83
 row of qubits in a linear Paul trap forms a quantum register Ion trap quantum processor Laser pulses manipulate individual ions A CCD camera reads out the ion`s quantum state Effective ion-ion interaction induced by laser pulses that excite the ion`s motion

Ion trap quantum processor - physics @ berkeleyresearch.physics.berkeley.edu/.../Ion-QC2.pdf · A 2π pulse is applied to only one of ion(crystal)s states => only one states acquires

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Ion trap quantum processor - physics @ berkeleyresearch.physics.berkeley.edu/.../Ion-QC2.pdf · A 2π pulse is applied to only one of ion(crystal)s states => only one states acquires

   

row of qubits in a linear Paul trap forms a quantum register

Ion trap quantum processor Laser pulses manipulate individual ions

A CCD camera reads out the ion`s quantum state

Effective ion­ion interaction induced by laser pulses that excite the ion`s motion

Page 2: Ion trap quantum processor - physics @ berkeleyresearch.physics.berkeley.edu/.../Ion-QC2.pdf · A 2π pulse is applied to only one of ion(crystal)s states => only one states acquires

   

Photo­multiplier

CCDcamera

Fluorescencedetection by

CCD cameraphotomultiplier

Vacuumpum

p

oven

atomic

beam

Laser beams for:

photoionizationcoolingquantum state manipulationfluorescence excitation

Experimental setup

Page 3: Ion trap quantum processor - physics @ berkeleyresearch.physics.berkeley.edu/.../Ion-QC2.pdf · A 2π pulse is applied to only one of ion(crystal)s states => only one states acquires

   

absorption and emissioncause fluorescence steps(digital quantum jump signal)

D

S

P

S

D

monitor weak transition

metastablelevel

Quantum jumps: spectroscopy with quantized fluorescence

Observation of quantum jumps:

Nagourney et al., PRL 56,2797 (1986),Sauter et al., PRL 57,1696 (1986),

Bergquist et al., PRL 57,1699 (1986) 

„ Quantum jump technique“„ Electron shelving technique“

Page 4: Ion trap quantum processor - physics @ berkeleyresearch.physics.berkeley.edu/.../Ion-QC2.pdf · A 2π pulse is applied to only one of ion(crystal)s states => only one states acquires

   

Electron shelving for quantum state detection

1. Initialization in a pure quantum state

3. Quantum state measurement    by fluorescence detection

2. Quantum state manipulation on    S1/2 – D5/2 transition      

One ion : Fluorescence histogram

counts per 2 ms0 20 40 60 80 100 1200

1

2

3

4

5

6

7

8S1/2 stateD5/2 state

P1/2 D5/2

τ =1s

S1/2

40Ca+

P1/2

S1/2

D5/2P1/2

S1/2

D5/2

Quantum statemanipulation

P1/2

S1/2

D5/2

Fluorescencedetection

50 experiments / s

Repeat experiments100­200 times

Page 5: Ion trap quantum processor - physics @ berkeleyresearch.physics.berkeley.edu/.../Ion-QC2.pdf · A 2π pulse is applied to only one of ion(crystal)s states => only one states acquires

   

1. Initialization in a pure quantum state

3. Quantum state measurement    by fluorescence detection

2. Quantum state manipulation on    S1/2 – D5/2 transition      

5µm

50 experiments / s

Repeat experiments100­200 times

Spatially resolveddetection withCCD camera:

Two ions:

P1/2

S1/2

D5/2

Fluorescencedetection

Electron shelving for quantum state detection

Page 6: Ion trap quantum processor - physics @ berkeleyresearch.physics.berkeley.edu/.../Ion-QC2.pdf · A 2π pulse is applied to only one of ion(crystal)s states => only one states acquires

   

Quantum harmonical oscillator

Extension of the ground state:

Size of the wave packet << wavelength of visible light

Energy scale of interest:

harmonic trap

Page 7: Ion trap quantum processor - physics @ berkeleyresearch.physics.berkeley.edu/.../Ion-QC2.pdf · A 2π pulse is applied to only one of ion(crystal)s states => only one states acquires

   

Laser – ion interactions

∣g ⟩

∣e ⟩

2­level­atom harmonic trap

...

∣g ,0 ⟩

∣e,0 ⟩∣e,1 ⟩

∣e,2 ⟩

∣g ,2 ⟩∣g ,1 ⟩

joint energy levels…

Approximations:

Electronic structure of the ion approximated by two­level system(laser is (near­) resonant and couples only two levels)

Trap:  Only a single harmonic oscillator taken into account

Ion: 

Page 8: Ion trap quantum processor - physics @ berkeleyresearch.physics.berkeley.edu/.../Ion-QC2.pdf · A 2π pulse is applied to only one of ion(crystal)s states => only one states acquires

   

harmonic trap

2­level­atom joint energy levels

. . .

