62
Introduction to Radiobiology Lesson 1 Master of Advanced Studies in Medical Physics A.Y. 2018-19 Edoardo Milotti Physics Dept. – University of Trieste

Introduction to Radiobiology Lesson 1 · Edoardo Milotti - Radiobiology 9 R&D TECHNICAL REPORT P3-080/TR 29 Figure 2.4 Schematic annealing spectra for graphite irradiated at various

  • Upload
    others

  • View
    14

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Introduction to Radiobiology Lesson 1 · Edoardo Milotti - Radiobiology 9 R&D TECHNICAL REPORT P3-080/TR 29 Figure 2.4 Schematic annealing spectra for graphite irradiated at various

Introduction to RadiobiologyLesson 1

Master of Advanced Studies in Medical Physics A.Y. 2018-19

Edoardo MilottiPhysics Dept. – University of Trieste

Page 2: Introduction to Radiobiology Lesson 1 · Edoardo Milotti - Radiobiology 9 R&D TECHNICAL REPORT P3-080/TR 29 Figure 2.4 Schematic annealing spectra for graphite irradiated at various

Edoardo Milotti - Radiobiology 2

Radiation damages all kinds of human tissues – both healthy and diseased – as well as other materials

An area of ulceration on the hand, caused by exposure to radiation therapy

Page 3: Introduction to Radiobiology Lesson 1 · Edoardo Milotti - Radiobiology 9 R&D TECHNICAL REPORT P3-080/TR 29 Figure 2.4 Schematic annealing spectra for graphite irradiated at various

Edoardo Milotti - Radiobiology 3

Aim of radiotherapy: destroy cancer cells, limit damage to healthy tissues

The purpose of these lessons is twofold:

1. gain a basic knowledge of the phenomenology of radiation damage to tissues

2. understand the optimization of therapy, based on the concept of maximum damage to cancer cells, minimum damage to healthy tissues

Page 4: Introduction to Radiobiology Lesson 1 · Edoardo Milotti - Radiobiology 9 R&D TECHNICAL REPORT P3-080/TR 29 Figure 2.4 Schematic annealing spectra for graphite irradiated at various

Edoardo Milotti - Radiobiology 4

Tissues are difficult, material science is easy, so let’s start with materials. Consider graphite in nuclear reactors

The Windscale (Sellafield) nuclear power plant, where the worst nuclear accident in the UK took place in 1957. The accident was due to uncontrolled energy release from the graphite in the reactor.

Page 5: Introduction to Radiobiology Lesson 1 · Edoardo Milotti - Radiobiology 9 R&D TECHNICAL REPORT P3-080/TR 29 Figure 2.4 Schematic annealing spectra for graphite irradiated at various

Edoardo Milotti - Radiobiology 5

Nuclear reactors and the Wigner EffectThe Windscale accident was due to uncontrolled energy release from graphite in the nuclear reactor.

• Wigner energy occurs in graphite under neutron irradiation because atoms are displaced from their normal lattice positions into configurations of higher potential energy (on average this corresponds to ~ 25 eV per displaced atom).

Graphite unit cell

Page 6: Introduction to Radiobiology Lesson 1 · Edoardo Milotti - Radiobiology 9 R&D TECHNICAL REPORT P3-080/TR 29 Figure 2.4 Schematic annealing spectra for graphite irradiated at various

Edoardo Milotti - Radiobiology 6R&D TECHNICAL REPORT P3-080/TR

27

Figure 2.2 The structure of graphite and the formation of interstitials (from Simmons 1965 and Kelly 1981)

The hexagonal structure of graphite

a

b

a

b

A single

Di-interstitial (C2)

(C2)2 interstitials

Equilibrium positions of di-interstitials

Page 7: Introduction to Radiobiology Lesson 1 · Edoardo Milotti - Radiobiology 9 R&D TECHNICAL REPORT P3-080/TR 29 Figure 2.4 Schematic annealing spectra for graphite irradiated at various

Edoardo Milotti - Radiobiology 7

R&D TECHNICAL REPORT P3-080/TR

26

Vacant Lattice sites X Displaced atoms Figure 2.1 Distribution of displaced atoms and vacant lattice sites (from Simmons 1965)

Primary knock-on atom

Fast neutron

• Fast neutrons undergo a series of collisions and produce displacement cascades

• A 1 MeV neutron produces on average about 900 displacements

• Not all displacements produce defects, as a displaced C can fill a vacancy

• The interstial atom-vacancy pairs are called Frenkel defects

Page 8: Introduction to Radiobiology Lesson 1 · Edoardo Milotti - Radiobiology 9 R&D TECHNICAL REPORT P3-080/TR 29 Figure 2.4 Schematic annealing spectra for graphite irradiated at various

Edoardo Milotti - Radiobiology 8

• The quantity of accumulated stored energy is a function of fast neutron flux, irradiation time, and temperature.

• The higher the irradiation temperature, the lower is the amount of “stored” energy. In all cases, a saturation point may be achieved in terms of the total amount of stored energy for long periods of irradiation.

• The maximum amount of stored energy ever found in a graphite sample is ~2,700 J/g, which if all released at once could theoretically lead to a temperature rise of approximately 1500 °C assuming adiabatic conditions.

• The Wigner effect has been known for a long time, and in reactors that use graphite as a moderator there are established procedures to periodically release the stored energy with annealing cycles.

Page 9: Introduction to Radiobiology Lesson 1 · Edoardo Milotti - Radiobiology 9 R&D TECHNICAL REPORT P3-080/TR 29 Figure 2.4 Schematic annealing spectra for graphite irradiated at various

Edoardo Milotti - Radiobiology 9

R&D TECHNICAL REPORT P3-080/TR

29

Figure 2.4 Schematic annealing spectra for graphite irradiated at various temperatures (from Simmons 1965)

- 2 0 0 0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0

A n n e a l i n g t e m p e r a t u r e ( ° C )

Ene

rgy

rele

ase

with

tem

pera

ture

I r r a d i a t i o n t e m p e r a t u r e - 1 9 5 ° C

- 2 0 0 0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0

A n n e a l i n g t e m p e r a t u r e ( ° C )

Ene

rgy

rele

ase

with

tem

pera

ture

I r r a d i a t i o n t e m p e r a t u r e 3 0 ° C

- 2 0 0 0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0

A n n e a l i n g t e m p e r a t u r e ( ° C )

Ene

rgy

rele

ase

with

tem

pera

ture

I r r a d i a t i o n t e m p e r a t u r e 2 0 0 ° C

R&D TECHNICAL REPORT P3-080/TR

29

Figure 2.4 Schematic annealing spectra for graphite irradiated at various temperatures (from Simmons 1965)

- 2 0 0 0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0

A n n e a l i n g t e m p e r a t u r e ( ° C )

Ener

gy r

elea

se w

ith te

mpe

ratu

re

I r r a d i a t i o n t e m p e r a t u r e - 1 9 5 ° C

- 2 0 0 0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0

A n n e a l i n g t e m p e r a t u r e ( ° C )

Ener

gy r

elea

se w

ith te

mpe

ratu

re

I r r a d i a t i o n t e m p e r a t u r e 3 0 ° C

- 2 0 0 0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0

A n n e a l i n g t e m p e r a t u r e ( ° C )

Ener

gy r

elea

se w

ith te

mpe

ratu

re

I r r a d i a t i o n t e m p e r a t u r e 2 0 0 ° C

Energy released by irradiated graphite as temperature increases

Page 10: Introduction to Radiobiology Lesson 1 · Edoardo Milotti - Radiobiology 9 R&D TECHNICAL REPORT P3-080/TR 29 Figure 2.4 Schematic annealing spectra for graphite irradiated at various

Edoardo Milotti - Radiobiology 10

Radiation damage in materials-428- Journal of the Korean Physical Society, Vol. 51, No. 1, July 2007

Fig. 3. Typical pictures of etched track pits caused by twodi↵erent particles. (a) 5.4-MeV ↵ particles (b) ⇠0.9-MeVprotons.

polyester, and di↵erent target thicknesses between 1 µmand 50 µm were used to generate proton with di↵erentenergies.

The Thomson parabola spectrometer is based uponthe superposition of an electric field and a magnetic fieldand can be used to analyze the kinetic energy and thecharge of particles at various the positions. An electricfield of E = 1.5 kV and a magnetic field of B = 8.47 kGinside a gap of 5 mm was applied along a 5-cm length.The pinhole of 400 µm was installed in front of the TPSto improve the energy resolution of the spectrum, anda CR39 detector was placed 15 mm away from the endof the TPS. This setup enbled us to investigate the de-pendences of the energies, the incident angles, and thecharges of the particles on di↵erent etching conditions.

