Integration of Nonlinear Equations of Mathematical Physics by Method of Inverse Scattering Method I

Embed Size (px)

Citation preview

  • 8/4/2019 Integration of Nonlinear Equations of Mathematical Physics by Method of Inverse Scattering Method I

    1/10

    A S C H E M E F O R I N T E G R A T I N G T H E N O N L I N E A RO F M A T H E M A T I C A L P H Y S I C S B Y T H E M E T H O DO F T H E I N V E R S E S C A T T E R I N G P R O B L E M . I

    V. E . Zakh arov and A. B . Shab a t

    E Q U A T I O N S

    1 . G e n e r a l O u t l i n e o f t h e M e t h o dIn 1967 a grou p of Princ eton the oret ical physi cists (Garduer, Green, K ruskal, and Miura [1]) dis-

    covere d a new method of mathem atical physics, the method of the inverse sca tte rin gpr obl em. The newmethod enabled its inventors to integrate an equation long known in the theory of nonlinear waves, namely,the Korte weg -de Vri es (KV) equation

    ut + uu= ux=,, = O' (1 )In 1970 the aut hors of the pre sen t pape r, using ideas advanc ed in a paper by P. Lax [2], integ rated

    (see [3, 4]), with the aid of the inve rse probl em method, the equationiu t -4- u== -4- lu l ~ u = 0 , (2)

    also widely used in the physics of waves in nonlinear media. In the succeedin g ye ar s new examp les w erefound of nonlinear equations in tegra ble by the inve rse probl em method, over twenty of them having physicalmeaning (for a survey of inte grabl e equations, see [5]).

    In the present paper we give a general scheme for applying the inverse scatteri ng problem method tointegrate nonlinear differential equations,and we also present an algorithm for f inding equations which canbe so integra ted. The original ver sio n of this sch eme was prese nted by one of us in [6].

    We cons ider a linear integ ral oper ator F acting on vector-v alued functions = {1 .. .. g:N} of thevaria ble x( -~ < x < + ~)

    P~ = ~ F (x, z) ~ (z) dz. (3)The vecto r and the N x N matrix -funct ion F depend additionally on the two pa ra me te rs t and y.quel we assume that

    In the se-

    sup ~ I F (x, z ) I dz < ~ fo r all xo > -- ~. (4)x~xo x o

    We consider the problem of repres enting the operator F in the following "factorize d" form:t + P = ( t + k ) - 1 ( t + ~ _ ) ; ( 5 )

    Here I~+ and K are Vo lt er ra op er at or s, whe re K+Cx, z) = 0 for z < x, and K_(x, z) = 0 for z > x. The op-er at or 1 + K+ is in ver tib le. Multiplying Eq. (5) by 1 + K+ and assu min g z > x, we can ver ify tha t the ke rnelK+ satisfies the Gel 'f and- Levi tan equation

    L. D. Landau Institute of Theoretic al Ph ysics. Bashkir State University. Translated fr om Funkt-sion al'n yi Analiz i Ego l>rilozheniya, Vol. 8, No. 3, pp. 43-53, July-Sep tember , 1974. Original ar ticle sub -mitted March 14, 1974.

    19 75 Plenum Publishing Corporation, 22 7 West 17th Street, N ew York, N. Y. 10011. No part of this publication m ay be reproduced,stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming,recording or otherwise, without written permission o f the publisher. A copy of this article is available from the publisher for $15,00.

    226

  • 8/4/2019 Integration of Nonlinear Equations of Mathematical Physics by Method of Inverse Scattering Method I

    2/10

    eo

    ~" (x, z) "4- K , (x, z) I K+ (x, s) F (s, z) as = 0.x

    (6)

    F u r t h e r , a s s u m i n g z < x , w e o b t a i n K _ ( x, z) :

    K (x, z) = F (x , z ) ~ K+ (x , s) F (s , z ) ds .x

    : I f E q . ( 6 ) i s s o l v a b l e ( a s u f f i c i e n t c o n d i t i o n f o r w h i c h , f o r e x a m p l e , i s t h e p o s s i b i l i t y o f r e p r e s e n t i n g t h ek e r n e l F in t h e f o r m F = F I + F 2, w h e r e F 1 i s a p o s i t i v e o p e r a t o r a n d fl F 21I < 1 ) , t h e n t h e k e r n e l s K + a n d K _a l s o s a t i s f y t h e c o n d i t i o n ( 4 ). W e d e f i n e o n t h e f u n c t i o n s ( x , t , y ) t h e o p e r a t o r :

    O O ~ O= ~ - ~ z - + ~ % - + o., o ,, = z- 5 7- ..H e r e a a n d fl a r e c o n s t a n t s a n d l i s a c o n s t a n t m a t r i x . W e c o n s i d e r t h e c l a s s o f d i f f e r e n t i a l o p e r a t o r s

    , e , ,M , c o n n e c t e d w i th M b y th e t r a n s f o r m a t i o n. ~ = ( t + K + ) .W ( i + g + ) - L (7 )

    w i t h a V o l t e r r a [ s e e E q . (5 )] o p e r a t o r o f t h e t r a n s f o r m a t i o n 1 + K + . M u l t i p ly i n g E q . ( 7) on t h e l e f t b y ( 1 +K + ) , w e o b t a i n

    . ~ ( t + R + ) - ( i + k + ) . ~ = o . ( 8 )T h e c o n d i t i o n o f e q u a t i n g to z e r o t h e d i f f e r e n t i a l p a r t s i n t h e o p e r a t o r r e l a t i o n (8) e n a b l e s u s t o c a l c u l a t eM :

