    Mostafa Eslami

    Giovanni Falcone

    Yuming Feng

    Antonino Giambruno

    Furio Honsell

    Luca Iseppi

    James Jantosciak

    Tomas Kepka

    David Kinderlehrer

    Sunil Kumar

    Andrzej Lasota

    Violeta Leoreanu-Fotea

    Maria Antonietta Lepellere

    Mario Marchi

    Donatella Marini

    Angelo Marzollo

    Antonio Maturo

    Fabrizio Maturo

    Sarka Hozkova-Mayerova

    Vishnu Narayan Mishra

    M. Reza Moghadam

    Syed Tauseef Mohyud-Din

    Petr Nemec

    Vasile Oproiu

    Livio C. Piccinini

    Goffredo Pieroni

    Flavio Pressacco

    Sanja Jancic Rasovic

    Vito Roberto

    Gaetano Russo

    Paolo Salmon

    Maria Scafati Tallini

    Kar Ping Shum

    Alessandro Silva

    Florentin Smarandache

    Sergio Spagnolo

    Stefanos Spartalis

    Hari M. Srivastava

    Yves Sureau

    Carlo Tasso

    Ioan Tofan

    Aldo Ventre

    Thomas Vougiouklis

    Hans Weber

    Shanhe Wu

    Xiao-Jun Yang

    Yunqiang Yin

    Mohammad Mehdi Zahedi

    Fabio Zanolin

    Paolo Zellini

    Jianming Zhan

    FORUM

  • EDITOR-IN-CHIEF

    Piergiulio Corsini

    Department of Civil Engineering and Architecture

    Via delle Scienze 206 - 33100 Udine, Italy [email protected]

    VICE-CHIEFS

    Violeta Leoreanu

    Maria Antonietta Lepellere

    MANAGING BOARD

    Domenico Chillemi, CHIEF Piergiulio Corsini

    Irina Cristea

    Alberto Felice De Toni Furio Honsell

    Violeta Leoreanu

    Maria Antonietta Lepellere Elena Mocanu

    Livio Piccinini

    Flavio Pressacco

    Luminita Teodorescu Norma Zamparo

    EDITORIAL BOARD

    Saeid Abbasbandy Dept. of Mathematics, Imam Khomeini International University, Ghazvin, 34149-16818, Iran [email protected] Praveen Agarwal Department of Mathematics, Anand International College of Engineering Jaipur-303012, India [email protected]

    Bayram Ali Ersoy Department of Mathematics, Yildiz Technical University

    34349 Beşiktaş, Istanbul, Turkey [email protected] Reza Ameri Department of Mathematics University of Tehran, Tehran, Iran [email protected]

    Luisa Arlotti Department of Civil Engineering and Architecture Via delle Scienze 206 - 33100 Udine, Italy [email protected] Alireza Seyed Ashrafi Department of Pure Mathematics University of Kashan, Kāshān, Isfahan, Iran

    [email protected] Krassimir Atanassov Centre of Biomedical Engineering, Bulgarian Academy of Science BL 105 Acad. G. Bontchev Str. 1113 Sofia, Bulgaria [email protected] Vadim Azhmyakov

    Department of Basic Sciences, Universidad de Medellin, Medellin, Republic of Colombia [email protected] Malvina Baica University of Wisconsin-Whitewater Dept. of Mathematical and Computer Sciences Whitewater, W.I. 53190, U.S.A.

    [email protected] Federico Bartolozzi Dipartimento di Matematica e Applicazioni via Archirafi 34 - 90123 Palermo, Italy [email protected] Rajabali Borzooei

    Department of Mathematics Shahid Beheshti University, Tehran, Iran [email protected] Carlo Cecchini Dipartimento di Matematica e Informatica Via delle Scienze 206 - 33100 Udine, Italy [email protected] Gui-Yun Chen School of Mathematics and Statistics, Southwest University, 400715, Chongqing, China [email protected] Domenico (Nico) Chillemi Executive IT Specialist, IBM z System Software IBM Italy SpA

    Via Sciangai 53 – 00144 Roma, Italy [email protected] Stephen Comer Department of Mathematics and Computer Science The Citadel, Charleston S. C. 29409, USA [email protected]

    Irina Cristea CSIT, Centre for Systems and Information Technologies University of Nova Gorica Vipavska 13, Rožna Dolina, SI-5000 Nova Gorica, Slovenia [email protected]

    Mohammad Reza Darafsheh School of Mathematics, College of Science

    University of Tehran, Tehran, Iran [email protected] Bal Kishan Dass Department of Mathematics University of Delhi, Delhi - 110007, India [email protected]

    Bijan Davvaz Department of Mathematics, Yazd University, Yazd, Iran [email protected] Mario De Salvo Dipartimento di Matematica e Informatica Viale Ferdinando Stagno d'Alcontres 31, Contrada Papardo 98166 Messina

    [email protected] Alberto Felice De Toni Udine University, Rector Via Palladio 8 - 33100 Udine, Italy [email protected]

    Franco Eugeni Dipartimento di Metodi Quantitativi per l'Economia del Territorio Università di Teramo, Italy [email protected]

    Mostafa Eslami Department of Mathematics Faculty of Mathematical Sciences University of Mazandaran, Babolsar, Iran [email protected] Giovanni Falcone Dipartimento di Metodi e Modelli Matematici

    viale delle Scienze Ed. 8 90128 Palermo, Italy [email protected] Yuming Feng College of Math. and Comp. Science, Chongqing Three-Gorges University, Wanzhou, Chongqing, 404000, P.R.China [email protected]

    Antonino Giambruno Dipartimento di Matematica e Applicazioni via Archirafi 34 - 90123 Palermo, Italy [email protected] Furio Honsell Dipartimento di Matematica e Informatica

    Via delle Scienze 206 - 33100 Udine, Italy [email protected] Luca Iseppi Department of Civil Engineering and Architecture, section of Economics and Landscape Via delle Scienze 206 - 33100 Udine, Italy [email protected]

    James Jantosciak Department of Mathematics, Brooklyn College (CUNY) Brooklyn, New York 11210, USA [email protected] Tomas Kepka MFF-UK Sokolovská 83

    18600 Praha 8,Czech Republic [email protected] David Kinderlehrer Department of Mathematical Sciences, Carnegie Mellon University Pittsburgh, PA15213-3890, USA [email protected]

    Sunil Kumar Department of Mathematics, National Institute of Technology Jamshedpur, 831014, Jharkhand, India [email protected] Andrzej Lasota Silesian University, Institute of Mathematics Bankova 14

    40-007 Katowice, Poland [email protected] Violeta Leoreanu-Fotea Faculty of Mathematics Al. I. Cuza University 6600 Iasi, Romania [email protected]

    Maria Antonietta Lepellere Department of Civil Engineering and Architecture Via delle Scienze 206 - 33100 Udine, Italy [email protected] Mario Marchi Università Cattolica del Sacro Cuore via Trieste 17, 25121 Brescia, Italy

    [email protected] Donatella Marini Dipartimento di Matematica Via Ferrata 1- 27100 Pavia, Italy [email protected] Angelo Marzollo

    Dipartimento di Matematica e Informatica Via delle Scienze 206 - 33100 Udine, Italy [email protected] Antonio Maturo University of Chieti-Pescara, Department of Social Sciences, Via dei Vestini, 31 66013 Chieti, Italy

    [email protected] Fabrizio Maturo University of Chieti-Pescara, Department of Management and Business Administration, Viale Pindaro, 44 65127 Pescara, Italy [email protected]

    Sarka Hoskova-Mayerova Department of Mathematics and Physics University of Defence Kounicova 65, 662 10 Brno, Czech Republic [email protected] Vishnu Narayan Mishra Applied Mathematics and Humanities Department

    Sardar Vallabhbhai National Institute of Technology 395 007, Surat, Gujarat, India [email protected] M. Reza Moghadam Faculty of Mathematical Science, Ferdowsi University of Mashhadh P.O.Box 1159 - 91775 Mashhad, Iran

    [email protected] Syed Tauseef Mohyud-Din Faculty of Sciences, HITEC University Taxila Cantt Pakistan [email protected] Petr Nemec Czech University of Life Sciences, Kamycka’ 129 16521 Praha 6, Czech Republic [email protected] Vasile Oproiu Faculty of Mathematics Al. I. Cuza University 6600 Iasi, Romania [email protected] Livio C. Piccinini Department of Civil Engineering and Architecture Via delle Scienze 206 - 33100 Udine, Italy [email protected] Goffredo Pieroni Dipartimento di Matematica e Informatica Via delle Scienze 206 - 33100 Udine, Italy

    [email protected]

    Flavio Pressacco Dept. of Economy and Statistics Via Tomadini 30 33100, Udine, Italy [email protected] Sanja Jancic Rasovic Department of Mathematics Faculty of Natural Sciences and Mathematics, University of Montenegro Cetinjska 2 – 81000 Podgorica, Montenegro [email protected] Vito Roberto

    Dipartimento di Matematica e Informatica Via delle Scienze 206 - 33100 Udine, Italy [email protected] Gaetano Russo Department of Civil Engineering and Architecture Via delle Scienze 206 33100 Udine, Italy

    [email protected] Paolo Salmon Dipartimento di Matematica, Università di Bologna Piazza di Porta S. Donato 5 40126 Bologna, Italy [email protected]

    Maria Scafati Tallini Dipartimento di Matematica "Guido Castelnuovo" Università La Sapienza Piazzale Aldo Moro 2 - 00185 Roma, Italy [email protected] Kar Ping Shum Faculty of Science The Chinese University of Hong Kong

    Hong Kong, China (SAR) [email protected] Alessandro Silva Dipartimento di Matematica "Guido Castelnuovo", Università La Sapienza Piazzale Aldo Moro 2 - 00185 Roma, Italy [email protected]

    Florentin Smarandache Department of Mathematics, University of New Mexico Gallup, NM 87301, USA [email protected] Sergio Spagnolo Scuola Normale Superiore Piazza dei Cavalieri 7 - 56100 Pisa, Italy

    [email protected] Stefanos Spartalis Department of Production Engineering and Management, School of Engineering, Democritus University of Thrace V.Sofias 12, Prokat, Bdg A1, Office 308 67100 Xanthi, Greece [email protected] Hari M. Srivastava Department of Mathematics and Statistics University of Victoria, Victoria, British Columbia V8W3P4, Canada [email protected] Yves Sureau 27, rue d'Aubiere

    63170 Perignat, Les Sarlieve - France [email protected] Carlo Tasso Dipartimento di Matematica e Informatica Via delle Scienze 206 - 33100 Udine, Italy [email protected]

    Ioan Tofan Faculty of Mathematics Al. I. Cuza University 6600 Iasi, Romania [email protected] Aldo Ventre Seconda Università di Napoli, Fac. Architettura, Dip. Cultura del Progetto

    Via San Lorenzo s/n 81031 Aversa (NA), Italy [email protected] Thomas Vougiouklis Democritus University of Thrace, School of Education, 681 00 Alexandroupolis. Greece

    [email protected] Hans Weber Dipartimento di Matematica e Informatica Via delle Scienze 206 - 33100 Udine, Italy [email protected] Shanhe Wu Department of Mathematics, Longyan University,

    Longyan, Fujian, 364012, China [email protected] Xiao-Jun Yang Department of Mathematics and Mechanics, China University of Mining and Technology, Xuzhou, Jiangsu, 221008, China [email protected]

    Yunqiang Yin School of Mathematics and Information Sciences, East China Institute of Technology, Fuzhou, Jiangxi 344000, P.R. China [email protected]

    Mohammad Mehdi Zahedi

    Department of Mathematics, Faculty of Science Shahid Bahonar, University of Kerman Kerman, Iran [email protected] Fabio Zanolin Dipartimento di Matematica e Informatica Via delle Scienze 206 - 33100 Udine, Italy

    [email protected] Paolo Zellini Dipartimento di Matematica, Università degli Studi Tor Vergata via Orazio Raimondo (loc. La Romanina) 00173 Roma, Italy [email protected]

    Jianming Zhan Department of Mathematics, Hubei Institute for Nationalities Enshi, Hubei Province,445000, China [email protected]

    mailto:[email protected]:[email protected]:[email protected]:[email protected]

  • i ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS – N. 43-2020

    In memoriam of Professor Ivo Rosenberg

    The “Italian Journal of Pure and Applied Mathematics“ cannot more take advantage of the

    precious collaboration of prof. Ivo Rosenberg, who has passed away.