IV. RESUTLS AND DISCUSSION

Figure 3 presents pictures of typical etched track pitscaesed by 5.4-MeV alpha particles and ⇠0.9-MeV pro-tons etched at 70 �C in 6N NaOH for 6 hours. Sincealpha particles are emitted in random directions from asurface of �35 mm diameter coated by 210Po, their trackpits are randomly cluttered with various shapes. A roundshape indicates normal incidence on the detector surfacewhile an elliptical shape corresponds to oblique incidencetoward the direction of the major axis. The measured de-tection e�ciency was about 40 % in our case. In contrastto the 210Po source, the shapes of etched track pits ofprotons generated by using a 10-TW laser were almostround, which meant most of the protons were incidentperpendicular to the detector surface.

The bulk etch rate was measured by using the weightloss method. Its mean value for a 6-hour etching 70 �C in6N NaOH is 1.396 µm/h, which is slightly greater thanother measurements [11]. The optimal etching conditiondepends on the energies and the kinds of particles. Inthe case of our experiments using a 10-TW laser sys-tem, a few MeVor less protons are the main source to beoptimized.

A TPS produces di↵erent particle trajectories, de-pending on the energy, the mass and the charge of ions,so di↵erent parabolic traces are recorded in the nucleartrack detector for protons and other ions. A horizontal

Fig. 4. Typical spectrogram taken with protons and ionsin a CR39 detector after a Thomson Parabolic Spectrometer.

displacement of tracks in the plastic detector correspondsto a decrease in the particle energy, and a verticle direc-tion is related to the charge-to-mass ratio, Z/m. Fig-ure 4 presents a typical spectrogram taken with protonsand ions generated by high-intensity laser irradiation ofa 13-µm polyester target. When the detector was prop-erly etched, all traces taken with protons and ions wereclearly distiguishable and countable. We can see fromFigure 4 that tracks for 0.1-MeV protons are deformeddue to over-etching, but they are still countable usingthe program ImageJ [12].

Four plastics were placed 15 mm behind the TPS andwere exposed to protons and light ions produced by usinga 6-µm polyester film target. After etching the four de-tectors in the same container for 3, 6, 9 and 12 hours, re-spectively, we measured the depth, H and the diameter,D, of a track pit at di↵erent positions (which is relatedto the energy) as shown in Figure 5. If a good spectrumof protons is to be obtained, the visibility and the count-ability over a wide energy range are important. Afterpassing the optimal etching time, tracks are over-etchedso that a deep V -shaped track becomes more rounded,wider, and shallower with the etching time. From thesedata, we can observe the development of track pits withetching time and the dependence of the track etch rateon the energy of the protons. The accuracy of measuredtrack etch rate is limited by the resolution of the micro-scope and the etching condition. A deeper track depthenhances the contrast ratio, and a size of ⇠10 µm can beresolved using the Omax microscope. The track depthwas the deepest for a 6-hour etching over the etchingenergy range (see Figure 5(a)) with countable sizes of7.5 ⇠ 9 µm (see Figure 5(b)). With increasing the etch-ing time, the absolute variation of the etch rate ratioand the diameter were reduced (see Figure 5(c)). Thetrack depths etched for 9 and 12 hours were shallowerthan that etched for 6 hours while their diameters werelarges. These results indicate that the tracks are over-etched after 6 hours. Furthermore, less background [13]

Radiation damage in CR-39 plastic

CR-39 dosimeter

Page 11: Introduction to Radiobiology Lesson 1 · Edoardo Milotti - Radiobiology 9 R&D TECHNICAL REPORT P3-080/TR 29 Figure 2.4 Schematic annealing spectra for graphite irradiated at various

Edoardo Milotti - Radiobiology 11

Radiation damage to plastic scintillators

Page 12: Introduction to Radiobiology Lesson 1 · Edoardo Milotti - Radiobiology 9 R&D TECHNICAL REPORT P3-080/TR 29 Figure 2.4 Schematic annealing spectra for graphite irradiated at various

Edoardo Milotti - Radiobiology 12

Radiation damage to human tissues is different from damage in inert material

1. Damage mechanisms are different

2. Cells and tissues have (limited) self-repair capabilities

In these lessons we are going to learn about both topics

Page 13: Introduction to Radiobiology Lesson 1 · Edoardo Milotti - Radiobiology 9 R&D TECHNICAL REPORT P3-080/TR 29 Figure 2.4 Schematic annealing spectra for graphite irradiated at various

Edoardo Milotti - Radiobiology 13

RadiationEffectsDamage - 1 - K. E. Holbert

RADIATION EFFECTS AND DAMAGE The detrimental consequences of radiation are referred to as radiation damage. To understand the effects of radiation, one must first be familiar with the radiations and their interaction mechanisms. Further, the fundamental characteristics of the material(s) being irradiated must also be understood. A brief summary of the characteristics of radiation is first presented below. This is followed by a general discussion of the effects of radiation, along with some specific examples, with an emphasis toward the ionizing effects.

1. Ionizing Radiations The radiations of concern here include charged particles such as electrons (beta particles), protons, alphas and fission fragment ions, and the neutral radiations including photons (gamma and X rays) and neutrons. Table I compares some key characteristics of the radiations, including charge, mass, and range in air. For a kinetic energy of 1 MeV, the electron is relativistic (0.94c). For the same energy, the heavier particles are slower, stopped easier and deposit their entire energy over a shorter distance. The passage of radiation through tissue is depicted in Figure 1.

Table I: Comparison of Ionizing Radiation

Radiation (EK = 1 MeV)

Characteristic Alpha (α) Proton (p) Beta (β) or

Electron (e) Photon

(γ or X ray) Neutron (n)

Symbol +242 Heorα +11

1 Horp βore01− γ00 n1

0 Charge +2 +1 –1 neutral neutral Ionization Direct Direct Direct Indirect Indirect Mass (amu) 4.001506 1.007276 0.00054858 — 1.008665 Velocity (cm/sec) 6.944×108 1.38×109 2.82×1010 c=2.998×1010 1.38×109 Speed of Light 2.3% 4.6% 94.1% 100% 4.6% Range in Air 0.56 cm 1.81 cm 319 cm 82,000 cm* 39,250 cm* * range based on a 99.9% reduction

Alpha particle: easily stopped least penetrating

Beta particle: very much smallermore penetrating

Gamma ray and X-ray:pure energy with no massmost penetrating

� neutral atom/moleculez ion

Figure 1. Radiation paths in tissue.

Ionizing radiation

Page 14: Introduction to Radiobiology Lesson 1 · Edoardo Milotti - Radiobiology 9 R&D TECHNICAL REPORT P3-080/TR 29 Figure 2.4 Schematic annealing spectra for graphite irradiated at various

Edoardo Milotti - Radiobiology 14

Alpha particle (He nucleus)easily stopped, small penetration, very damaging

Beta particle (electron)longer penetration, less ionization, less damaging

Gamma ray and X-raylocalized ionization, less damaging

Page 15: Introduction to Radiobiology Lesson 1 · Edoardo Milotti - Radiobiology 9 R&D TECHNICAL REPORT P3-080/TR 29 Figure 2.4 Schematic annealing spectra for graphite irradiated at various

Edoardo Milotti - Radiobiology 15

Energy loss by ionization/excitation – dE/dx

Page 16: Introduction to Radiobiology Lesson 1 · Edoardo Milotti - Radiobiology 9 R&D TECHNICAL REPORT P3-080/TR 29 Figure 2.4 Schematic annealing spectra for graphite irradiated at various

Edoardo Milotti - Radiobiology 16

Page 17: Introduction to Radiobiology Lesson 1 · Edoardo Milotti - Radiobiology 9 R&D TECHNICAL REPORT P3-080/TR 29 Figure 2.4 Schematic annealing spectra for graphite irradiated at various

Edoardo Milotti - Radiobiology 17

Page 18: Introduction to Radiobiology Lesson 1 · Edoardo Milotti - Radiobiology 9 R&D TECHNICAL REPORT P3-080/TR 29 Figure 2.4 Schematic annealing spectra for graphite irradiated at various

Edoardo Milotti - Radiobiology 18

Page 19: Introduction to Radiobiology Lesson 1 · Edoardo Milotti - Radiobiology 9 R&D TECHNICAL REPORT P3-080/TR 29 Figure 2.4 Schematic annealing spectra for graphite irradiated at various

Edoardo Milotti - Radiobiology 19

Page 20: Introduction to Radiobiology Lesson 1 · Edoardo Milotti - Radiobiology 9 R&D TECHNICAL REPORT P3-080/TR 29 Figure 2.4 Schematic annealing spectra for graphite irradiated at various

Edoardo Milotti - Radiobiology 20

The Bragg peak

Bragg curve of 5.49 MeV alpha particles in air. This radiation is produced from the initial decay of radon (222Rn). Stopping power (which is essentially identical to LET) is plotted here versus particle range.

