3
Features Integrity testing of hydrophobic membrane fdters Sartorius replaces solvent-based testing with new water pressure integrity test. Solvent-based integrity testing of hydrophobic filters used in pharmaceutical and biological applications is difficult to perform in situ following sterilization because of the risk of downstream solvent contamination. Sartorius has developed an alternative test method m the Water Pressure Integrity Test m which overcomes this difficulty and is claimed to be easy to perform, sensitive and reliable. Sterilizing grade hydrophobic filters are utilized for the sterile filtration of air streams and gases in many pharmaceutical and biological applications. The integrity of these filters and their ability to retain bacteria are traditionally correlated to a non-destructive integrity test, Current methods require the use of solvents (ethanol, isopropanol, freon) to wet the membranes in order to perform bubble point and diffusion integrity tests and the use of these solvents poses several problems. In situ integrity testing using solvent wetted membranes requires elaborate bypass valve systems to prevent downstream contamination by solvent residuals. After testing great care must be taken to assure complete removal of the solvents. Solvents may reduce the active filtration area through particulate mediated membrane fouling, reducing filter performance and potentially leading to damage of the vented vessel. Here also, incomplete solvent removal during drying can cause the filter to rewet, rendering it hydrophilic and no longer capable of acting as a hydrophobic vent. For these reasons solvent integrity is usually not performed in situ post sterilization, but rather presterflization. Then, sterility assurance can only be guaranteed if a filter integrity test is performed immediately prior to use but it proves extremely difficult to perform the required test and to install the filter assembly on the process equipment aseptically. To overcome these problems a team at Sartorius (2) has been developing and testing an alternative integrity testing method based on water intrusion and penetration. Their work has shown that the 'Water Pressure Integrity Test' (WPIT) may be performed in sltu post sterillzation without any downstream manipulations and can be directly correlated to the retention of bacterial challenges. Other advantages claimed for W~IT include: applicability to any venting or gas filtration system filters can be tested after steaming or autoclaving in situ insensitivity to temperature fluctuations ability to test in hard to reach locations simplicity of testing routine Background theory The water pressure integrity test is based on the same principles as the 'Mercury Intrusion' test. By definition, hydrophobic membranes resist wetting by water. The water repellant forces may be overcome through the use of sufficient pressure to 'wet out' the pores. The force required is related to the pore diameter: 4 o cos 0 D= xK P where D is pore diameter, o is the surface tension (dynes/cm), 0 is the contact angle, p is absolute pressure, and K is a correction factor (capillary to membrane pore). As can be seen, the pore size is inversely proportional to the pressure required to wet or intrude the capillary. In practice this means that the upstream volume of the housing or tilter must be completely flooded, then pressure applied and the rate of water permeation determined. Water permeation or intrusion is seen as an upstream pressure drop. The pressure drop can be converted into a diffusional flow which can be used to determine the integrity of the membrane. The limited compressibility of water means that any permeation of water through the membrane unlike air diffusion during the traditional pressure hold tests -- will exhibit itself as a relatively large (volume dependent] pressure drop. This is the basis for the sensitivity and accuracy of the new test method. Development and proving The Sartorius team has undertaken an extensive series of tests as part of its development programme and some of the main features and results are described below. Full details of the development programme, covering methods, results and analysis -- stabilization time, selectivity, environmental influences, comparison with the traditional diffusion test, correlation with the destructive bacterial challenge integrity test -- are available from Sartorius. (2) Mlchael Dosmar, Peter Wolber, Karl Bracht, Helmut Tr6ger and Peter Walbel. 6 Membrane Technology

Integrity testing of hydrophobic membrane filters

  • Upload
    lyanh

  • View
    242

  • Download
    5

Embed Size (px)

Citation preview

Page 1: Integrity testing of hydrophobic membrane filters

F e a t u r e s

Integrity testing of hydrophobic membrane fdters Sartorius replaces so lvent -based t e s t ing with new water pressure integri ty tes t . So lvent -based integri ty t e s t ing of hydrophobic filters used in pharmaceut ica l and biological appl icat ions is difficult to perform in s i tu fo l lowing s ter i l izat ion because o f the risk of downstream s o l v e n t c o n t a m i n a t i o n . Sartorius has deve loped an a l ternat ive tes t m e t h o d m the Water Pressure Integrity Test m which o v e r c o m e s th i s diff iculty and is c la imed to be e a s y to perform, sens i t ive and reliable.

