21
Infinity in Mathematics & Computer Science Lecture at QUANTA 2007 15 November 2007 / CMS, Lucknow, India Tom Verhoeff Eindhoven University of Technology Department of Mathematics & Computer Science http://www.win.tue.nl/~wstomv/ c 2007, T. Verhoeff @ TUE.NL 1/41 Infinity in Math & CS

Infinity in Mathematics & Computer Sciencewstomv/contests/quanta/2007/Slides_Inifinity_Lecture.pdfInfinity in Mathematics & Computer Science Lecture at QUANTA 2007 15 November 2007

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Infinity in Mathematics & Computer Sciencewstomv/contests/quanta/2007/Slides_Inifinity_Lecture.pdfInfinity in Mathematics & Computer Science Lecture at QUANTA 2007 15 November 2007

Infinity in Mathematics & Computer Science

Lecture at QUANTA 2007

15 November 2007 / CMS, Lucknow, India∞Tom Verhoeff

Eindhoven University of Technology

Department of Mathematics & Computer Science

http://www.win.tue.nl/~wstomv/

c© 2007, T. Verhoeff @ TUE.NL 1/41 Infinity in Math & CS

Page 2: Infinity in Mathematics & Computer Sciencewstomv/contests/quanta/2007/Slides_Inifinity_Lecture.pdfInfinity in Mathematics & Computer Science Lecture at QUANTA 2007 15 November 2007

Motivations for Working on Scientific Problems

• Direct application in real life

• Foundation for working on other problems

• Aid to acquisition of knowledge and development of skills

• Fun and enjoyment

c© 2007, T. Verhoeff @ TUE.NL 2/41 Infinity in Math & CS

Page 3: Infinity in Mathematics & Computer Sciencewstomv/contests/quanta/2007/Slides_Inifinity_Lecture.pdfInfinity in Mathematics & Computer Science Lecture at QUANTA 2007 15 November 2007

Termination of Computations: A Recent Success

• Start with finite sequence over { a, b, c }

bbaa

• Repeatedly replace subsequences:

aa → bc

bb → ac

cc → ab

Example:

bbaa → bbbc → bacc → baab → bbcb → accb → aabb → aaac → abcc → abab

Does this terminate for every start sequence?

c© 2007, T. Verhoeff @ TUE.NL 17/41 Infinity in Math & CS

Page 4: Infinity in Mathematics & Computer Sciencewstomv/contests/quanta/2007/Slides_Inifinity_Lecture.pdfInfinity in Mathematics & Computer Science Lecture at QUANTA 2007 15 November 2007

Termination of Computations: Famous Open Problems

• If N even → N/2 , if N odd → 3N + 1 (Collatz)

3 → 10 → 5 → 16 → 8 → 4 → 2 → 1 → 4 → · · ·

• While N is not a palindrome , add it to its reverse

152 → 152 + 251 = 403 → 403 + 304 = 707 196 → ?

c© 2007, T. Verhoeff @ TUE.NL 18/41 Infinity in Math & CS

Page 5: Infinity in Mathematics & Computer Sciencewstomv/contests/quanta/2007/Slides_Inifinity_Lecture.pdfInfinity in Mathematics & Computer Science Lecture at QUANTA 2007 15 November 2007

Marble Game 1

'

&

$

%

m}

}}

}

Each time take a marble:

• Remove it

Does this terminate? After how many steps?

c© 2007, T. Verhoeff @ TUE.NL 19/41 Infinity in Math & CS

Page 6: Infinity in Mathematics & Computer Sciencewstomv/contests/quanta/2007/Slides_Inifinity_Lecture.pdfInfinity in Mathematics & Computer Science Lecture at QUANTA 2007 15 November 2007

Marble Game 2

'

&

$

%

m}

}}

}

Repeatedly take a marble:

• If blue, then remove

• If white, then replace by one blue marble

c© 2007, T. Verhoeff @ TUE.NL 20/41 Infinity in Math & CS

Page 7: Infinity in Mathematics & Computer Sciencewstomv/contests/quanta/2007/Slides_Inifinity_Lecture.pdfInfinity in Mathematics & Computer Science Lecture at QUANTA 2007 15 November 2007