(Adapted from the Wikipedia article http://en.wikipedia.org/wiki/Linear_energy_transfer)

x(E) =

Z E0

E

����dx

dE

���� dE

����dE

dx

����

Page 21: Introduction to Radiobiology Lesson 1 · Edoardo Milotti - Radiobiology 9 R&D TECHNICAL REPORT P3-080/TR 29 Figure 2.4 Schematic annealing spectra for graphite irradiated at various

Edoardo Milotti - Radiobiology 21

Page 22: Introduction to Radiobiology Lesson 1 · Edoardo Milotti - Radiobiology 9 R&D TECHNICAL REPORT P3-080/TR 29 Figure 2.4 Schematic annealing spectra for graphite irradiated at various

Edoardo Milotti - Radiobiology 22

(adapted from http://en.wikipedia.org/wiki/Bragg_peak and http://en.wikipedia.org/wiki/Proton_therapy )

Page 23: Introduction to Radiobiology Lesson 1 · Edoardo Milotti - Radiobiology 9 R&D TECHNICAL REPORT P3-080/TR 29 Figure 2.4 Schematic annealing spectra for graphite irradiated at various

Edoardo Milotti - Radiobiology 23

Stopping power or LET (Linear Energy Transfer)?

Same definition

BUT ...

Stopping power includes only the ionization losses of individual charged particles.

LET is the energy released in tissues per unit track length per particle by a beam of

particles, and includes secondary particles as well.

In contrast to the stopping power, which has a typical unit of MeV/cm, the unit reserved for the LET is keV/µm.

dE

dx

Page 24: Introduction to Radiobiology Lesson 1 · Edoardo Milotti - Radiobiology 9 R&D TECHNICAL REPORT P3-080/TR 29 Figure 2.4 Schematic annealing spectra for graphite irradiated at various

Edoardo Milotti - Radiobiology 24

Alpha particle (He nucleus)easily stopped, small penetration, very damaging

Beta particle (electron)longer penetration, less damaging (more excitation, fewer secondaries)

Gamma ray and X-raylocalized ionization, less damaging

Page 25: Introduction to Radiobiology Lesson 1 · Edoardo Milotti - Radiobiology 9 R&D TECHNICAL REPORT P3-080/TR 29 Figure 2.4 Schematic annealing spectra for graphite irradiated at various

+ - + - - + + - + - + + - + + - + - + -- - + + - + - + + - ++ -+-- + - + + - - + - + - - + - + - + - ++ + - - + - + - - + -- +- +

Edoardo Milotti - Radiobiology 25

Stopping power vs. LET

An ionizing particle produces ion/electron pairs along the track and loses energy, and the Bethe formula gives the mean energy loss per unit length. Stopping power includes all losses, also those due to radiation not absorbed in tissue.

+-+

-

-+

+-

-+

LET includes only the energy absorbed in tissue. The strict definition of LET does not include neutral particles, however it can be extended to include photons as well. Photons, produce ion/electron pairs only when they are absorbed; in this case the mean energy loss per unit length is the average due to secondary charged particles kicked off by the absorbed photon.

The secondary particles interact in turn and produce “tubes” of excited and ionized molecules.

Page 26: Introduction to Radiobiology Lesson 1 · Edoardo Milotti - Radiobiology 9 R&D TECHNICAL REPORT P3-080/TR 29 Figure 2.4 Schematic annealing spectra for graphite irradiated at various

Edoardo Milotti - Radiobiology 26

Typical LET values (in tissue or tissue-like material)

Page 27: Introduction to Radiobiology Lesson 1 · Edoardo Milotti - Radiobiology 9 R&D TECHNICAL REPORT P3-080/TR 29 Figure 2.4 Schematic annealing spectra for graphite irradiated at various

Edoardo Milotti - Radiobiology 27

Track structure (example, low-energy electrons)

Page 28: Introduction to Radiobiology Lesson 1 · Edoardo Milotti - Radiobiology 9 R&D TECHNICAL REPORT P3-080/TR 29 Figure 2.4 Schematic annealing spectra for graphite irradiated at various

Edoardo Milotti - Radiobiology 28

Page 29: Introduction to Radiobiology Lesson 1 · Edoardo Milotti - Radiobiology 9 R&D TECHNICAL REPORT P3-080/TR 29 Figure 2.4 Schematic annealing spectra for graphite irradiated at various

Edoardo Milotti - Radiobiology 29

from M. R. Kia , and H. Noshad, Phys. Plasmas 23, 053120 (2016)

Page 30: Introduction to Radiobiology Lesson 1 · Edoardo Milotti - Radiobiology 9 R&D TECHNICAL REPORT P3-080/TR 29 Figure 2.4 Schematic annealing spectra for graphite irradiated at various

Edoardo Milotti - Radiobiology 30

electrons in water

Ionizationsexcitations

Page 31: Introduction to Radiobiology Lesson 1 · Edoardo Milotti - Radiobiology 9 R&D TECHNICAL REPORT P3-080/TR 29 Figure 2.4 Schematic annealing spectra for graphite irradiated at various

Edoardo Milotti - Radiobiology 31

α particles

Ionizationsexcitations

Page 32: Introduction to Radiobiology Lesson 1 · Edoardo Milotti - Radiobiology 9 R&D TECHNICAL REPORT P3-080/TR 29 Figure 2.4 Schematic annealing spectra for graphite irradiated at various

Edoardo Milotti - Radiobiology 32

Carbon ions

Ionizationsexcitations

Page 33: Introduction to Radiobiology Lesson 1 · Edoardo Milotti - Radiobiology 9 R&D TECHNICAL REPORT P3-080/TR 29 Figure 2.4 Schematic annealing spectra for graphite irradiated at various

Edoardo Milotti - Radiobiology 33

For indirect action of x rays the chain of events from the absorption of the incident photon to the final biological damage is as follows:

Incident x-ray photon

Fast electron or positron

Ion radical

Free radical

Breakage of bonds

Biological effect

Typical time scale involved in these 5 steps:

• (1) The physics of the processtakes of the order of 10-15 s.

• (2) The ion radicals have a lifetimeof the order of 10-10 s.

• (3) The free radicals have a lifetimeof the order of 10-5 s.

• (4) The step between the breakageof bonds and the biological effectmay take hours, days or years.

Water radiolysis and production of ROS (Reactive Oxygen Species)

Page 34: Introduction to Radiobiology Lesson 1 · Edoardo Milotti - Radiobiology 9 R&D TECHNICAL REPORT P3-080/TR 29 Figure 2.4 Schematic annealing spectra for graphite irradiated at various

Edoardo Milotti - Radiobiology 34

Molecular oxygen and the superoxide anion

Oxygen molecule: double bond ”hides” the electrons

Superoxide anion: added electron forces the other atom to display an unpaired electron.

Page 35: Introduction to Radiobiology Lesson 1 · Edoardo Milotti - Radiobiology 9 R&D TECHNICAL REPORT P3-080/TR 29 Figure 2.4 Schematic annealing spectra for graphite irradiated at various

Edoardo Milotti - Radiobiology 35

Hund's rule: for a given electronconfiguration the term with themaximum multiplicity has the lowestenergy. In the case of oxygen, theunpaired electrons (triplet state) fitthe rule.

This also fits with the behavior ofoxygen, which, when liquid, isparamagnetic.

However, three different states areactually possible, two with pairedelectrons.

Singlet oxygen is common, an easyway to produce it is by mixinghydrogen peroxide with sodiumhypochlorite. It has a residualparamagnetism associated with theorbital angular momentum.

singlet oxygen

triplet oxygen

Reactivity of molecular oxygen: "triplet oxygen" and "singlet oxygen"

Page 36: Introduction to Radiobiology Lesson 1 · Edoardo Milotti - Radiobiology 9 R&D TECHNICAL REPORT P3-080/TR 29 Figure 2.4 Schematic annealing spectra for graphite irradiated at various

Edoardo Milotti - Radiobiology 36

Simple explanation of the reactivity of "singlet oxygen"

Atom A Atom B

Bond with paired electrons

Here it is difficult to insert an oxygen molecule with unpaired spins, but it is easy to insert singlet oxygen. Thus higher reaction rates for singlet oxygen than triplet oxygen!