Ster i l iz ing g r a d e h y d r o p h o b i c f i l ters a re u t i l i zed for t he s te r i l e f i l t ra t ion of a i r s t r e a m s a n d g a s e s in m a n y p h a r m a c e u t i c a l a n d bio logica l a p p l i c a t i o n s . The in t eg r i ty of t h e s e f i l ters a n d the i r ability to r e t a i n b a c t e r i a a r e t r a d i t i o n a l l y c o r r e l a t e d to a n o n - d e s t r u c t i v e in t eg r i ty tes t , C u r r e n t m e t h o d s r equ i r e t h e u s e of so lven t s (e thanol , i s o p r o p a n o l , freon) to we t the m e m b r a n e s in o rde r to pe r fo rm b u b b l e p o i n t a n d d i f fus ion in t eg r i t y t e s t s a n d the u s e of t h e s e so lven t s p o s e s seve ra l p r o b l e m s .

In s i tu i n t eg r i t y t e s t i ng u s i n g so lven t we t t ed m e m b r a n e s r e q u i r e s e l a b o r a t e b y p a s s valve s y s t e m s to p r e v e n t d o w n s t r e a m c o n t a m i n a t i o n b y so lven t r e s i d u a l s . After t e s t i n g g r e a t ca re m u s t be t a k e n to a s s u r e comple t e r emova l of t he so lvents . So lven t s m a y r e d u c e the ac t ive f i l t ra t ion a r e a t h r o u g h p a r t i c u l a t e m e d i a t e d m e m b r a n e fouling, r e d u c i n g filter p e r f o r m a n c e a n d p o t e n t i a l l y l e ad i ng to d a m a g e of t he v e n t e d vessel . Here a lso , i n c o m p l e t e so lven t r e m o v a l d u r i n g d ry ing can c a u s e t he filter to rewet , r e n d e r i n g i t h y d r o p h i l i c a n d no longer c a p a b l e of a c t i n g a s a h y d r o p h o b i c vent .

For t h e s e r e a s o n s so lven t in tegr i ty is u s u a l l y n o t p e r f o r m e d in s i tu post s te r i l i za t ion , b u t r a t h e r presterflization. Then, s te r i l i ty a s s u r a n c e c a n on ly be g u a r a n t e e d if a fi l ter i n t eg r i t y t e s t is p e r f o r m e d i m m e d i a t e l y p r io r to u s e b u t i t p roves e x t r e m e l y

diff icult to pe r fo rm the r e q u i r e d t e s t a n d to ins ta l l the filter a s s e m b l y on the p r o c e s s e q u i p m e n t a sep t i ca l ly .

To overcome t h e s e p r o b l e m s a t e a m a t S a r t o r i u s (2) h a s b e e n deve lop ing a n d t e s t i ng a n a l t e rna t i ve in t eg r i ty t e s t i ng m e t h o d b a s e d on wa te r i n t r u s i o n a n d p e n e t r a t i o n . Their work h a s s h o w n t h a t t he 'Water P r e s s u r e In tegr i ty Test ' (WPIT) m a y be p e r f o r m e d in s l tu p o s t s t e r i l l za t ion w i t h o u t a n y d o w n s t r e a m m a n i p u l a t i o n s a n d c a n b e d i rec t ly co r r e l a t ed to the r e t e n t i o n of b a c t e r i a l cha l l enges . O the r a d v a n t a g e s c l a imed for W~IT inc lude : • app l i c ab i l i t y to a n y ven t ing or