    The members of Editorial Board express their deep sorrow for this loss.

    The Chief Editor regrets the loss of Prof. Ivo Rosenberg. He has been a great man of

    science and a very dear friend.

    All they who knew him will remember always his scientific value and his exquisite human

    qualities.

    Piergiulio Corsini

  • ii ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS – N. 43-2020

  • iii ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS – N. 43-2020

    Italian Journal of Pure and Applied Mathematics ISSN 2239-0227

    Web Site

    http://ijpam.uniud.it/journal/home.html

    Twitter @ijpamitaly

    https://twitter.com/ijpamitaly

    EDITOR-IN-CHIEF

    Piergiulio Corsini

    Department of Civil Engineering and Architecture

    Via delle Scienze 206 - 33100 Udine, Italy [email protected]

    Vice-CHIEFS

    Violeta Leoreanu-Fotea Maria Antonietta Lepellere

    Managing Board

    Domenico Chillemi, CHIEF Piergiulio Corsini

    Irina Cristea

    Alberto Felice De Toni

    Furio Honsell

    Violeta Leoreanu-Fotea

    Maria Antonietta Lepellere

    Elena Mocanu

    Livio Piccinini Flavio Pressacco

    Luminita Teodorescu

    Norma Zamparo

    Editorial Board

    Saeid Abbasbandy

    Praveen Agarwal Bayram Ali Ersoy

    Reza Ameri

    Luisa Arlotti Alireza Seyed Ashrafi

    Krassimir Atanassov

    Vadim Azhmyakov Malvina Baica

    Federico Bartolozzi

    Rajabali Borzooei Carlo Cecchini

    Gui-Yun Chen

    Domenico Nico Chillemi Stephen Comer

    Irina Cristea

    Mohammad Reza Darafsheh Bal Kishan Dass

    Bijan Davvaz

    Mario De Salvo Alberto Felice De Toni

    Franco Eugeni

    Mostafa Eslami Giovanni Falcone

    Yuming Feng

    Antonino Giambruno

    Furio Honsell Luca Iseppi

    James Jantosciak

    Tomas Kepka David Kinderlehrer

    Sunil Kumar

    Andrzej Lasota Violeta Leoreanu-Fotea

    Maria Antonietta Lepellere

    Mario Marchi Donatella Marini

    Angelo Marzollo

    Antonio Maturo Fabrizio Maturo

    Sarka Hozkova-Mayerova

    Vishnu Narayan Mishra M. Reza Moghadam

    Syed Tauseef Mohyud-Din

    Petr Nemec Vasile Oproiu

    Livio C. Piccinini

    Goffredo Pieroni Flavio Pressacco

    Sanja Jancic Rasovic

    Vito Roberto

    Gaetano Russo Paolo Salmon

    Maria Scafati Tallini

    Kar Ping Shum Alessandro Silva

    Florentin Smarandache

    Sergio Spagnolo Stefanos Spartalis

    Hari M. Srivastava

    Yves Sureau Carlo Tasso

    Ioan Tofan

    Aldo Ventre Thomas Vougiouklis

    Hans Weber

    Shanhe Wu Xiao-Jun Yang

    Yunqiang Yin

    Mohammad Mehdi Zahedi Fabio Zanolin

    Paolo Zellini

    Jianming Zhan

    Forum Editrice Universitaria Udinese Srl

    Via Larga 38 - 33100 Udine

    Tel: +39-0432-26001, Fax: +39-0432-296756 [email protected]

    http://ijpam.uniud.it/journal/home.htmlhttp://ijpam.uniud.it/journal/home.htmlmailto:[email protected]:[email protected]

  • ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS – N. 43–2020 iv

    Table of contents

    Arslan Hojat Ansari, Kamaleldin AbodayehUpper class functions on a controlled contraction principle in

    partial S-metric spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–13

    Yanheng Chen, Guiyun Chen, Yuming Feng, B.O. OnasanyaCharacterization of some linear groups by their conjugacy class sizes . . . . . . . . . . . . . . . . . . . 14–24

    M. Lellis Thivagar, Saeid Jafari, V. Sutha DeviOn new class of contra continuity in nano topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25–36

    Song-Tao Guo, Yong Xu, Guiyun ChenHeptavalent symmetric graphs of order 8p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37–46

    Kanak Kanti BaishyaOn almost generalized pseudo-Ricci symmetric spacetime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47–54

    Masoud Zolfaghari, Mohammad Hosein Moslemi KoopaeiSome remarks on generalizations of prime submodules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55–64

    Majid Mohammed AbedA new view of closed-CS-module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65–72

    A.F. Talee, M.Y. Abbasi, G. Muhiuddin, Sabahat Ali KhanHesitant fuzzy sets approach to ideal theory in ordered Γ-semigroups . . . . . . . . . . . . . . . . . . . 73–85

    R. Dhavaseelan, S. JafariIntuitionistic fuzzy rare α-continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86–94

    Shireen O. DakheelEn-semi prime subacts over monoids with zero . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95–99

    G. Muhiuddin, Shuaa AldhafeeriJoin hesitant fuzzy filters of residuated lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100–114

    J. Alebraheem, S. Hussain, F. Ahmad, K. NimerApplication of differential transformation method for solving

    prey predator model with holling type I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115–127

    Aydah Mohammed Ayed Al-AhmadiSome classes of mappings on generalized quaternion metric spaces II . . . . . . . . . . . . . . . . 128–140

    Farzaneh Nowroozi Larki, Shahram Rayat PishehOn two-sided group digraphs and graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141–152

    Shao Changguo, Jiang Qinhui, Li KefengA characterization of simple group S4(7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153–157

    Xiaohong Zhang, Peng Yu, F. Smarandache, Choonkil ParkRedefined neutrosophic filters in BE-algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158–176

    Zuhier AltawallbehMore on almost countably compact spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177–184

    Anwar Bataihah, Abdalla Tallafha, Wasfi ShatanawiFixed point results with Ω-distance by utilizing simulation functions . . . . . . . . . . . . . . . . . .185–196

    Amol B. Patil, Uday H. NaikOn coefficient inequalities for certain subclasses of meromorphic

    bi-univalent functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197–205

  • ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS – N. 43-2020 v

    Junjian YangA note on unitarily invariant norm inequalities for

    accretive-dissipative operator matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206–212

    Guowei ZhangLimiting direction of Julia sets and infinite radial order of

    solutions to complex linear differential equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213–223

    H. Jude Immaculate, Saeid Jafari, I. ArockiaraniIntuitionistic fuzzy ideals on approximation systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224–236

    Talal Al-HawaryOn modular flats and pushouts of matroids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237–241

    S.T. Mohyud-Din, H. Khan, M. Arif, S. BushnaqChebyshev wavelet method (CWM) for the numerical solutions of

    fractional boundary value problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242–255

    S. Dhanasekar, S. Hariharan, David Maxim GururajFuzzy zero suffix algorithm to solve fully fuzzy transportation

    problems by using element-wise operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .256–267

    Sang Wu, Chao Xu, Yinghui DongPricing European call options with default risk under a

    jump-diffusion model via FFT transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268–278

    Chao WeiEstimation for the parameter of a class of diffusion processes . . . . . . . . . . . . . . . . . . . . . . . . 279–290

    Umar Hayat, Ghulam Farid, Erdal KarapinarRelationships between tropical eigenvectors and tropical

    fixed points of the group GL(2,R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291–300S. Boughaba, M. El Amine Bencheikh Le Hocine, M. HaiourL∞-asymptotic behavior for a finite element approximation

    to optimal control problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301–312

    A. MolkhasiRings with strongly algebraically closed lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313–319

    N. Fahimi, T. Nozari, R. MahjoobOn the n∗− and γ∗n− complete fuzzy hypergroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320–330F.M. El-Sabaa, M. Hosny, S.K. ZakriaBifurcations of Liouville tori of generalized two-fixed

    center problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331–352

    Ghaleb GumahOptimization technique for solving fuzzy partial differential

    equations under strongly generalized differentiability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353–379

    A.H. El-Qadeem, D.A. MohanOn some properties of certain subclasses of univalent functions . . . . . . . . . . . . . . . . . . . . . . 380–390

    M. AnbarloeiOn uniformly primary hyperideals and uniformly 2-absorbing

    primary hyperideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391–401

    A. El-Sayed Ahmed, M.Y. YoussifClasses of weighted tent function spaces and mixed norms

    with some applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402–415

    Shatha Hasan, Mona SakkijhaToward strictly singular fractional operator restricted by

    Fredholm-Volterra in Sobolev space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416–427

  • vi ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS – N. 43-2020

    Lin Chen, Jun Li, Jianhua ZhangNonlinear left ∗-Lie triple mappings of standard

    operator algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .428–438

    Deepti ThakurA common fixed point theorem without continuity under weak compatible

    mappings in uniform convex Banach spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439–446

    Jian Tang, Ze Gu, Xiangyun XieA further study on the hyperideals of ordered semihypergroups . . . . . . . . . . . . . . . . . . . . . . . 447–470

    Lü Gong, Libo ZhaoFinite group with coincide automizer and central

    automorphism of subgroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471–476

    Aysel Turgut Vanli, Inan UnalRicci semi-symmetric normal complex contact metric manifolds . . . . . . . . . . . . . . . . . . . . . 477–491

    Eman Hussein, Hasan Al-Ezeh, Omar Abu GhneimThe path graph of the amalgamated graph of C3 and Cn

    at an edge or at a vertex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492–502

    Shitian Liu, Xianhua LiA characterization of some alternating group by its order and

    special conjugacy class sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503–516

    N.R. Abed Alhaleem, A.H. HandamInvo-clean rings associated with central polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517–522

    Maryam Attary, Praveen AgarwalOn developing an optimal Jarratt-like class for

    solving nonlinear equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .523–530

    A. Tajmouati, M. Amouch, M.R.F. Alhomidi ZakariyaSome spectral inclusion for strongly continuous

    semigroups operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .531–543

    Khaled Moaddy, A. AlhashashA reliable non-standard finite difference scheme for solving nonlinear

    biochemical reaction model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544–551

    Areerat Vongkok, Nopparat PochaiNumerical simulations for reactive nitrogen compounds pollution

    measurements in a stream using Saulyev method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 552–582

    Sithara Ramesan, K.T. RavindranSome results on K-frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .583–589

    Mua’ad M Abu-Faraj, Mohammad ZubiAnalysis and implementation of kidney stones detection by

    applying segmentation techniques on computerized tomography scans . . . . . . . . . . . . .590–602

    Nashat Faried, Mohamed S.S. Ali, Asmaa A. BadrOn conjugate trigonometrically ρ-convex functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .603–616

    Ahmed Gaber, Abd El-Mohsen Badawy, Salah El-Din S. HusseinOn decomposable MS-algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 617–626

    A. Eqal Al-Mazrooei, J. Ahmad, A. Farrag SayedCommon fuzzy fixed points of α-fuzzy mappings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 627–641

    Huda Odetallah, Hasan Al-Ezeh, Emad Abu OsbaCharacterizations of almost PP-ring for three important classes of rings . . . . . . . . . . . . . 642–652

    Anju Panwar AnitaStability of fixed point sets of generalized multivalued α-ψ

    contraction of Ciric-Berinde type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 653–670

  • ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS – N. 43-2020 vii

    M.S. Mehany, M.H. Elbaroudy, M.A. KamalModules closed full large extensions of cyclic submodules are summands . . . . . . . . . . . . . .671–679

    T.M. Al-Shami, M.A. Al-Shumrani, B.A. AsaadSome generalized forms of soft compactness and soft Lindelöfness

    via soft α-open sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 680–704

    Rami S. Alkhawaldeh, Moatsum Alawida, Issam AlhadidTrust-based Testbed for P2P digital library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .705–716

