29
Interconnects in 50-100 GHz Integrated Circuits M.J.W Rodwell, S. Krishnan, M. Urteaga , Z. Griffith, M. Dahlström, Y. Wei, D. Scott, N. Parthasarathy, Y-M Kim, S. Lee University of California, Santa Barbara [email protected] 805-893-8044, 805-893-3262 fax

Interconnects in 50-100 GHz Integrated Circuits M.J.W Rodwell, S. Krishnan, M. Urteaga, Z. Griffith, M. Dahlström, Y. Wei, D. Scott, N. Parthasarathy,

Embed Size (px)

Citation preview

Page 1: Interconnects in 50-100 GHz Integrated Circuits M.J.W Rodwell, S. Krishnan, M. Urteaga, Z. Griffith, M. Dahlström, Y. Wei, D. Scott, N. Parthasarathy,

Interconnects in 50-100 GHz Integrated Circuits

M.J.W Rodwell, S. Krishnan, M. Urteaga, Z. Griffith, M. Dahlström, Y. Wei, D. Scott,

N. Parthasarathy, Y-M Kim, S. Lee

University of California, Santa Barbara

[email protected] 805-893-8044, 805-893-3262 fax

Page 2: Interconnects in 50-100 GHz Integrated Circuits M.J.W Rodwell, S. Krishnan, M. Urteaga, Z. Griffith, M. Dahlström, Y. Wei, D. Scott, N. Parthasarathy,

Outline

• Introduction

• Transmission line characterization for on-wafer device measurements

• Monolithic millimeter-wave ICs

• Mixed-signal medium-scale ICs

Page 3: Interconnects in 50-100 GHz Integrated Circuits M.J.W Rodwell, S. Krishnan, M. Urteaga, Z. Griffith, M. Dahlström, Y. Wei, D. Scott, N. Parthasarathy,

Apply scaling approaches of Si-devices with material advantages of III-V systems to realise ultra-fast transistors

Previous research: Transferred-substrate HBT technology

Current research: Highly scaled mesa-HBT technology

Why is the wiring environment important to us?

Accurate device measurements require controlled ZO

Monolithic Millimeter-wave IC design

Ultra-high frequency mixed-signal IC design

High-speed InP Heterojunction Bipolar Transistors

Page 4: Interconnects in 50-100 GHz Integrated Circuits M.J.W Rodwell, S. Krishnan, M. Urteaga, Z. Griffith, M. Dahlström, Y. Wei, D. Scott, N. Parthasarathy,

• Substrate transfer process permits simultaneous scaling of emitter-base and collector-base junction widths

• Maximum frequency of oscillation

• Record values of measured transistor power gain at 110 GHz, record values of extrapolated fmax (> 1 THz)

• Process provides mirostrip wiring environment with thin (5 m) low loss

BCB dielectric (r= 2.7)

cbbbCRff 8/max

Transferred-substrate HBTs

0

5

10

15

20

25

30

10 100 1000

Ga

ins

, dB

Frequency,GHz

H21

U

MSG

Vce = 1.2 V Ic=6 mA

0.4 m x 6 m emitter, 0.7 m x 9 m collector,

Page 5: Interconnects in 50-100 GHz Integrated Circuits M.J.W Rodwell, S. Krishnan, M. Urteaga, Z. Griffith, M. Dahlström, Y. Wei, D. Scott, N. Parthasarathy,

• Highly Carbon-doped InGaAs base enables low base contact resistance, short Ohmic transfer length Lt ~ 0.1 m

• Allows aggressive scaling of base-mesa width in traditional mesa-HBT structure

• Record fmax (> 400 GHz) for mesa-HBT device

• Incorporate coplanar waveguide (CPW) or microstrip wiring environment with backend processing

Ultra Wideband mesa-HBTs Mattias Dahlstrom (UCSB) Amy Liu (IQE)

UCSB / IQE

0

5

10

15

20

25

30

1010 1011 1012

Gai

n (

dB

) H

21,

U

frequency (GHz)

ft=282 GHz

fmax

=480 GHz

Page 6: Interconnects in 50-100 GHz Integrated Circuits M.J.W Rodwell, S. Krishnan, M. Urteaga, Z. Griffith, M. Dahlström, Y. Wei, D. Scott, N. Parthasarathy,

