65
Industrial Applications Industrial Applications Electronics Electronics Gate oxide films for LSI Gate oxide films for LSI Thin films for storage devices, etc Thin films for storage devices, etc materials materials Safety tire, fibers Safety tire, fibers Metal coats, etc Metal coats, etc Energy & environments Energy & environments Detection of metals in human hair Detection of metals in human hair battery battery JASRI Satoshi Komiya 01

Industrial Applications Applications of SR Characterization of materials Production technology –Structure, Chemical state, Contamination, etc. thin films for electronic devices;LSI,

  • Upload
    lamtruc

  • View
    214

  • Download
    1

Embed Size (px)

Citation preview

  • Industrial ApplicationsIndustrial ApplicationsElectronicsElectronics

    Gate oxide films for LSIGate oxide films for LSIThin films for storage devices, etcThin films for storage devices, etc

    materialsmaterialsSafety tire, fibersSafety tire, fibersMetal coats, etcMetal coats, etc

    Energy & environmentsEnergy & environmentsDetection of metals in human hairDetection of metals in human hairbatterybattery

    JASRI Satoshi Komiya

    01

  • Industrial Applications of SR Industrial Applications of SR Characterization of materials

    Production technology

    Structure, Chemical state, Contamination, etc.thin films for electronic devices;LSI, HDD, lasersmetalspolymers, batteries,catalyses

    high brilliant source, x-raybig machine

    lithography, photo-assisted etching or depositionhigh flux source, ultra-violet-soft x-ray;

    small machine

    02

  • Synchrotron radiation

    Industrial ApplicationsIndustrial Applications

    electronics Metals & Soft materials

    Energy & Environment

    Batteries: fuel cell & Li-ion Analysis of contamination elementsCatalysts for environment

    TiresFibers

    OthersBuilding materialsCatalysis Insects

    Films for ULSI, semiconductorsHDD, DVDSemiconductor laser

    Steel & Coats on steel Al included bubbles

    Life science

    medicine

    03

  • LSI chipLSI chip

    ElectronicsElectronics

  • CMOS StructureCMOS Structure

    gate oxidessilicide contacts

    lines barrier metals

    Isolated oxides

    cross section

    key points for R&D:gate & lineskey points for R&D:gate & lines

    04

  • Roadmap for semiconductorsRoadmap for semiconductors

    Manufacturable solution exit, and are being optimized

    Manufacturable solution are known

    Manufacturable solution are not known

    ITRS:International Technology Roadmap for Semiconductors 2001)

    0.6-1.1

    0.7-1.2

    0.8-1.3

    0.9-1.4

    1.1-1.6

    1.2-1.5

    1.3-1.6

    Equivalent physical oxide thickness for high-

    performance Tox (EOT) (nm)

    25283237455365MPU physical gate length (nm)

    2007200620052004200320022001

    High-performance logic technology requirements

    How can we measure thickness accurately?

  • Grazing incident xGrazing incident x--ray reflection and diffractionray reflection and diffraction

    Incidence Reflection

    High brilliant x-ray

    Structural analysis of thin films

    Diffractionthin films

    incident

    Detector

    Sample

    Reflection

    Diffraction

    05

  • XX--ray reflectivity analysisray reflectivity analysis

    Information obtainedby reflectivity analysis

    Reflectivity InformationPeriod ThicknessAmplitude DensityDamping

    Incidence angle()

    Reflection Intensity

    0 1 2 3 4 5 6

    100

    10-2

    10-4

    10-5

    10-6

    10-7

    10-8

    10-9

    10-1

    10-3

    reflection

    incidence

    TaOx/Si

    06

  • XX--ray reflectivity profiles of oxide films ray reflectivity profiles of oxide films on silicon substrateson silicon substrates

    Native oxide

    Incidence Angle (deg)Ref

    lect

    ion

    inte

    nsity

    Bare Si

    AccuracyThickness0.01nmDensity0.01g/cm3Roughness0.02nm

    Si substrate

    SiO2

    07

  • XX--ray reflectivity profile and interference ray reflectivity profile and interference components (calculation)components (calculation)

    SiO2 on Sithickness4nmSi=2.33 g/cm3Interference components

    Subtraction technique of the interference component derive easy analysis.