External degree of freedom: ion motion

Page 9: Ion trap quantum processor - physics @ berkeleyresearch.physics.berkeley.edu/.../Ion-QC2.pdf · A 2π pulse is applied to only one of ion(crystal)s states => only one states acquires

   

A closer look at the excitation spectrum (3 ions)

carrier transitionmotional sidebands

Laser detuning ∆ at 729 nm  (MHz)

motional sidebands(red / lower) (blue / upper)

Page 10: Ion trap quantum processor - physics @ berkeleyresearch.physics.berkeley.edu/.../Ion-QC2.pdf · A 2π pulse is applied to only one of ion(crystal)s states => only one states acquires

   

Page 11: Ion trap quantum processor - physics @ berkeleyresearch.physics.berkeley.edu/.../Ion-QC2.pdf · A 2π pulse is applied to only one of ion(crystal)s states => only one states acquires

   

4 . 5 4   4 . 5 2   4 . 5   4 . 4 8  0  

0 . 2  

0 . 4  

0 . 6  

0 . 8  P  D 

D e t u n i n g    δ ω   ( M H z )  4 . 4 8   4 . 5   4 . 5 2   4 . 5 4  0  

0 . 2  

0 . 4  

0 . 6  

0 . 8  

P  D 

D e t u n i n g    δ ω   ( M H z )  

9 9 . 9   %   g r o u n d   s t a t e   p o p u l a t i o n  

a f t e r  s i d e b a n d  c o o l i n g  

a f t e r  D o p p l e r  c o o l i n g  

⟨nz⟩ = 1.7

Sideband absorption spectra

red sideband blue sideband

­4.54     ­4.52     ­4.5     ­4.48

Page 12: Ion trap quantum processor - physics @ berkeleyresearch.physics.berkeley.edu/.../Ion-QC2.pdf · A 2π pulse is applied to only one of ion(crystal)s states => only one states acquires

   

Coherent excitation on the sideband

...

∣S,n−1 ⟩

∣D ,n−1 ⟩∣D ,n ⟩

∣D ,n1 ⟩

∣S,n1 ⟩∣S,n ⟩

coupled system

...

„Blue sideband“ pulses:

D state population

Entanglement between internal and motional state !

Page 13: Ion trap quantum processor - physics @ berkeleyresearch.physics.berkeley.edu/.../Ion-QC2.pdf · A 2π pulse is applied to only one of ion(crystal)s states => only one states acquires

   

Single qubit operations

• Laser slightly detuned from carrier resonance

or:

• Concatenation of two pulses with rotation   axis in equatorial plane 

Arbitrary qubit rotations:

(z­rotations by off­resonant laser beam creating ac­Stark shifts)

Gate time : 1­10 µs Coherence time : 2­3 ms

limited by 

• laser frequency fluctuations• magnetic field fluctuations

(laser linewidth δν<100 Hz)

D state population

Page 14: Ion trap quantum processor - physics @ berkeleyresearch.physics.berkeley.edu/.../Ion-QC2.pdf · A 2π pulse is applied to only one of ion(crystal)s states => only one states acquires

   CCD

Paul trap

Fluorescencedetection 

electro­optic deflector

coherentmanipulation of qubits

dichroicbeamsplitter

 inter ion distance: ~ 4 µm addressing waist: ~ 2 µm< 0.1% intensity on neighbouring ions

­10 ­8 ­6 ­4 ­2 0 2 4 6 8 100

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Excit

atio

n

Deflector Voltage (V)

Addressing the qubits

Page 15: Ion trap quantum processor - physics @ berkeleyresearch.physics.berkeley.edu/.../Ion-QC2.pdf · A 2π pulse is applied to only one of ion(crystal)s states => only one states acquires

   

Generation of Bell states

Pulse sequence:

… …

Page 16: Ion trap quantum processor - physics @ berkeleyresearch.physics.berkeley.edu/.../Ion-QC2.pdf · A 2π pulse is applied to only one of ion(crystal)s states => only one states acquires

   

Generation of Bell states

Ion 1:   π/2 , blue sideband

Pulse sequence:

… …

Page 17: Ion trap quantum processor - physics @ berkeleyresearch.physics.berkeley.edu/.../Ion-QC2.pdf · A 2π pulse is applied to only one of ion(crystal)s states => only one states acquires

   

Generation of Bell states

Ion 1:   π/2 , blue sideband

Ion 2:   π    ,       carrier

Pulse sequence:

… …

Page 18: Ion trap quantum processor - physics @ berkeleyresearch.physics.berkeley.edu/.../Ion-QC2.pdf · A 2π pulse is applied to only one of ion(crystal)s states => only one states acquires

   

Generation of Bell states

Ion 1:   π/2 , blue sideband

Ion 2:   π    ,       carrier

Ion 2:   π    , blue sideband

Pulse sequence:

… …

Page 19: Ion trap quantum processor - physics @ berkeleyresearch.physics.berkeley.edu/.../Ion-QC2.pdf · A 2π pulse is applied to only one of ion(crystal)s states => only one states acquires

   

Bell state analysis

Fluorescencedetection withCCD camera:

Coherent superposition or incoherent mixture ?

What is the relative phase of the superposition ? 

SSSD

DSDD SSSDDSDD

Ψ+

Measurement of the density matrix:

Page 20: Ion trap quantum processor - physics @ berkeleyresearch.physics.berkeley.edu/.../Ion-QC2.pdf · A 2π pulse is applied to only one of ion(crystal)s states => only one states acquires

   

A measurement yields the z­component of the Bloch vector 

=> Diagonal of the density matrix

Rotation around the x­ or the y­axis prior tothe measurement yields the phase informationof the qubit. 

(a naïve persons point of view)

=> coherences of the density matrix

Obtaining a single qubits density matrix

Page 21: Ion trap quantum processor - physics @ berkeleyresearch.physics.berkeley.edu/.../Ion-QC2.pdf · A 2π pulse is applied to only one of ion(crystal)s states => only one states acquires

   

Bell state reconstruction

SSSD

DSDD SSSDDSDD

SSSD

DSDD SSSDDSDD

F=0.91

Page 22: Ion trap quantum processor - physics @ berkeleyresearch.physics.berkeley.edu/.../Ion-QC2.pdf · A 2π pulse is applied to only one of ion(crystal)s states => only one states acquires

   

Phase gate  CNOT

Both, the phase gate as well the CNOT gate can be converted into each other with single qubit operations.