On-wafer Device Measurements

Page 7: Interconnects in 50-100 GHz Integrated Circuits M.J.W Rodwell, S. Krishnan, M. Urteaga, Z. Griffith, M. Dahlström, Y. Wei, D. Scott, N. Parthasarathy,

• Commercial vector network analyzers available to 350 GHz

• UCSB capabilities: DC-50 GHz, 75-110 GHz, 140-220 GHz

• Accurate S-parameter measurements require accurate on-wafer calibration

• Line-Reflect-Line calibration is preferred for submicron device measurements

High-frequency Device Measurements

UCSB 140-220 GHz VNA Measurement Set-up

Page 8: Interconnects in 50-100 GHz Integrated Circuits M.J.W Rodwell, S. Krishnan, M. Urteaga, Z. Griffith, M. Dahlström, Y. Wei, D. Scott, N. Parthasarathy,

0

5

10

15

20

25

30

35

1 10 100Frequency, GHz

MSG

h21

Mason'sGain, U

• Submicron HBTs have very low Ccb (< 5 fF)

• Characterization requires accurate measure of very small S12

• Standard 12-term VNA calibrations do not correct S12 background error due to probe-to-probe coupling

SolutionEmbed transistors in sufficient length of on-wafer transmission line to reduce coupling

Line-Reflect-Line calibration to place measurement reference planes at device terminals

On-wafer Device Measurements

Transistor Embedded in LRL Test Structure

230 m 230 m

Corrupted 75-110 GHz measurements due toexcessive probe-to-probe coupling

Page 9: Interconnects in 50-100 GHz Integrated Circuits M.J.W Rodwell, S. Krishnan, M. Urteaga, Z. Griffith, M. Dahlström, Y. Wei, D. Scott, N. Parthasarathy,

• LRL does not require accurate characterization of Open or Short calibration standards

• LRL does require accurate characterization of transmission line characteristic impedance

• LRL does require single-mode propagation environment

Transferred-substrate process provides ideal wiring environment for on-wafer device measurements

Mesa-HBT technology presents challenges to realizing single-mode environment to 220 GHz

Line-Reflect-Line Calibration

Page 10: Interconnects in 50-100 GHz Integrated Circuits M.J.W Rodwell, S. Krishnan, M. Urteaga, Z. Griffith, M. Dahlström, Y. Wei, D. Scott, N. Parthasarathy,

• Substrate-transfer provides well-modeled microstrip wiring environment with thin dielectric (5 m)

• Conductors must be narrow for ZO = 50 : high resisistive losses

• LRL calibration is referenced to Line standard ZO

• Must correct for complex ZO, particularly at low frequencies

Transferred-substrate HBT Measurements

Transistor S-parameters with (red) and without (blue) complex ZO correction

CG

LRZO

j

jfreq (6.000GHz to 40.00GHz)

S11 S22

Page 11: Interconnects in 50-100 GHz Integrated Circuits M.J.W Rodwell, S. Krishnan, M. Urteaga, Z. Griffith, M. Dahlström, Y. Wei, D. Scott, N. Parthasarathy,

freq (75.00GHz to 110.0GHz)

• CPW wiring is incorporated with minimal backend processing

•Must avoid coupling to parasitic modes

Mesa-HBT Measurements

Mesa-HBT measurement corrupted from CPW excitation of parasitic modes in 75-110 GHz band

S11

S22

+V +V +V

0V

-V 0V +V

0V

kz

Microstrip mode Slot mode

Substrate modes

Page 12: Interconnects in 50-100 GHz Integrated Circuits M.J.W Rodwell, S. Krishnan, M. Urteaga, Z. Griffith, M. Dahlström, Y. Wei, D. Scott, N. Parthasarathy,

Monolithic mm-Wave ICs

Page 13: Interconnects in 50-100 GHz Integrated Circuits M.J.W Rodwell, S. Krishnan, M. Urteaga, Z. Griffith, M. Dahlström, Y. Wei, D. Scott, N. Parthasarathy,

