53
Digital Control of Electric Drives BE1M14DEP 1 Induction Motor Vector Control Czech Technical University in Prague – Faculty of Electrical Engineering O. Zoubek, J. Zdenek

Induction Motor Vector Controlmotor.feld.cvut.cz/sites/default/...11oz.jz-ind-motor-vect-control.pdf · 4 Disadvantages of scalar (U/f) control: Very low dynamics Changes in the asynchronous

Embed Size (px)

Citation preview

Digital Control of Electric Drives

BE1M14DEP 1

Induction Motor Vector Control

Czech Technical University in Prague – Faculty of Electrical Engineering

O. Zoubek, J. Zdenek

2

● Scalar control● Vector control

Induction Motor Control Methods

BE1M14DEP 2

3

Three-phase Inverter

BE1M14DEP 3

4

● Disadvantages of scalar (U/f) control:

● Very low dynamics

Changes in the asynchronous machine take place at the speed given by the rotor time constant (ie, up to seconds on large machines)

● The input is the frequency - it is not possible to directly control of IM torque

● Not suitable for traction

● The motor torque is dependent on the slip frequency - it is still the same (the percentage with the lower output frequency of the drive increases)

● Advantages of scalar (U / f:) control:

● Simplicity of management (especially development)

Scalar Control Properties (U/f Method)

BE1M14DEP 4

5

Scalar Control - U/f Method)

● Scalar control:● Only one variable, mostly frequency, is controlled. Voltage is tied

to frequency, so the name "U / f"

Speed [1/min]

Voltage

Rated speed

Ratedvoltage

IMI1

B1M14DEP 5BE1M14DEP 5

6

+

CR

Prescaler(Předdělička)

Up-Down Counter(Obousměrný čítač)

Comparator(Komparátor )

Compare Register(Porovnávaná hodnota )

Program

DeadTime

&OutputLogic

Clock(Takt)

Int

Carrier Wave Code(Kód nosné vlny)

Modulation Wave Value(Kód modulačního průběhu )

Žádost o obsluhu

Generování mrtvých doba výstupní logika

PWM Generation hw Support

B1M14DEP 6BE1M14DEP 6

7

PWM Generation (One possible option)

B1M14DEP 7

+

Carrier Wave(Nosná vlna)

Modulation Wave(Modulační průběh)

Interrupt Request(Žádost o obsluhu)

PWM Output(Výstup PWM)

Time

+1

-1

0

PWM Output(Výstup PWM)

B1M14DEP 7BE1M14DEP 7

8

Vector Control

● Advantages of vector control versus scalar:● Unmatched higher dynamics● Working from zero revolutions (for some types of vector

control including standing rotor)● The drive input is a torque requirement (gas lever)● Fit for traction● The induction motor current is fully controlled● Possibility of short-term overload and work with a higher

torque than the maximum torque point● To switch from scalar to vector control, in most cases, only

software change is sufficient

B1M14DEP 8B1M14DEP 8B1M14DEP 8BE1M14DEP 8

9

Control Dymamics

● Torque is related to currents● Torque of any electric machine ≈ current● Dynamics of electric machine ≈ fast current changes● Rapid changes in currents require a voltage (the winding of

the machine is inductive)● In order to increase the dynamics, it is necessary to directly

control the currents (for induction motor with the short-circuit armature only stator currents are possible to control), which can not be done by the U / f control

B1M14DEP 9B1M14DEP 9B1M14DEP 9BE1M14DEP 9

10

Vector Control

● Vector control:● Two quantities of the induction machine are controlled separately● Mostly, this is a stator current divided into two components:

– Current component affecting the magnetic flux– Current component affecting the torque

IMI1

IM

IM

IΨ→ =

B1M14DEP 10

DC machineIM machine

B1M14DEP 10B1M14DEP 10BE1M14DEP 10

11

Space Vector Idea

● The space vector can express the effect of all currents flowing through all phases of the electric machine stator