    0 0~ = a -~ - + ~ -~-~ + /~ ,, , n - - 1On On-~-1L , = t O 7 + ~ ' u ~ ( x ) ~ "f f i f f i 0T h e c o e f f i c i e n t s U k(X ) o f t h e o p e r a t o r L c a n b e f o u nd i n t h e f o r m o f a s e t o f r e c u r s i o n r e l a t i o n s

    (9 )

    uo (z) = [Z, ~0],T L"~'-~

    d % + i 1 i d , ~ o ] + ~ d ~ ,u~ (x) = ~ l "-~-z~ T L~, 77zs j l T +t -~- 7~- [ , - ~ - +

    . . . . . , , , , , , , , , , . . . . . , , , , , , , , . ,

    (lO)

    o o ) ' K ( x , z ) [ .... i o ( x ) = K ( x , x ) .e r e ~ (x) = a~ oz

    Since the relation (7) is linea r in M and I~, we can take ~I to be the oper ator0 ~o = ~ , i n 0 "~ . ( 1 1 )

    n

    T h e n ~ . a aa - ~ - + ~ - ~ - + ~ , ' Z = ~ , L n . E q u a t i o n (8 ) then has the f o r mn

    OK+ 0 K ~ a t*a T - t - ~ - - ~ - L K + ~ , ( - - i )"-* ~ g + l , = O . ( 1 2 )

    F o r a g i v e n o p e r a t o r l~I o f t h e t y p e ( 1 1 ) , E q . (1 2) a n d th e c o n d i t i o n ( 10 ) d e f i n e t h e c l a s s o f V o l t e r r a o p e r a t o r s1 + K +, t r a n s f o r m i n g M i n t o i ~.

    2 2 7

  • 8/4/2019 Integration of Nonlinear Equations of Mathematical Physics by Method of Inverse Scattering Method I

    3/10

    T h e f o ll o w i n g t w o t h e o r e m s p l a y a f u n d a m e n t a l r o l e i n t h e s e q u e l .T H E O R E M 1 . I f t h e o p e r a t o r F ; w r i t t e n i n ; th e f o r m ( 5L s a t i s f i e s t h e c o n d i t i o n

    t h e n t h e o p e r a t o r s (1 + ~C ~) ~ w h i c h a c c o m p l i s h t h e f a c t o r i z a t i o n o f F , s a t i s f y t h e r e l a t i o n sM ( i + R e ) - - ( t + / ~ + ) ~ = 0

    (13)

    (14)and are operators transforming l~I into ~ .

    To prove this we write the identity

    ~( t + /~ ) - - ( l+ k ) ~ r = ~ ( i + k + ) ( i + F ) - ( t + k + )( i + ~) ~ / - -= { ~ (i + R+) - (i + k+) ~ ) (i + g) + (i + g+) {~ P - PM}. (15)

    B y v i r t u e o f t h e r e l a t i o n s ( 1 0 ) , t h e d i f f e r e n t i a l o p e r a t o r o n t h e r i g h t s i d e a n d , h e n e e~ a l s o o n th e l e f t s i d e o ft h e i d e n t i t y ( 1 5) is a b s e n t . F o r z > x th e l e f t s i d e i n t h e r e l a t i o n (1 5) v a n i s h e s , a n d f r o m t h e i n v e r t i b i l i t y o fthe ope ra tor 1 + F i t fo l low s tha t ~ ( i + k+) - ( i + R+) ~ f = 0 . Fu r th e r , i t i s obvious tha t ~ ( i h : ) - -(1 + K_) M = 0.

    T H E O R E M 2 . S u p p o s e t h a t t h e o p e r a t o r F s a t i s f i e s s i m u l t a n e o u s l y t h e t w o r e l a t i o n s[~ t , / ? ] = 0 , M,=a~-~i--l-L(ol), (16)[M~,gl = 0,

    H e r e ~ 1 ) a n d L ~2 ) a x e o p e r a t o r s o f t h e f o r m

    0 _L P.(~),M2 ---- ~ ~- 7- ~0 (17 )

    Nt NIL( :'= F l~' o" L~"= ~ z~' 0"s a t i s f y i n g t h e c o n d i t i o n

    [/2 ), Lo(~)]= 0,T h e n t h e o p e r a t o r s L (1) a n d L (2) s a t i s f y t h e r e l a t i o n

    (18)

    I (19)

    ~-~-v0L(I) - a--6T-/'(~) [L (~), ?.(%P r o o f . B y v i r t u e o f T h e o r e m 1 w e h a v e t h e fo l Io w i n g r e l a t i o n s f r o m E q s . ( 17 ):

    (20)

    o + L(', A;/~ = Bo~ + L(') . (21)Writing out the relations (21) in explicit form, applying to the first of them the operator B(3/0y) and to thesecond the operator od0/0t), and then subtracting the second from the first, we obtain

    (8 L

  • 8/4/2019 Integration of Nonlinear Equations of Mathematical Physics by Method of Inverse Scattering Method I

    4/10

    a n d ( 17 ) c a n b e s o l v e d b y t h e F o u r i e r m e t h o d ; E q . ( 19 ) g u a r a n t e e s t h e i r c o m p a t i b i l i t y . T h u s , t o e a c h p a i ro f o p e r a t o r s L ~l ), ~.~2) t h e r e c o r r e s p o n d s a n t n t e g r a b l e s y s t e m o f t h e t y p e ( 2 0) . P u t t i n g a = 0 o r f~ = 0 , w eo b t a i n t h e e q u a t i o n s