    Vishal Gupta, Manu Verma, Jatinderdeep KaurA new contraction and existence theorems on fuzzy metric

    space with a graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 717–729

    Megraoui Fatima Zohra, Soheir BelalouiReliability bounds of dependent linear

    consecutive k-out-of- n:G systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 730–743

    A. Al Themairi, Manar A. AlqudahPredator-prey model of Holling-type II with harvesting and

    predator in disease . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 744–753

    Abdallah Al-Husbana, Ala Amourah, Jamil J. JaberBipolar complex fuzzy sets and their properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 754–761

    Issam Alhadid, Suha Afaneh, Heba AlmalahmehThe impact of organizational and human factors on the successful

    implementation of ERP system in water authority of Jordan . . . . . . . . . . . . . . . . . . . . 762–778

    R. Leelavathi, G. Suresh Kumar, M.S.N. MurtySecond type nabla Hukuhara differentiability for fuzzy

    functions on time scales. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .779–801

    A. Razzaque, I. Rehman, M. Iftikhar Faraz, K. Ping ShumCharacterization of generalized projective and

    injective soft modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 802–817

    P.K. Harikrishnan, B. Lafuerza-Guillén, Y. Je Cho, K.T. RavindranFixed point theorem for contraction mappings in

    probabilistic normed spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 818–827

    Oqlah Al-RefaiCriteria and geometric properties for bounded univalent

    functions in the unit disk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 828–841

    Anmar Hashim JasimStudying the solutions of the delay Sturm Liouville problems . . . . . . . . . . . . . . . . . . . . . . . . . 842–849

    Swati Agnihotri, K.K. Dubey, V.K. Gupta, Arihant JainCommon fixed point of faintly compatible in fuzzy metric space . . . . . . . . . . . . . . . . . . . . . . 850–862

    Jianming XueOperator inequalities involving improved Young inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . 863–867

    Ennis Rosas, Sarhad F. NamiqOn minimal λrc-open sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 868–877

    Saqib Mubarak, M. A. Khanday, Ahsan Ul HaqPseudo analytic approach to estimate drug transport and release

    in the annular section of human limbs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 878–889

    Prasanna Poojary, P.K. Harikrishnan, Vadiraja Bhatta G.R.Some cryptographic properties of near bent functions

    over finite fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 890–898

    Manal Ali Sagban, Muna Jasim Mohammed Ali, Samira Naji KadhimOn (m,n)-fully stable Banach algebra modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .899–904

  • viii ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS – N. 43-2020

    Germina K. Augusthy, P. SooryaVertex (n, k)-choosability of graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 905–911

    Anju S. Mattam, Sasi GopalanRough approximate operators based on fuzzy soft relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 912–925

    Zainab E. AbdulnabyNew classes of uniformly convex functions of fractional power

    on Banach space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 926–933

    Xingkai Hu, Linru NieAsymptotic stability analysis of nonlinear systems with impulsive

    effects and disturbance input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 934–943

    A. Ale’damat, A. Alrawajfi, A. Talafha, A. Alhabahbeh, A. AteiwiNumerical simulation of nonlinear fractional integrodifferential

    equations of Volterra type via power series expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 944–957

    A. Assadouq, H. El Mahjour, A. SettatiQualitative behavior of a SIRS epidemic model with vaccination

    on heterogeneous networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 958–974

    Sameer Kadem, Ali Aubad, Abdulrahman H. MajeedThe non-zero divisor graph of a ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 975–983

  • ixITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS – N. 43-2020

    Exchanges

    Up to December 2015 this journal is exchanged with the following periodicals:

    1. Acta Cybernetica - Szeged H 2. Acta Mathematica et Informatica Universitatis Ostraviensis CZ 3. Acta Mathematica Vietnamica – Hanoi VN 4. Acta Mathematica Sinica, New Series – Beijing RC 5. Acta Scientiarum Mathematicarum – Szeged H 6. Acta Universitatis Lodziensis – Lodz PL 7. Acta Universitatis Palackianae Olomucensis, Mathematica – Olomouc CZ 8. Actas del tercer Congreso Dr. Antonio A.R. Monteiro - Universidad Nacional del Sur Bahía Blanca AR 9. AKCE International Journal of Graphs and Combinatorics - Kalasalingam IND10. Algebra Colloquium - Chinese Academy of Sciences, Beijing PRC 11. Alxebra - Santiago de Compostela E 12. Analele Ştiinţifice ale Universităţii “Al. I Cuza” - Iaşi RO

    13. Analele Universităţii din Timişoara - Universitatea din Timişoara RO

    14. Annales Academiae Scientiarum Fennicae Mathematica - Helsinki SW 15. Annales de la Fondation Louis de Broglie - Paris F 16. Annales Mathematicae Silesianae – Katowice PL 17. Annales Scientif. Université Blaise Pascal - Clermont II F 18. Annales sect. A/Mathematica – Lublin PL 19. Annali dell’Università di Ferrara, Sez. Matematica I 20. Annals of Mathematics - Princeton - New Jersey USA 21. Applied Mathematics and Computer Science -Technical University of Zielona Góra PL 22. Archivium Mathematicum - Brnö CZ 23. Atti del Seminario di Matematica e Fisica dell’Università di Modena I 24. Atti dell’Accademia delle Scienze di Ferrara I 25. Automatika i Telemekhanika - Moscow RU 26. Boletim de la Sociedade Paranaense de Matematica - San Paulo BR 27. Bolétin de la Sociedad Matemática Mexicana - Mexico City MEX 28. Bollettino di Storia delle Scienze Matematiche - Firenze I 29. Buletinul Academiei de Stiinte - Seria Matem. - Kishinev, Moldova CSI 30. Buletinul Ştiinţific al Universităţii din Baia Mare - Baia Mare RO

    31. Buletinul Ştiinţific şi Tecnic-Univ. Math. et Phyis. Series Techn. Univ. - Timişoara RO

    32. Buletinul Universităţii din Braşov, Seria C - Braşov RO

    33. Bulletin de la Classe de Sciences - Acad. Royale de Belgique B 34. Bulletin de la Societé des Mathematiciens et des Informaticiens de Macedoine MK 35. Bulletin de la Société des Sciences et des Lettres de Lodz - Lodz PL 36. Bulletin de la Societé Royale des Sciences - Liege B 37. Bulletin for Applied Mathematics - Technical University Budapest H 38. Bulletin Mathematics and Physics - Assiut ET 39. Bulletin Mathématique - Skopje Macedonia MK 40. Bulletin Mathématique de la S.S.M.R. - Bucharest RO 41. Bulletin of the Australian Mathematical Society - St. Lucia - Queensland AUS 42. Bulletin of the Faculty of Science - Assiut University ET 43. Bulletin of the Faculty of Science - Mito, Ibaraki J 44. Bulletin of the Greek Mathematical Society - Athens GR 45. Bulletin of the Iranian Mathematical Society - Tehran IR 46. Bulletin of the Korean Mathematical Society - Seoul ROK 47. Bulletin of the Malaysian Mathematical Sciences Society - Pulau Pinang MAL 48. Bulletin of Society of Mathematicians Banja Luka - Banja Luka BiH 49. Bulletin of the Transilvania University of Braşov - Braşov RO

    50. Bulletin of the USSR Academy of Sciences - San Pietroburgo RU 51. Busefal - Université P. Sabatier - Toulouse F 52. Calculus CNR - Pisa I 53. Chinese Annals of Mathematics - Fudan University – Shanghai PRC 54. Chinese Quarterly Journal of Mathematics - Henan University PRC

  • x ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS – N. 43-2020

    55. Classification of Commutative FPF Ring - Universidad de Murcia E 56. Collectanea Mathematica - Barcelona E 57. Collegium Logicum - Institut für Computersprachen Technische Universität Wien A 58. Colloquium - Cape Town SA 59. Colloquium Mathematicum - Instytut Matematyczny - Warszawa PL 60. Commentationes Mathematicae Universitatis Carolinae - Praha CZ 61. Computer Science Journal of Moldova CSI 62. Contributi - Università di Pescara I 63. Cuadernos - Universidad Nacional de Rosario AR 64. Czechoslovak Mathematical Journal - Praha CZ 65. Demonstratio Mathematica - Warsawa PL 66. Discussiones Mathematicae - Zielona Gora PL 67. Divulgaciones Matemáticas - Universidad del Zulia YV 68. Doctoral Thesis - Department of Mathematics Umea University SW 69. Extracta Mathematicae - Badajoz E 70. Fasciculi Mathematici - Poznan PL 71. Filomat - University of Nis SRB 72. Forum Mathematicum - Mathematisches Institut der Universität Erlangen D 73. Functiones et Approximatio Commentarii Mathematici - Adam Mickiewicz University L74. Funkcialaj Ekvaciaj - Kobe University J 75. Fuzzy Systems & A.I. Reports and Letters - Iaşi University RO

    76. General Mathematics - Sibiu RO 77. Geometria - Fasciculi Mathematici - Poznan PL 78. Glasnik Matematicki - Zagreb CRO 79. Grazer Mathematische Berichte – Graz A 80. Hiroshima Mathematical Journal - Hiroshima J 81. Hokkaido Mathematical Journal - Sapporo J 82. Houston Journal of Mathematics - Houston - Texas USA 83. IJMSI - Iranian Journal of Mathematical Sciences & Informatics, Tarbiat Modares University, Tehran IR 84. Illinois Journal of Mathematics - University of Illinois Library - Urbana USA 85. Informatica - The Slovene Society Informatika - Ljubljana SLO 86. Internal Reports - University of Natal - Durban SA 87. International Journal of Computational and Applied Mathematics – University of Qiongzhou, Hainan PRC 88. International Journal of Science of Kashan University - University of Kashan IR 89. Iranian Journal of Science and Technology - Shiraz University IR 90. Irish Mathematical Society Bulletin - Department of Mathematics - Dublin IRL 91. IRMAR - Inst. of Math. de Rennes - Rennes F 92. Israel Mathematical Conference Proceedings - Bar-Ilan University - Ramat -Gan IL 93. Izvestiya: Mathematics - Russian Academy of Sciences and London Mathematical Society RU 94. Journal of Applied Mathematics and Computing – Dankook University, Cheonan – Chungnam ROK 95. Journal of Basic Science - University of Mazandaran – Babolsar IR 96. Journal of Beijing Normal University (Natural Science) - Beijing PRC 97. Journal of Dynamical Systems and Geometric Theory - New Delhi IND 98. Journal Egyptian Mathematical Society – Cairo ET 99. Journal of Mathematical Analysis and Applications - San Diego California USA 100. Journal of Mathematics of Kyoto University - Kyoto J 101. Journal of Science - Ferdowsi University of Mashhad IR 102. Journal of the Bihar Mathematical Society - Bhangalpur IND 103. Journal of the Faculty of Science – Tokyo J 104. Journal of the Korean Mathematical Society - Seoul ROK 105. Journal of the Ramanujan Mathematical Society - Mysore University IND 106. Journal of the RMS - Madras IND 107. Kumamoto Journal of Mathematics - Kumamoto J 108. Kyungpook Mathematical Journal - Taegu ROK 109. L’Enseignement Mathématique - Genève CH 110. La Gazette des Sciences Mathématiques du Québec - Université de Montréal CAN 111. Le Matematiche - Università di Catania I 112. Lecturas Matematicas, Soc. Colombiana de Matematica - Bogotà C 113. Lectures and Proceedings International Centre for Theorical Phisics - Trieste I 114. Lucrările Seminarului Matematic – Iaşi RO

    115. m-M Calculus - Matematicki Institut Beograd SRB 116. Matematicna Knjiznica - Ljubljana SLO