Marble Game 3

'

&

$

%

m}

}}

}

Repeatedly take a marble:

• If blue, then remove it

• If white, then replace by arbitrary number of blue marbles

c© 2007, T. Verhoeff @ TUE.NL 21/41 Infinity in Math & CS

Page 8: Infinity in Mathematics & Computer Sciencewstomv/contests/quanta/2007/Slides_Inifinity_Lecture.pdfInfinity in Mathematics & Computer Science Lecture at QUANTA 2007 15 November 2007

Marble Game Analysis

W white marbles B blue marbles

Game 1. Terminates after f1(W, B) = W + B steps

Game 2. Terminates after f2(W, B) = 2 ∗W + B steps

Game 3. Terminates after ten hoogste f3(W, B) = ω ∗W + B steps

u u u u u

u u u u u

u u u u u... ... ... ... ...j

. . .

. . .

. . .

W ↑0

1

2

B →0 1 2 3 4

� � � �

� � � �

� � � �

?

@@

@@@R

HHHHH

HHHHHj

PPPPPPPPPPPPPPPPq

XXXXXXXXXXXXXXXXXXXXXz?

@@

@@@R

HHHHH

HHHHHj

PPPPPPPPPPPPPPPPq

XXXXXXXXXXXXXXXXXXXXXz?

@@

@@@R

HHHHH

HHHHHj

PPPPPPPPPPPPPPPPq

XXXXXXXXXXXXXXXXXXXXXz?

@@

@@@R

HHHHH

HHHHHj

PPPPPPPPPPPPPPPPq

XXXXXXXXXXXXXXXXXXXXXz?

@@

@@@R

HHHHH

HHHHHj

PPPPPPPPPPPPPPPPq

XXXXXXXXXXXXXXXXXXXXXz

?

@@

@@@R

HHHH

HHHHHHj

PPPPPPPPPPPPPPPPq

XXXXXXXXXXXXXXXXXXXXXz?

@@

@@@R

HHHH

HHHHHHj

PPPPPPPPPPPPPPPPq

XXXXXXXXXXXXXXXXXXXXXz?

@@

@@@R

HHHH

HHHHHHj

PPPPPPPPPPPPPPPPq

XXXXXXXXXXXXXXXXXXXXXz?

@@

@@@R

HHHHHHH

HHHj

PPPPPPPPPPPPPPPPq

XXXXXXXXXXXXXXXXXXXXXz?

@@

@@@R

HHHHHHH

HHHj

PPPPPPPPPPPPPPPPq

XXXXXXXXXXXXXXXXXXXXXz

c© 2007, T. Verhoeff @ TUE.NL 22/41 Infinity in Math & CS

Page 9: Infinity in Mathematics & Computer Sciencewstomv/contests/quanta/2007/Slides_Inifinity_Lecture.pdfInfinity in Mathematics & Computer Science Lecture at QUANTA 2007 15 November 2007

Lotto Ball Game

'

&

$

%����

������

������

����

4

2

2

1

0

Repeatedly take an N-numbered lotto ball:

• Replace by arbitrary number of balls with smaller numbers

i.e. (n) replaced by (<n) (<n) · · · (<n)

c© 2007, T. Verhoeff @ TUE.NL 23/41 Infinity in Math & CS

Page 10: Infinity in Mathematics & Computer Sciencewstomv/contests/quanta/2007/Slides_Inifinity_Lecture.pdfInfinity in Mathematics & Computer Science Lecture at QUANTA 2007 15 November 2007

Operations on Natural Numbers

Successor (1 more): a|

Addition (repeated successor): a + b = a

b×︷ ︸︸ ︷| · · · |

Multiplication (repeated addition): a ∗ b =

b×︷ ︸︸ ︷a + · · ·+ a

a ∗ 0 = 0 a ∗ 1 = a a ∗ b| = a ∗ b + a a ∗ (b + c) = a ∗ b + a ∗ c

Exponentiation (repeated multiplication): ab =

b×︷ ︸︸ ︷a ∗ · · · ∗ a

a0 = 1 a1 = a ab| = ab ∗ a ab+c = ab ∗ ac

c© 2007, T. Verhoeff @ TUE.NL 24/41 Infinity in Math & CS

Page 11: Infinity in Mathematics & Computer Sciencewstomv/contests/quanta/2007/Slides_Inifinity_Lecture.pdfInfinity in Mathematics & Computer Science Lecture at QUANTA 2007 15 November 2007

Decimal Expansion

Every natural number is uniquely expressible as

sum of powers of 10 with coefficients < 10.