gas f i l t ra t ion s y s t e m • f i l ters c a n be t e s t e d af ter

s t e a m i n g or au toc l av ing in s i tu • i n sens i t i v i t y to t e m p e r a t u r e

f l u c t u a t i o n s • ab i l i ty to t e s t in h a r d to r e a c h

l oca t i ons • s impl i c i ty of t e s t i ng rou t i ne

Background theory The wa te r p r e s s u r e in t eg r i ty t e s t is b a s e d on the s a m e p r inc ip l e s a s the 'Mercu ry I n t r u s i o n ' tes t . By def ini t ion, h y d r o p h o b i c m e m b r a n e s r e s i s t we t t ing b y water . The wa te r r e p e l l a n t forces m a y b e overcome t h r o u g h the u s e of suf f ic ient p r e s s u r e to 'wet out '

t he pores . The force r e q u i r e d is r e l a t e d to t he po re d i ame te r :

4 o cos 0 D = x K

P

w h e r e D is po re d iamete r , o is t he s u r f a c e t e n s i o n ( d y n e s / c m ) , 0 is t h e c o n t a c t angle , p is a b s o l u t e pressure, a n d K is a co r r ec t i on fac tor ( cap i l l a ry to m e m b r a n e pore). As c a n be seen , t he pore size is i nve r se ly p r o p o r t i o n a l to the pressure r e q u i r e d to wet or i n t r u d e the capi l la ry . In p rac t i ce th i s m e a n s t h a t t he u p s t r e a m vo lume of t he h o u s i n g or t i l ter m u s t b e c o m p l e t e l y f looded, t h e n p r e s s u r e a p p l i e d a n d the r a t e of w a t e r p e r m e a t i o n d e t e r m i n e d .

Wate r p e r m e a t i o n or i n t r u s i o n is s een a s a n u p s t r e a m p r e s s u r e drop . The p r e s s u r e d rop c a n be conve r t ed into a d i f fus iona l flow w h i c h c a n b e u s e d to d e t e r m i n e the i n t eg r i t y of t h e m e m b r a n e . The l imi ted c o m p r e s s i b i l i t y of w a t e r m e a n s t h a t a n y p e r m e a t i o n of w a t e r t h r o u g h t h e m e m b r a n e u n l i k e a i r d i f fus ion d u r i n g the t r a d i t i o n a l p r e s s u r e ho ld t e s t s - - will exh ib i t i t se l f a s a r e la t ive ly la rge (volume d e p e n d e n t ] p r e s s u r e drop . This is t he b a s i s for t he s ens i t i v i t y a n d a c c u r a c y of the n e w t e s t m e t h o d .

Development and proving The S a r t o r i u s t e a m h a s u n d e r t a k e n a n ex tens ive se r i e s of t e s t s a s p a r t of i t s d e v e l o p m e n t p r o g r a m m e a n d s o m e of t he m a i n f e a t u r e s a n d r e s u l t s a r e d e s c r i b e d below. Fu l l de t a i l s of t h e d e v e l o p m e n t p r o g r a m m e , cover ing m e t h o d s , r e s u l t s a n d a n a l y s i s - - s t a b i l i z a t i on t ime, select ivi ty , e n v i r o n m e n t a l i n f luences , c o m p a r i s o n wi th t he t r a d i t i o n a l d i f fus ion tes t , co r r e l a t i on wi th t he d e s t r u c t i v e b a c t e r i a l cha l l enge in t eg r i ty t e s t - - a r e ava i l ab le f rom S a r t o r i u s .

(2) Mlchael Dosmar, Peter Wolber, Karl Bracht, Helmut Tr6ger and Peter Walbel.

6 Membrane Technology

Page 2: Integrity testing of hydrophobic membrane filters

F e a t u r e s

Diffusion (ml/lO rain) 300

25O

200

180

100

80

0 0

Intrusion Poi~ /

/ Diffusion / .J

2 3 4 Pressure (bar) l 5 6

Figure 1: Results f rom a water intrusion test on a Sartofluor GA 0.2 w-n fllter cartridge.