  • xi ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS – N. 43-2020

    117. Mathematica Balcanica – Sofia BG 118. Mathematica Bohemica - Academy of Sciences of the Czech Republic Praha CZ 119. Mathematica Macedonica, St. Cyril and Methodius University, Faculty of Natural Sciences and Mathematics - Skopje MK 120. Mathematica Montisnigri - University of Montenegro - Podgorica MNE 121. Mathematica Moravica - Cacak SRB 122. Mathematica Pannonica - Miskolc - Egyetemvaros H 123. Mathematica Scandinavica - Aarhus - Copenhagen DK 124. Mathematica Slovaca - Bratislava CS 125. Mathematicae Notae - Universidad Nacional de Rosario AR 126. Mathematical Chronicle - Auckland NZ 127. Mathematical Journal - Academy of Sciences - Uzbekistan CSI 128. Mathematical Journal of Okayama University - Okayama J 129. Mathematical Preprint - Dep. of Math., Computer Science, Physics – University of Amsterdam NL 130. Mathematical Reports - Kyushu University - Fukuoka J 131. Mathematics Applied in Science and Technology – Sangyo University, Kyoto J 132. Mathematics Reports Toyama University - Gofuku J 133. Mathematics for Applications - Institute of Mathematics of Brnö University of Technology, Brnö CZ134. MAT - Prepublicacions - Universidad Austral AR 135. Mediterranean Journal of Mathematics – Università di Bari I 136. Memoirs of the Faculty of Science - Kochi University - Kochi J 137. Memorias de Mathematica da UFRJ - Istituto de Matematica - Rio de Janeiro BR 138. Memorie linceee - Matematica e applicazioni - Accademia Nazionale dei Lincei I 139. Mitteilungen der Naturforschenden Gesellschaften beider Basel CH 140. Monografii Matematice - Universitatea din Timişoara RO

    141. Monthly Bulletin of the Mathematical Sciences Library – Abuja WAN 142. Nagoya Mathematical Journal - Nagoya University,Tokyo J 143. Neujahrsblatt der Naturforschenden Gesellschaft - Zürich CH 144. New Zealand Journal of Mathematics - University of Auckland NZ 145. Niew Archief voor Wiskunde - Stichting Mathematicae Centrum – Amsterdam NL 146. Nihonkai Mathematical Journal - Niigata J 147. Notas de Algebra y Analisis - Bahia Blanca AR 148. Notas de Logica Matematica - Bahia Blanca AR 149. Notas de Matematica Discreta - Bahia Blanca AR 150. Notas de Matematica - Universidad de los Andes, Merida YV 151. Notas de Matematicas - Murcia E 152. Note di Matematica - Lecce I 153. Novi Sad Journal of Mathematics - University of Novi Sad SRB 154. Obzonik za Matematiko in Fiziko - Ljubljana SLO 155. Octogon Mathematical Magazine - Braşov RO

    156. Osaka Journal of Mathematics - Osaka J 157. Periodica Matematica Hungarica - Budapest H 158. Periodico di Matematiche - Roma I 159. Pliska - Sofia BG 160. Portugaliae Mathematica - Lisboa P 161. Posebna Izdanja Matematickog Instituta Beograd SRB 162. Pre-Publicaçoes de Matematica - Univ. de Lisboa P 163. Preprint - Department of Mathematics - University of Auckland NZ 164. Preprint - Institute of Mathematics, University of Lodz PL 165. Proceeding of the Indian Academy of Sciences - Bangalore IND 166. Proceeding of the School of Science of Tokai University - Tokai University J 167. Proceedings - Institut Teknology Bandung - Bandung RI 168. Proceedings of the Academy of Sciences Tasked – Uzbekistan CSI 169. Proceedings of the Mathematical and Physical Society of Egypt – University of Cairo ET 170. Publicaciones del Seminario Matematico Garcia de Galdeano - Zaragoza E 171. Publicaciones - Departamento de Matemática Universidad de Los Andes Merida YV 172. Publicaciones Matematicas del Uruguay - Montevideo U 173. Publicaciones Mathematicae - Debrecen H 174. Publicacions mathematiques - Universitat Autonoma, Barcelona E 175. Publications de l’Institut Mathematique - Beograd SRB 176. Publications des Séminaires de Mathématiques et Informatiques de Rennes F 177. Publications du Departmenet de Mathematiques, Université Claude Bernard - Lyon F 178. Publications Mathematiques - Besançon F

  • xii ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS – N. 43-2020

    179. Publications of Serbian Scientific Society - Beograd SRB 180. Publikacije Elektrotehnickog Fakulteta - Beograd SRB 181. Pure Mathematics and Applications - Budapest H 182. Quaderni di matematica - Dip. to di Matematica – Caserta I 183. Qualitative Theory of Dynamical Systems - Universitat de Lleida E 184. Quasigroups and Related Systems - Academy of Science - Kishinev Moldova CSI 185. Ratio Mathematica - Università di Pescara I 186. Recherche de Mathematique - Institut de Mathématique Pure et Appliquée Louvain-la-Neuve B 187. Rendiconti del Seminario Matematico dell’Università e del Politecnico – Torino I 188. Rendiconti del Seminario Matematico - Università di Padova I 189. Rendiconti dell’Istituto Matematico - Università di Trieste I 190. Rendiconti di Matematica e delle sue Applicazioni - Roma I 191. Rendiconti lincei - Matematica e applicazioni - Accademia Nazionale dei Lincei I 192. Rendiconti Sem. - Università di Cagliari I 193. Report series - Auckland NZ 194. Reports Math. University of Stockholm - Stockholm SW 195. Reports - University Amsterdam NL 196. Reports of Science Academy of Tajikistan – Dushanbe TAJ 197. Research Reports - Cape Town SA 198. Research Reports - University of Umea - Umea SW 199. Research Report Collection (RGMIA) Melbourne AUS 200. Resenhas do Instituto de Matemática e Estatística da universidadae de São Paulo BR 201. Review of Research, Faculty of Science, Mathematics Series - Institute of Mathematics University of Novi Sad SRB 202. Review of Research Math. Series - Novi Sad YN 203. Revista Ciencias Matem. - Universidad de la Habana C 204. Revista Colombiana de Matematicas - Bogotà C 205. Revista de Matematicas Aplicadas - Santiago CH 206. Revue Roumaine de Mathematiques Pures et Appliquées - Bucureşti RO

    207. Ricerca Operativa AIRO - Genova I 208. Ricerche di Matematica - Napoli I 209. Rivista di Matematica - Università di Parma I 210. Sains Malaysiana - Selangor MAL 211. Saitama Mathematical Journal - Saitama University J 212. Sankhya - Calcutta IND 213. Sarajevo Journal of Mathematics BIH 214. Sciences Bulletin, DPRK, Pyongyang KR 215. Scientific Rewiev - Beograd SRB 216. Scientific Studies and Research, Vasile Alecsandri University Bacau RO217. Semesterbericht Funktionalanalysis - Tübingen D 218. Séminaire de Mathematique - Université Catholique, Louvain la Neuve B 219. Seminario di Analisi Matematica - Università di Bologna I 220. Serdica Bulgaricae Publicaciones Mathematicae - Sofia BG 221. Serdica Mathematical Journal - Bulgarian Academy of Sciences, University of Sofia BG 222. Set-Valued Mathematics and Applications – New Delhi IND 223. Sitzungsberichte der Mathematisch Naturwissenschaflichen Klasse Abteilung II – Wien A 224. Southeast Asian Bulletin of Mathematics - Southeast Asian Mathematical Society PRC 225. Studia Scientiarum Mathematica Hungarica – Budapest H 226. Studia Universitatis Babes Bolyai - Cluj Napoca RO 227. Studii şi Cercetări Matematice - Bucureşti RO

    228. Studii şi Cercetări Ştiinţifice, ser. Matematică - Universitatea din Bacău RO

    229. Sui Hak - Pyongyang DPR of Korea KR 230. Tamkang Journal of Mathematics - Tamsui - Taipei TW 231. Thai Journal of Mathematics – Chiang Mai TH 232. Task Quarterly PL 233. The Journal of the Academy of Mathematics Indore IND 234. The Journal of the Indian Academy of Mathematics - Indore IND 235. The Journal of the Nigerian Mathematical Society (JNMS) - Abuja WAN 236. Theoretical and Applied Mathematics – Kongju National University ROK 237. Thesis Reprints - Cape Town SA 238. Tohoku Mathematical Journal – Sendai J 239. Trabalhos do Departamento de Matematica Univ. - San Paulo BR 240. Travaux de Mathematiques – Bruxelles B

  • xi iiITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS – N. 43-2020

    241. Tsukuba Journal of Mathematics - University of Tsukuba J 242. UCNW Math. Preprints Prifysgol Cymru - University of Wales – Bangor GB 243. Ukranii Matematiskii Journal – Kiev RU 244. Uniwersitatis Iagiellonicae Acta Mathematica – Krakow PL 245. Verhandlungen der Naturforschenden Gesellschaft – Basel CH 246. Vierteljahrsschrift der Naturforschenden Gesellschaft – Zürich CH 247. Volumenes de Homenaje - Universidad Nacional del Sur Bahía Blanca AR 248. Yokohama Mathematical Journal – Yokohama J 249. Yugoslav Journal of Operations Research – Beograd SRB 250. Zbornik Radova Filozofskog – Nis SRB 251. Zbornik Radova – Kragujevac SRB 252. Zeitschrift für Mathematick Logic und Grundlagen der Math. – Berlin D

  • ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS – N. 43–2020 (1–13) 1

    Upper class functions on a controlled contraction principle inpartial S-metric spaces

    Arslan Hojat Ansari∗

    Department of MathematicsKaraj BranchIslamic Azad [email protected]

    Kamaleldin AbodayehDepartment of Mathematical Sciences

    Prince Sultan University

    Riyadh, 11586

    Saudi Arabia

    [email protected]

    Abstract. In this paper, we prove the existence and uniqueness of a fixed point of aself mapping on partial S-metric spaces under the partially α-contractive condition.

    Keywords: common fixed point.

    1. Introduction and mathematical preliminaries

    The existence and uniqueness of a fixed point for a self mapping on differenttypes of metric spaces were the main topic for many research papers [4-18].The notion of S-metric space was introduced by Sedghi [3]. A generalization ofS-metric space was given by Nabil in [1], where he introduced partial S-metricspaces. Moreover, he proved the existence of a fixed point for a self mapping inpartial S-metric space. In this paper, we generalize the results in [1] by addinga control function to the contraction principle, which makes the results in [1] adirect consequences of our theorems.

    Before proceeding to the main results, we set forth some definitions that willbe used in the sequel.

    Definition 1.1 ([4]). Let X be a nonempty set and p : X×X −→ [0,+∞). Wesay that (X, p) is a partial metric space if for all x, y, z ∈ X we have:

    1. x = y if and only if p(x, y) = p(x, x) = p(y, y);

    2. p(x, x) ≤ p(x, y);

    ∗. Corresponding author

  • 2 ARSLAN HOJAT ANSARI and KAMALELDIN ABODAYEH

    3. p(x, y) = p(y, x);

    4. p(x, z) ≤ p(x, y) + p(y, z)− p(y, y).

    Definition 1.2 ([3]). Let X be a nonempty set. An S-metric space on Xis a function S : X3 → [0,∞) that satisfies the following conditions, for allx, y, z, a ∈ X :

    1. S(x; y; z) ≥ 0,

    2. S(x; y; z) = 0 if and only if x = y = z,

    3. S(x; y; z) ≤ S(x;x; a) + S(y; y; a) + S(z; z; a).

    The pair (X;S) is called an S-metric space.

    Next, we give the definition of partial S-metric space.

    Definition 1.3 ([1]). Let X be a nonempty set. A partial S-metric space onX is a function Sp : X

    3 → [0,∞) that satisfies the following conditions, for allx, y, z, t ∈ X :

    (i) x = y if and only if Sp(x, x, x) = Sp(y, y, y) = Sp(x, x, y);

    (ii) Sp(x, y, z) ≤ Sp(x, x, t) + Sp(y, y, t) + Sp(z, z, t)− Sp(t, t, t);(iii) Sp(x, x, x) ≤ Sp(x, y, z);(iv) Sp(x, x, y) = Sp(y, y, x).

    The pair (X,Sp) is called a partial S-metric space.

