34
Integrated Gasification and Fuel synthesis Thermochemical Platform Peer Review April 14, 2009 Calvin Feik, NREL

Integrated Gasification and Fuel synthesisobpreview2009.govtools.us/thermochem/documents/integrated... · Thermochemical Platform Peer Review April 14, 2009 Calvin Feik, ... Comprehensive

Embed Size (px)

Citation preview

Integrated Gasification and Fuel synthesis Thermochemical Platform Peer Review

April 14, 2009 Calvin Feik, NREL

2

Overview - General

Project start date: 2007Project end date: 2012Percent complete: 50%

2

Total project funding• Budget (operating)

FY08: $2.0 MMFY09: $1.6 MM

• Budget (capital)FY08: $435 kFY09: $397 k

Timeline

Budget

Barriers

• Tt-F Gas Cleanup and Conditioning• Tt-H Validation of Syngas Quality• Tt-C: Gasification of Wood and

Herbaceous Feedstocks2012 Targets

• Methane: <3 vol%• Benzene: <10 ppm• Tar: <0.1 g/Nm3

• H2S<20 ppm, NH3<10 ppm, HCl<10 ppb

Stage

A/B - Exploratory/Development Research

3

Rationale: Thermochemical Biomass to Fuels

GasificationSyngasCleanup

Mixed Alcohol

Synthesis

Heat Power

Syngas Conditioning

Feed Processing & Handling

Ethanol &AdvancedBiofuels

3

• Conceptual design of a 2000 tonnes/day commercial plant

• NREL pilot plant based on this process

• Basis for connecting R&D targets to cost targets

• Vetted with rigorous peer reviewPhillips, S., Aden, A., Jechura, J., Dayton, D., Eggeman, T. (2007). Thermochemical Ethanolvia Indirect Gasification and Mixed Alcohol Synthesis of Lignocellulosic Biomass. NREL Technical Report, TP-510-41168.

4

Overview ‐ Project Description

• Formerly known as Integrated Catalyst Studies

• This task is responsible for demonstrating integrated biomass gasification, gas cleanup, and biofuel synthesis at pilot scale on real syngas.  Validatesand improves process model (Aspen) and economic analysis for mixed alcohol synthesis.

• How does the process model compare to “reality”?

5

Goals and Objectives

• Main Goal:– Demonstrate integrated production of cost competitive ethanol

from mixed alcohols produced from biomass derived syngas at pilot scale

• Objectives:– Integrated biomass gasification through fuel synthesis– Expand pilot-scale capabilities (plug and play)– Pilot-scale demonstration/validation of Analysis, Gasification,

and Catalyst task developments– Provide process data for State of Technology updates

GasificationSyngasCleanup

Fuel Synthesis

Heat Power

Syngas Conditioning

Feed Processing & Handling

Ethanol &AdvancedBiofuels

5

6

Approach:State of Technology (2008 Results and Targets*)

6*A. Dutta and A. Aden

7

State of Technology (Benchmark Process)

Alcohol Synthesis

Biomass

Flue Gas

Dryer

Scrubber

Sludge(Waste)

CO2

Sulfur

Acid Gas Cleanup

Air

Gasifier

Solids(Waste)

Steam

Alcohol Separation

Methanol & Water

Ethanol

MixedAlcohols

Steam

Reformer

Air

Compressor

Water to recycle

Compressor

7

Existing Unit OpsNew Unit OpsSimulated Recycle

Methanol Recycle

Synthesis Off-gas Recycle

8

Thermochemical Process Development Unit (TCPDU)

8

AnalyticalSampling

Ability to sample raw syngas at multiple process points

9

Comprehensive Characterization of Process Gas

• Non-dispersive infrared (NDIR) Analyzer• CH4, CO2 and CO

• H2 thermal conductivity analyzer

• Quad Micro Gas Chromatograph• 4 channel, on-line GC w/ 3 min cycle time• permanent gases, hydrocarbons, and tars

• Micro Gas Chromatograph w/ sulfur detector• 3 channel, on-line GC w/ 3 min cycle time and H2S/COS detector

10

MBMS - Comprehensive Tar Analysis

• Preserves reactive and condensable species

• Universal detection• Real-time monitoring • High-pressure, high-temperature

system monitoring capability• Rapid screening/fingerprinting

11

AccomplishmentsOverview

• Tar and light hydrocarbon reforming at 2008 targets

• Sulfur sorbent injection and evaluation

• Synergistic pilot-scale activities

12

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21NREL 32b Catalyst Regeneration Cycle Number

Corn StoverAir

Corn StoverSteam

Mixed WoodSteam

Corn StoverSteam

Mixed WoodSteam

OakSteam/AirHigh Temp

2008 Conversion Target

ReformingVarious Feedstock and Process Conditions-NREL32b

• Initial methane conversion for catalyst formulation NREL32b• Activity recovered with steam or steam/air regeneration

13

ReformingNREL56 Validation with Raw Syngas

Met

han

e C

onve

rsio

n • Hardwood feedstock• 900 ºC• S/B : 1 • 20 h TOS• 10 reforming – regeneration cycles• 3 catalyst samples every cycle

