15
Introduction to QM/MM Emiliano Ippoliti Forschungszentrum Jรผlich

Introductionto QM/MM

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Introductionto QM/MM

Introduction to QM/MM

Emiliano Ippoliti

Forschungszentrum Jรผlich

Page 2: Introductionto QM/MM

https://www.cp2k.org/features

โ€ข Energy and Forces

โ€ข Optimisationโ€ข Geometry optimisationโ€ข Nudged elastic bandโ€ข โ€ฆ

โ€ข Molecular Dynamicsโ€ข Born-Oppenheimer MDโ€ข โ€ฆ

โ€ข Propertiesโ€ข Atomic charges (RESP, Mulliken, โ€ฆ)โ€ข Spectraโ€ข Frequency calculationsโ€ข โ€ฆ

DFT+

GPW basis set(Mixed Gaussian and PW)

2

Tutorial with

Page 3: Introductionto QM/MM

Outline

ยง Why QM?

ยง Elements of Computational Quantum Chemistry

ยง Why QM/MM?

ยง QM/MM couplings

3

First part

Second part

Page 4: Introductionto QM/MM

QM description

There are cases where the dynamical behavior of the electrons of your systems cannot be neglected and a quantum mechanical description is required:

4

1. Chemical reactions (e.g. enzymatic reactions): electron transfer, bond breaking and bond formation

2. Systems with metal atoms (e.g. metallo proteins): no universal parametrization for metal atoms

3. Proton transport (e.g. aerobic generation of ATP and oxygen):Grotthuss mechanism (charge/topological diffusion vs mass diffusion)

4. Spectroscopic analysis and prediction (e.g. absorption and fluorescence spectra)

Page 5: Introductionto QM/MM

Schรถdinger Equation (SE)

๐‘–โ„๐œ•๐œ•๐‘กฮจ(๐ฑ!, โ€ฆ , ๐ฑ", ๐‘ก) = ,โ„‹(๐ฑ!, โ€ฆ , ๐ฑ")ฮจ(๐ฑ!, โ€ฆ , ๐ฑ", ๐‘ก)

โ€ข ฮจ(๐ฑ!, โ€ฆ , ๐ฑ", ๐‘ก) = system wavefunction

ฮจ(๐ฑ!, โ€ฆ , ๐ฑ", ๐‘ก) + โˆ charge density distribution

O ๐‘ก = โˆซโ€ฆโˆซฮจ ๐ฑ!, โ€ฆ , ๐ฑ/, ๐‘ก โˆ— 1O ๐ฑ!, โ€ฆ , ๐ฑ" ฮจ ๐ฑ!, โ€ฆ , ๐ฑ/, ๐‘ก ๐‘‘๐ฑ! โ€ฆ๐‘‘๐ฑ"

โ€ข !โ„‹(๐ฑ!, โ€ฆ , ๐ฑ") = Hamiltonian operator

e. g. !โ„‹ = โˆ’โˆ‘!โ„3

#$4๐›!# โˆ’ โˆ‘%

โ„3

#&5๐›%# + โˆ‘%'(

)3

๐ซ6+๐ซ7โˆ’ โˆ‘%,!

)3-4๐‘4+๐ซ6

+ โˆ‘!'/)3-4-8๐‘6+๐‘7

ri = electronic coordinates, Ri = nuclear coordinates

5

e. g. !โ„‹ = โˆ’โˆ‘!โ„3

#$4๐›!# โˆ’ โˆ‘%

โ„3

#&5๐›%# + โˆ‘%'(

)3

๐ซ6+๐ซ7โˆ’ โˆ‘%,!

)3-4๐‘4+๐ซ6

+ โˆ‘!'/)3-4-8๐‘6+๐‘7

Page 6: Introductionto QM/MM

Time-dependent and time-independent SE

1โ„‹(๐ซ!, โ€ฆ , ๐‘")ฮจ ๐ซ!, โ€ฆ , ๐‘" = ๐ธ ฮจ(๐ซ!, โ€ฆ , ๐‘")

Time-independent Schrรถdinger equation Solving numerical methodsโ€ข Hartree Fock Theoryโ€ข Mรธller-Plesset Perturbation Theoryโ€ข Coupled Clusterโ€ข Generalised Valence Bondโ€ข Complete Active Space SCFโ€ข Density Functional Therory...