● Symmetrical winding is assumed for a three-phase, two-pole machine (the angle of rotation is 120 °)

● The expression can be modified provided the center point is not connected (i.e. i

a+i

b+i

c= 0) and after modifiying ej120° a ej240°

I 1

I=K i aib⋅ej⋅120 °i c⋅e

j⋅240 °

i =ℜ I =32⋅K⋅i a

I=K 32

i a j⋅32⋅i a2ib

i =ℑI =32⋅K⋅i b�i c=

32⋅K⋅i a2 i b

BE1M14DEP 11

12

Space Vector Idea

● The space vector can express the effect of all currents flowing through all phases of the electric machine stator

● Symmetrical winding is assumed for a three-phase, two-pole machine (the angle of rotation is 120 °)

● The expression can be modified provided the center point is not connected (i.e. i

a+i

b+i

c= 0) and after modifiying ej120° a ej240°

I 1

I=K i aib⋅ej⋅120 °i c⋅e

j⋅240 °

i =ℜ I =32⋅K⋅i a

I=K 32

i a j⋅32⋅i a2ib

i =ℑI =32⋅K⋅i b�i c=

32⋅K⋅i a2 i b

BE1M14DEP 12

Při vhodné volbě Kiα = ia

13

Clark Transformation

Clark's transformation converts the three phases (a, b, c) intotwo phases (α, β)For K = 2/3 Clark's transformation is expressed as:

ia

ibi

c

Three phases of the machine →

Two axis

iα=i a iβ=√33⋅(i a+2 i b)

BE1M14DEP 13

14

Rotation of Coordinates

B1M14DEP 14

Space vector I in the coordinate system tied to the stator

Space vector I in coordinate system k

Where θk is the angle of rotation of the coordinate system k

I 1

I k

I k=

I 1⋅e

� j k

ik=iαcosθ

k+iβsinθ

ki l=�iαsinθk+iβcosθk

If the coordinate system (k, l) is rotated by the angle θk against (α, β):

BE1M14DEP 14

15

Park Transfomation

α

ω1

id=icosi sin

iq=�isini cos

θ

β

d

q

BE1M14DEP 15

16

Used Coordinate Systems

16BE1M14DEP 16

Coordinates Designation Rotationspeed

Coordinates tied to the stator α,β 0

Coordinates tied to the rotor k, l ω

Coordinates tied to the magnetic flux of the rotor d, q ω1

17

Induction Motor Torque

P=32∣U 1∣⋅∣I 1∣⋅cos=

32⋅ℜ U 1⋅

I 1∗Pro K=

23

BE1M14DEP 17

18

Induction Motor Torque

P=32∣U 1∣⋅∣I 1∣⋅cos=

32⋅ℜ U 1⋅

I 1∗For K=

23

U 1=R1⋅I 1

d 1

dt=R1⋅

I 1 j1 1

Voltage equation of induction motor stator windingwritten by space vectors:

BE1M14DEP 18

19

Induction Motor Torque

P=32∣U 1∣⋅∣I 1∣⋅cos=

32⋅ℜ U 1⋅

I 1∗Pro K=

23

P=32⋅[R1i1

2 i12 11 i11 i1]

BE1M14DEP 19

20

Induction Motor Torque

P=32∣U 1∣⋅∣I 1∣⋅cos=

32⋅ℜ U 1⋅

I 1∗Pro K=

23

P=32⋅[R1i1

2 i12 11 i11 i1]

Power dissipation in resistance:

P=R∣I∣2=Ri a2ib

2

BE1M14DEP 20

21

Induction Motor Torque

P=32∣U 1∣⋅∣I 1∣⋅cos=

32⋅ℜ U 1⋅

I 1∗Pro K=

23

P=32⋅[R1i1

2 i12 11 i11 i1]