• 15 hours of methane reforming at or above 2008 target of 50% conversion

• Over 15 hours of reforming at or above the benzene (90%) and tar (95%) conversion target

• Initial activity declines with regeneration, but trends are consistent

Cumulative Time on Stream

13

14

ReformingCatalyst Samples for Analysis

• Catalyst samples collected after each stage of test for further evaluation by Catalyst Fundamentals team– 10 regeneration cycles with 3 samples each cycle

Oxidized/Reduced/Deactivated

14

15

ReformingCatalyst Activity and Analysis Trends

Correlations between surface structure and initial catalyst performance are being determined by Cat Team

Maximum CH4Conversion

Activity Measurements

% Reducibility

Cycle Number

Temperature Programmed

Reduction (TPR)

NiAl2O4

NiAl2O4 + Ni0Area

X-Ray Diffraction

(XRD)

16

Sulfur SorbentBackground

16

• Indirect biomass vs direct coal gasification:– High steam content (>60% vs. ~5%)– 1-2 vol.% tar vs. little/no tar– Higher temperature (850°C vs. 650°C)– …but only 50-600 ppmv vs. 10,000 ppmv or more

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

0:00 0:30 1:00 1:30 2:00

Time

Ben

zene

Con

vers

ion

(%)

h oxidation, stover 5h oxidation, stover 6h oxidation, wood 6.5h oxidation, wood 6.5

Raw Syngas Conditioning- 60 kg catalyst

Wood derivedsyngas

Stover derived syngas

• 1:1 steam to biomass ratio

• Steam catalyst regeneration

17

Sulfur SorbentBackground

• Sorption by metal oxides (sulfidation):MeO + H2S ↔ MeS + H2O (Me = metal)

High Steam Content

• Surrogate syngas testing on MATS2 and MBMS– Limestone, commercial zinc titanate, RTI, and GTI

sorbents• TCPDU slipstream and injection testing

– Limestone and RTI sorbents

17

18

Sulfur SorbentIn-stream Injection

18

Sorbent hopper

Motor

Feed screw

Thermal CrackerEntrance

19

Sulfur SorbentLimestone Injection

Pilot‐Scale Results (Uncalcined Limestone)Attempt simultaneous calcination/sulfidation

• Limestone

• H2S increased with limestone injection.

• Limestone contains 0.065% S

Sulfur volatilization +

Calcination+

Sulfidation

…not fast enough

20

Sulfur SorbentResults

• Commercial sorbents show promise, but high steamconditions are challenging

20

21

Leveraged Activities at Pilot-Scale -Parametric Gasification

Whitney Jablonski

• Multiple feedstocks (wood, switch grass, wheat straw, corn stover)• MBMS sampling (multivariate analysis)

0.5 ton/d

Consistent with LEFR studies

22

Summary

• Reforming results are meeting program conversion targets

• Catalyst/sorbent and process improvements progressing significantly

• Sulfur sorbents combined with process changes are promising

• Pilot-scale facility key to 2012 thermochemical ethanol demonstration

22

23

Success Factors/Challenges

• Success Factors– Pilot-scale testing capability on biomass derived syngas

invaluable for identifying issues with syngas cleanup processes and materials

– Pilot-Scale production of biomass derived syngas allows leveraged work between tasks

• Challenges– Current catalyst regeneration protocol requires optimization – Demonstrate continuous regeneration in short timeframes– Inorganic compound mitigation

23

24

Future and Ongoing Work -Overview

• Process upgrades– New continuous reforming system for longer term catalyst

testing– Simulated gas recycle to match process design reformer inlet

composition– Improved syngas analysis with high resolution, magnetic

sector mass spectrometer– Enhanced gasification sampling with thermal cracker sample

port addition– Data management upgrades

• Experimental– Sorbent testing

• New sorbents• Lower syngas steam content• Turbulence modeling and measurements

– Revised regeneration protocol validation– Catalyst sample analysis on-going by Catalyst Fundaments

team24

25

Continuous Reformer-Entrained Flow Configuration

Clean Syngas to Scrubber• Flexible Design:• Entrained or counter

current catalyst flow• One-third flow of the

TCPDU gasifier (matches single fuel synthesis train)

• Additional CO2 and CH4 addition to simulate synthesis recycle

• Based on previous FSR and evolving regeneration data Hydrogen

Steam

Steam and airHydrogen and water

Steam, air, and CO2

Steam, H2S, and CO2

Sulfur removal vessel

Ris

er R

efor

mer

Coke oxidation vessel

Reduction vessel

“Dirty”Syngas Recycled CO2 and CH4

26

TCPDU UpgradesMagnetic Sector Mass Spectrometer

TMBMSQuadrapole MS

• Meets the need for measuring NH3 and HCl at 2012 target levels

• Provides additional value for analysis of other species.– Sulfur, Nitrogen, and Tar compounds

• May be able to sample raw syngas at multiple points in process stream

Magnetic Sector MS

26Comparison of instrument resolution

27

Additional TCPDU Upgrades

• Control system upgrade– Latest hardware more compact freeing valuable lab space and uses ethernet