Time-dependent Schrรถdinger equation

๐‘–โ„๐œ•๐œ•๐‘ก ฮจ(๐ซ!, โ€ฆ , ๐‘", ๐‘ก) =

1โ„‹(๐ซ!, โ€ฆ , ๐‘")ฮจ(๐ซ!, โ€ฆ , ๐‘", ๐‘ก)

Molecular dynamics schemes

Born-Oppenheimer approximation

me <<MIโ€ข Motion of atomic nuclei and electrons

can be treated separatelyโ€ข Nuclear motion can be treated classically

โ€ข Ehrenfestโ€ข Born-Oppenheimerโ€ข Car-Parrinelloโ€ข Kรผhne...

6

Page 7: Introductionto QM/MM

1โ„‹B(๐ซ!, โ€ฆ , ๐‘")๐œ“0 ๐ซ!, โ€ฆ , ๐ซ" = ๐ธ0๐œ“0(๐ซ!, โ€ฆ , ๐ซ")

๐‘€E๏ฟฝฬˆ๏ฟฝE ๐‘ก = โˆ’ ๐›E minL!๐œ“0 1โ„‹B ๐œ“0

Born-Oppenheimer MD scheme

ri = electronic coordinates

RI = nuclear coordinates

!โ„‹ = โˆ’โˆ‘!โ„3

#$4๐›!# โˆ’ โˆ‘%

โ„3

#&5๐›%# + โˆ‘%'(

)3

๐ซ6+๐ซ7โˆ’ โˆ‘%,!

)3-4๐‘4+๐ซ6

+ โˆ‘!'/)3-4-8๐‘6+๐‘7

=

= โˆ’โˆ‘!โ„3

#$4๐›!# โˆ’ !โ„‹)(๐ซ1, โ€ฆ , ๐‘2)

time-independent SE, RI are here only parameters

classical Newton equation: minL!

๐œ“0 1โ„‹B ๐œ“0 is the potential felt by the nuclei

At each time step:โ€ข Solving the time-independent SEโ€ข Use ๐œ“0 to find the forces on nucleiโ€ข Move the nuclei

Algorithm

7

Page 8: Introductionto QM/MM

Electronic Structure Methods

1โ„‹(๐ซ!, โ€ฆ , ๐‘")ฮจ ๐ซ!, โ€ฆ , ๐‘" = ๐ธ ฮจ(๐ซ!, โ€ฆ , ๐‘")

Time-independent Schrรถdinger equation

Many numerical methods to solve it approximately:

โ€ข Hartree Fock Theoryโ€ข Mรธller-Plesset Perturbation Theoryโ€ข Coupled Clusterโ€ข Generalised Valence Bondโ€ข Complete Active Space SCFโ€ข Density Functional Theory...

Best compromisebetween accuracy and

computational cost

Very suitable for large systems

8

Page 9: Introductionto QM/MM

Density Functional Theory (DFT)

Hohenbergโ€“KohnTheorems

1. The ground state energy is a unique functional of theelectronic density:

๐ธ = ๐ธ[๐œŒ]

2. The functional for the energy ๐ธ[๐œŒ] is variational:

min3!

๐œ“0 !โ„‹) ๐œ“0 = min4๐ธ[๐œŒ]

Benefit:

Drawback:

๐œ“0(r1,...,rn)

๐œŒ(r)function of 3 x number of electron coordinates (n)

function of 3 coordinates

functional ๐ธ[๐œŒ] is not known

9

Page 10: Introductionto QM/MM

Kohn-Sham DFTKohn and Sham define a fictitious system of non-interacting particles with a local potential that generates the same density as the density of the real fully-interacting system:

๐œŒ ๐ซ =VW

๐œ‘W ๐ซ + Y๐‘‘๐ซ ๐œ‘Wโˆ— ๐ซ ๐œ‘Z ๐ซ = ๐›ฟWZ๐ธ ๐œŒ = ๐ธ\] ๐œ‘W =

=VW

Y๐‘‘๐ซ ๐œ‘Wโˆ— ๐ซ โˆ’โ„+

2๐‘šB๐›+ ๐œ‘Z ๐ซ + Y๐‘‘๐ซ Vbcd ๐ซ ๐œŒ ๐ซ +

12Y๐‘‘๐ซ๐‘‘๐ซโ€ฒ

๐œŒ ๐ซ ๐œŒโ€ฒ ๐ซ๐ซ โˆ’ ๐ซโ€ฒ + ๐ธcf[๐œŒ]