    SiO2 > Si

    SiO2 < Si

    R=log10(R/Rave)Rave:reference

    08

  • Analysis with the interference componentAnalysis with the interference component

    4nm thin SiO2 on Si fabricated by thermal oxidation

    Single layer model

    Double layer model

    Interfacial layer

    09

  • Generation of high dense interfacial layerGeneration of high dense interfacial layeron thermal oxidation process on thermal oxidation process

    Temperature Temperature

    wet

    dry

    SiO2Si

    Interfacial layerhigh dense, 1nm N.Awaji et al., JJAP 35(1996)L67.

    10

  • Development of measurement techniqueDevelopment of measurement technique

    N.Awaji in Fujitsu Labs.

    Si(002)

    0 5 10 15 20 25 30 35 40 45 50-

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    1

    1

    1

    1

    log 1

    0I (c

    ps)

    2 (deg)

    SiO2 1.0 nm

    BL16XU

    BL16B2

    Accurate evaluation of ultra-thin films

    BL16XU:undulator beamlineBL16B2:bending magnet beamline

    Same region

    11

  • Generation of high dense interfacial layerGeneration of high dense interfacial layeron thermal oxidation process on thermal oxidation process

    Temperature Temperature

    wet

    dry

    SiO2Si

    Interfacial layerhigh dense, 1nm N.Awaji et al., JJAP 35(1996)L67.

  • X-ray Crystal Truncation Rod Scattering

    Si(1

    11)

    SiO2/Si

    crystalline SiO2

    Observation of crystalline SiOObservation of crystalline SiO22 in thermal oxides in thermal oxides

    a-SiO2

    Si

    I.Takahashi et al., Physica B245(1998) 306.

    high dense interfacial layer

    1.1nm

    Interference fringes

    12

  • sample

    lamp

    X-ray

    detector

    X-ray diffractometer

    Lamp heating equipment Lamp heating equipment

    O2

  • 100

    1000

    0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

    Inte

    nsity

    (cps

    )

    (1,1,L)

    Si RT

    300C

    15min30min1hr1hr15min1hr30min2hr2.5hr3hr3.5hr

    4hr5hr6hr

    7hr8hr

    300C after 900C 8hrgrowth of crystallineSiO2 at the interface

    Crystal Truncation Rod)

    900

    0

    2

    4

    6

    8

    10

    12

    14

    0 2 4 6 8 10

    crystalline SiO2

    amorphous SiO2

    Thic

    knes

    s(nm

    )

    Growth Time(hr)

    900

    at RT

    N.Awaji Appl. Phys. Lett., 74(1999)2669.

    InIn--situ observation of CTR scatteringsitu observation of CTR scatteringduring thermal oxidation during thermal oxidation

    interface layer = oxidation front : 1 nm at RTfundamental phenomena on thermal oxidation

    13

  • X-ray Crystal Truncation Rod Scattering

    Si(1

    11)

    SiO2/Si

    crystalline SiO2

    Observation of crystalline SiOObservation of crystalline SiO22 in thermal oxides in thermal oxides

    a-SiO2

    Si

    I.Takahashi et al., Physica B245(1998) 306.

    high dense interfacial layer

    1.1nm

    Interference fringes

    12

  • J.H. Oh et al., Phys. Rev. B63, 205310 (2001)

    0.14nm

    Tran

    sitio

    n la

    yers

    Si1+

    Si4+

    Si3+

    Si2+

    Si O

    Transition layer model3rd Si3+/Si4+ (Si3+

  • Binding Energy [eV]

    714 eV

    970 eV1330 eV

    1465 eV

    9799101103105107

    h =

    Si 2p h=

    394396398400402404

    1465 eV

    1330 eV

    970 eV

    714 eV

    N 1s

    Binding Energy [eV]

    K.Nishizaki et al.:to be reported at ISCSI-4, Karuizawa, Oct., 2002.