    Definition 1.4. A sequence {xn}∞n=0 of elements in (X,Sp) is called p-Cauchy ifthe limit limn,m→∞ Sp(xn, xn, xm) exists and finite. The partial S-metric space(X,Sp) is called complete if for each p-Cauchy sequence {xn}∞n=0 there existsz ∈ X such that Sp(z, z, z) = limn Sp(z, z, xn) = limn,m Sp(xn, xn, xm).

    Moreover, (X,Sp) is a complete partial S-metric space if and only if (X,Sp)is a complete S-metric space. A sequence {xn}n in a partial S-metric space(X,Sp) is called 0-Cauchy if limn,m→∞ Sp(xn, xn, xm) = 0. We say that (X,Sp)is 0-complete if every 0-Cauchy in X converges to a point x ∈ X such thatSp(x, x, x) = 0.

    One can easily construct an example of a partial S-metric space by using theordinary partial metric space.

    Example 1.5 ([1]). Let X = [0,∞) and p be the ordinary partial metric spaceon X. Define the mapping on X3 to be Sp(x, y, z) = p(x, z) + p(y, z). Then Spdefines a partial S-metric space.

    Now we introduce the notion of partially α−contractive.

  • UPPER CLASS FUNCTIONS ON A CONTROLLED CONTRACTION PRINCIPLE ... 3

    Definition 1.6. Let (X,Sp) be a partial S-metric space and T : X −→ X bea given mapping. We say that T is partially α−contractive if there exists aconstant k ∈ [0, 1) and a function α : X × X −→ [0,+∞) such that for allx, y ∈ X we have

    (1.1) α(x, y)Sp(Tx, Tx, Ty) ≤ max{kSp(x, x, y), Sp(x, x, x), Sp(y, y, y)}.

    Definition 1.7. Let (X,Sp) be a partial S-metric space and T : X −→ X be agiven mapping. We say that T is Rα−admissible if x, y ∈ X, α(x, y) ≥ 1 impliesthat α(x, Ty) ≥ 1. Also, we say that T is α−admissible if x, y ∈ X, α(x, y) ≥ 1implies that α(Tx, Ty) ≥ 1.

    Example 1.8. Let X = [0,+∞). Define T : X −→ X by Tx =√x and

    α : X ×X −→ X by

    α(x, y) =

    {ex−y, if x ≥ y0, if x < y.

    It is a straightforward to verify that T is α−admissible and Rα−admissible.

    Now, we set

    ρSp(α) : = inf{Sp(x, x, y) | x, y ∈ X : α(x, y) ≥ 1}= inf{Sp(x, x, x) | x ∈ X : α(x, x) ≥ 1},XSp(α) = {x ∈ X | Sp(x, x, x) = ρSp(α)},ZSp(α) = {x ∈ XSp | α(x, x) ≥ 1}.

    Definition 1.9. Let (X,Sp) be a partial S-metric space and T : X −→ X bea given mapping. We say that T is Rµ−subadmissible if x, y ∈ X, µ(x, y) ≤ 1implies that µ(x, Ty) ≤ 1.

    2. Main result

    In this section, we prove the existence of a fixed point in a partial S-metricspace. We prove relevant corollary. This next theorem is considered to be ourmain result.

    Definition 2.1 ([?]). Let T : X → X be a map and µ : X ×X → [0,+∞) be afunction. We say that T is µ-subadmissible if x, y ∈ X, µ(x, y) ≤ 1 implies thatµ(Tx, Ty) ≤ 1.

    Definition 2.2. A map T : X → X is said to be triangular µ-subadmissible ifthe following holds:

    (T1) T is µ-subadmissible,

    (T2) µ(x, u) ≤ 1 and µ(u, y) ≤ 1 implies that µ(x, y) ≤ 1, x, u, y ∈ X.

  • 4 ARSLAN HOJAT ANSARI and KAMALELDIN ABODAYEH

    Lemma 2.3. Let T : X → X be a triangular µ− suborbital admissible map-ping. Assume that there exists x1 ∈ X such that µ (x1, Tx1) ≤ 1. Then thereexists a sequence {xn} such that µ (xn, xm) ≤ 1 for all m, n ∈ N with n < m.

    The letter N represent the set of positive integers and N0 = N∪{0}. Further,the nonnegative real numbers will be denoted by R+0 = [0,∞).

    In 2014 the concept of pair (F , h) is an upper class (see Definition 2.4 until2.10 ) was introduced by A.H. Ansari in [19]

    Definition 2.4 ([19, 20]). A function h : R+×R+ → R is said to be a functionof subclass of type I, if x ≥ 1 =⇒ h(1, y) ≤ h(x, y) for all y ∈ R+.

    Example 2.5 ([19, 20]). Define h : R+ × R+ → R by:

    (a) h(x, y) = (y + l)x, l > 1;

    (b) h(x, y) = (x+ l)y, l > 1;

    (c) h(x, y) = xny, n ∈ N;

    (d) h(x, y) = y;

    (e) h(x, y) = 1n+1(∑n

    i=0 xi)y, n ∈ N;

    (f) h(x, y) =[

    1n+1

    (∑ni=0 x

    i)+ l]y, l > 1, n ∈ N

    for all x, y ∈ R+. Then h is a function of subclass of type I.

    Definition 2.6 ([19, 20]). Let h,F : R+ × R+ → R, then we say that the pair(F , h) is an upper class of type I, if h is a function of subclass of type I and: (i)0 ≤ s ≤ 1 =⇒ F(s, t) ≤ F(1, t), (ii) h(1, y) ≤ F(1, t) =⇒ y ≤ t for all t, y ∈ R+.

    Example 2.7 ([19, 20]). Define h,F : R+ × R+ → R by:

    (a) h(x, y) = (y + l)x, l > 1 and F(s, t) = st+ l;

    (b) h(x, y) = (x+ l)y, l > 1 and F(s, t) = (1 + l)st;

    (c) h(x, y) = xmy, m ∈ N and F(s, t) = st;

    (d) h(x, y) = y and F(s, t) = t;

    (d) h(x, y) = 1n+1(∑n

    i=0 xi)y, n ∈ N and F(s, t) = st;

    (e) h(x, y) =[

    1n+1

    (∑ni=0 x

    i)+ l]y, l > 1, n ∈ N and F(s, t) = (1 + l)st

    for all x, y, s, t ∈ R+. Then the pair (F , h) is an upper class of type I.

  • UPPER CLASS FUNCTIONS ON A CONTROLLED CONTRACTION PRINCIPLE ... 5

    Definition 2.8 ([19, 20]). A function h : R+ × R+ × R+ → R is said to be afunction of subclass of type II, if for all x, y ≥ 1, we have h(1, 1, z) ≤ h(x, y, z),for all z ∈ R+.

    Example 2.9 ([19, 20]). Define h : R+ × R+ × R+ → R by:

    (a) h(x, y, z) = (z + l)xy, l > 1;

    (b) h(x, y, z) = (xy + l)z, l > 1;

    (c) h(x, y, z) = z;

    (d) h(x, y, z) = xmynzp,m, n, p ∈ N;

    (e) h(x, y, z) = xm+xnyp+yq

    3 zk,m, n, p, q, k ∈ N

    for all x, y, z ∈ R+. Then h is a function of subclass of type II.

    Definition 2.10 ([19, 20]). Let h : R+ ×R+ ×R+ → R and F : R+ ×R+ → R,then we say that the pair (F , h) is an upper class of type II, if h is a subclass oftype II and the following holds:

    (i) if 0 ≤ s ≤ 1 then we have F(s, t) ≤ F(1, t),

    (ii) if h(1, 1, z) ≤ F(s, t) then we have z ≤ st for all s, t, z ∈ R+.

    Example 2.11 ([19, 20]). Define h : R+×R+×R+ → R and F : R+×R+ → Rby:

    (a) h(x, y, z) = (z + l)xy, l > 1,F(s, t) = st+ l;

    (b) h(x, y, z) = (xy + l)z, l > 1,F(s, t) = (1 + l)st;

    (c) h(x, y, z) = z, F (s, t) = st;

    (d) h(x, y, z) = xmynzp,m, n, p ∈ N,F(s, t) = sptp

    (e) h(x, y, z) = xm+xnyp+yq

    3 zk,m, n, p, q, k ∈ N,F(s, t) = sktk

    for all x, y, z, s, t ∈ R+. Then the pair (F , h) is an upper class of type II.

    Notation.

    ρSp(α, µ) := inf{Sp(x, x, y) | x, y ∈ X : α(x, y) ≥ 1, µ(x, y) ≤ 1}= inf{Sp(x, x, x) | x ∈ X : α(x, x) ≥ 1, α(x, x) ≤ 1},

    XSp(α, µ) = {x ∈ X | Sp(x, x, x) = ρSp(α, µ)},ZSp(α, µ) = {x ∈ XSp | α(x, x) ≥ 1, µ(x, x) ≤ 1}.

  • 6 ARSLAN HOJAT ANSARI and KAMALELDIN ABODAYEH

    Definition 2.12. Let (X,Sp) be a partial S-metric space and T : X −→ X bea given mapping. We say that T is partially (F , h, α, µ)-contractive if thereexists a constant k ∈ [0, 1) and a function α, µ : X ×X −→ [0,+∞) such thatfor all x, y ∈ X we have

    h(α(x, y), Sp(Tx, Tx, Ty)) ≤ F(µ(x, y),max{kSp(x, x, y),Sp(x, x, x), Sp(y, y, y)}).(2.1)

    where the pair (F , h) is an upper class of type I.

    Theorem 2.13. Let (X,Sp) be a complete partial S-metric space, T be a selfmapping on X and assume that T is partially (F , h, α, µ)-contractive. If Tis α−admissible ,µ−subadmissible and Rα−admissible, Rµ−subadmissible andif XSp(α, µ) is nonempty, then ZSp(α, µ) is nonempty. Also, assume that thereexists x0 ∈ X such that α(x0, x0) ≥ 1, µ(x0, x0) ≤ 1, then there exists a ∈ ZSp(α)such that Ta = a.

    Moreover, if for all u, v in ZSp(α, µ) with the property Tu = u and Tv = vwe have α(u, v) ≥ 1, µ(u, v) ≤ 1, then T has a unique fixed point in ZSp(α, µ).

    Proof. Let x0 ∈ X such that α(x0, x0) ≥ 1. Define a sequence {xn} for alln ≥ 0 in X such that x1 = Tx0, x2 = Tx1, · · · , xn+1 = Txn, · · · . Since Tis α−admissible ,µ−subadmissible and Rα−admissible, Rµ−subadmissible, wehave α(x0, x1) = α(x0, Tx0) ≥ 1 ,µ(x0, x1) = µ(x0, Tx0) ≤ 1 , and henceα(x1, x2) = α(Tx0, Tx1) ≥ 1, µ(x1, x2) = µ(Tx0, Tx1) ≤ 1 . So, by inductionon n we get

    α(xn, xn+1) ≥ 1, µ(xn, xn+1)) ≤ 1,

    for all n ≥ 0. Also, since T is Rα−admissible and Rµ−subadmissible; α(x0, x0) ≥1, µ(x0, x0) ≤ 1 implies α(x0, x1) = α(x0, Tx0) ≥ 1, µ(x0, x1) = µ(x0, Tx0) ≤ 1.By induction on n, we also conclude that

    α(x0, xn) ≥ 1, µ(x0, xn) ≤ 1

    for all n ≥ 0. Also, given the fact that T is α-admissible and α(x0, x0) ≥ 1, itnot difficult to prove that α(xn, xn) ≥ 1 for all n ≥ 0. Hence,

    h(1, Sp(x1, x1, x1) = h(1, Sp(Tx0, Tx0, Tx0))

    ≤ h(α(x0, x0), Sp(Tx0, Tx0, Tx0))≤ F(µ(x0, x0),max{kSp(x0, x0, x0), Sp(x0, x0, x0), Sp(x0, x0, x0)})≤ F(1,max{kSp(x0, x0, x0), Sp(x0, x0, x0), Sp(x0, x0, x0)}).