MIMICs have applications in

• Point-to-point mm-wave links (60 GHz, 90 GHz…)

• Automotive radar (46 GHz, 77 GHz…)

• Planetary exploration, atmospheric sensing (140-220 GHz)

Transmission line tuning networks require low-loss interconnects with precisely controlled impedance and velocity

Transmission Line Options

• Microstrip with semiconductor substrate dielectric

• Coplanar Waveguide (CPW)

• Thin-film dielectric Microstrip

Monolithic mm-Wave Integrated Circuits

Page 14: Interconnects in 50-100 GHz Integrated Circuits M.J.W Rodwell, S. Krishnan, M. Urteaga, Z. Griffith, M. Dahlström, Y. Wei, D. Scott, N. Parthasarathy,

Microstrip wiring with semiconductor dielectric is extensively used in MIMICs

Requires thinning of substrate thickness to minimize through-wafer via inductance Via inductance 12 pH for

100 m substrate, j7.5@ 100 GHz

Substrate mode couplingSynchronous coupling into TM0 mode at

“Handbook of Microwave Integrated Circuits”

R. Hoffman, Artech House, 1987

Microstrip Wiring with Semiconductor Dielectric

kz

1

106min,0,

r

TMSh

f

Page 15: Interconnects in 50-100 GHz Integrated Circuits M.J.W Rodwell, S. Krishnan, M. Urteaga, Z. Griffith, M. Dahlström, Y. Wei, D. Scott, N. Parthasarathy,

Frequently used for high frequency MIMIC designs

Substrate must still be thinned to avoid coupling to substrate modes, h < 0.12d .

Reference: Riaziat, M. et al. “ Propagation Modes and Dispersion Characteristics of Coplanar Waveguide” IEEE MTT, March 1990 .

Through-wafer vias or multiple-wire bonds are necessary in packaged ICs to prevent parallel plate waveguide modes for L > d /2

CPW Wiring

L

Page 16: Interconnects in 50-100 GHz Integrated Circuits M.J.W Rodwell, S. Krishnan, M. Urteaga, Z. Griffith, M. Dahlström, Y. Wei, D. Scott, N. Parthasarathy,

Wiring and Ground planes on IC top surface separated by a few microns of thin dielectric

Planarising spin-on-polymers offer low dielectric constant, low microwave loss

Low ground access inductance, low dispersion, low mode coupling, due to thin substrate thickness

… but thin dielectrics result in narrow conductor widths and high resistive losses

Thin-dielectric Microstrip Wiring

Low r

S.I. Substrate

Via Via

Ground Plane

Cross-section of Transferred-substrate HBTThin-dielectric Wiring Environment

Page 17: Interconnects in 50-100 GHz Integrated Circuits M.J.W Rodwell, S. Krishnan, M. Urteaga, Z. Griffith, M. Dahlström, Y. Wei, D. Scott, N. Parthasarathy,

freq (140.0GHz to 220.0GHz)

Properties

• 5 m BCB substrate r = 2.7

• 50 line W = 12.5 m, Loss 1 dB/mm @100 GHz

• 4m x 4m vias allows dense integration

Excellent agreement between measurement and CAD simulations of microstrip matching networks seen to 200 GHz

Passive Element Matching Networkfor Single-stage Amplifier

S21

S22

S11

Red- SimulationBlue- Measurement

Transferred-substrate Microstrip Wiring

Page 18: Interconnects in 50-100 GHz Integrated Circuits M.J.W Rodwell, S. Krishnan, M. Urteaga, Z. Griffith, M. Dahlström, Y. Wei, D. Scott, N. Parthasarathy,

-4

-2

0

2

4

6

8

140 150 160 170 180 190 200 210 220

dB

frequency, GHz

-10

-5

0

5

10

15

140 150 160 170 180 190 200 210 220

dB

frequency (GHz)