    SiSi 2p & N 1s Photoemission Spectra2p & N 1s Photoemission Spectraof of SiON SiON thin film on thin film on SiSi(001)(001)

    Num

    ber

    of p

    hoto

    elec

    tron

    s (a.

    u.)

    Num

    ber

    of p

    hoto

    elec

    tron

    s (a.

    u.)

  • Depth profiles of Depth profiles of SiOSiOXX and NSiand NSi33 in in oxynitrideoxynitride filmsfilms

    K.Nishizaki et al.:to be reported at ISTC, Tokyo, Spet., 2002

    Depth (nm)

    0

    0.5

    10

    0.5

    1

    0 2 3 4

    3 at.%

    6 at.%

    SiO2

    SiOx

    Si

    NSi3

    NSi3

    SiO2

    SiOx

    Si

    1 Rel

    ativ

    e am

    ount

    of c

    hem

    ical

    bon

    ding

    stat

    es

  • H a r d D i s k D r i v eH a r d D i s k D r i v e

    Head

    year

    Mem

    ory

    dens

    ity (M

    bit/i

    n2)

    MO

    HDD

    15

  • MR devicespin valve

    Spin-valvestructure

    GMR head for readGMR head for readControl of ultra-thin

    multi-layers

    a few nm

    sense current

    upper shield

    under magnetic pole

    coil

    Recording truck

    down shield

    I

    gap layer(Cu)

    free layer(CoFe)pin layer(CoFe)

    MlM

    leadlead

    GMR:Giant Magnetic ResistanceGMR:Giant Magnetic Resistance

    Si substrate

    T.L.

    Ta

    NiFe

    CoFe

    Cu

    CoFe

    PdPtMn

    Ta

    Ta2O5

  • SpinSpin--valve multivalve multi--layers structurelayers structure

    PdPtMn 25CoFeB 2Cu 2CoFeB 2NiFe 4Ta 5

    Thickness(nm)

    Ta 5

    Si sub.

    TEM cross section5 nm

    Unobservable4 layers

    TEM:Transmission Electron Microscopy

  • 1.E-07

    1.E-06

    1.E-05

    1.E-04

    1.E-03

    1.E-02

    1.E-01

    1.E+00

    1.E+01

    0 1 2 3 4 5 6 7 8

    calculation

    experiment

    XX--ray reflectivity analysis of multiray reflectivity analysis of multi--layerslayers

    I n c i d e n c e a n g l e ( d e g )

    Ref

    lect

    ion

    inte

    nsit

    y

    layeredstructure

    thickness(nm)

    rouphness(nm)

    Ta2O5 2.0 0.6Ta 9.3 0.5

    PbPtMn 24.3 0.5CoFe 2.2 0.4Cu 2.5 0.5

    CoFe 2.3 0.4NiFe 3.8 0.3Ta 4.8 0.4I.L. 7 0.2Si

    Y.Kitade in Fujitsu Labs.

    16

  • Incident x-ray Reflected x-rayGMR multi-layers

    PC

    Soller slit

    SC/PCAnalyzerLiF, PET

    fluorescence

    Optics PCSR

    Optics

    Fluorescence spectra from spin-valve multi-layers with grazing incidence

    Wavelength dispersive XWavelength dispersive X--ray fluorescenceray fluorescence17

  • Standing wave is induced into multi-layers

    incidence reflection

    TaPt FeCuX-ray fluorescence

    0

    200

    400

    600

    800

    1000

    1200

    1400

    Co-K

    0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

    (deg)

    Cu-K

    0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 (deg)

    0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

    Ni-K

    (deg)X-r

    ay fl

    uore

    scen

    ce in

    tens

    ity (a

    .u.)