    This implies that

    Sp(x1, x1, x1) ≤ max{kSp(x0, x0, x0), Sp(x0, x0, x0), Sp(x0, x0, x0)}= Sp(x0, x0, x0).

  • UPPER CLASS FUNCTIONS ON A CONTROLLED CONTRACTION PRINCIPLE ... 7

    By induction on n, we obtain:

    Sp(xn+1, xn+1, xn+1) ≤ Sp(xn, xn, xn).

    Therefore, {Sp(xn, xn, xn)}{n≥0} is a nonincreasing sequence. Define

    r0 := limnSp(xn, xn, xn) = inf

    nSp(xn, xn, xn) ≥ 0

    and

    M0 :=2

    1− kSp(x0, x0, x1) + Sp(x0, x0, x0).

    Next, we show that Sp(x0, x0, xn) ≤ M0, for any n ≥ 0. If n = 0; thecase is trivial. For n = 1 and using the fact that k ∈ [0, 1) we deduce thatSp(x0, x0, x1) ≤

    2

    1− kSp(x0, x0, x1) ≤

    2

    1− kSp(x0, x0, x1)+Sp(x0, x0, x0) =M0.

    So, we may assume that it is true for all n ≤ n0−1 and prove it for n = n0 ≥ 2.

    Sp(x0, x0, xn0) ≤ Sp(x0, x0, x1) + Sp(x0, x0, x1) + Sp(xn0 , xn0 , x1)− Sp(x1, x1, x1)≤ 2Sp(x0, x0, x1) + Sp(x1, x1, xn0)≤ 2Sp(x0, x0, x1) + α(x0, xn0−1)Sp(Tx0, Tx0, Txn0−1)≤ 2Sp(x0, x0, x1)+max{kSp(x0, x0, xn0−1), Sp(x0, x0, x0), Sp(xn0−1, xn0−1, xn0−1)}≤ 2Sp(x0, x0, x1) + max{kSp(x0, x0, xn0−1), Sp(x0, x0, x0)}.

    Also, by induction assumption, we have Sp(x0, x0, xn0−1) ≤ 21−kSp(x0, x0, x1) +Sp(x0, x0, x0). So, we have

    Sp(x0, x0, xn0) ≤ 2Sp(x0, x0, x1)

    + max{ 2k1− k

    Sp(x0, x0, x1) + kSp(x0, x0, x0), Sp(x0, x0, x0)}

    ≤ 2Sp(x0, x0, x1) +2k

    1− kSp(x0, x0, x1) + Sp(x0, x0, x0)

    =2

    1− kSp(x0, x0, x1) + Sp(x0, x0, x0) =M0.

    Hence, we conclude that Sp(x0, x0, xn) ≤M0. Next, we need to show that

    limn,m

    Sp(xn, xn, xm) = r0.

    For all n,m we have Sp(xn, xn, xm) ≥ Sp(xn, xn, xn) ≥ r0. Let ϵ > 0 find anatural number n0 such that Sp(xn0 , xn0 , xn0) < r0 + ϵ and 2M0k

    n0 < r0 + ϵ.Now for any n,m ≥ 2n0, since T is Rα−admissible and using the fact thatα(xn, xn+1) ≥ 1, µ(xn, xn+1) ≤ 1 we deduce that α(xn, xm) ≥ 1, µ(xn, xm) ≤ 1.Hence,

    h(1, Sp(xn, xn, xm) ≤ h(α(xn, xm), Sp(xn, xn, xm)) ≤ F(µ(xn, xm), θ) ≤ F(1, θ),

  • 8 ARSLAN HOJAT ANSARI and KAMALELDIN ABODAYEH

    where

    θ = max{kSp(xn−1, xn−1, xm−1), Sp(xn−1, xn−1, xn−1), Sp(xm−1, xm−1, xm−1)}.

    This implies that

    Sp(xn, xn, xm)

    ≤ max{kSp(xn−1, xn−1, xm−1), Sp(xn−1, xn−1, xn−1), Sp(xm−1, xm−1, xm−1)}≤ max{k2Sp(xn−2, xn−2, xm−2), Sp(xn−2, xn−2, xn−2), Sp(xm−2, xm−2, xm−2)}≤ · · · ≤ max{kn0Sp(xn−n0 , xn−n0 , xm−n0), Sp(xn−n0 , xn−n0 , xn−n0),Sp(xm−n0 , xm−n0 , xm−n0)}≤ r0 + ϵ.

    Hence,limn,m

    Sp(xn, xn, xm) = r0.

    Since (X, p) is a complete partial S-metric space; there exists x̃ ∈ X such that

    r0 = Sp(x̃, x̃, x̃) = limnSp(x̃, x̃, xn) = lim

    n,mSp(xn, xn, xm).

    Now, we show that Sp(x̃, x̃, x̃) = Sp(x̃, x̃, T x̃). For each natural number n wehave

    Sp(x̃, x̃, T x̃) ≤ 2Sp(x̃, x̃, xn)− Sp(xn, xn, xn) + Sp(T x̃, T x̃, xn).

    Using the property that T is α−contractive, we deduce that there exists a sub-sequence of natural numbers {nl} such that

    h(1, Sp(T x̃, T x̃, xnl) ≤ h(α(x̃, xnl−1), Sp(T x̃, T x̃, xnl))≤ F(µ(x̃, xnl−1),max{kSp(x̃, x̃, xnl−1), Sp(x̃, x̃, x̃), Sp(xnl−1, xnl−1, xnl−1)})≤ F(1,max{kSp(x̃, x̃, xnl−1), Sp(x̃, x̃, x̃), Sp(xnl−1, xnl−1, xnl−1)}),

    and thus

    Sp(T x̃, T x̃, xnl) ≤ max{kSp(x̃, x̃, xnl−1), Sp(x̃, x̃, x̃), Sp(xnl−1, xnl−1, xnl−1)}.

    So, for l ≥ 1, we have either Sp(T x̃, T x̃, xnl) ≤ kSp(x̃, x̃, xnl−1) or less than orequal Sp(x̃, x̃, x̃) or less than or equal Sp(xnl−1, xnl−1, xnl−1). In all of these threecases, if we take the limit as l goes toward ∞ we get Sp(x̃, x̃, T x̃) ≤ Sp(x̃, x̃, x̃).But, we know by the property (ii) of the partial S-metric space definition thatSp(x̃, x̃, x̃) ≤ Sp(x̃, x̃, T x̃). Therefore, Sp(x̃, x̃, x̃) = Sp(x̃, x̃, T x̃).

    Now, we show that XSp(α, µ) is nonempty. For each natural number l pickxl ∈ X with α(xl, xl) ≥ 1 and Sp(xl, xl, xl) < ρSp(α, µ) + 1l and show that

    limn,m

    Sp(x̃n, x̃n, x̃m) = ρSp(α, µ).

  • UPPER CLASS FUNCTIONS ON A CONTROLLED CONTRACTION PRINCIPLE ... 9

    Let ϵ > 0 put n0 := (3

    ϵ(1−k))+1 if l ≥ n0 then we have: ρSp(α, µ) ≤ Sp(x̃l, x̃l, T x̃l)≤ Sp(x̃l, x̃l, T x̃l) ≤ rxl ≤ Sp(x̃l, x̃l, T x̃l) < ρSp(α, µ) + 1l ≤ ρSp(α, µ) +

    1n0

    <

    ρSp(α, µ) +ϵ(1−k)

    3 . Hence, we deduce that:

    Ul := Sp(x̃l, x̃l, x̃l)− Sp(T x̃l, T x̃l, T x̃l) <ϵ(1− k)

    3,

    for i ≥ n0.Also, if l ≥ n0, then Sp(x̃l, x̃l, x̃l) = rxl ≤ Sp(xl, xl, xl) < ρSp(α) + 1n0 .

    Which implies that Sp(x̃l, x̃l, x̃l) ≤ ρSp(α, µ) +ϵ(1−k)

    3 for all l ≥ n0. Now,if n,m ≥ n0, then Sp(x̃n, x̃n, x̃m) ≤ 2Sp(x̃n, x̃n, T x̃n) + Sp(T x̃n, T x̃n, T x̃m) +2Sp(T x̃m, T x̃m, x̃m)− Sp(T x̃n, T x̃n, T x̃n)− Sp(T x̃m, T x̃m, T x̃m).

    We know that Sp(x̃, x̃, x̃) = Sp(x̃, x̃, T x̃) which implies that

    h(1, Sp(T x̃n, T x̃n, T x̃m) ≤ h(α(x̃n, x̃m), Sp(T x̃n, T x̃n, T x̃m))≤ F(µ(x̃n, x̃m),max{kSp(x̃n, x̃n, x̃m), Sp(x̃n, x̃n, x̃n), Sp(x̃m, x̃m, x̃m)})≤ F(1,max{kSp(x̃n, x̃n, x̃m), Sp(x̃n, x̃n, x̃n), Sp(x̃m, x̃m, x̃m)})

    Therefore,

    Sp(T x̃n, T x̃n, T x̃m) ≤ max{kSp(x̃n, x̃n, x̃m), Sp(x̃n, x̃n, x̃n), Sp(x̃m, x̃m, x̃m),Sp(x̃n, x̃n, x̃m) ≤ Un + Um + Sp(T x̃n, T x̃n, T x̃m)< Un + Um +max{kSp(x̃n, x̃n, x̃m), Sp(x̃n, x̃n, x̃n), Sp(x̃m, x̃m, x̃m)}.

    Hence,

    ρSp(α, µ) ≤ Sp(x̃n, x̃n, x̃m)

    ≤ max{23ϵ,2

    3ϵ(1− k) + Sp(x̃n, x̃n, x̃n),

    2

    3ϵ(1− k) + Sp(x̃m, x̃m, x̃m)}

    ≤ max{23ϵ, ρSp(α, µ) + ϵ(1− k)} < ρSp(α, µ) + ϵ.

    Thus,

    limn,m

    Sp(x̃n, x̃n, x̃m) = ρSp(α, µ).

    Since (X,Sp) is complete, there exists a ∈ X such that,

    Sp(a, a, a) = limnSp(a, a, x̃n) = lim

    n,mSp(x̃n, x̃n, x̃m) = ρSp(α, µ).

    Therefore, we have a ∈ XSp(α, µ) and thus XSp(α, µ) is nonempty. This impliesthat, ZSp(α, µ) is nonempty.

    Now, let x0 ∈ ZSp(α, µ) be arbitrary. Then by the above argument we have

    ρSp(α, µ) ≤ Sp(T x̃, T x̃, T x̃) ≤ Sp(x̃, x̃, T x̃) = Sp(x̃, x̃, x̃) = r0 = ρSp(α, µ).

  • 10 ARSLAN HOJAT ANSARI and KAMALELDIN ABODAYEH

    Thus, T x̃ = x̃, Now, assume that T has two fixed points u, v ∈ ZSp(α, µ). Byour hypothesis, we know that α(u, v) ≥ 1, µ(u, v) ≤ 1. Thus,

    h(1, Sp(u, u, v) ≤ h(α(u, v), Sp(Tu, Tu, Tv))≤ F(µ(u, v),max{kSp(u, u, v), Sp(u, u, u), Sp(v, v, v)})≤ F(1,max{kSp(u, u, v), Sp(u, u, u), Sp(v, v, v)}).

    So we have,

    Sp(u, u, v) ≤ max{kSp(u, u, v), Sp(u, u, u), Sp(v, v, v)}.

    Now, if Sp(u, u, v) ≤ kSp(u, u, v) we deduce that Sp(u, u, v) = 0 and in thiscase u = v, or Sp(u, u, v) ≤ Sp(u, u, u) = Sp(v, v, v) and in this case by condi-tion (ii) of the definition of the partial S-metric space we obtain Sp(u, u, v) =Sp(u, u, u) = Sp(v, v, v) and hence by condition (i) of the same definition weconclude that u = v. Therefore, we obtain the uniqueness as desired.

    As a consequence of the above result, the following corollary follows easily.