๐ธgh/ ๐œŒ ๐ธbcd ๐œŒ ๐ธi ๐œŒ

minj๐ธ[๐œŒ] โˆ’

12๐›

+ + Vbcd ๐ซ + Y๐‘‘๐ซk๐œŒ ๐ซโ€ฒ๐ซ โˆ’ ๐ซโ€ฒ +

๐›ฟ๐ธcf[๐œŒ]๐›ฟ๐œŒ ๐ซ ๐œ‘W ๐ซ = ๐๐’Š๐œ‘W ๐ซ

1 x N-electronequation

N x one-electron equationsNOT KNOWN

Kohn-Sham equations

10

Page 11: Introductionto QM/MM

Finding Kohn-Sham orbitals ๐œ‘Wby iterative procedure

For a given (fixed) ionic configuration RN:

1. Solve KS equations for an initial or a previous density ฯ:

โˆ’12๐›

+ + Vbcd ๐ซ + Y๐‘‘๐ซk๐œŒโ€ฒ ๐ซ๐ซ โˆ’ ๐ซโ€ฒ +

๐›ฟ๐ธcf[๐œŒ]๐›ฟ๐œŒ ๐ซ ๐œ‘W ๐ซ = ๐๐’Š๐œ‘W ๐ซ

2. Determine the updated density:

๐œŒnBo ๐ซ =VW

๐œ‘W ๐ซ +

3. Check if convergence is reached:

Y๐‘‘๐ซ ๐œŒnBo ๐ซ โˆ’ ๐œŒ ๐ซ < ThresholdYes: exit

No: back to step 1

๐œŒ ๐ซ = ๐œŒnBo ๐ซ

11

Page 12: Introductionto QM/MM

Basis set

12

โˆ’12๐›

+ + Vbcd ๐ซ + Y๐‘‘๐ซk๐œŒโ€ฒ ๐ซ๐ซ โˆ’ ๐ซโ€ฒ +

๐›ฟ๐ธcf[๐œŒ]๐›ฟ๐œŒ ๐ซ ๐œ‘W ๐ซ = ๐๐’Š๐œ‘W ๐ซ KS equations

๐œ‘W ๐ซ โ‰ƒ Vxy!

z

๐‘Žx ๐‘”๐’Œ ๐ซDiscretization: {๐‘”x ๐ซ } = Basis set

โ‹ฏโ‹ฎ โ‹ฑ โ‹ฎ

โ‹ฏ

๐‘Ž!โ‹ฎ๐‘Žz

= ๐๐’Š๐‘Ž!โ‹ฎ๐‘Žz

LocalizedGTOs

NonlocalPW

+ Atomic orbital-like + Few functions needed+ Analytic integration for

many operators+ Optimal for regular grids+ Finite extend- Non-orthogonal- Linear dependences for large basis set- Complicated to generate- Basis set superposition error

+ Ortogonal+ Independent from

atomic positionยฑ Naturally period- Many function needed

Page 13: Introductionto QM/MM

Gaussian and Plane Waves method (GPW)

13

Fast Fourier Trasform

(FFT)

Real space Reciprocal (G) space

Atom-centeredGaussian-type basis + Auxiliary

Plane-wave basis

๐œ‘W ๐ซ โ‰ƒ Vxy!

z

๐‘Žx ๐‘”๐’Œ ๐ซ ๐œŒ ๐ซ โ‰ƒ1ฮฉV๐†y๐ŸŽ

๏ฟฝ#$%

๐œŒ ๐† exp[๐‘–๐† ๏ฟฝ ๐ซ]

12๐†

+ < ๐ธf๏ฟฝd

CP2K can scale linearlywith the system size

Page 14: Introductionto QM/MM

Biological system sizes

Largest systems investigated at full QM level โ‰ฒ 10,000 atoms

Typical biological system sizes โ‰ซ 10,000 atoms

Combining different levels of theory and resolutions

Multiscale approach: QM/MM

14

Page 15: Introductionto QM/MM

QM/MM Approach

The system is separated into two parts:

A small QM part comprises the chemically/photophysically active region treated by computationally demanding electronic structure methods.

The remainder MM part is described efficiently at a lower level of theory by classical force fields.

QM/MM Interface

15