Together with the three single qubit gates, we can implement any unitary operation!

Page 23: Ion trap quantum processor - physics @ berkeleyresearch.physics.berkeley.edu/.../Ion-QC2.pdf · A 2π pulse is applied to only one of ion(crystal)s states => only one states acquires

   

Quantum gate proposals with trapped ions

Some other gate proposals by:• Cirac & Zoller • Mølmer & Sørensen, Milburn• Jonathan, Plenio & Knight• Geometric phases• Leibfried & Wineland

...allows the realization of a universal quantum computer !

Page 24: Ion trap quantum processor - physics @ berkeleyresearch.physics.berkeley.edu/.../Ion-QC2.pdf · A 2π pulse is applied to only one of ion(crystal)s states => only one states acquires

   

1 2

Cirac ­ Zoller two­ion phase gate

ion 1

motion

ion 2

,S D

,S D0 0

SWAP

,0S,1S

,0D,1D

Page 25: Ion trap quantum processor - physics @ berkeleyresearch.physics.berkeley.edu/.../Ion-QC2.pdf · A 2π pulse is applied to only one of ion(crystal)s states => only one states acquires

   

1 2

Cirac ­ Zoller two­ion phase gate

Phase gate usingthe motion andthe target bit.

ion 1

motion

ion 2

,S D

,S D0 0

SWAP

Z

Page 26: Ion trap quantum processor - physics @ berkeleyresearch.physics.berkeley.edu/.../Ion-QC2.pdf · A 2π pulse is applied to only one of ion(crystal)s states => only one states acquires

   

1 2

Cirac ­ Zoller two­ion phase gate

,0S,1S

,0D,1D

ion 1

motion

ion 2

,S DSWAP

,S D0 0

SWAP

Z

Page 27: Ion trap quantum processor - physics @ berkeleyresearch.physics.berkeley.edu/.../Ion-QC2.pdf · A 2π pulse is applied to only one of ion(crystal)s states => only one states acquires

   

1 2

Cirac ­ Zoller two­ion phase gate

Phase gate usingthe motion andthe target bit.

ion 1

motion

ion 2

,S D

,S D0 0

Z

Page 28: Ion trap quantum processor - physics @ berkeleyresearch.physics.berkeley.edu/.../Ion-QC2.pdf · A 2π pulse is applied to only one of ion(crystal)s states => only one states acquires

   

Cirac­Zoller phase gate: the key step

∣D ,0 ⟩∣D ,1 ⟩

∣S,1 ⟩∣S,0 ⟩

A 2π pulse is applied to only one of ion­(crystal)s states => only onestates acquires a phase factor of –1.  

An additional Zeeman level can be used as the auxilary state.=> gate is sensitive to magnetic field fluctuations!

Page 29: Ion trap quantum processor - physics @ berkeleyresearch.physics.berkeley.edu/.../Ion-QC2.pdf · A 2π pulse is applied to only one of ion(crystal)s states => only one states acquires

   

How do you do with just a two­level system?

  ?

Page 30: Ion trap quantum processor - physics @ berkeleyresearch.physics.berkeley.edu/.../Ion-QC2.pdf · A 2π pulse is applied to only one of ion(crystal)s states => only one states acquires

   

Phase gate

Composite 2 ­rotation:π

Page 31: Ion trap quantum processor - physics @ berkeleyresearch.physics.berkeley.edu/.../Ion-QC2.pdf · A 2π pulse is applied to only one of ion(crystal)s states => only one states acquires

   

A phase gate with 4 pulses (2π rotation)

1 1 1 1( , ) , 2 2,0 , 2 2,0R R R R R

1

2

3

4

,0 ,1S Don2

Page 32: Ion trap quantum processor - physics @ berkeleyresearch.physics.berkeley.edu/.../Ion-QC2.pdf · A 2π pulse is applied to only one of ion(crystal)s states => only one states acquires

   

A single ion composite phase gate: Experiment

ϕ=0 ϕ=0 ϕ=π /2φ=π /2

0 20 40 60 80 100 120 140 160 1800

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (µs)

 D5/

2 ­ e

xcita

tion

π /2 π /2 ππφ=π /2φ=0 φ=0

state preparation  ,0S , then application of phase gate pulse sequence 

Page 33: Ion trap quantum processor - physics @ berkeleyresearch.physics.berkeley.edu/.../Ion-QC2.pdf · A 2π pulse is applied to only one of ion(crystal)s states => only one states acquires

   

Population of |S,1> ­ |D,2> remains unaffected

1 1 1 1( , ) 2, 2 ,0 2, 2 ,0R R R R R

4

3

2

1

Page 34: Ion trap quantum processor - physics @ berkeleyresearch.physics.berkeley.edu/.../Ion-QC2.pdf · A 2π pulse is applied to only one of ion(crystal)s states => only one states acquires

   

Testing the phase of the phase gate |0,S>

Time (µs)

 D5/

2 ­ e

xcita

tion

0 50 100 150 200 250 3000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1Phase gate −

π2

π2

97.8 (5) %

Page 35: Ion trap quantum processor - physics @ berkeleyresearch.physics.berkeley.edu/.../Ion-QC2.pdf · A 2π pulse is applied to only one of ion(crystal)s states => only one states acquires

   

         Phase gate with starting in |D,1>

0 50 100 150 200 250 3000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 D5/

2 ­ e

xcita

tion

Time (µs)

Phase gate −π2

π2

πBlue

Page 36: Ion trap quantum processor - physics @ berkeleyresearch.physics.berkeley.edu/.../Ion-QC2.pdf · A 2π pulse is applied to only one of ion(crystal)s states => only one states acquires