    -~-(1) _ iL(~), L(,)], (22)

    a --gi--(~) ---- [L(~) ' ~(1)], (23)w h i c h a r e a l s o n a t u r a l l y r e l a t e d t o t h e g i v e n p a i r o f o p e r a t o r s L ~ ) , (2)L 0 2 . S c a l a r O p e r a t o r s

    A s a f i r s t e x a m p l e o f a n a p p l i c a t i o n o f t h e p r o p o s e d s c h e m e w e c o n s i d e r t h e c a s e o f s c a l a r o p e r a t o r sL . U s i n g s u c h o p e r a t o r s , w e c a n i n t e g r a t e t h e e q u a t i o n s w h i c h a r i s e i n p h y s i c s i n c o n n e c t i o n w i t h p r o b -l e m s c o n c e r n i n g t h e p r o p a g a t i o n o f n o n l i n e a r w a v e s i n m e d i a w it h a w e a k d i s p e r s i o n . I n t h e s c a l a r c a s eE q s . ( 10 ) h a v e t h e f o r m

    n da~o n d dEoU o ( X) = 0, u , ( x ) = n , u , 2 ( x ) = ~ ( n - - 2 ) ~ + , y - ~ - ~ l + n ~ o - ~ - x .F r o m E q s . ( 24 ) i t f o l l o w s t h a t L 1 = L 01. A s t h e f i r s t n o n t r i v i a l o p e r a t o r s w e h a v e

    (24)

    Lo2 = -~-z~ L~ = ~ + u (x), u = 2 ~o (x) = 2 K (x, z) ,o. a a~ 3( 0 Ou ) ~ oLo3 =-g~-~ + ~ - ~ , L3=-g;r~ +-X- u- ~- + 0x + w + 0x '

    3 dw = -~- ~ (~1 + ~) . (25)AT h e c o m m u t a t o r o f t h e o p e r a t o r s L 2, L s h a s t h e f o r m

    [?.2, L3l_= O.~_w w o _ t ~,u~].ox a~ [' T (u~'~ + 6uu~) +AS IVI1, IVl2 w e c o n s i d e r t h e f o l l ow i n g o p e r a t o r s :

    (26)

    0,~1 = a w + Lo3, ~ 2 = Lo2. (27)

    H e r e t h e k e r n e l F s a t i s f i e s t h e e q u a t i o n s02F O~F8x~ Oz~ ~ O,

    T h e k e r n e l K s a t i s f i e s t h e e q u a t i o n

    OF . O'F . O~F ._ (O F OF) (28)

    O~K + u (x ) K = O,Oz 2 Oz"f r o m w h i c h t h e r e f o l l o w s a c o n d it i o n o n t h e c h a r a c t e r i s t i c z = x

    dd- ; (h + ~) = 0,

    (29)

    (30)

    i nd ica t ing tha t w = 0 . E q ua t ion (23) now ha s the f o r m (~(1) = L s , L(2) = L2)Ou ta .~f + T (u~.~ + 6uu~ + ~,u,,) = 0 (31)

    a n d c o n s t i t u t e s a n u n k n o w n K o r t e w e g - d e V r i e s e q u a t i o n . I t s h o u l d b e r e m a r k e d t h a t i n t h i s e x a m p l e b o t ht h e f u n c t i o n u ( x , t ) a s w e l l a s t h e c o n s t a n t s c~ a n d X c a n b e c o m p l e x . T h i s w h o l e d i s c u s s i o n c a n a l s o b e

    229

  • 8/4/2019 Integration of Nonlinear Equations of Mathematical Physics by Method of Inverse Scattering Method I

    5/10

    c a r r i e d t h r o u gh a s s u m i n g u ( x, t) t o b e a m a t r i x b e l o n gi n g t o a n a r b i t r a r y a s s o c i a t i v e m a t r i x a l g e b r a .M o r e o v e r , E q . ( 31 ) c a n b e w r i t t e n i n t he f o r mOu ta "g + "U (u= ~ + 3UU~ + 3Ug t + ~U=) = O.

    o p e r a t o r s l V l1 and 1~I2 in the fo rme now c o n s i d e r t h e

    J l----~03~T h e k e r n e l F n o w o b e y s t h e e q u a t i o n s

    ~'~ ---- ~~ -4- Lo,. (32 )

    and Eq . (22 ) has the fo rm

    OaF . OaF I OF O F \ o, ~ 0,1: O2F = O, (33)aF ~_ Oz~ Oz~

    3 f~Ou Ow Ow t Uo= ' ~ ~ = "W ( ='~ + 6uu=) + ~,u= (34)o r

    3 ~ o,,, i 3 (uu=)= = o.T ~ Ty, + ~,u= + T u=== + " TP u t t i n g 3 / 4 B2 = + 1 , X = * 1 , we ob ta in fou r r ea l equa t ions

    O"-u O'u t 3-F ~ -4- -g-g + "X- u=~==+ 7 (uu=)= - O. (35)T w o o f t h e m ,

    ( O~u O2u ) t 3 (uu= )= = O,+- oy, o=, + T u=== +r e p r e s e n t v e r s i o n s o f t h e e q u a t i o n f o r a n o n l i ne a r j e t ( s e e [7 ]) . F i n a l ly , c o n s i d e r i n g t h e g e n e r a l c a s e a n dpu t t ing

    0 8M1 = a ~/- + Lo3, M.. = ~ Ty + Lo~,w e o b t a i n f r o m t h e r e l a t i o n (2 0) t h e s y s t e m o f e q u a t i o n s

