40
Interactive acoustic modeling of virtual environments Nicolas Tsingos Nicolas Tsingos REVES-INRIA REVES-INRIA

Interactive acoustic modeling of virtual environments Nicolas Tsingos Nicolas TsingosREVES-INRIA

Embed Size (px)

Citation preview

Page 1: Interactive acoustic modeling of virtual environments Nicolas Tsingos Nicolas TsingosREVES-INRIA

Interactive acoustic modeling

of virtual environments

Interactive acoustic modeling

of virtual environments

Nicolas Tsingos Nicolas Tsingos

REVES-INRIAREVES-INRIA

Page 2: Interactive acoustic modeling of virtual environments Nicolas Tsingos Nicolas TsingosREVES-INRIA

Acoustics in virtual environmentsAcoustics in virtual environments

Goal: realistic sound in virtual Goal: realistic sound in virtual environments environments

Evans & Sutherland Avery Fisher HallId Software

Drivingsimulator

Concert hall design

Videogame

Page 3: Interactive acoustic modeling of virtual environments Nicolas Tsingos Nicolas TsingosREVES-INRIA

Geometrical acousticsGeometrical acoustics

Represent sound waves as ray pathsRepresent sound waves as ray paths

ray paths

Page 4: Interactive acoustic modeling of virtual environments Nicolas Tsingos Nicolas TsingosREVES-INRIA

Problem: modeling diffractionProblem: modeling diffraction

Current geometric methods ignore Current geometric methods ignore diffractiondiffraction

Newton’s “Principia” (1686)

Page 5: Interactive acoustic modeling of virtual environments Nicolas Tsingos Nicolas TsingosREVES-INRIA

Problem: modeling diffractionProblem: modeling diffraction

Ignoring diffraction causes discontinuitiesIgnoring diffraction causes discontinuities

Page 6: Interactive acoustic modeling of virtual environments Nicolas Tsingos Nicolas TsingosREVES-INRIA

A problem: sound diffractionA problem: sound diffractionIgnoring diffraction causes discontinuitiesIgnoring diffraction causes discontinuities

Page 7: Interactive acoustic modeling of virtual environments Nicolas Tsingos Nicolas TsingosREVES-INRIA

OutlineOutline

• Possible approachesPossible approaches

• Beam tracing algorithmBeam tracing algorithm

•Experimental results

•Conclusion

Page 8: Interactive acoustic modeling of virtual environments Nicolas Tsingos Nicolas TsingosREVES-INRIA

Possible approachesPossible approaches

• Wave formulationWave formulation

• Huygens-Fresnel theoryHuygens-Fresnel theory

• Fresnel ellipsoidsFresnel ellipsoids

• Geometrical theory of diffractionGeometrical theory of diffraction

Page 9: Interactive acoustic modeling of virtual environments Nicolas Tsingos Nicolas TsingosREVES-INRIA

Possible approachesPossible approaches

•Wave formulation

•Huygens-Fresnel theory

•Fresnel ellipsoids

• Geometrical theory of diffractionGeometrical theory of diffraction

Equal anglesEqual angles

source

listener

Page 10: Interactive acoustic modeling of virtual environments Nicolas Tsingos Nicolas TsingosREVES-INRIA

Geometrical Theory of DiffractionGeometrical Theory of Diffraction• Each sequence of diffracting edges Each sequence of diffracting edges

and reflecting surfaces is modeled by and reflecting surfaces is modeled by a single shortest patha single shortest path

• At each edge, the acoustic field is At each edge, the acoustic field is modulated by a diffraction coefficient modulated by a diffraction coefficient

source

listener

Page 11: Interactive acoustic modeling of virtual environments Nicolas Tsingos Nicolas TsingosREVES-INRIA

Problem to solveProblem to solve

Efficient enumeration and Efficient enumeration and construction of diffracted and construction of diffracted and reflected paths in polygonal reflected paths in polygonal environmentsenvironments

Page 12: Interactive acoustic modeling of virtual environments Nicolas Tsingos Nicolas TsingosREVES-INRIA

OutlineOutline

•Motivation for diffraction

•Possible approaches

• Beam tracing algorithmBeam tracing algorithm

•Experimental results

•Conclusion

Page 13: Interactive acoustic modeling of virtual environments Nicolas Tsingos Nicolas TsingosREVES-INRIA

Example beam tracingExample beam tracing

Page 14: Interactive acoustic modeling of virtual environments Nicolas Tsingos Nicolas TsingosREVES-INRIA

Example beam tracingExample beam tracing

Page 15: Interactive acoustic modeling of virtual environments Nicolas Tsingos Nicolas TsingosREVES-INRIA

Example beam tracingExample beam tracing

Page 16: Interactive acoustic modeling of virtual environments Nicolas Tsingos Nicolas TsingosREVES-INRIA

Example beam tracingExample beam tracing

Page 17: Interactive acoustic modeling of virtual environments Nicolas Tsingos Nicolas TsingosREVES-INRIA

Example beam tracingExample beam tracing

Page 18: Interactive acoustic modeling of virtual environments Nicolas Tsingos Nicolas TsingosREVES-INRIA