Example:

266 = 200 + 60 + 6

= 2 ∗ 100 + 6 ∗ 10 + 6 ∗ 1

= 2 ∗ 102 + 6 ∗ 101 + 6 ∗ 100

c© 2007, T. Verhoeff @ TUE.NL 25/41 Infinity in Math & CS

Page 12: Infinity in Mathematics & Computer Sciencewstomv/contests/quanta/2007/Slides_Inifinity_Lecture.pdfInfinity in Mathematics & Computer Science Lecture at QUANTA 2007 15 November 2007

Expansion in Base B ≥ 2

Every natural number is uniquely expressible as

sum of powers of B with coefficients < B.

Example with B = 2 (binary):

266 = 256 + 8 + 2

= 28 + 23 + 21

Example with B = 3 (ternary):

266 = 243 + 18 + 3 + 2

= 35 + 2 ∗ 32 + 31 + 2 ∗ 30

c© 2007, T. Verhoeff @ TUE.NL 26/41 Infinity in Math & CS

Page 13: Infinity in Mathematics & Computer Sciencewstomv/contests/quanta/2007/Slides_Inifinity_Lecture.pdfInfinity in Mathematics & Computer Science Lecture at QUANTA 2007 15 November 2007

Super-Expansion in Base B ≥ 2

1. Expand in base B.

2. Repeatedly expand the exponents in base B as well.

3. Stop when all numbers ≤ B.

Example:

B = 2 B = 3

266 = 28 + 23 + 2

= 223+ 22+1 + 2

= 222+1+ 22+1 + 2

266 = 35 + 2 ∗ 32 + 31 + 2

= 33+2 + 2 ∗ 32 + 31 + 2

c© 2007, T. Verhoeff @ TUE.NL 27/41 Infinity in Math & CS

Page 14: Infinity in Mathematics & Computer Sciencewstomv/contests/quanta/2007/Slides_Inifinity_Lecture.pdfInfinity in Mathematics & Computer Science Lecture at QUANTA 2007 15 November 2007

Goodstein Sequence of N > 0 and B ≥ 2

N = 8 B = 2

1. Super-expand N in base B. 8 = 22+1

2. Replace each B by B + 1. 33+1 = 81

3. Decrease by 1; yields new N . N ′ = 80

4. Increase B by 1; yields new B. B′ = 3

5. Stop when N = 0, otherwise repeat from step 1.

c© 2007, T. Verhoeff @ TUE.NL 28/41 Infinity in Math & CS

Page 15: Infinity in Mathematics & Computer Sciencewstomv/contests/quanta/2007/Slides_Inifinity_Lecture.pdfInfinity in Mathematics & Computer Science Lecture at QUANTA 2007 15 November 2007

Goodstein Sequence for N = 266 and B = 2

Step N B

1 266 2

222+1+ 22+1 + 2

333+1+ 33+1 + 3− 1

2 443 . . .886 (39 digits) 3

333+1+ 33+1 + 2

444+1+ 44+1 + 2− 1

3 323 . . .681 (617 digits) 4

444+1+ 44+1 + 1

555+1+ 55+1 + 1− 1

4 . . . (> 10000 digits) 5

555+1+ 55+1

c© 2007, T. Verhoeff @ TUE.NL 29/41 Infinity in Math & CS

Page 16: Infinity in Mathematics & Computer Sciencewstomv/contests/quanta/2007/Slides_Inifinity_Lecture.pdfInfinity in Mathematics & Computer Science Lecture at QUANTA 2007 15 November 2007

Goodstein’s Theorem (1944)

Every Goodstein sequence terminates with N = 0.