IC Results: 140-220 GHz Small-Signal Amplifiers

Three-transistor amplifier8.5 dB gain @ 195 GHz

Single-transistor amplifier6.3 dB gain @ 175 GHz

Cell Dimensions: 1.6mm x 0.59 mm

Cell Dimensions: 0.69mm x 0.35 mm

Page 19: Interconnects in 50-100 GHz Integrated Circuits M.J.W Rodwell, S. Krishnan, M. Urteaga, Z. Griffith, M. Dahlström, Y. Wei, D. Scott, N. Parthasarathy,

IC Results: W-band Power Amplifiers UCSBYun Wei

-5

0

5

10

15

20

0

2

4

6

8

10

-15 -10 -5 0 5 10 15

Po

ut,

dB

m GT , d

B

Pin, dBm

GT Pout

Common-base PA

Psat=16 dBm @ 85 GHz

P1dB=14.5 dBm

GT=8.5 dB

Total Emitter Area AE = 128 m2

Cell Dimensions: 0.5mm x 0.4 mm

-5

0

5

10

15

0

2

4

6

8

10

-15 -10 -5 0 5 10

Po

ut, d

Bm G

T , dB

Pin, dBm

GT Pout

Cascode PA

Psat=12.5 dBm @ 90 GHz

P1dB=9.5 dBm

GT=8.2 dB

Total Emitter Area AE = 64 m2

Cell Dimensions: 0.5mm x 0.4 mm

Page 20: Interconnects in 50-100 GHz Integrated Circuits M.J.W Rodwell, S. Krishnan, M. Urteaga, Z. Griffith, M. Dahlström, Y. Wei, D. Scott, N. Parthasarathy,

Mixed-Signal ICs

Page 21: Interconnects in 50-100 GHz Integrated Circuits M.J.W Rodwell, S. Krishnan, M. Urteaga, Z. Griffith, M. Dahlström, Y. Wei, D. Scott, N. Parthasarathy,

Applications• Long haul fiber optic transmission ICs (40 Gb/s, 80 Gb/s. 160 Gb/s ??)

• Digital radio: ADCs, DACs, etc… > 10 Gb/s sampling rates

Medium scales of integration (1000-10,000 transistors)

Wiring requirements for mixed-signal ICs

• Low common-lead ground-return inductance

• Controlled characteristic impedance for CAD simulation

• Low line-to-line coupling in densely packed ICs

• Low eff for time-delay sensitive circuits

High Frequency Mixed-Signal ICs

Page 22: Interconnects in 50-100 GHz Integrated Circuits M.J.W Rodwell, S. Krishnan, M. Urteaga, Z. Griffith, M. Dahlström, Y. Wei, D. Scott, N. Parthasarathy,

CPW for long interconnects onlyUnknown ZO for most wires CAD modeling difficult Implement circuit design techniques to minimize effects

Circuit Cross-talkDensely packed internal wires with large large fringing fieldsExcitation of surface wave or parallel-plate modes couple circuits CAD modeling difficult

Ground InductanceDiscontinuous ground planesWire bonds to package ground~0.3 pH/m inductance Signal distortion, Ground Bounce, Ringing

Problems with top-side CPW Wiring for 100 GHz Digital

Page 23: Interconnects in 50-100 GHz Integrated Circuits M.J.W Rodwell, S. Krishnan, M. Urteaga, Z. Griffith, M. Dahlström, Y. Wei, D. Scott, N. Parthasarathy,

Bond wire inductance resonates with through-wafer capacitance at

Peripheral grounding allows parallel plate mode resonanceInP die dimensions must be <0.4mm at 100GHz

…or thin wafer and add Vias

Problems with Coplanar Waveguide Packaged ICs

Lbond/n Csub

nLC bondsub

o/

1

Page 24: Interconnects in 50-100 GHz Integrated Circuits M.J.W Rodwell, S. Krishnan, M. Urteaga, Z. Griffith, M. Dahlström, Y. Wei, D. Scott, N. Parthasarathy,

Via Inductance too big12 pH for 100 um substratej7.5@ 100 GHz must thin substrate

Via spacing too large~100 um for 100 um substrate not dense enough for digital must thin substrate

Line Spacing too largefringing fields line couplingW> 3h typically required not dense enough for digital must thin substrate

Problems with Substrate Microstrip Wiring for 100 GHz Digital

Thin semiconductor substrates: breakage, lapping to 35 um ?!Best solution: microstrip on spin-on polymer dielectrics.