Page 37: Introduction to Radiobiology Lesson 1 · Edoardo Milotti - Radiobiology 9 R&D TECHNICAL REPORT P3-080/TR 29 Figure 2.4 Schematic annealing spectra for graphite irradiated at various

Edoardo Milotti - Radiobiology 37

The superoxide anion is highly reactive and toxic

• Human cells use the superoxide anion to kill bacteria.

• The enzymes of the complex NADPH oxidase (NOX) produce superoxide.

• The absence of NADPH oxidase leads to the chronic granulomatous diseases.

• The superoxide anion is toxic to human cells, and this requires mechanisms to get rid of it, like the enzyme superoxide dismutase.

Page 38: Introduction to Radiobiology Lesson 1 · Edoardo Milotti - Radiobiology 9 R&D TECHNICAL REPORT P3-080/TR 29 Figure 2.4 Schematic annealing spectra for graphite irradiated at various

Edoardo Milotti - Radiobiology 38

Main types of ROS (Reactive Oxygen Species)

Electron structures of common reactive oxygen species. Each structure is providedwith its name and chemical formula. The • designates an unpaired electron.

Page 39: Introduction to Radiobiology Lesson 1 · Edoardo Milotti - Radiobiology 9 R&D TECHNICAL REPORT P3-080/TR 29 Figure 2.4 Schematic annealing spectra for graphite irradiated at various

This involves mostly the ionization

and the excitation of water molecules

Edoardo Milotti - Radiobiology 39

Physical stage (time < 10-15 s)

 3. Mechanisms of water radiolysis  

The  radiolysis  of water  is  usually  divided  in  three more  or  less  overlapping  stages:  physical     (<10‐15 s), physico‐chemical stage  (∼10‐15‐10‐12 s) and non‐homogeneous chemical stage  (∼10‐12‐10‐6 s). Although  this  time  division  is  controversial,  it  gives  a  convenient  way  to  describe  the mechanisms involved in water radiolysis.  3.1 Physical stage (<10‐15 s)  

The physical stage is the absorption of ionizing radiation by matter. The main consequences are the ionization and excitation of water molecules. An ionization event is the removal of an electron from the water molecule:    (3)  Similarly, an excitation is the transfer of an electron from a fundamental state to an excited state:    (4)     There  are  several molecular  orbitals  and  excitation  levels  in  the water molecule.  The  description  of these states is beyond the scope of this text and is not necessary for the discussion that follows.   3.2 Physico‐chemical stage (∼10‐15‐10‐12 s)  

The ionized and excited molecules created during the physical stage are highly unstable. During this  stage,  lasting ∼10‐12  s,  the  ionized  and excited water molecules dissipate  their energy by energy transfer  to neighboring molecules and bond  rupture. The sequence of events of  the physico‐chemical stage  is,  in  fact,  not  well  characterized  experimentally.  However,  some  important  physico‐chemical stage events worth mentioning: proton transfer to a neighboring molecule, dissociation of excited water molecule and electron thermalization and solvatation.  The  proton  transfer  to  a  neighboring  water  molecule  is  very  important,  because  it  leads  to  the 

production of an .OH radical*:  

+•+• +→+ OHOHOHOH 322   (5) 

 

                                                            *In chemistry, a  radical  (also  referred  to as  free  radical)  is an atom, molecule or  ion with at  least one unpaired electron.  The unpaired  electron usually  cause  them  to be highly  chemically  reactive.  The  radical  site  is usually 

noted by putting a dot on the atom (ex.: .OH) 

 3. Mechanisms of water radiolysis  

The  radiolysis  of water  is  usually  divided  in  three more  or  less  overlapping  stages:  physical     (<10‐15 s), physico‐chemical stage  (∼10‐15‐10‐12 s) and non‐homogeneous chemical stage  (∼10‐12‐10‐6 s). Although  this  time  division  is  controversial,  it  gives  a  convenient  way  to  describe  the mechanisms involved in water radiolysis.  3.1 Physical stage (<10‐15 s)  

The physical stage is the absorption of ionizing radiation by matter. The main consequences are the ionization and excitation of water molecules. An ionization event is the removal of an electron from the water molecule:    (3)  Similarly, an excitation is the transfer of an electron from a fundamental state to an excited state:    (4)     There  are  several molecular  orbitals  and  excitation  levels  in  the water molecule.  The  description  of these states is beyond the scope of this text and is not necessary for the discussion that follows.   3.2 Physico‐chemical stage (∼10‐15‐10‐12 s)  

The ionized and excited molecules created during the physical stage are highly unstable. During this  stage,  lasting ∼10‐12  s,  the  ionized  and excited water molecules dissipate  their energy by energy transfer  to neighboring molecules and bond  rupture. The sequence of events of  the physico‐chemical stage  is,  in  fact,  not  well  characterized  experimentally.  However,  some  important  physico‐chemical stage events worth mentioning: proton transfer to a neighboring molecule, dissociation of excited water molecule and electron thermalization and solvatation.  The  proton  transfer  to  a  neighboring  water  molecule  is  very  important,  because  it  leads  to  the 

production of an .OH radical*:  

+•+• +→+ OHOHOHOH 322   (5) 

 

                                                            *In chemistry, a  radical  (also  referred  to as  free  radical)  is an atom, molecule or  ion with at  least one unpaired electron.  The unpaired  electron usually  cause  them  to be highly  chemically  reactive.  The  radical  site  is usually 

noted by putting a dot on the atom (ex.: .OH) 

Page 40: Introduction to Radiobiology Lesson 1 · Edoardo Milotti - Radiobiology 9 R&D TECHNICAL REPORT P3-080/TR 29 Figure 2.4 Schematic annealing spectra for graphite irradiated at various

The ionized and excited molecules produced in the physical stage are highly unstable, and they transfer their energy by dissipating it on neighboring molecules and by breaking chemical bonds.

Proton transfer to a neighboring water molecule leads to the production of

·OH radicals (i.e., an ion with an unpaired electron; radicals are usually quite reactive).

Edoardo Milotti - Radiobiology 40

Physico-chemical stage (time ≈ 10-15 s – 10-12 s)

 3. Mechanisms of water radiolysis  

The  radiolysis  of water  is  usually  divided  in  three more  or  less  overlapping  stages:  physical     (<10‐15 s), physico‐chemical stage  (∼10‐15‐10‐12 s) and non‐homogeneous chemical stage  (∼10‐12‐10‐6 s). Although  this  time  division  is  controversial,  it  gives  a  convenient  way  to  describe  the mechanisms involved in water radiolysis.  3.1 Physical stage (<10‐15 s)  

The physical stage is the absorption of ionizing radiation by matter. The main consequences are the ionization and excitation of water molecules. An ionization event is the removal of an electron from the water molecule:    (3)  Similarly, an excitation is the transfer of an electron from a fundamental state to an excited state:    (4)     There  are  several molecular  orbitals  and  excitation  levels  in  the water molecule.  The  description  of these states is beyond the scope of this text and is not necessary for the discussion that follows.   3.2 Physico‐chemical stage (∼10‐15‐10‐12 s)  

The ionized and excited molecules created during the physical stage are highly unstable. During this  stage,  lasting ∼10‐12  s,  the  ionized  and excited water molecules dissipate  their energy by energy transfer  to neighboring molecules and bond  rupture. The sequence of events of  the physico‐chemical stage  is,  in  fact,  not  well  characterized  experimentally.  However,  some  important  physico‐chemical stage events worth mentioning: proton transfer to a neighboring molecule, dissociation of excited water molecule and electron thermalization and solvatation.  The  proton  transfer  to  a  neighboring  water  molecule  is  very  important,  because  it  leads  to  the 

production of an .OH radical*:  

+•+• +→+ OHOHOHOH 322   (5) 

 

                                                            *In chemistry, a  radical  (also  referred  to as  free  radical)  is an atom, molecule or  ion with at  least one unpaired electron.  The unpaired  electron usually  cause  them  to be highly  chemically  reactive.  The  radical  site  is usually 

noted by putting a dot on the atom (ex.: .OH) 

Page 41: Introduction to Radiobiology Lesson 1 · Edoardo Milotti - Radiobiology 9 R&D TECHNICAL REPORT P3-080/TR 29 Figure 2.4 Schematic annealing spectra for graphite irradiated at various

There are several pathways for the dissociation or the deexcitation of the excited water molecule

Edoardo Milotti - Radiobiology 41

Physico-chemical stage (time ≈ 10-15 s – 10-12 s) /ctd.