Example beam tracingExample beam tracing

Page 19: Interactive acoustic modeling of virtual environments Nicolas Tsingos Nicolas TsingosREVES-INRIA

Example beam tracingExample beam tracing

Page 20: Interactive acoustic modeling of virtual environments Nicolas Tsingos Nicolas TsingosREVES-INRIA

Example beam tracingExample beam tracing

Page 21: Interactive acoustic modeling of virtual environments Nicolas Tsingos Nicolas TsingosREVES-INRIA

Example beam tracingExample beam tracing

Page 22: Interactive acoustic modeling of virtual environments Nicolas Tsingos Nicolas TsingosREVES-INRIA

Example beam tracingExample beam tracing

Page 23: Interactive acoustic modeling of virtual environments Nicolas Tsingos Nicolas TsingosREVES-INRIA

Example beam tracingExample beam tracing

Page 24: Interactive acoustic modeling of virtual environments Nicolas Tsingos Nicolas TsingosREVES-INRIA

Example beam tracingExample beam tracing

Page 25: Interactive acoustic modeling of virtual environments Nicolas Tsingos Nicolas TsingosREVES-INRIA

Example beam tracingExample beam tracing

Page 26: Interactive acoustic modeling of virtual environments Nicolas Tsingos Nicolas TsingosREVES-INRIA

Example beam tracingExample beam tracing

Page 27: Interactive acoustic modeling of virtual environments Nicolas Tsingos Nicolas TsingosREVES-INRIA

OutlineOutline

•Motivation for diffraction

•Possible approaches

•Beam tracing algorithm

• Experimental resultsExperimental results

•Conclusion

Page 28: Interactive acoustic modeling of virtual environments Nicolas Tsingos Nicolas TsingosREVES-INRIA

Experimental resultsExperimental results

Evaluate sound field continuity in a Evaluate sound field continuity in a complex environmentcomplex environment

source

listener

~1800 polygons

Page 29: Interactive acoustic modeling of virtual environments Nicolas Tsingos Nicolas TsingosREVES-INRIA

Experimental resultsExperimental results

Position along path

Power (dB)

100

50

Page 30: Interactive acoustic modeling of virtual environments Nicolas Tsingos Nicolas TsingosREVES-INRIA

Reflection onlyReflection only

Discontinuities

Position along path

Power (dB)

50

100

Page 31: Interactive acoustic modeling of virtual environments Nicolas Tsingos Nicolas TsingosREVES-INRIA

Diffraction onlyDiffraction only

Position along path

Power (dB)

100

50

Continuous but low power

Page 32: Interactive acoustic modeling of virtual environments Nicolas Tsingos Nicolas TsingosREVES-INRIA

Reflection and diffractionReflection and diffraction

Continuous reverberant soundPosition along path

Power (dB)

100

50

Page 33: Interactive acoustic modeling of virtual environments Nicolas Tsingos Nicolas TsingosREVES-INRIA

ApplicationsApplications

• TelepresenceTelepresence

• Video gamesVideo games

• Audio-visual productionAudio-visual production

• Acoustic simulation of listening Acoustic simulation of listening spacesspaces

Page 34: Interactive acoustic modeling of virtual environments Nicolas Tsingos Nicolas TsingosREVES-INRIA

VideoVideo

PerformancePerformance•Paths updated 20 times per second

(R10k, 195 MHz)

Page 35: Interactive acoustic modeling of virtual environments Nicolas Tsingos Nicolas TsingosREVES-INRIA

ConclusionConclusion

• A beam tracing algorithmA beam tracing algorithm•Efficient calculation of sound reflection and

diffraction

•Scales well to large architectural environments

•Fast enough to support real-time audio rendering

Page 36: Interactive acoustic modeling of virtual environments Nicolas Tsingos Nicolas TsingosREVES-INRIA

ConclusionConclusion

Diffraction …Diffraction …

• is an important acoustical effectis an important acoustical effect

• smoothes discontinuitiessmoothes discontinuities

• should be included in geometry-should be included in geometry-based acoustic simulationbased acoustic simulation

Page 37: Interactive acoustic modeling of virtual environments Nicolas Tsingos Nicolas TsingosREVES-INRIA

Future workFuture work

• Signal processingSignal processing• DSP hardware and software APIs

• ValidationValidation• Measurements

• PsychoacousticsPsychoacoustics•Listening tests

Page 38: Interactive acoustic modeling of virtual environments Nicolas Tsingos Nicolas TsingosREVES-INRIA

Future workFuture work

• Signal processingSignal processing• DSP hardware and software APIs

• ValidationValidation• Measurements

• PsychoacousticsPsychoacoustics•Listening tests

source

wall panel

Page 39: Interactive acoustic modeling of virtual environments Nicolas Tsingos Nicolas TsingosREVES-INRIA

Validation in the “Bell Labs Box”Validation in the “Bell Labs Box”

Page 40: Interactive acoustic modeling of virtual environments Nicolas Tsingos Nicolas TsingosREVES-INRIA

Want to know more ?Want to know more ?

http://www-sop.inria.fr/reveshttp://www-sop.inria.fr/reves