    3 g 8u Ow Ow Ou i--~-,.-~ -ffi ---~-= , [~-~f ffi a- -~ + ~u= + -T (u = = + 6uu=), (36)e q u i v a l e n t t o t h e e q u a t i o n

    3 - ~ u o c Ou t - t - 6uu= ) } = O.- - ~ ~- +T = (a -~ -+ Xu~ +-Z- (u=,= (37)I n a d d i t i o n t h e k e r n e l F s a t i s f i e s t h e t w o e q u a t i o n s

    ap a,p a,r _X (O F o~ 1 OF a' r a , F = o "a " g / - + ' ~ - - + " g ' g ' + " ~'- = FT z / = 0 , P -~ -y --Fax , az, (38)E q u a t i o n ( 37) w a s o b t a i n e d f o r t h e f i r s t t i m e i n [ 8] ; w e s h a l l c a l l i t t h e K a d o m t s e v - P e t v i a s h v i l i e q u a t i o n .T h i s e q u a ti o n d e s c r i b e s a t w o - d i m e n s i o n a l n o n s t a t i o n a r y p r o b le m c o n c e r n i n g w a v e s i n a d i s p e r s i v e m e -d i u m , p r o v id i n g t h a t t h e s c a l e c r o s s w i s e t o t h e p r o p a g a t i o n o f t h e w a v e ( a l o n g t h e y a x i s ) i s m u c h l a r g e rt h a n t h e l o n g i tu d i n a l s c a l e ( a l on g t h e x a x is ) .

    F r o m w h a t h a s b e e n s ai d i t is c l e a r t h a t e a c h p a i r c~ s c a l a r o p e r a t o r s L ~0, L~2) g e n e r a t e s i n e a c hm a t r i x a l g e b r a a n e q u a ti o n o f t y p e ( 20 ).

    23 0

  • 8/4/2019 Integration of Nonlinear Equations of Mathematical Physics by Method of Inverse Scattering Method I

    6/10

    3 . N - S o l i t o n S o l u t i o n sI n t h i s s e c t i o n w e d e s c r i b e a n i m p o r t a n t c l a s s o f p a r t i c u l a r s o l u t io n s o f t he K a d o m t s e v - P e t v i a s h v i l i

    e q u a t i o n ( 37 ), t he N - s o l i t o n s o l u t i o n s . W e r e s t r i c t o u r c o n s i d e r a t i o n t o t h e s p e c i a l c a s e ~ = f l = 1 0 , < 0 ) .E q u a t i o n ( 3 7) t h e n d e s c r i b e s w a v e s o n t h e s u r f a c e o f a s h a l l o w li q u id ; i t is w r i t t e n i n a f r a m e o f r e f e r e n c em o v i n g w it h a s p e e d e x c e e d i n g t h e s p e e d o f i n f i n i t e l y lo n g w a v e s . W e p u t

    F = e-~=-'aM (t, y). (39)Fr om Eqs . (38) i t fo l l ows tha t

    M = M ( t , y) = M o e x p { ( q ' - - x 2) y + ( x 8 + ~I + X ( x + n ) ) t } . (40)S o l v i n g t h e G e l ' f a n d - L e v i t a n e q u a t i o n ( 6 ) , w e f i n d

    M~-Xx-~*JzK (x, z) = M '1 + ~ e -~+ ~)x

    u (x) = 2 K (x, x) = -~- ch~(x + n) (x -- xo) 't , MoXo = (~1 -- ) Y + ('q~ " x'q + ~ + ;~) t + ~ m "7 -~ " (41)

    Theh e e x p r e s s i o n s (41 ) d e s c r i b e a s o li t o n , i . e . , a s o l i t a r y w a v e p r o p a g a t i n g a t a n a n g l e t o t h e x a x i s .s o l i t on i s c h a r a c t e r i z e d b y t h r e e p a r a m e t e r s : u a n d 7? c h a r a c t e r i z i n g i t s a m p l i t u d e , i t s a n g l e o f i n c li n a t io nt o t h e x a x i s , a n d i ts v e l o c i t y ; t h e p a r a m e t e r M o c h a r a c t e r i z e s t h e p o s i t i o n o f t h e c e n t e r o f t h e s o l i t o n w h e nt = 0 and y = 0 . When ~ = ~ , t he so l i t on p rop aga t e s s t r i c t l y a long the x ax i s ; when V2_uW + ~2+ ~ = 0 (~< 0 ) ,t h e s o l it o n i s s t a t i o n a r y i n t he g i v e n f r a m e o f r e f e r e n c e .

    A s s u m e n ow t h a tF = ~a M. e-"'~-'~n'' (42)

    n

    As before, we haveMn (t, y) = M . (0) ex p {(1]~ - - ~) y + (z~ + ~1~ + ~ (Tin -k- .)) t}.