Losses in the stator

P=R∣I∣2=Ri a2ib

2

BE1M14DEP 21

22

Induction Motor Torque

P=32∣U 1∣⋅∣I 1∣⋅cos=

32⋅ℜ U 1⋅

I 1∗Pro K=

23

P=32⋅[R1i1

2 i12 11 i11 i1]

Losses in the statorPower transmitted by

air gap from the stator to the rotor

BE1M14DEP 22

23

Induction Motor Torque

P=32∣U 1∣⋅∣I 1∣⋅cos=

32⋅ℜ U 1⋅

I 1∗Pro K=

23

BE1M14DEP 23

24

Induction Motor Torque

P=32∣U 1∣⋅∣I 1∣⋅cos=

32⋅ℜ U 1⋅

I 1∗Pro K=

23

1�s

=1

pp

BE1M14DEP 24

25

Induction Motor Torque

P=32∣U 1∣⋅∣I 1∣⋅cos=

32⋅ℜ U 1⋅

I 1∗Pro K=

23

BE1M14DEP 25

26

Induction Motor Torque

26BE1M14DEP 26

ABc

I1 I1 I1 I1 I2 I2 I2 Ψ1I2 Ψ1 Ψµ Ψ2 Ψ1 Ψµ Ψ2 Ψ2

Lh Lh / L2 Lh / L1 Lh / σL1L2

M i=32

pp⋅c⋅∣A∣⋅∣B∣⋅sin

sin γ is the angle between the vectors A a B

M i=32⋅pp⋅ 1 i1 1 i1

27

Induction Motor Torque

27BE1M14DEP 27

ABc

I1 I1 I1 I1 I2 I2 I2 Ψ1I2 Ψ1 Ψµ Ψ2 Ψ1 Ψµ Ψ2 Ψ2

Lh Lh / L2 Lh / L1 Lh / σL1L2

M i=32

pp⋅c⋅∣A∣⋅∣B∣⋅sin

sin γ is the angle between the vectors A a B

M i=32⋅pp⋅ 1 i1 1 i1

M i=32⋅pp⋅ 2d i1q 2q i1d ⋅

Lh

L2

28

Stator Current Components

M i=32⋅pp⋅ 2d i1q 2q i1d ⋅

Lh

L2

BE1M14DEP 28

29

Stator Current Components

BE1M14DEP 29

M i=32⋅pp⋅ 2d i1q 2q i1d ⋅

Lh

L2Ψ

2q is equal to zero because the (d, q) axis direction is given just

by the direction of Ψ2

M i=32⋅pp⋅ 2 i1q⋅

Lh

L2

30

Stator Current Components

BE1M14DEP 30

M i=32⋅pp⋅ 2d i1q 2q i1d ⋅

Lh

L2Ψ

2q is equal to zero because the (d, q) axis direction is given just

by the direction of Ψ2

M i=32⋅pp⋅ 2 i1q⋅

Lh

L2

M i≈i1q 2 i1q

stator current component

which affect the torque

Ψ2 is excitation

31

Stator Current Components

31BE1M14DEP 31

M i=32⋅pp⋅ 2d i1q 2q i1d ⋅

Lh

L2Ψ

2q is equal to zero because the (d, q) axis direction is given just

by the direction of Ψ2

M i=32⋅pp⋅ 2 i1q⋅

Lh

L2

M i≈i1q 2i1q

stator current component

which affects the torque

Ψ2 is excitation

d 2d

dt=

R2

L2Lh i1d�2d => 2 Lh i1d

i1d

stator current component

which affects magnetic flux

32

IM versus DC machine

BE1M14DEP 32

AM

i1q

i1d

ia

ib

i1q

≈ ia

i1d

≈ ib

The stator current of the three-phase induction short-circuit machinehas two stages of freedom (the third one is deleted because centerof windings is drawn outside) and can be divided into two componentsthat correspond to the armature current and the excitation of the DC motor.It is therefore possible to control independetly the torque and the excitationof induction machine.