    X-ray incident angle (deg)

    Si substrate

    T.L.

    Ta

    NiFe

    CoFe

    Cu

    CoFe

    PdPtMn

    Ta

    Ta2O5

    Grazing Incidence XGrazing Incidence X--ray Fluorescence Techniqueray Fluorescence Technique18

  • -100 0 100 200 300 400 500

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    D.L

    .

    T.L

    .

    TaO

    x

    Ta

    PdPtM

    n

    CoFeB

    Cu

    CoFeB

    NiF

    e

    Ta

    Si

    As deposited

    Pro

    file

    (Norm

    aliz

    ed)

    -100 0 100 200 300 400 500

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    D.L

    .

    T.L

    .

    CoFeB

    Cu

    CoFeB

    NiF

    e

    Ta

    TaO

    x

    TaSi

    PdPtM

    n

    390 annealed

    Pro

    file

    (Norm

    aliz

    ed)

    t

    Broadening of the interfaces in GMR Broadening of the interfaces in GMR multilayers multilayers 3 5 8

    4 7 13

    Depth profiles of elements analyzed from GIXF and reflectivity data

    (magnetic properties degraded after annealing)

    N.Awaji Fujitsu scientific & technical journal 38 (2002) 82.

    19

  • recording media

    H a r d D i s k D r i v eH a r d D i s k D r i v e

    record along a circle in plane

  • a

    NiP

    520nm

    530nm

    550nm

    a-C cover layerCo alloy recording layer

    Cr buffer layer

    Al substrate

    cross section

    Hc

    circularradial

    coercive force

    Co alloy : hcp crystal

    hard disk

    texturetexture

    diffraction

    c:magnetization axis

    control the orientation

    record along a circle and inrecord along a circle and in--plane magnetizationplane magnetizationmagnetization along a circlemagnetization along a circlealong a radius

    along a circle

    20

  • Grazing incident xGrazing incident x--ray reflection and diffractionray reflection and diffraction

    Incidence Reflection

    High brilliant x-ray

    Structural analysis of thin films

    Diffractionthin films

    incident

    Detector

    Sample

    Reflection

    2

    Diffraction

    2

  • Grazing incidence xGrazing incidence x--ray diffraction profilesray diffraction profiles

    2 (deg)

    Textured-Al/NiP/Cr/Co-alloy(20nm)/a-C

    Inte

    nsity

    (a. u

    .)

    25 30 35 40

    1

    2

    3

    4

    5

    6

    7

    0

    Co(002)Cr(110)

    Co(002)

    Co(

    100)

    Co(101)

    Cr(200)=0.5

    =0.2

    from Cr buffer layer

    2 (deg)

    Inte

    nsity

    (a. u

    .)

    25 30 35 400

    1

    2

    3

    Co(

    100)

    Co(

    002)

    Co(101)

    circle

    radius

    preferential orientationof c-axis due to texturealong a circle

    from only a Co layerunder grazing incidence

    21

  • 2 4 6 8 10

    500

    1000

    1500

    2000

    0

    Coe

    rciv

    ity H

    c(O

    e)

    Intensity ratio I[Co(002)]/I[Co(100)]

    :along a circle:along a radius

    Textured sub.(Ra50)

    Preferential cPreferential c--axis orientation dependence axis orientation dependence of coercive magnetic forceof coercive magnetic force

    Increase in coercive force due to preferential c-axis orientation along a circle

    T.Hirose IEEE Trans. Mag. 33. (1997) 2971.