They are several channels for the dissociation of an excited water molecule:  

 OHHOH *

2•• +→

 (6a)

 

 )D(OHOH 1

2*

2 +→ 

(6b)   

 )P(OH2OH 3*

2 +→ •

 (6c) 

 Where O(1D) and O(3P) are the singlet and triplet state of the atomic oxygen, respectively.  The excited water molecule can also return to its fundamental state without dissociation (by heat loss):  

  OHOH 2*

2 →   (7)  

Most secondary electrons have  low energy6, but some of them may have energy  in the keV or even  in  the MeV  range.  These  electrons  lose  their  energy  into medium  by  doing  further  ionization, excitations  until  they  eventually  reach  thermal  equilibrium  with  the  liquid.  The  electron,  which  is negatively charged, interacts with the dipoles of the surrounding water molecules and becomes trapped in  a  state  called  «  trapped  electron  ».  Finally,  this  electron  becomes  a  «  hydrated  electron  », which behaves like chemical specie. This rapid sequence of events can be written as follows:  

 −−−− →→→ aqtrth eeee   (8) 

 The  hydrated  (or  solvated)  electron  is  of  great  importance  in water  radiolysis.  However,  its 

existence has been proposed only in the 1950’s and it was observed experimentally in the 1960’s.    3.3 Non‐homogeneous chemical stage (∼10‐12‐10‐6 s)  

At the end of the physico‐chemical stage, the species H., .OH, H2, H2O2 are created in very high concentration  in  the  spurs. Other  species  such as O(3P) may also be present,  in  small quantity.   They diffuse  in  the medium and eventually encounter chemical  species created  in other  spurs, which gives them the opportunity to react. In general, the radical species (such as H., .OH and e‐aq) react in ∼1 μs to form the molecular species H2 and H2O2. For example, H2O2  is formed by the reaction .OH+.OH→H2O2. Another important reaction is H.+ .OH→ H2O, which forms back water.   

Many  reactions  are  known  to occur  in pure,  irradiated  liquid water;  the most  important  are given in the following table.         

atomic oxygen, singlet state

atomic oxygen, triplet state

They are several channels for the dissociation of an excited water molecule:  

 OHHOH *

2•• +→

 (6a)

 

 )D(OHOH 1

2*

2 +→ 

(6b)   

 )P(OH2OH 3*

2 +→ •

 (6c) 

 Where O(1D) and O(3P) are the singlet and triplet state of the atomic oxygen, respectively.  The excited water molecule can also return to its fundamental state without dissociation (by heat loss):  

  OHOH 2*

2 →   (7)  

Most secondary electrons have  low energy6, but some of them may have energy  in the keV or even  in  the MeV  range.  These  electrons  lose  their  energy  into medium  by  doing  further  ionization, excitations  until  they  eventually  reach  thermal  equilibrium  with  the  liquid.  The  electron,  which  is negatively charged, interacts with the dipoles of the surrounding water molecules and becomes trapped in  a  state  called  «  trapped  electron  ».  Finally,  this  electron  becomes  a  «  hydrated  electron  », which behaves like chemical specie. This rapid sequence of events can be written as follows:  

 −−−− →→→ aqtrth eeee   (8) 

 The  hydrated  (or  solvated)  electron  is  of  great  importance  in water  radiolysis.  However,  its 

existence has been proposed only in the 1950’s and it was observed experimentally in the 1960’s.    3.3 Non‐homogeneous chemical stage (∼10‐12‐10‐6 s)  

At the end of the physico‐chemical stage, the species H., .OH, H2, H2O2 are created in very high concentration  in  the  spurs. Other  species  such as O(3P) may also be present,  in  small quantity.   They diffuse  in  the medium and eventually encounter chemical  species created  in other  spurs, which gives them the opportunity to react. In general, the radical species (such as H., .OH and e‐aq) react in ∼1 μs to form the molecular species H2 and H2O2. For example, H2O2  is formed by the reaction .OH+.OH→H2O2. Another important reaction is H.+ .OH→ H2O, which forms back water.   

Many  reactions  are  known  to occur  in pure,  irradiated  liquid water;  the most  important  are given in the following table.         

thermal de-excitation

Page 42: Introduction to Radiobiology Lesson 1 · Edoardo Milotti - Radiobiology 9 R&D TECHNICAL REPORT P3-080/TR 29 Figure 2.4 Schematic annealing spectra for graphite irradiated at various

Edoardo Milotti - Radiobiology 42

... a note on atomic oxygen ... (from Footie et al. (eds.) "Active Oxygen in Chemistry", Chapman & Hall, 1995

Atomic oxygen, which is atomic number 8, has a total of eight electrons. Using theconcept of atomic orbitals and the Pauli exclusion principle to fill these orbitals withelectrons, the placement of these eight electrons in the atomic orbitals of O isrepresented by the electronic configuration 1s22s22p4.

Since the 2p orbitals are only partially filled, there are three different ways toarrange the electrons in the 2px 2py and 2pz orbitals. Hund's rule, which states thatthe ground-state configuration corresponds to an orbital occupancy that gives thehighest multiplicity, can be used to rule out either the second or the thirdconfigurations in the figure as the ground state, because each of these configurationhas a multiplicity of 1 as compared to a multiplicity of 3 for the first configuration.

Page 43: Introduction to Radiobiology Lesson 1 · Edoardo Milotti - Radiobiology 9 R&D TECHNICAL REPORT P3-080/TR 29 Figure 2.4 Schematic annealing spectra for graphite irradiated at various

Edoardo Milotti - Radiobiology 43

The ground state of atomic oxygen therefore has two unpaired electrons, and isdesignated as the 3P ("triplet P") state.

Of the two remaining configurations, the second is lower in energy based on Hund'ssecond rule which states that, if the multiplicity is the same, the configuration with thehighest total orbital angular momentum (L) will have the lower energy. Because thesecond configuration has the higher L value, it is lower in energy. This configuration isthe first excited state of atomic oxygen, designated as the 1D ("singlet D") state. The thirdconfiguration is the second excited state, designated 1S.

Page 44: Introduction to Radiobiology Lesson 1 · Edoardo Milotti - Radiobiology 9 R&D TECHNICAL REPORT P3-080/TR 29 Figure 2.4 Schematic annealing spectra for graphite irradiated at various

Secondary electrons also behave as a new individual species and they become hydrated

Edoardo Milotti - Radiobiology 44

Physico-chemical stage (time ≈ 10-15 s – 10-12 s) /ctd.

They are several channels for the dissociation of an excited water molecule:  

 OHHOH *

2•• +→

 (6a)

 

 )D(OHOH 1

2*

2 +→ 

(6b)   

 )P(OH2OH 3*

2 +→ •

 (6c) 

 Where O(1D) and O(3P) are the singlet and triplet state of the atomic oxygen, respectively.  The excited water molecule can also return to its fundamental state without dissociation (by heat loss):  

  OHOH 2*

2 →   (7)  

Most secondary electrons have  low energy6, but some of them may have energy  in the keV or even  in  the MeV  range.  These  electrons  lose  their  energy  into medium  by  doing  further  ionization, excitations  until  they  eventually  reach  thermal  equilibrium  with  the  liquid.  The  electron,  which  is negatively charged, interacts with the dipoles of the surrounding water molecules and becomes trapped in  a  state  called  «  trapped  electron  ».  Finally,  this  electron  becomes  a  «  hydrated  electron  », which behaves like chemical specie. This rapid sequence of events can be written as follows:  

 −−−− →→→ aqtrth eeee   (8) 

 The  hydrated  (or  solvated)  electron  is  of  great  importance  in water  radiolysis.  However,  its 

existence has been proposed only in the 1950’s and it was observed experimentally in the 1960’s.    3.3 Non‐homogeneous chemical stage (∼10‐12‐10‐6 s)  

At the end of the physico‐chemical stage, the species H., .OH, H2, H2O2 are created in very high concentration  in  the  spurs. Other  species  such as O(3P) may also be present,  in  small quantity.   They diffuse  in  the medium and eventually encounter chemical  species created  in other  spurs, which gives them the opportunity to react. In general, the radical species (such as H., .OH and e‐aq) react in ∼1 μs to form the molecular species H2 and H2O2. For example, H2O2  is formed by the reaction .OH+.OH→H2O2. Another important reaction is H.+ .OH→ H2O, which forms back water.   

Many  reactions  are  known  to occur  in pure,  irradiated  liquid water;  the most  important  are given in the following table.         