    Pu t t i ng , a s we d id ea r l i e r , K (x, z ) = ~ K. (x )e -~ '~ , we o b t a in a sy s t em of equa t io ns fo r t he Kn(X) :n

    -(Xn +V,m)xKn (x) + M~e -x,'x + Mn ~_~ e Km (x). (43).~ n + XlmT h e g e n e r a l s o l u t i o n o f t h i s s y s t e m h a s t h e f o r m

    d -r,nX d ~u(x)-~2-d-~x~K.(x)e = 2-~rx~ n A,

    A = detl3 LS. .~ ~-, M.e-t~n-~'~)~ll--.%, . (44)

    E q u a t i o n s (4 4) g i v e a n e x p l i c i t f o r m o f t h e s o lu t i o n , w h ic h f o r t ~ + % y ~ ~ b r e a k s u p a s y m p t o t i -c a l ly i n to a n a g g r e g a t e o f n o n i n t e r a c t i n g s o l i t o n s p r o p a g a t i n g a t a r b i t r a r y a n g l e s t o th e x a x i s . A n a l o go u se x p r e s s i o n s f o r t h e K V e q u a t i o n w e r e f o u n d i n [9 ] . A n a t u r a l g e n e r a l i z a t i o n o f t h e s o l u t i o n ( 41 ) i s a s o l u -t i o n f o r w h i c h

    F = (~ (x, y, t) e -*'z. (45)

    23 1

  • 8/4/2019 Integration of Nonlinear Equations of Mathematical Physics by Method of Inverse Scattering Method I

    7/10

    H e r e t h e f u n c t i o n ~v s a t i s f i e s t h e e q u a t i o n sa + _ ~ _ ~ aa--/" a ~ - - ' " a ~ - - (~ a + ~ ) ~ 0 = O , ~+ ~~ - , - - ~ = 0 ( 4 6 . )

    a n d h a s t h e f o r m.Jo~

    = I c ( k ) e x p { i k y - - x x - t - ( ~ + v l~ - 4 - X ( u ~ - ~ l ) ) t } d k ,

    c ( - - k ) = c '( k ), x ~ = n ~ - - ~ k . ( 4 7 )H e r e

    K ( x , z ) = q ~ ( z ) e ~ ' z u ( x , y ) = 2 d ~ , ( ~ ) e ' =d z' -~ I ~ ($) e-~$ d$ ' ~- I ~ ($) t~"tlSd$ ( 4 8 )

    T h e e x p r e s s i o n s (4 8) d e s c r i b e a n " o s c i l l a t in g " s o l i t o n ; w e ca r t i n a n a n a l o g o u s w a y c o n s t r u c t g e n e r a l i z a -t i o n s o f ~ - ~ so l it o n s o l u t i o n s .4 . M a t r i x E q u a t i o n s

    A s s u m e n o w t h a t L ~ ) a n d L I 2) a r e N N m a t r i x o p e r a t o r s o f t h e f i r s t o r d e rL ( o ~ ) = l l ~ . ~ , = ~ - , [ 1 ~ , / ~ 1 = 0 .

    T h e n

    = l l -g b- -4- [11, ~ol, 12-~z -4- [l~, ~o1. (49 )C h o o s i n g t h e m a t r i c e s ( 4 9 ) t o b e d i a g o n a l m a t r i c e s : l~ = b =6 ~r n, I s = a n f n m (a~ ~ = 0 ) , w e o b t a i n f o r E q . ( 2 1)( s e e [ 1 0 ] )

    ( a i - - a j ) ~ S i1 - -- - ( b i - b j ) O S i J ~ - ~ ' i ~ + ~ ( s i k - ~ s ~ j - 4 - s j i ) ~ i ~ j ~i1 _-- ~ . (50)

    T h e s y s t e m ( 50 ), b e g i n n i n g w i t h N = 3 , i s n o n t r i v i a l . W h e n N = 3 , o f p h y s i c a l i n t e r e s t a r e t h e " r e d u c t i o n s "o f t h e s y s t e m ( 50 ) t o m a t r i c e s c o n t a i n i n g h a l f t h e n u m b e r o f i n d e p e n d e n t f u n c t i o n s , t h e s e b e i n g d e r i v a b l ew i t h t h e h e l p o f t h e r e l a t i o n s ~ + = I~ I , 12 = 1 , w h e r e I i s a d i a g o n a l ~ m a t r i x . I f I = 1 , t h e n t h e s y s t e m ( 5 0 ),b y m e a n s o f t h e s u b s t i t u t i o n ~ i j = ; ti ju i j (X ij a r e c o n s t a n t s ) , i s r e d u c e d t o t h e f o r m

    O U l2a t - 4 - V I ~ V u l ~ = i u l s u * ~ , - - g ' F ' O u = 4 " V~3Vu2s ---- u 1 3 u l ~ , ~- Vi3Vu13 = i u l ~ u ~ a . ( 5 1 )H e r e th e V i j a r e c o n s t a n t t w o - d i m e n s i o n a l v e c t o r s . T h e s y s t e m (5 1) d e s c r i b e s t h e r e s o n a n c e i n t e r a c t i o no f t h r e e w a v e s i n a n o n l in e a r m e d i u m a n d p la y s a n i m p o r t a n t r o l e i n n o n l i n e a r o p t i c s . C h o o s i n g t he m a t r i x

    I -- -- 0 - - t , w e c o m e t o t h e s y s t e m0 0

    OUl~a t + V12V ul-. = ~ u ~ 3 u ~ 3, o , , ~ 0 ~ , 1 , _ V V u - -~ - + V~3Vu~ 3= ~ u 1 3 u 1 2 , " - ' g V - r 1 3 ~ = ~ u ~ t ~ , ( 5 2 )d e s c r i b i n g " e x p l o s i v e i n s t a b i l i ty " o f a n o n l i n e a r m e d i a m ( s ee [1 01 ). T h e r e m a i n i n g w a y s o f c h o o s i n g t h em a t r i x I l e a d t o s y s t e m s e q u i v a l e n t to th e s y s t e m s (5 1) o r ( 5 2 ).

    I n t h e c a s e N > 3 , m o r e i n v o l v e d r e d u c t i o n s o f t h e s y s t e m (5 0) a r e p o s s i b l e ; t h e i r c l a s s i f i c a t io n w o u l db e o f g r e a t i n t e r e s t f o r t h e a p p l i c a t i o n s .