Water P e n e t r a t i o n P ressu re (bar )

6 -

_

2

0 1 2 3 4 5

Cartridge Number

0 . 4 5 m }J ~ 0 . 2 m p

Figure 2: Water penetration values obtalned f rom a series of tests on 0.2 ~m and 0.45 ~m SartoJluor GA fllter cartridges.

Tes t s were p e r f o r m e d on Sa r to f l uo r GA 0.2 ~rn a n d 0.45 ~m fil ter c a r t r i d g e s t a k e n f rom a va r i e ty of p r o d u c t i o n lots . These c a r t r i d g e s a r e c o n s t r u c t e d wi th Gore e x p a n d e d PTFE m e m b r a n e s . A d r y ca r t r i dge w a s i n s e r t e d into a h o u s i n g a n d the u p s t r e a m vo lume w a s fi l led w i th water . A S a r t o c h e c k II a u t o m a t i c fi l ter i n t eg r i t y tester w a s u s e d to con t ro l a n d m o n i t o r t he p r e s s u r e t e s t a n d p r o g r a m m e d to m e a s u r e wa te r i n t r u s i o n a s a p e r m e a t i n g flow over a r a n g e of p r e s s u r e s .

In t he t e s t i n g t e rmino logy , water intrusion is t he po in t w h e r e w a t e r forc ibly s t a r t s to en t e r a n d p e r m e a t e t he po re s t r u c t u r e , The p e r m e a t i o n of w a t e r d u r i n g the i n t r u s i o n s t age in i t ia l ly s h o w s a l i nea r r e s p o n s e to i n c r e a s i n g p r e s s u r e (Figure 1). For t he 0 .2 ~m fil ters, for example , t he r a t e of w a t e r i n t r u s i o n i n c r e a s e s l i nea r ly wi th i n c r e a s i n g p r e s s u r e u p to a b o u t 3 .7 bar , w h e n t h e r e is a r a p i d i n c r e a s e in flow a n d wa te r p e n e t r a t i o n beg ins . The water penetration va lue (4.5 ba r ) is w h e r e t he m e m b r a n e b e c o m e s we t t ed a n d free w a t e r flow begins .

For a n y in t eg r i ty t e s t to be use fu l i t m u s t be ab l e to d e t e r m i n e g r o s s f a i lu res a n d a lso b e ab le to d i s t i n g u i s h the d i f ference b e t w e e n a d j a c e n t po re s izes . The in t eg r i t y t e s t for a 0 .2 ~m m e m b r a n e m u s t the re fo re be ab le to recognize une qu ivoca l l y a 0 .45 ~m m e m b r a n e a s a n in t eg r i ty fa i lure . F igu re 2 s h o w s t h a t t h e r e is a n u n m i s t a k e a b l e d i f ference b e t w e e n the w a t e r p e n e t r a t i o n v a l u e s of 0 .45 ~-n a n d 0.2 ~m fi l ters a n d th i s is a re l i ab le b a s i s for d i f fe rent ia t ion . F u r t h e r ev idence of th i s is g iven in Table 1, w h i c h c o m p a r e s w a t e r i n t r u s i o n v a l u e s o b t a i n e d for 0.2 ~un a n d 0 .45 ~m m e m b r a n e c a r t r i dges u n d e r t he t e s t c ond i t i ons spec i f ied for t he 0 .2 ~m pore size (Table 2)

The t e s t i ng p a r a m e t e r s p r e s e n t e d In Table 2 a r e p r e s e n t e d for gene ra l i n f o r m a t i o n only. One c a n n o t a s s u m e t h a t t h e s e va lue s a r e va l id for f i l ters of o t h e r origin. The m a x / m u m i n t r u s i o n a l flow v a l u e s a r e r e l a t e d to m a x i m u m flows for s te r i l e f i l t ra tes o b t a i n e d

M e m b r a n e Technology 7

Page 3: Integrity testing of hydrophobic membrane filters

Features

Table 1. Results of testlng both fllters under the conditions suggested for testing the 0.2 ~m cartridge.