Page 45: Introduction to Radiobiology Lesson 1 · Edoardo Milotti - Radiobiology 9 R&D TECHNICAL REPORT P3-080/TR 29 Figure 2.4 Schematic annealing spectra for graphite irradiated at various

At the end of the physico-chemical stage, the species H·, ·OH, H2, H2O2 are created in very high concentration in the spurs.

Other species such as O(3P) may also be present in small quantity. They diffuse in the medium and eventually encounter chemical species created in other spurs, which gives them the opportunity to react.

In general, the radicals such as H·, ·OH and e-aq react in ∼1 μs to form the molecular species H2 and H2O2. For example, H2O2 is formed by the reaction

·OH + ·OH → H2O2

Another important reaction is H· + ·OH → H2O, which forms water.

Edoardo Milotti - Radiobiology 45

Non-homogeneous chemical stage (time ≈ 10-12 s – 10-6 s)

Page 46: Introduction to Radiobiology Lesson 1 · Edoardo Milotti - Radiobiology 9 R&D TECHNICAL REPORT P3-080/TR 29 Figure 2.4 Schematic annealing spectra for graphite irradiated at various

Edoardo Milotti - Radiobiology 46

  

Chemical reactions table 

Reactions       

H.+H.→H2 .OH+.OH→H2O2  H2O2+e

‐aq→OH‐+.OH  H++O2

.‐ →HO2. 

H.+.OH→H2O .OH+H2O2→HO2

.+H2O  H2O2+OH‐→HO2

‐+H2O  H++HO2‐→H2O2 

H.+H2O2→H2O+.OH  .OH+H2→H.+H2O  H2O2+O(

3P)→HO2.+.OH  H++O.‐→.OH 

H.+e‐aq→H2+OH‐  .OH+e‐aq→OH‐  H2O2+O

.‐→HO2.+OH‐  OH‐+HO2

.→O2.‐+H2O 

H.+OH‐→H2O+e‐aq 

.OH+OH‐→O.‐+H2O  H2+O(3P)→H.+.OH  OH‐+O(3P)→HO2

‐ H.+O2 →HO2

.  .OH+HO2.→O2+H2O  H2+O

.‐→H.+OH‐  HO2.+O(3P)→O2+

.OH H.+HO2

.→H2O2 .OH+O2

.‐→O2+OH‐  e‐aq+e

‐aq→H2+2OH

‐.  HO2.+HO2

.→ H2O2+O2 H.+O2

.‐→HO2‐  .OH+HO2

‐→HO2.+OH‐  e‐aq+H

+→H.  HO2.+O2

.‐→ HO2‐+O2 

H.+O(3P) →.OH  .OH+O(3P)→HO2.  e‐aq+O2→O2

.‐  HO2‐+O(3P)→O2

.‐+.OH H.+O.‐→OH‐  .OH+O.‐→HO2

‐  e‐aq+HO2.→HO2

‐  O(3P)+O(3P)→O2    

At the end of the non‐homogeneous chemical stage, the following equation for the radiolysis of water can be written:    (9)   3.3.1 Yields of radiolytic species  

The radiolytic yield of the species X, noted G(X), is defined as:  

  energy deposited eV 100destroyed)(or created species ofNumber G(X) =

 (10) 

 The  units  of  the  radiolytic  yields  are molec./100  eV.  In  SI  units,  1 molec./100  eV  ≈  0.10364 

μmol/J. An equivalent definition of G(X) is G(X)=(1/ρ)(d[X]/dD), where ρ is the density of the irradiated medium, [X] is the concentration of X and D is the dose. It is usually obtained by using the slope of the graph  [X]  vs  D  at  origin.  If  D=It,  where  I  is  the  dose‐rate  and  t  is  the  time,  we  can  write G(X)=(1/ρI)(d[X]/dt).  

The yield of the radiolytic species at the end of spur expansion, at ∼10‐6 s, is called primary yield and  is  noted  GX.  In  pure  liquid  water,  the  primary  yields  of  the  principal  radiolytic  species  are  (in molec./100 eV)13:    50.2G

aqe =− ;  56.0G H =• ;  7.0G22OH = ;  45.0G

2H = ;  50.2G OH =• 

(11) 

 Experimentally, the yield values can be obtained by pulsed‐radiolysis.    

The end result of the radiolysis of water leads to radiochemical species

  

Chemical reactions table 

Reactions       

H.+H.→H2 .OH+.OH→H2O2  H2O2+e

‐aq→OH‐+.OH  H++O2

.‐ →HO2. 

H.+.OH→H2O .OH+H2O2→HO2

.+H2O  H2O2+OH‐→HO2

‐+H2O  H++HO2‐→H2O2 

H.+H2O2→H2O+.OH  .OH+H2→H.+H2O  H2O2+O(

3P)→HO2.+.OH  H++O.‐→.OH 

H.+e‐aq→H2+OH‐  .OH+e‐aq→OH‐  H2O2+O

.‐→HO2.+OH‐  OH‐+HO2

.→O2.‐+H2O 

H.+OH‐→H2O+e‐aq 

.OH+OH‐→O.‐+H2O  H2+O(3P)→H.+.OH  OH‐+O(3P)→HO2

‐ H.+O2 →HO2

.  .OH+HO2.→O2+H2O  H2+O

.‐→H.+OH‐  HO2.+O(3P)→O2+

.OH H.+HO2

.→H2O2 .OH+O2

.‐→O2+OH‐  e‐aq+e

‐aq→H2+2OH

‐.  HO2.+HO2

.→ H2O2+O2 H.+O2

.‐→HO2‐  .OH+HO2

‐→HO2.+OH‐  e‐aq+H

+→H.  HO2.+O2

.‐→ HO2‐+O2 

H.+O(3P) →.OH  .OH+O(3P)→HO2.  e‐aq+O2→O2

.‐  HO2‐+O(3P)→O2

.‐+.OH H.+O.‐→OH‐  .OH+O.‐→HO2

‐  e‐aq+HO2.→HO2

‐  O(3P)+O(3P)→O2    

At the end of the non‐homogeneous chemical stage, the following equation for the radiolysis of water can be written:    (9)   3.3.1 Yields of radiolytic species  

The radiolytic yield of the species X, noted G(X), is defined as:  

  energy deposited eV 100destroyed)(or created species ofNumber G(X) =

 (10) 

 The  units  of  the  radiolytic  yields  are molec./100  eV.  In  SI  units,  1 molec./100  eV  ≈  0.10364 

μmol/J. An equivalent definition of G(X) is G(X)=(1/ρ)(d[X]/dD), where ρ is the density of the irradiated medium, [X] is the concentration of X and D is the dose. It is usually obtained by using the slope of the graph  [X]  vs  D  at  origin.  If  D=It,  where  I  is  the  dose‐rate  and  t  is  the  time,  we  can  write G(X)=(1/ρI)(d[X]/dt).  

The yield of the radiolytic species at the end of spur expansion, at ∼10‐6 s, is called primary yield and  is  noted  GX.  In  pure  liquid  water,  the  primary  yields  of  the  principal  radiolytic  species  are  (in molec./100 eV)13:    50.2G

aqe =− ;  56.0G H =• ;  7.0G22OH = ;  45.0G

2H = ;  50.2G OH =• 

(11) 

 Experimentally, the yield values can be obtained by pulsed‐radiolysis.    

Page 47: Introduction to Radiobiology Lesson 1 · Edoardo Milotti - Radiobiology 9 R&D TECHNICAL REPORT P3-080/TR 29 Figure 2.4 Schematic annealing spectra for graphite irradiated at various

Edoardo Milotti - Radiobiology 47

Time-dependent cross sections of the nonhomogeneous spatial distributions of the mainradiolytic species (eaq, .OH, H., H2, and H2O2) in liquid water exposed to 24-MeV 4He2+ ions from 1 ps to 10 µs.

Adapted from I. Plante and J.-P. Jay-Gerin: “Monte-Carlo step-by-step simulation of the early stages of liquid water radiolysis: 3D visualization of the initial radiation track structure and its subsequent chemical development”, Journal of Physics: Conference Series 56 (2006) 153-155

Page 48: Introduction to Radiobiology Lesson 1 · Edoardo Milotti - Radiobiology 9 R&D TECHNICAL REPORT P3-080/TR 29 Figure 2.4 Schematic annealing spectra for graphite irradiated at various

Edoardo Milotti - Radiobiology 48

13.4 Examples of Calculated Charged-Particle Tracks in Water 403

Fig. 13.1 Chemical development of a 4-keVelectron track in liquid water, calculated byMonte Carlo simulation. Each dot in thesestereo views gives the location of one of theactive radiolytic species, OH, H3O+, e–

aq, or H,at the times shown. Note structure of trackwith spurs, or clusters of species, at early

times. After 10–7 s, remaining species continueto diffuse further apart, with relatively fewadditional chemical reactions. (Courtesy OakRidge National Laboratory, operated by MartinMarietta Energy Systems, Inc., for theDepartment of Energy.)

schemes (13.4)–(13.10) can thus be used to carry out the chemical development ofa track.