   

ion 1

motion

ion 2

,S DSWAP

,S D0 0

control qubit

target qubit

SWAP

ion 1

ion 2

pulse sequence:

Cirac ­ Zoller two­ion controlled­NOT operation

Page 37: Ion trap quantum processor - physics @ berkeleyresearch.physics.berkeley.edu/.../Ion-QC2.pdf · A 2π pulse is applied to only one of ion(crystal)s states => only one states acquires

   

Cirac – Zoller CNOT gate operation

SS ­ SS DS ­ DD

SD ­ SD DD ­ DS

Page 38: Ion trap quantum processor - physics @ berkeleyresearch.physics.berkeley.edu/.../Ion-QC2.pdf · A 2π pulse is applied to only one of ion(crystal)s states => only one states acquires

   

input

output

Measured truth table of Cirac­Zoller CNOT operation

Page 39: Ion trap quantum processor - physics @ berkeleyresearch.physics.berkeley.edu/.../Ion-QC2.pdf · A 2π pulse is applied to only one of ion(crystal)s states => only one states acquires

   

Superposition as input to CNOT gate

outputprepare gate detect

Page 40: Ion trap quantum processor - physics @ berkeleyresearch.physics.berkeley.edu/.../Ion-QC2.pdf · A 2π pulse is applied to only one of ion(crystal)s states => only one states acquires

   

Error budget for Cirac­Zoller CNOT

4 %for tgate = 600 µsOff resonant excitations

3 %5 % in Rabi frequency(at neighbouring ion)

Addressing error(can be corrected for partially)

~ 10 % !!!~ 100 Hz (FWHM)Laser frequency noise

(Phase coherence)

Population lossMagnitudeError source

 ~ 20 %

~ 2 %

0.1 %

2 %0.4 %

November 2002Total

~ 500 Hz (FWHM)Laser detuning error

1 % peak to peakLaser intensity noise

   <n>bus < 0.02<n>spec = 6

Residual thermal excitation

Page 41: Ion trap quantum processor - physics @ berkeleyresearch.physics.berkeley.edu/.../Ion-QC2.pdf · A 2π pulse is applied to only one of ion(crystal)s states => only one states acquires

   

Error budget for Cirac­Zoller CNOT

4 %for tgate = 600 µsOff resonant excitations

3 %5 % in Rabi frequency(at neighbouring ion)

Addressing error(can be corrected for partially)

~ 10 % !!!~ 100 Hz (FWHM)Laser frequency noise

(Phase coherence)

Population lossMagnitudeError source

 ~ 20 %

~ 2 %

0.1 %

2 %0.4 %

November 2002Total

~ 500 Hz (FWHM)Laser detuning error

1 % peak to peakLaser intensity noise

   <n>bus < 0.02<n>spec = 6

Residual thermal excitation

Page 42: Ion trap quantum processor - physics @ berkeleyresearch.physics.berkeley.edu/.../Ion-QC2.pdf · A 2π pulse is applied to only one of ion(crystal)s states => only one states acquires

   

Testing the phase of the phase gate |0,S>

Time (µs)

 D5/

2 ­ e

xcita

tion

0 50 100 150 200 250 3000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1Phase gate −

π2

π2

97.8 (5) %

Page 43: Ion trap quantum processor - physics @ berkeleyresearch.physics.berkeley.edu/.../Ion-QC2.pdf · A 2π pulse is applied to only one of ion(crystal)s states => only one states acquires

   

Time

Ramsey experiment

Quantum algorithms can be viewed as generalized Ramsey experiments!

Laser detuning (kHz)

Page 44: Ion trap quantum processor - physics @ berkeleyresearch.physics.berkeley.edu/.../Ion-QC2.pdf · A 2π pulse is applied to only one of ion(crystal)s states => only one states acquires

   

Phase coherence

⇒ Gaussian modell yields a coherence time of 0.9 ms     Now (in 2005) 2 ms are more typical.

Page 45: Ion trap quantum processor - physics @ berkeleyresearch.physics.berkeley.edu/.../Ion-QC2.pdf · A 2π pulse is applied to only one of ion(crystal)s states => only one states acquires

   

Test of the motional coherence

0 0.02 0.04 0.060

0.2

0.4

0.6

0.8

1

Excit

atio

n to

 D5/

2­sta

te

Time (ms)0.910 0.920 0.930 0.940 0.950 0.960 0.970

ππ/2 π/2π ±π/2

After 60 ms still 50 % contrast!

∣0,S ⟩∣1,S ⟩

∣1,D ⟩∣0,D ⟩

Time (ms)

∣0,S ⟩∣1,S⟩

∣1,D ⟩∣0,D ⟩

∣0,S ⟩∣1,S ⟩

∣1,D ⟩∣0,D ⟩

∣0,S ⟩∣1,S⟩

∣1,D ⟩∣0,D ⟩

uv lig

ht

Page 46: Ion trap quantum processor - physics @ berkeleyresearch.physics.berkeley.edu/.../Ion-QC2.pdf · A 2π pulse is applied to only one of ion(crystal)s states => only one states acquires

   

Error budget for Cirac­Zoller CNOT

4 %for tgate = 600 µsOff resonant excitations

3 %5 % in Rabi frequency(at neighbouring ion)

Addressing error(can be corrected for partially)

~ 10 % !!!~ 100 Hz (FWHM)Laser frequency noise

(Phase coherence)