    22

  • IndustrialIndustrial Application in JapanApplication in JapanFilms for ULSI, semiconductorsHDD, DVDSemiconductor laser

    electronics Metals

    Soft Materials Energy & Environment

    Steel & rust preventive coat Various coats to prevent heat, stress, etc.Al including bubbles

    Batteries: fuel cell & Li-ion Analysis of contamination elementsCatalysts for environment

    TiresFibers

    OthersBuilding materialsCatalysis Insects

    Synchrotron radiation

    XAFS, XPS Diffraction; GIXD, Powder

    Reflectivity, Grazing incidence x-ray fluorescence techniqueFluorescence analysis

    Imaging, Micro-beam

  • Blue: Ga1-xInxN

    Red: GaAlAs

    20 3510

    520470400Emission wavelength(nm)

    InN-composition ()

    How is local structure in GaInN with low In composition less than 20% which is the critical composition for the phase separation?

    Blue laser for DVD optical storage devicesBlue laser for DVD optical storage devices23

  • InNInN composition dependence of composition dependence of GaInNGaInN XAFSXAFS

    0

    0.05

    0.1

    0.15

    0.2

    27.8 28 28.2 28.4 28.6 28.8 29

    XAFS spectra around In K edge measuredin the fluorescence mode

    1.5%4.5%5.7%

    7.64%10.2%15.85%

    20%Inte

    nsity

    (a. u

    .)

    Photon energy (keV)

    Mole fraction of InN:

    24

  • 0

    5

    10

    15

    20

    25

    0 1 2 3 4 5 6

    Fourier transforms of k 3 (k)

    over the k range from 3.5 to 14 -1

    1.5%4.5%5.7%7.64%10.2%15.85%20%F

    (r) (

    -4)

    r ()

    In-N

    In-Ga (In)Mole fraction of InN:

    Ga or In

    N

    a

    c

    wurtzite crystal structure(a=3.189, c=5.185 for GaN)

    InNInN composition dependence of composition dependence of radial distribution functionsradial distribution functions

    Monotonic decrease in the second peaks from In-Ga(In)

    25

  • InNInN composition dependence of composition dependence of the local structure the local structure

    2

    2.5

    3

    3.5

    4

    0 5 10 15 20

    Inte

    rato

    mic

    dis

    tanc

    e (

    )

    Mole fraction of InN (%)

    In-InIn-Ga

    In-N2.17 : In-N distance of bulk InN

    3.19 : Ga-Ga distance of bulk GaN

    N

    Ga

    InChange of bond angles

    InN composition dependence of atomic distances

    26

  • Deviation from random distribution of Deviation from random distribution of GaGaand In atoms in and In atoms in GaInN GaInN mixed crystalmixed crystal

    0

    2

    4

    6

    8

    10

    12

    0 5 10 15 20

    Coo

    rdin

    atio

    n nu

    mbe

    r

    Mole fraction of InN (%)

    random alloy

    In atom

    Ga atom

    In composition dependence of the 2nd neighbor coordination numbersT. Miyajima phys. Stat. Sol. (b) 228, 45 (2001).

    27

  • What materials are excellent in high speed record/elimination and reliability

    Phase transition storage materials for DVDPhase transition storage materials for DVD

    Recorded mark

    Phase transition materials

    Debye-Scherrer camera

    AuGeSnTeGeSbTeAgInSbTe

    Accurate structure analysis with a Debye-Scherrer camera

    High poweramorphous formation by quenching Low powercrystallization by annealing

    Record&elimination by laser exposure

    28

  • 6.0 8.0 10.0 12.0 14.0 16.0 18.0

    0

    50000

    100000

    400000

    450000

    500000

    inte

    nsity

    (ar

    bi. u

    nit)

    2-theta (deg.)

    18.0 20.0 22.0 24.0 26.0

    0

    10000

    20000

    30000

    20 40 60 80 100 120

    1000

    10000

    inte

    nsity

    (cp

    s)

    2-theta/theta (deg.)