DC machineIM machine

33

Voltage Vector Control of an Induction Machine

IMInverterPI

PI

IRCDecodern

θIRC

α,β

a,b,c

α,β

d,qIMModel

θr

α,β

d,q

θ

i1d

*

i1q

*

α,β

a,b,c

i1d

i1q

ia,i

b,(i

c)

θ

u1d

u1q

u1α

u1β

u1a,b,c

∫ω

2

BE1M14DEP 33

34

Voltage Vector Control of an Induction Machine

34

IMInverterPI

PI

IRCDecodern

θIRC

α,β

a,b,c

α,β

d,qIMModel

θr

α,β

d,q

θ

i1d

*

i1q

*

α,β

a,b,c

i1d

i1q

ia,i

b,(i

c)

θ

u1d

u1q

u1α

u1β

u1a,b,c

∫ω

2

Clark Transformation

i=i a i =33⋅i a2 i b

BE1M14DEP 34

35

Voltage Vector Control of an Induction Machine

35

AMstřídačPI

PI

IRCDecodern

θIRC

α,β

a,b,c

α,β

d,qIMModel

θr

α,β

d,q

θ

i1d

*

i1q

*

α,β

a,b,c

i1d

i1q

ia,i

b,(i

c)

θ

u1d

u1q

u1α

u1β

u1a,b,c

∫ω

2

Park Transformation

id=i cosi sin

iq=�isini cos

BE1M14DEP 35

36

Voltage Vector Control of an Induction Machine

AMstřídačPI

PI

IRCDecodern

θIRC

α,β

a,b,c

α,β

d,qIMModel

θr

α,β

d,q

θ

i1d

*

i1q

*

α,β

a,b,c

i1d

i1q

ia,i

b,(i

c)

θ

u1d

u1q

u1α

u1β

u1a,b,c

∫ω

2

Induction machine I1-n model

dΨ2

dt=

R2

L2(Lhi1d�Ψ2) ω2=

Lh R2

L2

i1qΨ2

B1M14DEP 36

37

Voltage Vector Control of an Induction Machine

AMstřídačPI

PI

IRCDecodern

θIRC

α,β

a,b,c

α,β

d,qIMModel

θr

α,β

d,q

θ

i1d

*

i1q

*

α,β

a,b,c

i1d

i1q

ia,i

b,(i

c)

θ

u1d

u1q

u1α

u1β

u1a,b,c

∫ω

2

Induction machine I1-n model

d 2

dt=

R2

L2Lhi1d� 2 2=

Lh R2

L2

i1q

2

BE1M14DEP 37

38

Voltage Vector Control of an Induction Machine

AMstřídačPI

PI

IRCDecodern

θIRC

α,β

a,b,c

α,β

d,qIMModel

θr

α,β

d,q

θ

i1d

*

i1q

*

α,β

a,b,c

i1d

i1q

ia,i

b,(i

c)

θ

u1d

u1q

u1α

u1β

u1a,b,c

∫ω

2

Induction machine I1-n model after

suitable substitution is used i 2= 2

Lhd i 2

dt=

R2

L2i1d�i 2 2=

R2

L2⋅

i1q

i 2

BE1M14DEP 38

39

Voltage Vector Control of an Induction Machine

39

AMstřídačPI

PI

IRCDecodern

θIRC

α,β

a,b,c

α,β

d,qIMModel

θr

α,β

d,q

θ

i1d

*

i1q

*

α,β

a,b,c

i1d

i1q

ia,i

b,(i

c)

θ

u1d

u1q

u1α

u1β

u1a,b,c

α,β

∫ω

2

Slip frequency integrator

r=∫2 dt

BE1M14DEP 39

40

Voltage Vector Control of an Induction Machine

40

IMstřídačPI

PI

IRCDecodern

θIRC

α,β

a,b,c

α,β

d,qIMModel

θr

α,β

d,q

θ

i1d

*

i1q

*

α,β

a,b,c

i1d

i1q

ia,i

b,(i

c)