Three examples of calculated electron tracks at 10–12 s in liquid water were shownin Fig. 6.5. The upper left-hand panel in Fig. 13.1 presents a stereoscopic view ofanother such track, for a 4-keV electron, starting at the origin in the upward direc-tion. Each dot represents the location of one of the active radiolytic species, OH,H3O+, e–

aq, or H, shown in Table 13.2, at 10–12 s. There are 924 species present ini-tially. The electron stops in the upper region of the panel, where its higher linearenergy transfer (LET) is evidenced by the increased density of dots. The occurrenceof species in clusters, or spurs, along the electron’s path is seen. As discussed inSection 6.7, this important phenomenon for the subsequent chemical action of ion-izing radiation is a result of the particular shape and universality of the energy-lossspectrum for charged particles (Fig. 5.3). The passage of time and the chemical

Chemical development of a 4-keV electron track in liquid water, calculated by Monte Carlo simulation. Each dot in these stereo views gives the location of one of the active radiolytic species, OH, H3O+, e–aq, or H, at the times shown. Note structure of track with spurs, or clusters of species, at early times. After 10–7 s, remaining species continue to diffuse further apart, with relatively few additional chemical reactions. (Adapted from James E. Turner: “Atoms, Radiation, and Radiation Protection, 3rd ed.” Wiley 2007)

Page 49: Introduction to Radiobiology Lesson 1 · Edoardo Milotti - Radiobiology 9 R&D TECHNICAL REPORT P3-080/TR 29 Figure 2.4 Schematic annealing spectra for graphite irradiated at various

13.4 Examples of Calculated Charged-Particle Tracks in Water 403

Fig. 13.1 Chemical development of a 4-keVelectron track in liquid water, calculated byMonte Carlo simulation. Each dot in thesestereo views gives the location of one of theactive radiolytic species, OH, H3O+, e–

aq, or H,at the times shown. Note structure of trackwith spurs, or clusters of species, at early

times. After 10–7 s, remaining species continueto diffuse further apart, with relatively fewadditional chemical reactions. (Courtesy OakRidge National Laboratory, operated by MartinMarietta Energy Systems, Inc., for theDepartment of Energy.)

schemes (13.4)–(13.10) can thus be used to carry out the chemical development ofa track.

Three examples of calculated electron tracks at 10–12 s in liquid water were shownin Fig. 6.5. The upper left-hand panel in Fig. 13.1 presents a stereoscopic view ofanother such track, for a 4-keV electron, starting at the origin in the upward direc-tion. Each dot represents the location of one of the active radiolytic species, OH,H3O+, e–

aq, or H, shown in Table 13.2, at 10–12 s. There are 924 species present ini-tially. The electron stops in the upper region of the panel, where its higher linearenergy transfer (LET) is evidenced by the increased density of dots. The occurrenceof species in clusters, or spurs, along the electron’s path is seen. As discussed inSection 6.7, this important phenomenon for the subsequent chemical action of ion-izing radiation is a result of the particular shape and universality of the energy-lossspectrum for charged particles (Fig. 5.3). The passage of time and the chemical

Edoardo Milotti - Radiobiology 49

Chemical development of a 4-keV electron track in liquid water, calculated by Monte Carlo simulation. Each dot in these stereo views gives the location of one of the active radiolytic species, OH, H3O+, e–aq, or H, at the times shown. Note structure of track with spurs, or clusters of species, at early times. After 10–7 s, remaining species continue to diffuse further apart, with relatively few additional chemical reactions. (Adapted from James E. Turner: “Atoms, Radiation, and Radiation Protection, 3rd ed.” Wiley 2007)

Page 50: Introduction to Radiobiology Lesson 1 · Edoardo Milotti - Radiobiology 9 R&D TECHNICAL REPORT P3-080/TR 29 Figure 2.4 Schematic annealing spectra for graphite irradiated at various

13.4 Examples of Calculated Charged-Particle Tracks in Water 403

Fig. 13.1 Chemical development of a 4-keVelectron track in liquid water, calculated byMonte Carlo simulation. Each dot in thesestereo views gives the location of one of theactive radiolytic species, OH, H3O+, e–

aq, or H,at the times shown. Note structure of trackwith spurs, or clusters of species, at early

times. After 10–7 s, remaining species continueto diffuse further apart, with relatively fewadditional chemical reactions. (Courtesy OakRidge National Laboratory, operated by MartinMarietta Energy Systems, Inc., for theDepartment of Energy.)

schemes (13.4)–(13.10) can thus be used to carry out the chemical development ofa track.

Three examples of calculated electron tracks at 10–12 s in liquid water were shownin Fig. 6.5. The upper left-hand panel in Fig. 13.1 presents a stereoscopic view ofanother such track, for a 4-keV electron, starting at the origin in the upward direc-tion. Each dot represents the location of one of the active radiolytic species, OH,H3O+, e–

aq, or H, shown in Table 13.2, at 10–12 s. There are 924 species present ini-tially. The electron stops in the upper region of the panel, where its higher linearenergy transfer (LET) is evidenced by the increased density of dots. The occurrenceof species in clusters, or spurs, along the electron’s path is seen. As discussed inSection 6.7, this important phenomenon for the subsequent chemical action of ion-izing radiation is a result of the particular shape and universality of the energy-lossspectrum for charged particles (Fig. 5.3). The passage of time and the chemical

Edoardo Milotti - Radiobiology 50

Chemical development of a 4-keV electron track in liquid water, calculated by Monte Carlo simulation. Each dot in these stereo views gives the location of one of the active radiolytic species, OH, H3O+, e–aq, or H, at the times shown. Note structure of track with spurs, or clusters of species, at early times. After 10–7 s, remaining species continue to diffuse further apart, with relatively few additional chemical reactions. (Adapted from James E. Turner: “Atoms, Radiation, and Radiation Protection, 3rd ed.” Wiley 2007)

Page 51: Introduction to Radiobiology Lesson 1 · Edoardo Milotti - Radiobiology 9 R&D TECHNICAL REPORT P3-080/TR 29 Figure 2.4 Schematic annealing spectra for graphite irradiated at various

13.4 Examples of Calculated Charged-Particle Tracks in Water 403

Fig. 13.1 Chemical development of a 4-keVelectron track in liquid water, calculated byMonte Carlo simulation. Each dot in thesestereo views gives the location of one of theactive radiolytic species, OH, H3O+, e–

aq, or H,at the times shown. Note structure of trackwith spurs, or clusters of species, at early

times. After 10–7 s, remaining species continueto diffuse further apart, with relatively fewadditional chemical reactions. (Courtesy OakRidge National Laboratory, operated by MartinMarietta Energy Systems, Inc., for theDepartment of Energy.)

schemes (13.4)–(13.10) can thus be used to carry out the chemical development ofa track.