    Ag3.4In3.7Sb76.4Te16.5(+) experiments

    calculationdifference

    With a laboratory source

    X-ray powder diffraction with SR source

    Excellent resolution

    XX--ray power diffraction with SRray power diffraction with SR29

  • 0 100 200 300 400 500 600 700 800 9004.34

    4.35

    4.36

    4.37

    4.38

    4.39

    a (A

    )

    temperature (K)

    11.2

    11.3

    11.4

    11.5

    11.6

    11.7

    c (A

    )

    -200 -100 0 100 200 300 400 500 600

    temperature ()

    A

    B

    C

    a b

    c

    o

    11.2

    76A

    4.355A

    0.2357

    rl = 3.343A rs = 2.955A

    A7, R3m

    rl

    rs

    y x

    o

    z

    r

    z = 0.253a

    86.8

    r

    R32/R3m

    Temperature dependence of lattice parameteres

    At low temperatureAt high temperature

    Random occupancy of Ag, In, Sb, Te

    Simple cubic units

    Fine crystalline structure of Fine crystalline structure of AgInSbTeAgInSbTeAg3.4In3.7Sb76.4Te16.5

    30

    T. Matsunaga Phys. Rev. B64 (2001)184116.

  • z

    yxx

    x

    z z

    y

    y

    GeTe-Sb2Te3 Au25Ge4Sn11Te60 Ag3.4In3.7Sb76.4Te16.5

    Unique crystalline phasePoor package :simple cubic, allowance of many vacanciesRandom occupancy of component atoms at lattice sites

    Common properties on three materialsCommon properties on three materials31

  • DFB-LDregion

    Modulatorregion

    A package process for fabrication of lasers with various wavelength

    Development of laser diodes for Development of laser diodes for optical communicationsoptical communications

    Control of wave length

    DFB laser diode integrated with wave length modulator for WDM optical communications system

    Narrow-strip selective metal-organic vapor phase epitaxy (MOVPE)

    32

  • XX--ray microray micro--beambeam

    mFormation of x-ray micro-beam with asymmetric diffraction

    33

  • Determination of process conditionDetermination of process condition

    40% up on emission efficiency of semiconductor laser

    S.Kimura et al., APL 77(2000) 1286.

    -10 0 10 20 30102

    103104105106107108109

    10101011101210131014

    = 40 m

    = 30 m= 25 m= 20 m

    = 15 m= 10 m

    = 6 m= 8 m

    = 4 m

    Wm = 0 m

    q/q (10-3 )0 10 20 30 400.55

    0.60

    0.65

    0.70

    0.75

    Inte

    nsity

    Mask width (m)

    Com

    posi

    tion

    (x,y

    )

    In composition (x)As composition (y)

    Mask width dependence of lattice parameter

    Mask width dependence of composition (x,y)

    InxGa1-xAsyP1-x

    34

  • XX -- ray fluorescence analysisray fluorescence analysis

    Sample (Si wafer)

    Reflected X-rayIncident X-ray

    Detectors (SC, FPC)

    Wave dispersiveAnalyzing crystals:

    LiF(200), PET(002), multi-layers

    Solar slit

    Incident X-ray Reflected X-ray

    Sample (Si wafer)

    Detector (SSD)

    Energy dispersive

    6.5 7 7.5 8E(keV)

    Inte

    nsi

    ty(a

    rbitra

    ry u

    nit)

    EDX

    WDX

    CoK NiK

    CoK FeK

    SSDPC

    SROptics

    High sensitivityLow energy resolution

    low sensitivityhigh energy resolution

    35

  • x106 atoms/cm2 = 4 atoms/100m2

    1.82.12.54.4allowance(x108 atoms/cm2)

    16G-2G1Gproduction(bit)

    50

    2011

    70

    2008

    100

    2005

    130

    2002

    size(nm)

    ITRS road map

    UltraUltra -- low detection limitlow detection limit

    8x1082x1011Al4x1065x108Cu4x1065x108Ni

    After concentration

    Before concentration

    atoms/cm2

    EDX WDXNative oxide

    Bare Si surfaceHF drop

    HF drop dissolve native oxide automatically.