    2 3 2

  • 8/4/2019 Integration of Nonlinear Equations of Mathematical Physics by Method of Inverse Scattering Method I

    8/10

    T h e c a s e i n w h i c h s o m e o f t h e a i = b i = 0 i s a d e g e n e r a t e c a s e a n d i s a l s o o f g r e a t i n t e r e s t .c a s e th e o p e r a t o r s ~ ( 0 ~ (2 ) c a n b e r e p r e s e n t e d i n t h e f o r m

    L , , [ L oLz 0 '

    3 ~ 0 '

    I n t h i s

    " ~ o 0 ,= l x ~ ; -w [ /x , ~ n l ,

    H e r e l l a n d / i a r e d i a g o n a l M x M m a t r i c e s n o t c o n t a in i n g z e r o s , a n d t h e ~ . . a r e c e l l s of t h e m a t r i x ~ . C o n -: . . . . 1 Js i d e r i n g o n l y t h e c a s e i n w h i c h t h e r e i s n o d e p e n d e n c e o n y , w e r e a d i l y s e e t h a t n o w t h e s y s t e m ( 50 ) r e -d u c e s t o t h e f o r m

    0 h [ L o , 3 0 1 + t & q ] ,0~a - - - ~ = [ G , , 4 o l + L o q G - G q L o ;

    = L~L~,q = lxl~x. ( 5 3 )

    1 0 ]I n t h e c a s e N = 4 , M = 2 , I~ = 0 . -- 1 ' l : = i t h e s y s t e m ( 53 ) l e a d s t o t h e k n o w n " s i n - g o r d o n " e q u a t i o n( s e e [ 1 2 ] )

    82u O*uOt'~ Oz~ q - s i n u - -- - O .

    I t s h o u l d b e n o t e d t h a t in t h e d e g e n e r a t e c a s e (5 3) t h e p r o c e d u r e w e h a v e p r e s e n t e d i s o n l y s u i t a b l e f o rf i n d i n g i n t e g r a b l e e q u a t i o n s , s i n c e t h e f o r m a l a p p l i c a t i o n o f t h e G e l ' f a n d - L e v i t a n e q u a t i o n (6) i n t h e d e g e n -e r a t e e a s e l e a d s to d i v e r g e n t e x p r e s s i o n s . F o r th e " s i n - g o r d o n " e q u a t i o n t h i s d i f f i c u lt y w a s s u r m o u n t e d i n[ 1 2 ] .

    M a t r i x o p e r a t o r s o f r ~ uc h h i g h e r o r d e r s h a v e s o f a r n o t b e e n s t u d ie d . A n e x c e p t i o n h e r e i s th e e a s ei n w h i c h L 2) = l ( 0 / 0 x ) , w h e r e l i s a m a t r i x o f t h e f o r m l = 0 12 'a r b i t r a r y s c a l a r o p e r a t o r . T h i s e a s e c o i n c i d e s in i t .s e s s e n t i a l f e a t u r e s w i th t h e p u r e l y s c a l a r c a s e . C a l -c u l a t i n g ~ ( 0 a n d ~ ( 2 ), w e h a v e

    ~a(1) 0 2 ,= -~-x2 ~ 2 ~, l l 0L (2 )= [ 0 l ~ ] + ( l l - - l " ) [ ~ O 1 ~ ! ] ,

    a n d w e o b t a in f r o m t h e r e l a t i o n s ( 21 ) f o r f l = 0 a s y s t e m o f e q u a t i o n s f o r t h e a n t i d i a g o n a l c e l l s o f t h em a t r i x

    o _~ t , + t.. o~ ! ~ : ~ _ 2 ~ g~xg:2~.,: O; (5 4)( 54 ) a d m i t s t h e n a t u r a l r e d u c t i o n ~2~ = ~ a n d r e d u c e s t o t h e s i n g l eo r ~ = i a n d r e a l l l , l 2 t h e s y s t e m

    e q u a t i o n( 55 )

    I n t h e s c a l a r c a s e E q . ( 55 ) c o i n c i d e s w i t h E q . ( 2 ). T h e m a t r i x c a s e o f E q . ( 5 5) w a s c o n s i d e r e d b y S. V .M a n a k o v i n [ 1 3 ] . I n t h e c a s e i n w h i c h L I l) = 0 3 / 0 x a t h e E q . ( 23 ) l e a d s t o th e " m o d i f i e d " K o r t e w e g - d e V r i e se q u a t i o n ( s e e [1 4 ] )

    u , I u l 2 u ~ + u ~ = 0 . ( 5 6 )

    C a s e s i n w h i c h t h e o p e r a t o r L I l) is o f a n o r d e r h i g h e r t h a n th e t h i r d a r e n o t o f i n t e r e s t f r o m t h e p o i n t o f v i e wo f t h e a p p l i c a t i o n s .