Population lossMagnitudeError source

 ~ 20 %

~ 2 %

0.1 %

2 %0.4 %

November 2002Total

~ 500 Hz (FWHM)Laser detuning error

1 % peak to peakLaser intensity noise

   <n>bus < 0.02<n>spec = 6

Residual thermal excitation

Page 47: Ion trap quantum processor - physics @ berkeleyresearch.physics.berkeley.edu/.../Ion-QC2.pdf · A 2π pulse is applied to only one of ion(crystal)s states => only one states acquires

   

Intensity noise

=> Laser intensity noise: 0.03

Page 48: Ion trap quantum processor - physics @ berkeleyresearch.physics.berkeley.edu/.../Ion-QC2.pdf · A 2π pulse is applied to only one of ion(crystal)s states => only one states acquires

   

Error budget for Cirac­Zoller CNOT

4 %for tgate = 600 µsOff resonant excitations

3 %5 % in Rabi frequency(at neighbouring ion)

Addressing error(can be corrected for partially)

~ 10 % !!!~ 100 Hz (FWHM)Laser frequency noise

(Phase coherence)

Population lossMagnitudeError source

 ~ 20 %

~ 2 %

0.1 %

2 %0.4 %

November 2002Total

~ 500 Hz (FWHM)Laser detuning error

1 % peak to peakLaser intensity noise

   <n>bus < 0.02<n>spec = 6

Residual thermal excitation

Page 49: Ion trap quantum processor - physics @ berkeleyresearch.physics.berkeley.edu/.../Ion-QC2.pdf · A 2π pulse is applied to only one of ion(crystal)s states => only one states acquires

   20π8π4π 12π 16π0

0

1

2

Qubit­Rotations with two ions

Pulse sequence:

θ , φ=0

carrierpulse

rotation angle θ

excit

atio

n

adressing error 5%

typical adressing errors are in the range of 3­5%

error  =  neighbour

target

=Ineighbour

Itarget

Page 50: Ion trap quantum processor - physics @ berkeleyresearch.physics.berkeley.edu/.../Ion-QC2.pdf · A 2π pulse is applied to only one of ion(crystal)s states => only one states acquires

   

Error budget for Cirac­Zoller CNOT

4 %for tgate = 600 µsOff resonant excitations

3 %5 % in Rabi frequency(at neighbouring ion)

Addressing error(can be corrected for partially)

~ 10 % !!!~ 100 Hz (FWHM)Laser frequency noise

(Phase coherence)

Population lossMagnitudeError source

 ~ 20 %

~ 2 %

0.1 %

2 %0.4 %

November 2002Total

~ 500 Hz (FWHM)Laser detuning error

1 % peak to peakLaser intensity noise

   <n>bus < 0.02<n>spec = 6

Residual thermal excitation

Page 51: Ion trap quantum processor - physics @ berkeleyresearch.physics.berkeley.edu/.../Ion-QC2.pdf · A 2π pulse is applied to only one of ion(crystal)s states => only one states acquires

   

Off­resonant carrier excitation

∣S,0 ⟩

∣D ,0 ⟩∣D ,1 ⟩

∣S,1 ⟩

Problem:

 AC Stark shifts  off­resonant (carrier) excitation    (spectator modes)

0   2   4   6   8   1 0   1 2   1 4   1 6  0 . 0  

0 . 2  

0 . 4  

0 . 6  

0 . 8  

1 . 0  

S ­ D

 exc

itatio

n pr

obab

ility

i n t e r a c t i o n   t i m e   ( µ s )

ωz= 2π⋅1.8 MHzcarrier= 2π⋅1.09 MHz

A. Steane, C. F. Roos, D. Stevens, A. Mundt, D. Leibfried, F. Schmidt­Kaler, R. Blatt, 

Phys. Rev. A 62, 042305 (2000)

Page 52: Ion trap quantum processor - physics @ berkeleyresearch.physics.berkeley.edu/.../Ion-QC2.pdf · A 2π pulse is applied to only one of ion(crystal)s states => only one states acquires

• Solve master equation!

Hilbert space:                                                          (27 dimensions)∣0,1,2 ⟩⊗∣S,D,Daux⟩1⊗∣S,D,Daux⟩2

Computation method

∣0,S ⟩

∣0,D ⟩

∣1,S ⟩

∣1,D⟩

∣0,S ⟩ ∣0,D ⟩ ∣1,S ⟩ ∣1,D ⟩

η≈0.03 : Lamb-Dicke-parameter / n : Number of phononsΔ: Laser detuning / ωT : Trap frequency

∣0,S ⟩∣1,S ⟩

∣1,D ⟩∣0,D ⟩

Schrödinger equation for 1 ion:

iddt

C1

C2

C3

C4=

0 0 0 −iη 0

0 Δ iη 0 0

0 −iη 0 ωT 1−η20

iη 0 0 1−η20 ΔωT

C1

C2

C3

C4

Page 53: Ion trap quantum processor - physics @ berkeleyresearch.physics.berkeley.edu/.../Ion-QC2.pdf · A 2π pulse is applied to only one of ion(crystal)s states => only one states acquires

   

Error budget for Cirac­Zoller CNOT

4 %for tgate = 600 µsOff resonant excitations

3 %5 % in Rabi frequency(at neighbouring ion)

Addressing error(can be corrected for partially)

~ 10 % !!!~ 100 Hz (FWHM)Laser frequency noise

(Phase coherence)

Population lossMagnitudeError source

 ~ 20 %

~ 2 %

0.1 %

2 %0.4 %

November 2002Total

~ 500 Hz (FWHM)Laser detuning error

1 % peak to peakLaser intensity noise

   <n>bus < 0.02<n>spec = 6

Residual thermal excitation

Page 54: Ion trap quantum processor - physics @ berkeleyresearch.physics.berkeley.edu/.../Ion-QC2.pdf · A 2π pulse is applied to only one of ion(crystal)s states => only one states acquires

   

Summary of the complications of the Cirac­Zoller approach

­ the gate is slow (off­resonant excitations)         => sensitive to frequency fluctuations / deviations. ­ the gate requires addressing => trap frequency needs to reduced        Use other gate types which do not require addressing.