    DryTo the center

    Concentration of contamination atoms

    Beforeconcentration

    Afterconcentration

    M. Takemura in TOSHIBA

    36

  • Industrial Applications in JapanIndustrial Applications in JapanFilms for ULSI, semiconductorsHDD, DVDSemiconductor laser

    electronics Metals

    Soft Materials Energy & Environment

    Steel & rust preventive coat Various coats to prevent heat, stress, etc.Al including bubbles

    Batteries: fuel cell & Li-ion Analysis of contamination elementsCatalysts for environment

    TiresFibers

    OthersBuilding materialsCatalysis Insects

    Synchrotron radiation

    XAFS, XPS Diffraction; GIXD, Powder

    Reflectivity, Grazing incidence x-ray fluorescence techniqueFluorescence analysis

    Imaging, Micro-beam

  • Direct observation of fibers in safety tireDirect observation of fibers in safety tire

    SEM image

    ice

    tire

    Fibers stick into ice

    Direct observation of fibers sticking into ice

    press

    fiber

    R&D on safety tire on ice

    X-ray tube

    SR source

    Refractive contrast image

    Difference of absorption

    Sharp edge image

    37

  • space

    fibers

    tireice

    tireice

    ice

    tire

    Fibers stick into ice

    Fibers slip from ice

    press pull

    H. Kishimoto in Sumitomo Rubber Industries

    38

  • Press

    Observation of crush of babbles in AlObservation of crush of babbles in Al

    CCD

    Crush from the bottom side

    X-ray Shock absorber for crush

    Images stored during 2 sec

    Crush from the both sides Crush all1mm

    T. Watanabe in Kobelco Research Institute

    39

  • InIn--situ observation of alloying of situ observation of alloying of galvanized steel by Zngalvanized steel by Zn

    IR heater

    Holder (quartz)

    slit detector2 2

    Thermocouple

    Ion chamber

    Sample chamber

    I0

    I

    slit

    Melt & Alloy

    Quartz holder

    IR

    Light guideLamp heater

    ZnFe-Zn alloy

    Fe (base)

    Rust preventive coat

    Diffractmeter

    40

  • Alloying process of Zn on steelAlloying process of Zn on steel

    8.0 8.2 8.4 8.6 8.80.0

    0.5

    1.0

    1.5

    2.0

    2.5

    177s

    155s

    133s

    111s

    89s

    67s

    44s

    Zn melt.

    1s

    22s

    Zn (101)

    1 (330)

    Norm

    aliz

    ed Inte

    nsi

    ty I/I

    0

    2 / deg.Amount of 1 crystals t(integrated intensities)

    Controlled by diffusion processZn-0.14mass%Al

    0 50 100 150 2000.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    1.4

    Norm

    aliz

    ed

    Peak

    Are

    aTime / s

    FeZn101480

    Variation of diffraction profiles on alloying

    41

    A. Taniyama SPring-8 User Experiment Report 2002A0658.

  • Characterization of inner stress Characterization of inner stress in coats on turbine bladesin coats on turbine blades

    ZrO2

    NiCoCrAlY

    240m)

    Variation of diffraction profiles on heating

    Gas turbine

    Coat to protect blades from high temperature gas

    Diffractometerfurnace

    Ni3Al(311)

    42

    K. Suzuki SPring-8 User Experiment Report No.8 2001B0063.

  • Temperature dependence of residual stress Temperature dependence of residual stress in bondin bond--coatcoat

    Z

    Surface normal

    Diffract plane nomal

    sin2

    Diff

    ract

    ion

    angl

    e2

    deg.