Page 25: Interconnects in 50-100 GHz Integrated Circuits M.J.W Rodwell, S. Krishnan, M. Urteaga, Z. Griffith, M. Dahlström, Y. Wei, D. Scott, N. Parthasarathy,

Low via inductance0.6 pH for 5 m substratej0.4@ 100 GHz

Small Via dimensions4 m x 4 mm; dense integration

Low line-to-line couplingDense integration

Low eff, high wave velocityLow time-of flight delays

Well-controlled ZO

Good for CAD modeling

Top-side Thin-dielectric Microstrip Wiring for 100 GHz digital

Low r

S.I. Substrate

Via Via

Drawbacks• Added process complexity/cost• Capacitive low impedance lines• Lower current carrying capacity with narrow conductors• Substrate and parallel plate modes still present for packaged ICs

Ground Plane

Page 26: Interconnects in 50-100 GHz Integrated Circuits M.J.W Rodwell, S. Krishnan, M. Urteaga, Z. Griffith, M. Dahlström, Y. Wei, D. Scott, N. Parthasarathy,

Packaging Thin-dielectric Microstrip Circuits

Thinned wafer with substrate Vias: Kills ground bounce & substrate modesWafer lapped & thinned to 75 umVias to backside ground plane & package ground200 m via spacing suppresses all DC-200 GHz substrate resonant modes

thinned (75 um)semi-insulatingInP substrate

BCB (5 um thick)

plated top-surface ground plane

circuits

plated back-surface ground plane

via

circuits

via

package ground

solder bond

< d /2

Page 27: Interconnects in 50-100 GHz Integrated Circuits M.J.W Rodwell, S. Krishnan, M. Urteaga, Z. Griffith, M. Dahlström, Y. Wei, D. Scott, N. Parthasarathy,

IC Results: 87 GHz HBT Master-Slave Latch

Static frequency division to 87 GHz

InP /InGaAs/InP mesa-DHBT Technology

Wiring Process Flow

Two-levels of topside interconnects, NiCr resistors, MIM capacitors

Spin 6 m BCB dielectric

Via etch/planarization etchback to 5 m

Patterned Au electroplating of IC ground planes, and probe pads.

PK Sundararajan, Zach Griffith

-0.2

-0.18

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

22 22.02 22.04 22.06 22.08 22.1 22.12 22.14

87 GHz input, 43.5 GHz output

Vo

ut (

Vol

ts)

time (nsec)

UCSB

IC photograph before and after plating ground plane

Page 28: Interconnects in 50-100 GHz Integrated Circuits M.J.W Rodwell, S. Krishnan, M. Urteaga, Z. Griffith, M. Dahlström, Y. Wei, D. Scott, N. Parthasarathy,

TechnologyInP /InGaAs/InP mesa-DHBT 400 Å base, 2000 Å collector, 9 V BVCEO, 200 GHz ft, 180 GHz fmax2.5 x 105 A/cm2 operationThin-dielectric microstrip wiring

Designsimple 2nd-order gm-C topologycomparator is 87 GHz MSS latchintegration by capacitive loads 3-stage comparator, RTZ gated DAC

Results133 dB (1 Hz) SNR at 74 MHzequivalent to ~8.8 bits at 200 MS/s

UCSBPK Sundararajan, Zach Griffith

975 kHz FFT bin size8 GHz clock rate65.5 MHz signal64:1 oversampling ratio

IC Results: 8 GHz ADC

IC photograph before and after plating ground plane

Page 29: Interconnects in 50-100 GHz Integrated Circuits M.J.W Rodwell, S. Krishnan, M. Urteaga, Z. Griffith, M. Dahlström, Y. Wei, D. Scott, N. Parthasarathy,

High performance III-V devices require high performance wiring environments

Accurate on-wafer device measurements require known ZO with single-mode propagation

MIMIC designs require well-modeled wiring with low ground access inductance

Mixed-signal ICs require high-levels of integration and a low eff wiring environment

Wafer thinning is required to avoid substrate and parallel-plate modes in packaged ICs

Conclusions