• Data integration database system upgrade

• Thermal Cracker upgrade– Sample ports for improved tar evolution monitoring

– Evaluate staged oxidizer addition for tar conversion

– Modular design for variable residence time

• Turbulence measurement of sorbent injection to evaluate mixing and contact efficiency

28

Capital Improvements

Item Purpose Cost Status

$96k Installed

Partially Installed

Ordered

Design in progress

$339k

Magnetic Sector mass spectrometer

Ammonia and hydrogen chloride on-line measurement

$160k

Continuous Reformer

Steady state steam reforming catalyst testing

$232k

Ultimate analyzer Measure carbon, hydrogen, oxygen, and sulfur in biomass, catalysts, and sorbents

High Pressure TGA with MS & FTIR

Thermal gravimetric analysis of biomass, catalysts, and sorbents with off-gas quantification

28

29

Team Acknowledgements

29

• Katie Gaston• Jason Hrdlicka• Rick French• Steve Phillips• David Crocker

• Whitney Jablonski• Singfoong Cheah

• Ray Hansen• Jason Thibodeaux• Mike Sprague• Danny Carpenter• Marc Pomeroy

• Kim Magrini• Yves Parent• Matt Yung

TCPDU Operations Team

Catalyst Development Team

30

Questions?

•Q •A

31

2007 Peer Reviewer Comment Responses

31

• Strengths– Lot of value of having the capability (and using it)

to test on a large-scale - with “real” syngas– Methodical testing approach

• Weaknesses– Needs to run more catalyst evaluations in pilot

scale reactor• Testing limited due to available catalyst, facility

upgrades, and time to evaluate results

• Comments/Suggestions– The reviewers would like a closer inspection of the

anomalies in the data presented• Anomalies due to sample valve switching with no impact

on test condition results

32

Publications and Presentations

• Publications:– Magrini-Bair, K., Czernik, S., French, R., Parent, Y., Chornet, E., Dayton,

D., Feik, C., Bain, R. 2007. Fluidizable Reforming Catalyst Development for Conditioning Biomass-Derived Syngas. Applied Catalysis, 318, 199-206.

– D. L. Carpenter, C. J. Feik, K. R. Gaston, W. Jablonski, R. L. Bain, S. D. Phillips and M. R. Nimlos, Pilot scale gasification of corn stover, wood, switchgrass and wheat straw, Energy and Fuels, submitted.

– W. Jablonski, K. R. Gaston, D. L. Carpenter, M. R. Nimlos*, C. J. Feik, R. L. Bain, M. Pomeroy, Multivariate analysis of pilot scale results, Energy and Fuels, submitted.

32

33

Publications and Presentations

• Presentations:– Nimlos, M. R.; Jablonski, W.; Gaston, K. R.; Carpenter, D. L.; Feik, C. J.; “Global

Mechanisms of Tar Formation During Gasification of Biomass,” 237th ACS National Meeting & Exposition, March 22-26, 2009, Salt Lake City, UT.

– Yung, M., Jablonski, W., Magrini, K., “Characterization of Ni-Based Catalysts Used for Steam Reforming of Simulated Biomass Gasification Vapors,” presented at AIChE’s Annual Meeting, November 20, 2008, Philadelphia, PA.

– Feik, C. J.; Carpenter, D. L.; Gaston, K. R.; Hrdlicka, J. A.; Phillips, S. D.; Pomeroy, M. D.; “Pilot-Scale Evaluation of Fluidizable Reforming Catalyst for Biomass Syngas Cleanup,”presented at AIChE’s Annual Meeting, November 20, 2008, Philadelphia, PA.

– Gaston, K. R.; Feik, C. J.; Jablonski, W.; Nimlos, M.; Phillips, S. D.; Carpenter, D. L.; Deutch, S. P.; “Pilot-Scale Comparison of Steam Gasification with Herbaceous and WoodyFeedstocks”, presented at AIChE’s Annual Meeting, November 18, 2008, Philadelphia, PA

– Feik, C. J.; Carpenter, D. L.; Deutch, S. P.; Gaston, K. R.; Phillips, S. D.; “Experiences in Thermochemical Biomass Conversion,” presented at AIChE’s Spring National Meeting, April 8, 2008, New Orleans, LA.

– Carpenter, D. L.; Phillips, S. D.; Gaston, K. R.; Deutch, S. P.; Feik, C. J.; French, R.; Nimlos, M. R.; “Temperature and Feedstock Effects on Tar Formation During Pilot-Scale Biomass Gasification,” 235th ACS National Meeting & Exposition, April, 2008, New Orleans, LA.

33

34

Continuous Reformer-Counter Current Flow Option

“Dirty” Syngas RecycledCO2 and CH4

Clean Syngasto Scrubber

Steam and air

Steam, air, and CO2

Steam, H2S, and CO2

• Flexible Design:• Entrained or counter

current catalyst flow• One-third flow of the

TCPDU gasifier (matches single fuel synthesis train)

• Additional CO2 and CH4 addition to simulate synthesis recycle

• Based on previous FSR and evolving regeneration data

Coke removal vessel

Ris

er s

ulfu

r re

mov

alMethane reformer vessel

Tar reformer vessel

Steam