    2 3 3

  • 8/4/2019 Integration of Nonlinear Equations of Mathematical Physics by Method of Inverse Scattering Method I

    9/10

    5 . S o l u t i o n S c h e m e f o r t h e C a u c h y P r o b l e mW e n o w p o s e t h e q u e s t i o n a s t o th e p o s s i b i l i t y o f s o l v i n g th e C a u c h y p r o b l e m f o r t h e E q s . (20 ) an d

    (2 3) w i t h in i t i a l c o n d i t i o n s i n t. L e t ~ 2 ) b e t h e o p e r a t o r d e f i n e d i n E q s . (1 81 , h a v i n g o r d e r N 2. T h e c o r -r e s p o n d i n g o p e r a t o r ]~ (21 c o n t a i n s N 2 - 1 v a r i a b l e c o e f f i c i e n t s u i (x , y , t ), w h i c h w e a s s i g n a t t = 0 . W e s h a l la s s u m e h e r e t h a t

    ui ( d : c o , y , 0 ) = 0 . ( 5 7 )F r o m E q . (1 2) i t fo l l o w s t h a t t h e k e r n e l K + o b e y s t h e e q u a t i o n

    N z~ 2~ 0 K + L ( ' ) K + - t - t ) ' ~ - x ' = K + l = 0 . 158toy + ~" ( - o=" '~* J l

    O n i t s s o l u t i o n w e i m p o s e t h e r e s t r i c t i o nK + ( z , x +s)-~O for x --~ + co. (59)

    W i t h r e s p e c t t o t h e f u nc t i o ns u i ( x , y , 0 ) w e c a n , u s i n g t h e E q s . ( I 01 , f i n d t h e d e r i v a t i v e s o f t h e k e r n e l K ~a l o n g t h e n o r m a l t o t he l i ne x = z . ~ 1 (x , y , 0 ) {i = 0 . . . . , N 2 - 2 ) , w h o s e a s s i g n m e n t , a l o n g w i t h t h e c o n d i t i o n( 59 ), d e f i n e s a C a u c h y - G o u r s a t p r o b l e m f o r E q . ( 5 8 ). T h e s o l u ti o n o f t h i s p r o b l e m d e t e r m i n e s t h e k e r n e lK + { x , z ) f o r z > x . I n p r o c e e d i n g f u r t h e r w e f o l l o w t h e s c h e m e

    ui (x, y, 0 ) ~ K -+ (x, z, y, 0) ~ F (x, z, y, 0) I,I F (x, z, y, t) iv___.K + (x, z, y, t) v_._.u~ (x, y , t). (60)I n t h e f i r s t s t a g e o f t h i s s c h e m e w e s o l v e t h e C a u c h y - G o u r s a t p r o b l e m f o r E q . ( 58 ); in th e s e c o n d

    s t a g e , w i t h th e h e l p o f t h e G e l ' f a n d - L e v i t a n e q u a t i o n ( 6) , w e d e t e r m i n e t h e k e r n e l F a t t = 0 . T h e e v o l u t io no f t h e k e r n e l F i n t i m e i s d e s c r i b e d b y t h e l i n e a r e q u a t i o n (1 61 w i t h c o n s t a n t c o e f f i c i e n t s , c o n s t i t u t in g t h et h i r d s t a g e o f t h e s c h e m e . I n t h e f o u r t h s t a g e w e u s e E q . ( 6) t o o b t a i n th e k e r n e l K + ( x, z , y , t ), a n d f i n a l l y ,a t th e l a s t s t a g e w e a p p l y E q s . ( 1 0) , e n a b l i n g u s t o f in d u ( x, y , t ) .

    A f u n d a m e n t a l d i f f i c u l t y i n a p p l y i n g t h e s c h e m e (6 0) i s t h a t t h e k e r n e l K + ( x, z , y , t ) o b t a i n e d f r o mt h e s o l u t i o n o f t h e C a u c h y - G o u r s a t p r o b l e m (5 81 , (5 9) c a n n o t s a t i s f y t h e c o n d i t i o n ( 4) o f d e c r e a s e w i t h r e -s p e c t t o z . 0 ]

    W e c o n s i d e r t h i s s i t u a t i o n b y a n e x a m p l e i n w h i c h / ~ ' ) = l o ~ , l = 12 0 , I I > 12 > l s > 0 , a n d B = o .I n t h i s c a s e E q . ( 58 ) h a s t h e f o r m 0 ls

    K S x 5 ~ z (611

    i j ( x ) e i ~ z , w e o b t a i n a s e t o f t h r e e s p e c t r a l p r o b l e m s f o r i j , w h i c h w e n u m b e r b y m e a n s o fs i n g Kijt h e s u b s c r i p t j ,

    k(62)

    w i t h t h e c o n d i t i o n s{plje~- -* 0 for x ~ -- c~,~ j l e 7 "= - - ~ 0 f o r x ~ ~- ~o. (63)

    T h e a s y m p t o t i c b e h a v i o r o f t h e k e r n e l K i j f o r z ~ + oo i s d e t e r m i n e d b y t he d i s c r e t e c h a r a c t e r i s t i c n u m b e r sc f t h e s p e c t r a l p r o b l e m s ( 62 ), ( 6 3 ), l y i n g in t h e c o m p l e x p l a n e . F o r j = 1, 3 i t f o l l o w s f r o m t h e c o n d i t i o n s(6 3) t h a t I m ), > 0 f o r d i s c r e t e v a l u e s o f ~ , a n d th e a s y m p t o t i c b e h a v i o r i s d e c r e a s i n g . H o w e v e r , w h e n j = 2t h e c o n d i t io n s (6 3) d o n o t i m p o s e s i n g l e - v a l u e d r e s t r i c t i o n s o n t h e p o s i t io n o f t h e d i s c r e t e s p e c t r u m o f t h ec o r r e s p o n d i n g s p e c t r a l p r o b l e m a n d , f o r z ~ + ~ o t h e a s y m p t o t i c b e h a v i o r o f t h e k e r n e l K + m a y t u r n o u t t ob e e x p o n e n t i a l l y i n c r e a s i n g .