It can take a while:

• N = 3, B = 2 terminates after 5 steps

• N = 4, B = 2 terminates after 3 ∗ 2402653211 − 3 ≈ 10108steps

c© 2007, T. Verhoeff @ TUE.NL 30/41 Infinity in Math & CS

Page 17: Infinity in Mathematics & Computer Sciencewstomv/contests/quanta/2007/Slides_Inifinity_Lecture.pdfInfinity in Mathematics & Computer Science Lecture at QUANTA 2007 15 November 2007

Provability of Goodstein’s Theorem

Theorem of Kirby and Paris (1982):

Goodstein’s Theorem cannot be proven from Peano’s Axiomas.

‘Ordinary’ induction does not suffice: the sequence ‘grows too fast’.

Every proof of Goodstein’s Theorem involves (a form of)

transfinite induction such as over the ordinal numbers .

c© 2007, T. Verhoeff @ TUE.NL 31/41 Infinity in Math & CS

Page 18: Infinity in Mathematics & Computer Sciencewstomv/contests/quanta/2007/Slides_Inifinity_Lecture.pdfInfinity in Mathematics & Computer Science Lecture at QUANTA 2007 15 November 2007

Ordinal Numbers

Extend operations on numbers with a limit operation . . .

0, 1, 2, 3,1

. . . , ω

ω + 1, ω + 2,1

. . . , ω + ω = ω ∗ 2

ω ∗ 2 + 1, ω ∗ 2 + 2,1

. . . , ω ∗ 2 + ω = ω ∗ 3

1. . . , ω ∗ 4,

1. . . , ω ∗ 5,

2. . . , ω ∗ ω = ω2

ω2 + 1,1

. . . , ω2 + ω,2

. . . , ω2 + ω2 = ω2 ∗ 2

2. . . , ω2 ∗ 3,

2. . . , ω2 ∗ 4,

3. . . , ω2 ∗ ω = ω3

4. . . , ω4,

5. . . , ω5,

ω. . . , ωω

c© 2007, T. Verhoeff @ TUE.NL 34/41 Infinity in Math & CS

Page 19: Infinity in Mathematics & Computer Sciencewstomv/contests/quanta/2007/Slides_Inifinity_Lecture.pdfInfinity in Mathematics & Computer Science Lecture at QUANTA 2007 15 November 2007

Normal form of ordinal numbers < ωω

Generalize base-B expansion , taking B = ω:

N = Bk ∗ ck + Bk−1 ∗ ck−1 + · · ·+ B2 ∗ c2 + B ∗ c1 + c0

where 0 ≤ ci < B, so now unbounded coefficients .

Normal form of α < ωω:

α = ωk ∗ ck + ωk−1 ∗ ck−1 + · · ·+ ω2 ∗ c2 + ω ∗ c1 + c0

where k and all ci are finite.

Solution to Lotto Ball Game : ci = number of balls with value i

c© 2007, T. Verhoeff @ TUE.NL 35/41 Infinity in Math & CS

Page 20: Infinity in Mathematics & Computer Sciencewstomv/contests/quanta/2007/Slides_Inifinity_Lecture.pdfInfinity in Mathematics & Computer Science Lecture at QUANTA 2007 15 November 2007

Proof of Goodstein’s Theorem

Super-expand N in base B.

Replace every B by ω .

The result fG(N, B) is an ordinal number < ωωωω...

︸ ︷︷ ︸ω×

= ε0.

For example: fG(266,2) = ωωω+1+ ωω+1 + ω

Claim: If N, B → N ′, B′ in the Goodstein sequence, then

fG(N ′, B′) < fG(N, B)

Ordinal numbers are well ordered : every decreasing sequence ends.

c© 2007, T. Verhoeff @ TUE.NL 38/41 Infinity in Math & CS

Page 21: Infinity in Mathematics & Computer Sciencewstomv/contests/quanta/2007/Slides_Inifinity_Lecture.pdfInfinity in Mathematics & Computer Science Lecture at QUANTA 2007 15 November 2007

Be Successful in Your Endeavours: Can You Grow Too Fast?

c© 2007, T. Verhoeff @ TUE.NL 41/41 Infinity in Math & CS