­ the gate is sensitive to motional heating        Not really a problem yet.

Page 55: Ion trap quantum processor - physics @ berkeleyresearch.physics.berkeley.edu/.../Ion-QC2.pdf · A 2π pulse is applied to only one of ion(crystal)s states => only one states acquires

   

Scaling of this approach?

• Coupling strength between internal and motional states of a N­ion string  decreases as 

(momentum transfer from photon to ion stringbecomes more difficult)

­> Gate operation speed slows down

• More vibrational modes increase risk of spurious excitation of unwanted modes

­> Use flexible trap potentials to split long ion string into smaller segments    and perform operations on these smaller strings

Problems :

• Distance between neighbouring ions decreases ­> addressing more difficult 

Page 56: Ion trap quantum processor - physics @ berkeleyresearch.physics.berkeley.edu/.../Ion-QC2.pdf · A 2π pulse is applied to only one of ion(crystal)s states => only one states acquires

   

Easy to have thousands of ions in a trap and to manipulate them individually…

 

but it is hard to control their interaction!

Scaling ion trap quantum computers

Kielpinski, Monroe, Wineland

The solution:The solutions:

Cirac, Zoller, Kimble, Mabuchi Tian, Blatt, Zoller

Page 57: Ion trap quantum processor - physics @ berkeleyresearch.physics.berkeley.edu/.../Ion-QC2.pdf · A 2π pulse is applied to only one of ion(crystal)s states => only one states acquires

   

“accumulator”

controlqubit

targetqubit

D. Wineland, Boulder, USAKieplinski et al, Nature 417, 709 (2002)

Idea #1: move the ions around

Page 58: Ion trap quantum processor - physics @ berkeleyresearch.physics.berkeley.edu/.../Ion-QC2.pdf · A 2π pulse is applied to only one of ion(crystal)s states => only one states acquires

   

Segmented ion traps as scalable trap architecture  (ideas pioneered by D. Wineland, NIST,  and C. Monroe, Univ. Michigan)

Segmented trap electrode allow totransport ions and to split ion strings

Transport of ions

1 mm  within 50 µsno motional heating

Splitting of two­ion crystal

tseparation   200 ≈ µssmall heating ∆n  1≈

State of the art:

„Architecture for a large­scale ion­trap quantum computer“, D. Kielpinski et al, Nature 417, 709 (2002) 

„Transport of quantum states“, M. Rowe et al, quant­ph/0205084

Page 59: Ion trap quantum processor - physics @ berkeleyresearch.physics.berkeley.edu/.../Ion-QC2.pdf · A 2π pulse is applied to only one of ion(crystal)s states => only one states acquires

   

or use a head ion

I. Cirac und P. Zoller, Nature 404, 579 (2000)

m o t i o n

p u s h i n gl a s e r

h e a d

t a r g e t

• quantum optics and nano­technology: scalability

Page 60: Ion trap quantum processor - physics @ berkeleyresearch.physics.berkeley.edu/.../Ion-QC2.pdf · A 2π pulse is applied to only one of ion(crystal)s states => only one states acquires

   

Transfer quantum state of the ion  to cavity photon: qubit interface   Create superposition photon state (STIRAP)

  Detect cavity output and ion state

Choose coupling g by STIRAP detuning Controlled ion­cavity interaction

π/2

P3/2

S1/2

D5/2

Cavity

photonic channel

qubit 1

qubit 2

J. I. Cirac et al., PRL 78, 3221 (1997)

A. Kuhn et al., PRL 89, 067901 (2002)  

Idea #2: coupling via photons

Page 61: Ion trap quantum processor - physics @ berkeleyresearch.physics.berkeley.edu/.../Ion-QC2.pdf · A 2π pulse is applied to only one of ion(crystal)s states => only one states acquires

   

Idea #3: coupling via image charges

Page 62: Ion trap quantum processor - physics @ berkeleyresearch.physics.berkeley.edu/.../Ion-QC2.pdf · A 2π pulse is applied to only one of ion(crystal)s states => only one states acquires

   

Idea #3: coupling via image charges

­++

­

Page 63: Ion trap quantum processor - physics @ berkeleyresearch.physics.berkeley.edu/.../Ion-QC2.pdf · A 2π pulse is applied to only one of ion(crystal)s states => only one states acquires

   

++ ­­

­ Coupling in the kHz­range requires small traps (~20 µm)­ Very small currents can be measured 

=> non­invasive probe for conductors (superconductors)

­ Connect to solid­state qubits 

Idea #3: coupling via image charges

Page 64: Ion trap quantum processor - physics @ berkeleyresearch.physics.berkeley.edu/.../Ion-QC2.pdf · A 2π pulse is applied to only one of ion(crystal)s states => only one states acquires

   

Quantum information processing: Which ion is best ?