    2 3 4

  • 8/4/2019 Integration of Nonlinear Equations of Mathematical Physics by Method of Inverse Scattering Method I

    10/10

    T h i s d i f f i cu l t y d o e s no t a p p e a r f o r s c a l a r o p e r a t o r s a n d, a l s o , i f / ~ [ ~ 0 ] ~12 ~x ([1, ~2 ar e c on sta nts ) .O b v i o u sl y , t h e r e i s a l s o n o d i f fi c u l ty if th e c h a r a c t e r i s t i c v a l u e s i n t h e s p e c t r a l p r o b l e m f o r j = 2 a r ea b s e n t [ t h i s c a n h a p p e n i f t h e n o r m o f t h e i n i t i a l c o n d i t i o n s ~ i j ( x , y , 0) i s s u f f i c i e n t l y s m a l l ] . T h e m e t h o d sf o r o v e r c o m i n g t h e s e d i f f i c u l t i e s a s s o c i a t e d w i th t h e e x p o n e n t i a l g r o w t h o f t h e k e r n e l K + a n d c o r r e c tr e s u l t s r e l a t i v e t o th e C a u c h y p r o b l e m f o r c e r t a i n c l a s s e s o f i n t e g r a b l e s y s t e m s w i ll be th e s u b j e c t s o f t h es e c o n d p a r t o f o u r p a p e r .

    L I T E R A T U R E C I T E D1 . C . S . G a r d n e r , J . M . G r e e n , M . K r u s k a l , a n d R . M . M i u r a , " M e t h o d f o r s o l v i ng t h e K o r t e w e g - d e V r i e sequ a t ion ," Phy s . R ev. Le t t . , 19._, 1095-1097 (1967) .2 . P . D . L a x , " I n t e g r a l s of n o n l i n e a r e q u a t i o n s o f e v o l u t io n a n d s o l i t a r y w a v e s , " C o m m . P u r e A p p l .

    Ma th., 21._., 46 7- 49 0 (196 8).3 . V . E . Z a k h a r o v an d A . B . S h a b a t, " A r e f i n e d t h e o r y o f t w o - d i m e n s i o n a l s e l f - f o c u s s i n g a n d o n e - d i m e n -

    s i o n a l s e l f - m o d u l a t i o n o f w a v e s i n n o n l i n e a r m e d i a , " Z h . l ~ k sp . T e o r . F i z . , 6 1 _, N o . 1, 1 1 8 -1 3 4 ( 1 9 7 1 ).4 . V . E . Z a k h a r o v a n d A . B . S h a b a t , " O n t h e i n t e r a c t i o n o f s o l i t o n s i n a s t a b l e m e d i u m , " Z h . ] ~ ks p . T e o r .

    F iz ., 64.__, No. 5, 16 27 -16 39 (19 73) .5 . V . E . Z a k h a r o v , " T h e m e t h o d o f t he i n v e r s e s c a t t e r i n g p r o b l e m , " in : T h e o r y o f E l a s t i c M e d i a w i th

    M i c r o s t r u c t u r e , e d i t e d b y I. A . K u k i n [ i n R u s s i a n ] , N a u k a , M o s c o w ( 1 97 4 ).6 . A . B . S h a b at , " C o n c e r n i n g t h e K o r t e w e g - d e V r i e s e q u a t i o n , " D ok l . A k a d. N au k S SS R, 2 1 1, No . 6 ,

    1310-1313 (1973) .7 . V . E . Z a k h a r o v , " O n t h e p r o b l e m o f o n e - - d im e n s i o n al s t o c h a s t i z e d c i r c u i t s o f n o n l i n e a r o s c i l l a t o r s , "

    Zh . t~ksp . T eo r. Fi z. , 65___, No. 1, 21 9-225 (1973).8 . B . B . K a d o m t s e v a n d V . I . P e t v i a s h v i l i , " O n t h e s t a b i li t y o f s o l i t a r y w a v e s in w e a k l y d i s p e r s i v e

    me dia , " Dokl . Akad. Nauk SSSR, 192, No. 4 , 753-756 (1970).9 . M . W a d a t i a n d M . T o da , " E x a c t N -s o l it o n s o l u t io n o f t h e K o r t e w e g - d e V r i e s e q u a t i o n , " J . P h y s . S o c .

    Ja pa n, 36.__, 140 3-14 12 (1972 ).1 0 . V . E . Z a k h a r o v an d S . V . M a n a k o v, " O n r e s o n a n c e i n t e r a c t i o n o f w a v e p a c k e t s i n n o n l i n e a r m e d i a , "

    Z h ~ T F l>is. Re d. , 18___, No. 7, 41 3 (1973 ).1 1 . N . B l o e m b e r g e n , N o n l i n e a r O p t i c s, W . A . B e n j a m i n (1 9 65 ) .1 2 . V . E . Z a k h a r o v , L . A . T a k h t a d z h y a n , a n d L . D . F a d d e e v , " C o m p l e t e d e s c r i p t i o n o f t h e s o l u t io n s o f

    t h e ' s i n - g o r d o n ' e q u a t i o n , " D o kl A k a d . N a uk S SS R (1 9 74 ) .1 3 . S . V . M a n a k o v , "O n a t h e o r y o f t h e t w o - d i m e n s i o n a l s t a t i o n a r y s e l f - fo c u s s i n g e l e c t r o m a g n e t i c w a v e s , "

    Zh. ]~ksp . Teor . F iz . , 65_ 505-516 (1973) .1 4 . M . W a d a t i , " T h e m o d i f i e d K o r t e w e g - d e V r i e s e q u a t i o n , " J . P h y s . S o c . J a p a n , 34__, N o . 5 , 1 2 8 9 -1 2 9 1

    (1973).

    235