    Corollary 2.14. Let (X,Sp) be a 0-complete partial S-metric space, k ∈ [0, 1)and consider the map T : X −→ X to be α-admissible and Rα-admissible,andthere exists x0 ∈ X such that α(x0, x0) ≥ 1, also for every x, y ∈ X we haveα(x, y)Sp(Tx, Tx, Ty) ≤ kSp(x, x, y). Then there exists x̃ ∈ X such that T x̃ = x̃.

    Proof. Using the same technique and notation in the proof of Theorem 2.13, wededuce that Sp(xn, xn, xn) ≤ α(xn, xn)Sp(xn, xn, xn) ≤ knSp(x0, x0, x0). Thus,

    r0 = Sp(x̃, x̃, x̃) = limnSp(x̃, x̃, xn) = limn,mSp(xn, xn, xm) = 0.

    This implies that Sp(x̃, x̃, x̃) = 0. Since Sp(x̃, x̃, x̃) = Sp(x̃, x̃, T x̃) = 0, we havex̃ = T x̃ as required.

    In closing, we change the contraction principle in Theorem 2.13, to showthat there exist a unique fixed point in the whole space X.

    Theorem 2.15. Let (X,Sp) be a complete partial S-metric space, k ∈ [0, 1)and assume the there exists x0 ∈ X such that α(x0, x0) ≥ 1. Consider the mapT : X −→ X to be α−admissible and Rα−admissible. Assume that for everyx, y ∈ X we have

    (2.2) α(x, y)Sp(Tx, Tx, Ty) ≤ max{kSp(x, x, y),Sp(x, x, x) + Sp(y, y, y)

    2},

    then there exists a unique u ∈ X such that Tu = u.

    Proof. Note that, for every x, y ∈ X we have:

    α(x, y)Sp(Tx, Tx, Ty) ≤ max{kSp(x, x, y),Sp(x, x, x) + Sp(y, y, y)

    2}

    ≤ max{kSp(x, x, y), Sp(x, x, x), Sp(y, y, y)}.

  • UPPER CLASS FUNCTIONS ON A CONTROLLED CONTRACTION PRINCIPLE ... 11

    Thus, all conditions of Theorem 2.13 are satisfied. Hence, there exists u ∈ Xsuch that Tu = u. Assume that there exist two fixed points u, v ∈ X for T suchthat α(u, v) ≥ 1. Hence,

    Sp(u, u, v) = Sp(Tu, Tu, Tv) ≤ α(u, v)Sp(Tu, Tu, Tv)

    ≤ max{kSp(u, u, v),Sp(u, u, u) + Sp(v, v, v)

    2}.

    Thus, we either have Sp(u, u, v) ≤ kSp(u, u, v) which implies that Sp(u, u, v) = 0and hence u = v, or 0 = 2Sp(u, u, v)−Sp(u, u, u)−Sp(v, v, v) which also impliesthat u = v as desired.

    Example 3. Let (X,Sp) be a partial S-metric space, where X = [0, 1] ∪ [2, 3]and the partial S-metric space Sp : X

    3 −→ [0,+∞) is defined by

    Sp(x, y, z) =

    {∥max{x, y} − z∥, if {x, y, z} ∩ [2, 3] ̸= ∅|x− y − z|, if {x, y, z} ⊂ [0, 1].

    Define the functions T : X −→ X and α : X × X −→ [0,∞) as follows Tx =x+ 1

    2if 0 ≤ x ≤ 1, T2 = 1, and Tx = x+ 2

    2if 2 < x ≤ 3,

    α(x, y) =

    {ex−y, if x ≥ y0, if x < y.

    It is easy to see that T is α−admissible and Rα−admissible. Note that, we canalways pick our x, y and z such that max{x, y} > z. Also T is an increasingfunction. So, for every x ≥ y ∈ X we have:

    Sp(Tx, Tx, Ty) ≤ α(x, y)Sp(Tx, Tx, Ty) ≤1

    2Sp(x, x, y),

    if x, y ∈ [0, 1], and

    Sp(Tx, Tx, Ty) ≤ α(x, y)Sp(Tx, Tx, Ty) ≤Sp(x, x, x) + Sp(y, y, y)

    2,

    {x, y} ∩ [2, 3] ̸= ∅.One can verify that the function T in this example satisfies the conditions

    of Theorem 2.15 and the unique fixed point will be 1.

    References

    [1] N. Mlaiki, A contraction principle in partial S-metric spaces, UniversalJournal of Mathematics and Mathematical Sciences, 5 (2014), 109-119.

    [2] N. Mlaiki, A partially α-contractive principle, Advanced MathematicalStudies, 7 (2014), 121-126.

  • 12 ARSLAN HOJAT ANSARI and KAMALELDIN ABODAYEH

    [3] S. Sedghi, N. Shobe and A. Aliouche, A generalization of fixed point theo-rems in S-metric spaces, Mat. Vesnik, 64 (2012), 258-266.

    [4] S. G. Matthews, Partial metric topology, Ann. New York Acad. Sci., 728(1994), 183-197.

    [5] B. Samet, C. Vetro, P. Vetro, Fixed point theorems for α − ψ−contactivetype mappings, Nonlinear Analysis, 75 (2012), 2154-2165.

    [6] D. llic, V. Pavlovic, V. Rakcevic, Some new extentions of Banach’s con-traction principleto partial metric space, Applied Mathematics Letters, 24(2011), 1326-1330.

    [7] T. Abdeljawad, E. Karapinar and K. Taş, Existence and uniqueness of acommon fixed point on partial metric spaces, Appl. Math. Lett., 24 (2011),1900-1904.

    [8] T. Abdeljawad, E. Karapinar and K. Taş, A generalized contraction prin-ciple with control functions on partial metric spaces, Journal of Computerand Mathematics with Applications, 63 (2012), 716-719 .

    [9] T. Abdeljawad, Fixed points for generalized weakly contractive mappings inpartial metric spaces, Math. Comput. Modelling, 54 (2011), 2923–2927.

    [10] S. Oltra and O. Valero, Banach’s fixed point theorem for partial metricspaces, Rend. Istit. Mat. Univ. Trieste, 36 (2004), 17-26.

    [11] O. Valero, On Banach fixed point theorems for partial metric spaces, Appl.Gen. Topol., 6 (2005), 229–240.

    [12] T. Abdeljawad, Meir-Keeler alpha-contractive fixed and common fixed pointtheorems, Fixed point theory and applications, 19, DOI:10.1186/1687-1812-2013-19.

    [13] H.P. Masiha, F. Sabetghadam, and N. Shahzad, fixed point theorems inpartial metric spaces with an application, Filomat, 27 (2013), 617-624.

    [14] W. Shatanawi, A. Pitea, Some coupled fixed point theorems in quasi-partialmetric spaces, Fixed point theory and applications, 153 DOI: 10.1186/1687-1812-2013-153 Published: 2013.

    [15] S.K. Malhotra, S. Shukla, R. Sen, A generalization of Banach contractionprinciple in ordered cone metric spaces, Journal of Advanced MathematicalStudies, 5 (2012), 59-67.

    [16] Sana Hadj Amor, Tripled coincidence point theorems for weak φ-contractions in ordered partial metric spaces, Journal of Advanced Mathe-matical Studies, 6 (2013), 01-11.

  • UPPER CLASS FUNCTIONS ON A CONTROLLED CONTRACTION PRINCIPLE ... 13

    [17] K. Abodayeh, A controlled contraction principle in partial S-metric spaces,Applied Mathematics and Information Sciences, 10 (2016), 1-5.

    [18] Z. Kadelburg, H.K. Nashine and S. Radenoviä, Coupled fixed points inpartial metric spaces, Journal of advanced mathematical studies, 6 (2013),159-172.

    [19] A. H. Ansari, Note on “α-admissible mappings and related fixed point the-orems”, The 2nd Regional Conference on Mathematics and Applications,PNU, September 2014, 373-376

    [20] Arslan Hojat Ansari, Satish Shukla, Some fixed point theorems for orderedF -(F , h)-contraction and subcontractions in 0-f -orbitally complete partialmetric spaces, J. Adv. Math. Stud., 9(2016), 37-53

    Accepted: 3.01.2017

  • ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS – N. 43–2020 (14–24) 14

    Characterization of some linear groups by their conjugacy classsizes

    Yanheng ChenKey Laboratory of Intelligent Information Processing and Control of ChongqingMunicipal Institutions of Higher EducationChongqing Three Gorges UniversityWanzhou, Chongqing, 404100, ChinaandSchool of Mathematics and StatisticsChongqing Three Gorges University, Wanzhou, Chongqing, 404100, P.R. China

    Guiyun ChenSchool of Mathematics and Statistics, Southwest UniversityChongqing, 400715P.R. China

    Yuming Feng∗

    Key Laboratory of Intelligent Information Processing and Controlof Chongqing Municipal Institutions of Higher EducationChongqing Three Gorges UniversityWanzhou, Chongqing, 404100, P.R. ChinaandChongqing Engineering Research Center of Internet of Things and Intelligent ControlTechnologyChongqing Three Gorges UniversityWanzhou, Chongqing, 404100, [email protected]

    B.O. OnasanyaKey Laboratory of Intelligent Information Processing and Control

    of Chongqing Municipal Institutions of Higher Education

    Chongqing Three Gorges University

    Wanzhou, Chongqing, 404100

    P.R. China

    and

    Department of Mathematics

    University of Ibadan

    Ibadan, 23402, Nigeria

    Abstract. Let G be a group and denote by N(G) the set of conjugacy class sizesof G. In this paper, we proved that if Z(G) = 1 and N(G) = N(PGL(3, q)), whereq ∈ {2, 3, 4, 5, 7, 8, 9, 11}, then G ∼= PGL(3, q).Keywords: finite group, conjugacy class sizes, Thompson’s conjecture.

    ∗. Corresponding author

  • CHARACTERIZATION OF SOME LINEAR GROUPS BY THEIR CONJUGACY ... 15

    1. Introduction

    All groups considered in this paper are finite and simple groups are nonabelian.Let G be a group. For x ∈ G we denote by xG the conjugacy class of x, and by|xG| the size of xG. Then set N(G) = {|xG|

    ∣∣ x ∈ G}. It is a well-establishedtopic to investigate the relationship between the arithmetical properties of N(G)and the structural properties of group G. More recently, there have appeared anumber of papers addressing this research field. This paper is also a contributionalong this line, which is related to an open conjecture of John G. Thompson (ref.to [15, Problem 12.38]):

    Thompson’s conjecture. If S is a simple group and G is a group satisfyingthat Z(G) = 1 and N(G) = N(S), then G ∼= S.

    The prime graph of a group G is a simple graph whose vertices are the primedivisors of |G| and where two distinct primes p and q are joined by an edge if andonly if G contains an element of order pq. Using the prime graph of simple group,the second author proved that Thompson’s conjecture holds for all simple groupswith disconnected prime graph in 1994 (see [1], also ref. to [2, 3, 4]). For thesimple groups with connected prime graph, the conjecture has made considerableprogress in recent years. Several mathematicians had proved the conjecture istrue for the following simple groups: A10, A16, A22, U4(4), U4(5), An(q), Bn(q),Cn(q), Dn(q),

    2Dn(q), and E7(q)(see [5, 6, 7, 8, 9, 10, 11, 12, 13, 14]).A group M is said to be an almost simple related to S if and only if

    S ≤ M ≤Aut(S) for some simple group S. Naturally, one can put forward thefollowing question: what are almost simple groups we can generalize Thomp-son’s conjecture to? Some authors have generalized the conjecture to almostsporadic simple groups except Aut(J2) and Aut(McL), symmetric groups Sn,where n = p, p+1, and p is an odd prime number, projective general linear groupsPGL(2, q), the automorphism groups of Suzuki-Ree groups (see[15, 16, 17, 18]).But they still used the second author’s method, which is only valid for the groupswith the disconnected prime graph.

    In this paper, using Vasil’ev and Gorshkov’s methods, we generalized Thomp-son’s conjecture to projective general linear groups PGL(3, q), where q ∈{2, 3, 4, 5, 7, 8, 9, 11}. Note that PGL(3, 4) and PGL(3, 7) have the connectedprime graphs.