Ions with optical transition to metastable level: 40Ca+,88Sr+,172Yb+ 

Ions with hyperfine structure: 9Be+, 43Ca+,111Cd+,… 

Quadrupole transition

Qubit levels:P1/2 D5/2

τ =1s

S1/2

40Ca+

P1/2

S1/2

D5/2

Dopplercooling Sideband

cooling

P1/2

S1/2

D5/2P1/2

S1/2

D5/2 S1/2 , D5/2τ ≈ 1 s

Qubit transition:

P1/2

S1/2 FF‘

Qubit levels: Hyperfine levels of groundstate S1/2

Qubit transition: Raman transition betweenhyperfine levels

S1/2 – D5/2

F‘+1F´´

Page 65: Ion trap quantum processor - physics @ berkeleyresearch.physics.berkeley.edu/.../Ion-QC2.pdf · A 2π pulse is applied to only one of ion(crystal)s states => only one states acquires

   

Ions with optical transition to metastable level: 40Ca+,88Sr+,172Yb+ 

Ions with hyperfine structure: 9Be+, 43Ca+,111Cd+,… 

qubit manipulation requiresultrastable laser

P1/2 D5/2

τ =1s

S1/2

40Ca+

P1/2

S1/2

D5/2

Dopplercooling Sideband

cooling

metastable

Disadvantage of “optical” quantum bits  

opticaltransition

stable|g>

|e>

Coherence time limited by laser linewidth

„optical qubit“

hyperfineground states

detection

detection

„hyperfine qubit“

qubit manipulation with microwaves or lasers

|g>|e>

Page 66: Ion trap quantum processor - physics @ berkeleyresearch.physics.berkeley.edu/.../Ion-QC2.pdf · A 2π pulse is applied to only one of ion(crystal)s states => only one states acquires

   

Single qubit manipulation withmicrowaves:

Hyperfine qubit + microwaves  

• well established technique (NMR),• long coherence times

hyperfineground states

detection

Problems: 

• Addressing of single qubit in ion string difficult

• Coupling between internal and motional states:

Coupling constant neglegible !

Page 67: Ion trap quantum processor - physics @ berkeleyresearch.physics.berkeley.edu/.../Ion-QC2.pdf · A 2π pulse is applied to only one of ion(crystal)s states => only one states acquires

   

Apply magnetic field gradient to obtain state­dependent potential:

Hyperfine qubit + microwaves + magn. field gradient ?  

Coupling constant:

(F. Mintert, C. Wunderlich, PRL 87, 257904 (2001))

(x0: size of ground state)

Example: 

requires strong field gradients

Page 68: Ion trap quantum processor - physics @ berkeleyresearch.physics.berkeley.edu/.../Ion-QC2.pdf · A 2π pulse is applied to only one of ion(crystal)s states => only one states acquires

   

Hyperfine qubit + Raman transitions  

hyperfineground states

detectionCoupling between hyperfine statesby Raman transition 

If both Raman beams are derived from the same laser, the laser line widthΓL is not important as long as ΓL << ∆.

(acousto­opt.modulators)

f1

f2

Raman beamgeneration

Page 69: Ion trap quantum processor - physics @ berkeleyresearch.physics.berkeley.edu/.../Ion-QC2.pdf · A 2π pulse is applied to only one of ion(crystal)s states => only one states acquires

   

Raman transitions: Three­level system  

After adiabatic elimination of upper level:

Coupling between ground states Rabi frequency of Raman process

Laser frequenciesRabi frequencies

Detuning from upper state

Page 70: Ion trap quantum processor - physics @ berkeleyresearch.physics.berkeley.edu/.../Ion-QC2.pdf · A 2π pulse is applied to only one of ion(crystal)s states => only one states acquires

   

Raman transitions: Further effects  

Laser frequenciesRabi frequencies

Detuning from upper state

2.  The energies of states |1>,|2> are light­shifted       because of the interaction with |3> by

photon scattering rate

In case of unequal light shifts, the transition frequency between |1> and |2>depends on the laser intensity.  (laser intensity noise ­> decoherence)  

3. Population in state |3> :

choose large detuning

Page 71: Ion trap quantum processor - physics @ berkeleyresearch.physics.berkeley.edu/.../Ion-QC2.pdf · A 2π pulse is applied to only one of ion(crystal)s states => only one states acquires

   

200 

GHz

1.25

 GHz

313 

nmRaman transitions in real ions  

9Be+ 

Raman beams tuned to frequency within P1/2 fine­structure

(used in Wineland group, Boulder)

∆<< ∆ fine structure: Constructive interference between P1/2 and P3/2virtual levels                           strong Raman coupling                           ∆>> ∆ fine structure: Destructive interference between P1/2 and P3/2virtual levels                           weak Raman coupling, but longer hyperfine coherence times                           (only Raman scattering destroys hyperfine coherence,                           R. Ozeri et al, PRL 95, 030403 (2005))

Page 72: Ion trap quantum processor - physics @ berkeleyresearch.physics.berkeley.edu/.../Ion-QC2.pdf · A 2π pulse is applied to only one of ion(crystal)s states => only one states acquires

   

Raman transitions in real ions  

111Cd+ Monroe groupUniv. Michigan

simple level structure

(Raman beam generation technically challenging)

P.Lee et al, Opt. Lett. 28, 1582 (2003)

43Ca+ Steane group

Oxford

Innsbruck

many levels

more convenient laser wave lengths

A. Steane, Appl. Phys. B 64, 623 (1997)

see also: D. Wineland et al. Phil. Trans. R. Soc. Lond. A 361, 1349 (2003)

Page 73: Ion trap quantum processor - physics @ berkeleyresearch.physics.berkeley.edu/.../Ion-QC2.pdf · A 2π pulse is applied to only one of ion(crystal)s states => only one states acquires

   