M e m b r a n e p o r e s ize (~trn) W a t e r i n t r u s i o n v a l u e s ( m l / i 0 min )

P a s s / fal l i n t e g r i t y t e s t

0 .2

0 . 4 5

9 P a s s 8 P a s s i 0 P a s s 9 P a s s 10 P a s s

3 4 0 Fa i l 3 1 0 Fa l l 3 4 0 Fa i l 2 0 0 Fa i l 2 2 0 Fa i l

Table 2. Testing parameters established for Sartorlus 0.2 I~m Sartofluor GA filter cartridges.

Tes t c o n d i t i o n s

M a x i m u m i n t r u s i o n a l f low

S o l u t i o n P r e s s u r e S t a b i l i z a t i o n t ime Tes t t i m e

0. i m 2 c a p s u l e 0 .2 m 2 c a p s u l e

i0" S a r t o f l u o r GA 20" S a r t o f l u o r GA 30" S a r t o f l u o r GA

W a t e r 20°C 2.5 b a r (36 ps i ) 5 to 10 m i n u t e s 10 m i n u t e s

4 m l / 1 0 m i n 6 m l / 1 0 m i n 15 m l / 1 0 m i n 30 m l / 1 0 m i n 45 ml / I 0 m i n

from destruct ive bacter ia l challenge integri ty tests .

A final series of comparat ive tes ts were u n d e r t a k e n to es tabl i sh tha t WPIT was as sensi t ive and accura te as the cur ren t diffusion tes t method. All filters meet ing the specificat ions for the diffusion tes t also met the specif icat ions for WPIT. Fur thermore , those filters outside the cri ter ia for re lease for either tes t also failed the bacter ia l challenge.

Summary The water p ressu re integri ty tes t e l iminates many of the obstacles presented by t radi t ional integri ty tests. WPIT has been shown to be an accura te and reproducible tes t in evaluat ing hydrophobic membrane filter cartr idges.

Patents This is a list of recent ly publ i shed pa ten t s covering des igns and inventions of re levance to synthet ic m e m b r a n e technology. Where the same device has been pa ten ted in several countr ies , we normal ly give the Bri t ish pa ten t number . If there is no UK patent , we give the n u m b e r of an English- language patent , if one exists.

The pa ten t s l ist is compiled from in te rna t iona l sources by BHR Group 's informat ion service. The facility can also be used to carry out retrospect ive pa ten t searches - - to tes t the validity, novelty or infr ingement of existing pa ten ts or new ideas. BHR Group Cranfleld, Bedford MK43 0AJ, UK, will provide free es t imates on request .

Countr ies can be identified by the code in front of the number as follows:

AT Austria AU Australia BE Belgium BR Brazil CH Switzerland DD East Germany DE West Germany DK Denmark EP European Patent ES Spain FI Finland FR France GB Britain HU Hungary IL Israel IR Eire IT Italy JP Japan KP North Korea LI Liechtenstein LU Luxembourg NL Netherlands NO Norway RO Romania SE Sweden US United States SU Soviet Union WO World Patent

(Patent Treaty Cooperation publication)

BHR Group does not operate a documen t delivery service for pa tents , b u t full copies of the original pa ten t documen t s can be ob ta ined from the following addresses :

The Bri t ish Library Patent Express 25 S o u t h a m p t o n Buildings London WC2A IAW, UK Fax: 071 323 7230

(The Bri t ish Library will also supp ly a list of UK l ibraries inc luded in the Patent Information Network.)

US Patent Office Scientific Library 15th and Eas t Streets , NW Washington, DC 20231, USA

8 M e m b r a n e Technology