θ

u1d

u1q

u1α

u1β

u1a,b,c

α,β

∫ω

2

The IRC sensor decoder

BE1M14DEP 40

θ IRC=number of pulsespulses per rotation

⋅pp

2

41

Voltage Vector Control of an Induction Machine

41

AMstřídačPI

PI

IRCDecodern

θIRC

α,β

a,b,c

α,β

d,qIMModel

θr

α,β

d,q

θ

i1d

*

i1q

*

α,β

a,b,c

i1d

i1q

ia,i

b,(i

c)

θ

u1d

u1q

u1α

u1β

u1a,b,c

α,β

∫ω

2

BE1M14DEP 41

r≈∫2

≈∫1

IRC≈∫

Slip frequency

Feeding frequency of machine

El. angle speed of shaft

2=1⇒r IRC=

42

Voltage Vector Control of an Induction Machine

42

IMInverterPI

PI α,β

d,q

θ

i1d

*

i1q

*

α,β

a,b,c

i1d

ia,i

b,(i

c)

u1d

u1q

u1α

u1β

u1a,b,c

ut =k pet ∫k i et dt

BE1M14DEP 42

dekodérIRCn

θIRC

α,βa,b,c

α,β

d,qIMModel

θr

i1q

θ

∫ω

2

PI controllers regulate each component of the current separatelyBoth components are DC (does not change with ω, ω

1 or ω

2)

The input to the controllers are the error values of the currents.The outputs are a voltage requirements.

ut =k pet ∫k i et dt

43

Voltage Vector Control of an Induction Machine

IMInverterPI

PI α,β

d,qi1d

*

i1q

*

α,β

a,b,c

u1d

u1q

u1α

u1β

u1a,b,c

B1M14DEP 43

dekodérIRCn

θIRC

α,β

a,b,c

α,β

d,qmodelAM

θr

i1d

i1q

ia,i

b,(i

c)

θ

α,β

∫ω

2

Inverse Park and Clark transformations

u=ud cos�uqsin

u=ud sinuqcos

Inverse: sins have inverse signs

ua=u

ub=�12

u32⋅u

uc=�12

u�32⋅u

44

Voltage Vector Control of an Induction Machine

BE1M14DEP 44

45

Three-phase Inverter

BE1M14DEP 45

46

Space Vector Modulation

Each of the three branches of the voltage converter always has only one of two transistor switched on. For the three branches it is 23 = 8 different states altogether.

a b c Ua-b Ub-c Ua-c výstup

0 0 0 0 0 0 nic

1 0 0 +UDC

0 -UDC

1 1 0 0 +UDC

-UDC

60°

0 1 0 -UDC

+UDC

0 120°

0 1 1 -UDC

0 +UDC

180°

0 0 1 0 -UDC

+UDC

240°

1 0 1 +UDC

-UDC

0 300°

1 1 1 0 0 0 nic

BE1M14DEP 46

47

Space Vector Modulation

BE1M14DEP 47

48

Space Vector Modulation

BE1M14DEP 48

49

Space Vector Modulation

Six available active statesat the output of the inverter

BE1M14DEP 49

a

b

c

U0

U60U120

U180

U240 U300

50

Space Vector Modulation

To achieve a certain outputshould be combined over timeseveral output vectors,including zero vector.There are many ways,how to draw a vectorwhich differ in accuracy,computational difficultyand switching losses.However, the outputs alwayshave character PWM modulation.

The simplest method is:

PWMx=ux

2Umax

0.5

x∈{a ,b ,c}

BE1M14DEP 50

a

b

c

U0

U60

51

Space Vector Modulation

BE1M14DEP 51

52BE1M14DEP 52

Space Vector Modulation

53

Digital Control of Electric Drives

Induction Motor Vector Control

End

BE1M14DEP 53