Raman transitions: motional sidebands  

Same Hamiltonian as for two­level system, with

Raman Rabi frequency

Raman detuning from hyperfine transition

difference of Raman laser phases

effective Lamb Dicke parameter

Page 74: Ion trap quantum processor - physics @ berkeleyresearch.physics.berkeley.edu/.../Ion-QC2.pdf · A 2π pulse is applied to only one of ion(crystal)s states => only one states acquires

   

Raman transitions: motional sidebands  

effective Lamb Dicke parameter

copropagating Raman beams for excitation of carrier transitions

(no sideband transitions)

counterpropagating Raman beams for efficient excitation of sideband transitions

or beams from different directions

Page 75: Ion trap quantum processor - physics @ berkeleyresearch.physics.berkeley.edu/.../Ion-QC2.pdf · A 2π pulse is applied to only one of ion(crystal)s states => only one states acquires

   

Decoherence issues  

laser frequency noise

decay of metastable state 

optical qubit

(ultrastable laser)

(long­lived state)

Raman photons scattered from virtual level

hyperfine (Raman) qubit

relative laser path length fluctuations

magnetic field fluctuations

(stable setup, insensitive gate operations)

(choose ion with big fine structure)

(screen magnetic fields, use field­independent transition)

fluctuations of control parameters

Page 76: Ion trap quantum processor - physics @ berkeleyresearch.physics.berkeley.edu/.../Ion-QC2.pdf · A 2π pulse is applied to only one of ion(crystal)s states => only one states acquires

   

F↑

P3/2

P1/2

S1/2

|n=0⟩ 

|n=3⟩  |n=0⟩ 

|n=3⟩ 

State dependent optical dipole force

F↓= ­2 F↑

Entangling interactions: controlled phase gate 

Use Raman beams that couple the motional states (but not internal states)

F↓

Raman beams form (moving) standing wave: spatial light shifts  

x

∆E

Page 77: Ion trap quantum processor - physics @ berkeleyresearch.physics.berkeley.edu/.../Ion-QC2.pdf · A 2π pulse is applied to only one of ion(crystal)s states => only one states acquires

   

Stretch mode excitation

no differential force

no differential force

differential force

differential force

Page 78: Ion trap quantum processor - physics @ berkeleyresearch.physics.berkeley.edu/.../Ion-QC2.pdf · A 2π pulse is applied to only one of ion(crystal)s states => only one states acquires

   

Controlled phase gate

Time evolution operator:

Choose α(t‘) such that

Page 79: Ion trap quantum processor - physics @ berkeleyresearch.physics.berkeley.edu/.../Ion-QC2.pdf · A 2π pulse is applied to only one of ion(crystal)s states => only one states acquires

   

Boulder group :Gate fidelity:    97%Gate time: 7 µs  (ca. 25/νCOM)

D. Leibfried et al., Nature 422, 414 (2003)Theory: Milburn, Fortschr. Phys. 48, 9(2000)              Sørensen&Mølmer 

Phase space picture

Page 80: Ion trap quantum processor - physics @ berkeleyresearch.physics.berkeley.edu/.../Ion-QC2.pdf · A 2π pulse is applied to only one of ion(crystal)s states => only one states acquires

   

1) coherent displacement along    closed path will shift phase    of the quantum state,    phase independent of details like    speed of traversal, etc. 

2) the sign and magnitude of     coherent displacements can    be made internal­state dependent    (see e.g. Science 272, 1131 (1996))

­no ground state cooling­no individual addressing­robust against “small” deformations  of the path­relative phase of successive displacements irrelevant 

Geometric phase gate 

G. J. Milburn et al., Fortschr. Physik 48, 801 (2000).X. Wang et al., Phys. Rev. Lett. 86, 3907 (2001).

Page 81: Ion trap quantum processor - physics @ berkeleyresearch.physics.berkeley.edu/.../Ion-QC2.pdf · A 2π pulse is applied to only one of ion(crystal)s states => only one states acquires

   

D. Wineland (NIST) : Alumina / gold trap

Page 82: Ion trap quantum processor - physics @ berkeleyresearch.physics.berkeley.edu/.../Ion-QC2.pdf · A 2π pulse is applied to only one of ion(crystal)s states => only one states acquires

   

C. Monroe (Michigan) : GaAs­GaAlAs trap 

Page 83: Ion trap quantum processor - physics @ berkeleyresearch.physics.berkeley.edu/.../Ion-QC2.pdf · A 2π pulse is applied to only one of ion(crystal)s states => only one states acquires

∣0, SS¿

∣0, SD ∣0, DS

−∣0,DD¿¿ ¿ ¿¿¿ ¿¿¿ ¿¿

Ideal Cirac­Zoller phase gate

∣0,SS¿

∣0,SD∣0,DS∣0,DD

¿¿ ¿ ¿¿¿ ¿¿¿ ¿¿

∣0,SS¿

∣0,SD−i∣1, SS

i∣1,SD¿¿¿ ¿¿ ¿ ¿¿¿ ¿¿

∣0,SS¿

∣0,SD i∣1,SS i∣1,SD¿¿¿ ¿¿ ¿ ¿¿¿ ¿¿

∣0,SS¿¿

∣1,SS¿¿

∣1,SD¿¿∣0,DS

¿¿

∣1,SDaux

¿¿∣0,SDaux

¿¿

red sidebandπ­pulse on ion #1

( J. I. Cirac und P. Zoller, PRL 74 4091 (1995))

red sidebandπ­pulse on ion #1

red sideband2π­pulse on ion #2

∣1,SS¿¿∣0,SS

¿¿

∣1,DS¿¿

∣0,SS¿¿

∣1,SS¿¿

∣0,DS¿¿

∣1,DS¿¿

0001 10 11

qubits

π π2π∣0,SD¿¿