    Our main result is the following theorem:

    Main Theorem. Let G be a group with Z(G) = 1 and M one of groupsPGL(3, q), where q ∈ {2, 3, 4, 5, 7, 8, 9, 11}. If N(G) = N(M), then G ∼=M .

    By [19], we get PGL(3, q) = L3(q).d, d = gcd(3, q − 1). Hence

    M = PGL(3, q) =

    {L3(q), q = 2, 3, 5, 8, 9, 11,

    L3(q).3, q = 4, 7.

    Since simple groups L3(2), L3(3), L3(5), L3(8), L3(9), L3(11) have discon-nected prime graphs, the second author in [1] has proved that Thompson’s

  • 16 YANHENG CHEN, GUIYUN CHEN, YUMING FENG and B.O. ONASANYA

    conjecture is right for these groups. Therefore, it is enough to prove Main The-orem for PGL(3, 4) and PGL(3, 7). We shall give the proofs on PGL(3, 4) inSection 3 and PGL(3, 7) in Section 4.

    For convenience, we denote by π(n) the set of all primes dividing n wheren is a positive integer, and then nπ to denote π-part of n for π ⊆ π(n). Inaddition, for a group G, we also denote by π(G) = π(|G|), and Soc(G) the socleof G which is a subgroup generated by all minimal normal subgroups of G. Theother notation and terminologies in this paper are standard and the reader isreferred to [19] and [21] if necessary.

    2. Preliminaries

    First, we cite here some known results which are useful in the sequel.

    Lemma 2.1. Let K be a normal subgroup of G and G = G/K. Then(a) If x is the image of an element x of G in the group G, then |xK |

    ∣∣|xG|and |xG|

    ∣∣|xG|.(b) If x ∈ G and (|x|, |K|) = 1, then CG(x) = CG(x)K/K.(c) If x, y ∈ G, (|x|, |y|) = 1, and xy = yx, then CG(xy) = CG(x)∩CG(y).

    Lemma 2.2 ([5, Lemma 4]). Let G be a group with trivial center, p ∈ π(G) andp2 not divide n for any n ∈ N(G). Then a Sylow p-subgroup of G is elementaryabelian.

    Lemma 2.3 ([9, Lemma 1.10]). Let a Sylow p-subgroup of G be of order p, xbe an element of order p, and |xG| be a number that is maximal with respect todivisibility in N(G). Then CG(x) is abelian.

    Lemma 2.4 ([9, Lemma 1.9]). Let G be a group, and p and q be two numbersin π(G). If G satisfies the following conditions:

    (a)N(G) contains no number divisible by p2 or q2;(b)N(G) contains no number except 1 co-prime to pq;(c)N(G) contains a number hq such that any n in N(G) not divisible by q

    does not divide hq and N(G) contains no number divisible by hq and n;(d)N(G) contains a number hp such that any l in N(G) not divisible by p

    does not divide hp and N(G) contains no number divisible by hp and l.Then Sylow p-subgroups and q-subgroups of G are cyclic groups of prime order.In addition, G has no element of order pq.

    Lemma 2.5 ([9, Lemma 1.12]). Let G be a group, K the soluble radical ofG, and G/K = S a simple group. Suppose that there exists a prime p suchthat p ∈ π(G) \ π(K). Assume that an element g of order p of G satisfies thefollowing conditions:

    (a) |gG| = |gS |, where g is the image of an element g in the group S ;(b) the number |gG| is maximal with respect to divisibility in N(G);

  • CHARACTERIZATION OF SOME LINEAR GROUPS BY THEIR CONJUGACY ... 17

    (c) the subgroup CG(g) is abelian.

    Then K ≤ Z(G).Let M be one of PGL(3, 4) and PGL(3, 7). Information on the set N(M)

    and the order of M given in the next two lemmas is obtained via [19] or GAP[22].

    Lemma 2.6. Let M ∼= PGL(3, 4). Then:(1) |M | = 26 · 33 · 5 · 7;(2) N(M) = {n1 = 1, n2 = 32 · 5 · 7, n3 = 24 · 3 · 7, n4 = 26 · 3 · 5, n5 =

    26 · 5 · 7, n6 = 26 · 32 · 5,n7 = 2

    2 · 33 · 5 · 7, n8 = 26 · 32 · 7, n9 = 24 · 32 · 5 · 7}.Especially,

    (3) N(M) contains no number other than n1, n4 and n6 not divisible by 7;

    (4) N(M) contains no number other than n1, n3 and n8 not divisible by 5;

    (5) For any n ∈ N(M) and p ∈ {5, 7}, it follows that p2 ̸ |n;(6) |xM | = n1, x ∈M if and only if x = 1.

    Lemma 2.7. Let M ∼= PGL(3, 7). Then:(1) |M | = 25 · 33 · 73 · 19;(2) N(M) = {n1 = 1, n2 = 24 · 32 · 19, n3 = 3 · 72 · 19, n4 = 25 · 3 · 73, n5 =

    23 · 73 · 19,n6 = 2

    5 ·32 ·73, n7 = 25 ·33 ·7 ·19, n8 = 2 ·32 ·73 ·19, n9 = 24 ·32 ·72 ·19, n10 =23 · 3 · 73 · 19}.In particular,

    (3) N(M) contains no number other than n1, n4 and n6 not divisible by 19;

    (4) N(M) contains no number divided by 192;

    (5) |xM | = n1, x ∈M if and only if x = 1.

    Lemma 2.8. If M is one of PGL(3, 4) and PGL(3, 7), and G is a group withZ(G) = 1 and N(G) = N(M), then |M |

    ∣∣|G| and π(G) = π(M).Proof. Since the number in N(G) divides |G|, under the hypothesis we see that|M |

    ∣∣|G| by Lemma 2.6 and Lemma 2.7. π(M) = π(G) is the result of Lemma1.2.1 in [1] or Lemma 3 in [5].

    Lemma 2.9. Let S be a simple group.

    (i) If π(S) ⊆ {2, 3, 5, 7}, then S is isomorphic to one of simple groups ofTable 1.

    (ii) If π(S) ⊆ {2, 3, 7, 19}, then S is isomorphic to one of simple groupsof Table 2.

    Proof. This is an immediate consequence of Theorem 2 in [23].

    For convenience, we list all the cases of S in Lemma 2.9 as well as the ordersof S, the orders of the outer automorphism of S in Table 1 and Table 2.

  • 18 YANHENG CHEN, GUIYUN CHEN, YUMING FENG and B.O. ONASANYA

    Table 1. Non-abeian simple groups S with π(S) ⊆ {2, 3, 5, 7}

    S Order of S |Out(S)| S Order of S |Out(S)|A5 2

    2 · 3 · 5 2 A9 26 · 34 · 5 · 7 2L2(7) 2

    3 · 3 · 7 2 J2 27 · 33 · 52 · 7 2A6 2

    3 · 32 · 5 22 U3(5) 24 · 32 · 53 · 7 |S3|L2(8) 2

    3 · 32 · 7 3 S6(2) 29 · 34 · 5 · 7 1A7 2

    3 · 32 · 5 · 7 2 U4(3) 27 · 36 · 5 · 7 |D8|U3(3) 2

    5 · 33 · 7 2 S4(7) 28 · 32 · 52 · 74 2A8 2

    6 · 32 · 5 · 7 2 A10 27 · 34 · 52 · 7 2L3(4) 2

    6 · 32 · 5 · 7 |D12| O+8 (2) 212 · 35 · 52 · 7 |S3|U4(2) 2

    6 · 34 · 5 2 L2(49) 24 · 3 · 52 · 72 22

    Table 2. Non-abeian simple groups S with π(S) ⊆ {2, 3, 7, 19}

    S Order of S |Out(S)| S Order of S |Out(S)|L2(7) 2

    3 · 3 · 7 2 L2(8) 23 · 32 · 7 3U3(3) 2

    5 · 33 · 7 2 L3(7) 25 · 32 · 73 · 19 |S3|U3(8) 2

    7 · 34 · 7 · 19 |3× S3|

    3. Proof of the main theorem for PGL(3, 4)

    Theorem 3.1. Let G be a group with trivial center. If N(G) = N(PGL(3, 4)),then G ∼= PGL(3, 4).

    Proof. We divide the proof of this theorem into six steps.

    Step 1. Sylow 5-subgroups and Sylow 7-subgroups of G are cyclic groups ofprime order and there are no elements of order 35 in G.

    In view of N(G) = N(PGL(3, 4)) and Lemma 2.8, we can choose p = 5 andq = 7, and take h5 = n6 and h7 = n8 such that G satisfies the hypotheses ofLemma 2.4. Hence Sylow 5-subgroups and Sylow 7-subgroups of G are cyclicgroups of prime order and there are no elements of order 5 · 7 in G.

    Step 2. Let g, h ∈ G be elements of orders 5 and 7, respectively. Then |gG| =n8 = 2

    6 · 32 · 7 and |hG| = n6 = 26 · 32 · 5, and CG(g) and CG(h) are abelian.Since the Sylow 5-subgroup of G is order of 5 by Step 1, one has that 5 ̸

    ∣∣ |xG|for any 1 ̸= x ∈ CG(g). Hence |xG| = n3 or n8 by (4) and (6) of Lemma 2.6.Assume that |gG| = n3 = 24 · 3 · 7. Let H be a Sylow 3-subgroup of CG(g).Then H is a nontrivial group of order |G|3/3 by Lemma 2.8. It follows thatZ(H) ̸= 1 and let 1 ̸= y ∈ Z(H). Then H ≤ CG(y), and so |yG|3 ≤ 3.Thus |yG| = n3. Since H ≤ CG(gy), we have that |(gy)G| = n3. In viewof CG(gy) = CG(g)

    ∩CG(y), we see that CG(g) = CG(y). The group CG(y)

  • CHARACTERIZATION OF SOME LINEAR GROUPS BY THEIR CONJUGACY ... 19

    contains an element w from the center of a Sylow 3-subgroup of G, then |wG|is not divisible by 3, and so |wG| = n5 = 26 · 5 · 7 by (2) of Lemma 2.6. Thusw ̸∈ CG(g), a contradiction. It follows that |gG| = n8 = 26 · 32 · 7. Since n8 ismaximal with respect to divisibility in N(G), Lemma 2.3 implies that the groupCG(g) is abelian.

    In a similar way, we can show that |hG| = n6 = 26 · 32 · 5 and CG(h) isabelian.

    In the following discussion, we assume that K is the soluble radical of agroup G, and G = G/K.

    Step 3. G is non-soluble and has a unique composition factor S such that5 · 7

    ∣∣|S| and S E G ≤Aut(S). Moreover, S may be isomorphic to one of thefollowing groups:

    A7, A8, A9, L4(3), S6(2), U4(3).

    Assume that 5∣∣|K|. Then K/O{5,7}′(K) has a normal subgroup T of order 5.

    Hence an element of G/O{5,7}′(K) of order 7 can act trivially on T , which impliesthat G/O{5,7}′(K) contains an element of order 35, so does G, contradicting withStep 1. Thus 5 does not divide |K| and similarly we can prove that 7 does notdivide |K|, and so G is not soluble.

    Let L = S1 × S2 × · · · × Sk be the socle of G, where S1, S2, . . . , and Sk aresimple groups. Let g be an element of order 5 of G and suppose that 5 ̸∈ π(L).Then g is of order 5 in G and induces a nontrivial outer automorphism of thegroup L. Suppose that there exists i such that Sgi ̸= Si. Without loss ofgenerality, we assume that i = 1. Let H = ⟨s |s = s1sg1s

    g2

    1 sg3

    1 sg4

    1 , s1 ∈ S1⟩.Then H lies in the centralizer of the element g and is isomorphic to S1, butthe centralizer of g is abelian by Step 2, a contradiction. Hence g induces anontrivial outer automorphism of the group Si such that 5

    ∣∣|Out(Si)|. In view ofπ(Si) ⊆ π(G) = {2, 3, 5, 7} and by Table 1, the prime divisors of |Out(Si)| areless than 5, a contradiction. Therefore 5

    ∣∣|L| and sim