    Tc=0.24mm

    2constant Ksin2K=(tan0) 2(1+)/E

    Temperature dependence of residual stress in bond-coat

    Temperature K

    tensile

    compressive

    Softening

    Tc=0.24mmTc=0.083mm

    Res

    idua

    l stre

    ss (M

    Pa)

    Poissons ratio EYoungs modulaus

    43

  • XX--ray microray micro--beam with zone platebeam with zone plate

    Focus with zone platem

    44

  • Structural analysis of a single fiberStructural analysis of a single fiberA single fiber

    X-ray

    weighting

    0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    0 1000 2000 3000 4000 5000

    El = 478GPa

    PBO (005)

    Stress [MPa]

    Stra

    in o

    f cry

    stal

    (%)

    Stress-strain of a PBO single fiber 0.01mm in diameter

    Structural change at local parts in complex fibers

    .Kodera in JASRI

    45

  • 0

    10

    40

    30

    20

    ppm

    00.20.40.60.81.01.21.4

    fg

    Cu Zn

    0 25 50 75 100 1250

    25

    50

    75

    100

    125

    X (m)

    Y (

    m)

    Cu in human hear

    10-40 ppm(1 fg = 10-15 g)

    22--D mapping of a very small amount of D mapping of a very small amount of metals with xmetals with x--ray fluorescence analysisray fluorescence analysis

    Influence of special water from deep sea on the body

    46

    .Kagoshima Nucl. Instrum. & Methods. A 467-468 (2001) 872.

  • Capacity fading on Li ion battery Capacity fading on Li ion battery during charge/discharge cyclesduring charge/discharge cycles

    Cathode:LiNi0.8Co0.2O2

    In-situ XAFS study on cathode during cycling of batteryX-ray

    Coin cell

    Ni K-edge XANES spectra of LiNi0.8Co0.2O2

    Coin cell

    47

  • Decrease in capacity Decrease in capacity due to no return of Li into cathodedue to no return of Li into cathode

    Ni

    O

    NiO6

    Li+

    capacity

    capacity

    48

  • Mechanism of the capacity fadingMechanism of the capacity fading

    Initial:distorted NiO6 octahedronAfter fading:regular NiO6 octahedron

    Ni

    O

    NiO6

    Li+

    Jahn-Teller distortion

    T.Nonaka J. Synchrotron rad., 8 (2001) 869.

    49

  • Request to analysis on material Request to analysis on material science in industryscience in industry

    No detectable with other techniques How situation : Research, Development,

    Production R&DExcellent characterization Development of process :

    regular measurement according to plan TestQuality & Quantity & Time Response to trouble : Speed

    How can we (SR) reply on request?

    50

  • Situation in JapanSituation in Japan

    No detectable with other techniques How situation : Research, Development, Production

    R&DExcellent characterizationStructural analysis of thin films of electronic devices

    Development of process : Determination of process conditions for laserImaging of tire and bobbled Al

    TestQuality & Quantity & Time Not actualized in Japanese facilities

    Response to trouble : SpeedNo answer

    51

  • Industrial Applications in JapanIndustrial Applications in JapanFilms for ULSI, semiconductorsHDD, DVDSemiconductor laser

    electronics Metals

    Soft Materials Energy & Environment

    Steel & rust preventive coat Various coats to prevent heat, stress, etc.Al including bubbles

    Batteries: fuel cell & Li-ion Analysis of contamination elementsCatalysts for environment

    TiresFibers

    OthersBuilding materialsCatalysis Insects

    Synchrotron radiation

    XAFS, XPS Diffraction; GIXD, Powder

    Reflectivity, Grazing incidence x-ray fluorescence techniqueFluorescence analysis

    Imaging, Micro-beam

    52

    Industrial Applications of SRRoadmap for semiconductorsSi 2p & N 1s Photoemission Spectra of SiON thin film on Si(001)Depth profiles of SiOX and NSi3 in oxynitride filmsInN composition dependence of the local structureDeviation from random distribution of Ga and In atoms in GaInN mixed crystalCapacity fading on Li ion battery during charge/discharge cyclesDecrease in capacity due to no return of Li into cathodeMechanism of the capacity fadingRequest to analysis on material science in industrySituation in Japan