Three examples of calculated electron tracks at 10–12 s in liquid water were shownin Fig. 6.5. The upper left-hand panel in Fig. 13.1 presents a stereoscopic view ofanother such track, for a 4-keV electron, starting at the origin in the upward direc-tion. Each dot represents the location of one of the active radiolytic species, OH,H3O+, e–

aq, or H, shown in Table 13.2, at 10–12 s. There are 924 species present ini-tially. The electron stops in the upper region of the panel, where its higher linearenergy transfer (LET) is evidenced by the increased density of dots. The occurrenceof species in clusters, or spurs, along the electron’s path is seen. As discussed inSection 6.7, this important phenomenon for the subsequent chemical action of ion-izing radiation is a result of the particular shape and universality of the energy-lossspectrum for charged particles (Fig. 5.3). The passage of time and the chemical

Edoardo Milotti - Radiobiology 51

Chemical development of a 4-keV electron track in liquid water, calculated by Monte Carlo simulation. Each dot in these stereo views gives the location of one of the active radiolytic species, OH, H3O+, e–aq, or H, at the times shown. Note structure of track with spurs, or clusters of species, at early times. After 10–7 s, remaining species continue to diffuse further apart, with relatively few additional chemical reactions. (Adapted from James E. Turner: “Atoms, Radiation, and Radiation Protection, 3rd ed.” Wiley 2007)

Page 52: Introduction to Radiobiology Lesson 1 · Edoardo Milotti - Radiobiology 9 R&D TECHNICAL REPORT P3-080/TR 29 Figure 2.4 Schematic annealing spectra for graphite irradiated at various

Edoardo Milotti - Radiobiology 52

Track of a 300 MeV 12C6+ ion, from ~10-12 to ~10-6 s, front viewEach dot represents a radiolytic species. The changes in color indicate chemical reactions.

from

htt

ps:/

/thr

ee.js

c.na

sa.g

ov

Page 53: Introduction to Radiobiology Lesson 1 · Edoardo Milotti - Radiobiology 9 R&D TECHNICAL REPORT P3-080/TR 29 Figure 2.4 Schematic annealing spectra for graphite irradiated at various

Edoardo Milotti - Radiobiology 53

Track of a 300 MeV 12C6+ ion, from ~10-12 to ~10-6 s, side viewEach dot represents a radiolytic species. The changes in color indicate chemical reactions.

from

htt

ps:/

/thr

ee.js

c.na

sa.g

ov

Page 54: Introduction to Radiobiology Lesson 1 · Edoardo Milotti - Radiobiology 9 R&D TECHNICAL REPORT P3-080/TR 29 Figure 2.4 Schematic annealing spectra for graphite irradiated at various

Edoardo Milotti - Radiobiology 54

G value: number of a given species produced per 100 eV of energy loss by the original charged particle and its secondaries, on the average, when it stops in the water.

Table extracted from Turner: “Atoms, Radiation, and Radiation Protection”

Page 55: Introduction to Radiobiology Lesson 1 · Edoardo Milotti - Radiobiology 9 R&D TECHNICAL REPORT P3-080/TR 29 Figure 2.4 Schematic annealing spectra for graphite irradiated at various

Edoardo Milotti - Radiobiology 55

G value: number of a given species produced per 100 eV of energy loss by the original charged particle and its secondaries, on the average, when it stops in the water.

Table extracted from Turner: “Atoms, Radiation, and Radiation Protection”

Page 56: Introduction to Radiobiology Lesson 1 · Edoardo Milotti - Radiobiology 9 R&D TECHNICAL REPORT P3-080/TR 29 Figure 2.4 Schematic annealing spectra for graphite irradiated at various

Edoardo Milotti - Radiobiology 56

Exercise:

If a 20-keV electron stops in water and an average of 352 molecules of H2O2 are produced, what is the G value for H2O2 for electrons of this energy?

G value: number of a given species produced per 100 eV of energy loss by the original charged particle and its secondaries, on the average, when it stops in the water.

Page 57: Introduction to Radiobiology Lesson 1 · Edoardo Milotti - Radiobiology 9 R&D TECHNICAL REPORT P3-080/TR 29 Figure 2.4 Schematic annealing spectra for graphite irradiated at various

Edoardo Milotti - Radiobiology 57

Exercise:

If a 20-keV electron stops in water and an average of 352 molecules of H2O2 are produced, what is the G value for H2O2 for electrons of this energy?

Answer:

20 keV/100 eV = 200 therefore G = 352/200 = 1.76

G value: number of a given species produced per 100 eV of energy loss by the original charged particle and its secondaries, on the average, when it stops in the water.

Page 58: Introduction to Radiobiology Lesson 1 · Edoardo Milotti - Radiobiology 9 R&D TECHNICAL REPORT P3-080/TR 29 Figure 2.4 Schematic annealing spectra for graphite irradiated at various

Edoardo Milotti - Radiobiology 58

Electrons, protons, and alpha particles all produce the same species in local track regions at 10-15 s: H2O+, H2O∗, and subexcitation electrons.

The chemical differences that result at later times are presumably due to the different spatial patterns of initial energy deposition that the particles have.

Page 59: Introduction to Radiobiology Lesson 1 · Edoardo Milotti - Radiobiology 9 R&D TECHNICAL REPORT P3-080/TR 29 Figure 2.4 Schematic annealing spectra for graphite irradiated at various

Edoardo Milotti - Radiobiology 59

13.5 Chemical Yields in Water 407

Table 13.3 G Values (Number per 100 eV) for Various Species inWater at 0.28 µs for Electrons at Several Energies

Electron Energy (eV)

Species 100 200 500 750 1000 5000 10,000 20,000

OH 1.17 0.72 0.46 0.39 0.39 0.74 1.05 1.10H3O+ 4.97 5.01 4.88 4.97 4.86 5.03 5.19 5.13e–

aq 1.87 1.44 0.82 0.71 0.62 0.89 1.18 1.13H 2.52 2.12 1.96 1.91 1.96 1.93 1.90 1.99H2 0.74 0.86 0.99 0.95 0.93 0.84 0.81 0.80H2O2 1.84 2.04 2.04 2.00 1.97 1.86 1.81 1.80Fe3+ 17.9 15.5 12.7 12.3 12.6 12.9 13.9 14.1

the other species, such as H2O2 and H2, increase with time. As mentioned earlier,by about 10–6 s the reactive species remaining in a track have moved so far apartthat additional reactions are unlikely. As functions of time, therefore, the G valueschange little after 10–6 s.

Calculated yields for the principal species produced by electrons of various ini-tial energies are given in Table 13.3. The G values are determined by averaging theproduct yields over the entire tracks of a number of electrons at each energy. [Thelast line, for Fe3+, applies to the Fricke dosimeter (Section 10.6). The measuredG value for the Fricke dosimeter for tritium beta rays (average energy 5.6 keV),is 12.9.] The table indicates how subsequent changes induced by radiation can bepartially understood on the basis of track structure—an important objective in ra-diation chemistry and radiation biology. One sees that the G values for the fourreactive species (the first four lines) are smallest for electrons in the energy range750–1000 eV. In other words, the intratrack chemical reactions go most nearly tocompletion for electrons at these initial energies. At lower energies, the number ofinitial reactants at 10–12 s is smaller and diffusion is more favorable compared withreaction. At higher energies, the LET is less and the reactants at 10–12 s are morespread out than at 750–1000 eV, and thus have a smaller probability of subsequentlyreacting.

Similar calculations have been carried out for the track segments of protons andalpha particles. The results are shown in Table 13.4. As in Fig. 7.1, pairs of ionshave the same speed, and so the alpha particles have four times the LET of theprotons in each case. Several findings can be pointed out. First, for either type ofparticle, the LET is smaller at the higher energies and hence the initial density ofreactants at 10–12 s is smaller. Therefore, the efficiency of the chemical developmentof the track should get progressively smaller at the higher energies. This decreasedefficiency is reflected in the increasing G values for the reactant species in the firstfour lines (more are left at 10–7 s) and in the decreasing G values for the reactionproducts in the fifth and sixth lines (fewer are produced). Second, at a given velocity,the reaction efficiency is considerably greater in the track of an alpha particle thanin the track of a proton. Third, comparison of Tables 13.3 and 13.4 shows some

Page 60: Introduction to Radiobiology Lesson 1 · Edoardo Milotti - Radiobiology 9 R&D TECHNICAL REPORT P3-080/TR 29 Figure 2.4 Schematic annealing spectra for graphite irradiated at various

Edoardo Milotti - Radiobiology 60

Homework

A 50 cm3 sample of water is given a dose of 50 mGy from 10-keV electrons.

If the yield of H2O2 is G = 1.81 per 100 eV, how many molecules of H2O2 are produced in the sample?

Page 61: Introduction to Radiobiology Lesson 1 · Edoardo Milotti - Radiobiology 9 R&D TECHNICAL REPORT P3-080/TR 29 Figure 2.4 Schematic annealing spectra for graphite irradiated at various

Edoardo Milotti - Radiobiology 61

The radiolysis of water is known to damage metal pipes, but how do the radiolytic species act in cells and organisms?

• Radiobiology is a branch of science which combines basic principles of physics and biology and is concerned with the action of ionizing radiation on biological tissues and living organisms.

• Ionizing radiation acts at the molecular and cellular level, while in this Master’s course we are interested in the medical issues: in this Radiobiology course we try to understand how the action of radiation at the microscopic level affects human health

Page 62: Introduction to Radiobiology Lesson 1 · Edoardo Milotti - Radiobiology 9 R&D TECHNICAL REPORT P3-080/TR 29 Figure 2.4 Schematic annealing spectra for graphite irradiated at various

Edoardo Milotti - Radiobiology 62

Next step, study the effects of ionizing radiation on individual cells.

To this end we need to know cells first.