19
Independent Variables Time : t Position vector : P = 8x - x 0 , y - y 0 , z - z 0 < Dependent Variables (per Unit of Mass) Density : r Species Mass Fractions : 8Y i < i=1,Ns ! Mixture Composition Flow Mass Averaged Velocity : u Static Pressure : p Internal Energy : U Static Temperature : T Enthalpy : H := U - p r Only Ns+2+3 are linearly independent ü Average Molecular Weight W := i=1 Ns Y i W i -1 ü Molar Fractions c i = Y i W W i , 8i, 1, Ns< Equations for a Multi-Component Reactive System Balance Equations: Mass conservation of mixture (r) Momentum conservation (r u, p) Energy conservation (U,H) Rate equations for species (8Y i < i=1,Ns ) Equations of State (Thermal, Caloric) NB: balance eqns and EoSs involves more unknowns than equations: problem of closure Constitutive Laws: Four Postulates of Nonequilibrium Thermodynamics permits to define the constitutive laws required to link causes (gradients of state variables) with effects (mass and heat fluxes, reactions, stress tensors) NB: constitutive laws provide the links between causes and effects but involve transport coefficients Transport theories to evaluate transport coefficients: Kinetic theory: simple if gas are made of rigid spheres Kinetic theory: rigorous (Chapman-Enskog) NB: problem can be closed!!

Independent Variables - uniroma1.itweb2srv.ing.uniroma1.it/~m_valorani/Combustion_LM_files/SummaryM… · Independent Variables Time: t ... i can be written as linear relations involving

Embed Size (px)

Citation preview

Independent VariablesTime : t

Position vector : P = 8x - x0, y- y0, z- z0<

Dependent Variables (per Unit of Mass)Density : r

Species Mass Fractions : 8Yi<i=1,Ns ! Mixture CompositionFlow Mass Averaged Velocity : uStatic Pressure : pInternal Energy : UStatic Temperature : T

Enthalpy : H := U -p

r

Only Ns+2+3 are linearly independent

ü Average Molecular Weight

W := ‚i=1

Ns YiWi

-1

ü Molar Fractions

ci = Yi W

Wi, 8i, 1, Ns<

Equations for a Multi-Component Reactive SystemBalance Equations:

Mass conservation of mixture (r)Momentum conservation (r u, p)Energy conservation (U,H)

Rate equations for species (8Yi<i=1,Ns)

Equations of State (Thermal, Caloric)

NB: balance eqns and EoSs involves more unknowns than equations: problem of closure

Constitutive Laws:Four Postulates of Nonequilibrium Thermodynamics permits to define the constitutive laws requiredto link causes (gradients of state variables) with effects (mass and heat fluxes, reactions, stress tensors)

NB: constitutive laws provide the links between causes and effects but involve transport coefficients

Transport theories to evaluate transport coefficients:Kinetic theory: simple if gas are made of rigid spheresKinetic theory: rigorous (Chapman-Enskog)

NB: problem can be closed!!

Velocity and Fluxes in Multi-Component Mixtures

ü Velocities

Absolute velocity of species : u j

Average Velocities

Average Velocity per Units of Mass : u =I⁄j=1Ns r j u jM

rwith r = ‚

j=1

Ns

r j

Average Velocity per Units of Mole : u* =I⁄j=1Ns c j u jMc

with c = ‚j=1

Ns

c j

Diffusion VelocitiesRelative Velocity per Units of Mass : V j = u j - uRelative Velocity per Units of Mole : V j

* = u j - u*

ü Fluxes

Absolute Mass Flux of species : m° j = r j u jAbsolute Molar Flux of species : n° j = c j u j

Relative Mass Flux of species : J j = r j Iu j - uM = r j V j with ‚j=1

Ns

J j = 0

Relative Molar Flux of species : J j* = c j Iu j - u*M = c j V j* with ‚

j=1

Ns

J j* = 0

Balance Equations

ü Eulerian Formulation (balance equation for a control volume fixed in space)

ü Integral Form

∂t‡V

Ñ

j „V = -‡V

Ñ

“ .@fD „V +‡V

Ñ

wj „V = -‡S=∂V

Ñ

f . n „S +‡V

Ñ

wj „V j œ R; f œ RN

∂t‡V

Ñ

f „V = -‡V

Ñ

“ .@TD „V +‡V

Ñ

w f „V = -‡S=∂V

Ñ

T . n „S +‡V

Ñ

w f „V f œ RN; T œ RNxN

ü Differential Form

∂tHjL = -“.@fD + wj j œ R; f œ RN

∂tH fL = -“.@TD + wf f œ RN; T œ RNxN

2 SummaryMCEqns.nb

ü Conservation Laws

Species Mass Evolution : j = r j = rY j ï ∂t IrY jM = -“ .AN jE + w j

Momentum conservation : f = r u u œ R3 ï ∂t H r uL = -“ .@QD +‚j=1

Ns

r j g j

Energy conservation : j = r U +1

2 u. u ï ∂t r U +

1

2 u. u = -“ .@ED +‚

j=1

Ns

r j u. g j

Mass conservation : ∂t r = -“ .@r uD

ü Definition of Combined Fluxes

N j = J j + r u Y j = r jIu+ V jM = r j u j r u Y j = species mass fraction convective flux HvectorL

Q = P + r u u = pU + T + r u u r u u = momentum convective flux HtensorL

E = e+ r u U +1

2 u. u = Hq+ P. u + qrad L + r u U +

1

2 u. u r u U +

1

2 u. u = internal + kinetic energy convective flux

ü Definition of Fluxes

J j = r j V j J j = j - th species mass flux

P = pU + T P = stress tensor ;U = unitary matrix;pU = hydrostatic pressure tensor;T = tangential stress tensor

e = q+ P. u + qrad = q+ pU. u + T . u+ qrade = energy fluxq = convective ê conductive heat flux;qrad = radiative heat fluxP. u = pU.u + T .u = stress tensor work;pU. u = p u = pressure tensor HreversibileLwork;T . u = tangential stress tensor HirreversibleLwork;

ü Definition of Total Derivative

Dt H.L := ∂t H.L + Hu.“L H.L∂t Hr jL + “ .@r u jD = r Dt HjL

∂t HrVL + “ .@r uVD = r Dt HVL

ü Lagrangian Formulation (balance equation for a particle of substance convected by the average flow velocity)

Species Mass Evolution r Dt IY jM = -“ .AJ jE + w j

Momentum conservation rDtH uL = -“ .@PD + r g

Energy conservation rDt U +1

2 u. u = -“ .@eD + r Hu.gL =

-“ .@q+ pU . u + T . uD + r Hu.gL = -“ .@qD - “ .@ pU. u D - “ .@ T . uD + r Hu.gL

Mass conservation Dt r = - r “ . @uD

ü Alternative Forms of the Conservation Law of Energy

SummaryMCEqns.nb 3

ü

Alternative Forms of the Conservation Law of Energy

InternalEnergyconservation r Dt HUL = -“.@qD - p “.@ u D - HT : “uL

“.@qD = divergence of heat flux

“.@ u D = divergence of flow H = 0, if fluid is incompressibleL

p “.@ u D =HreversibleL convertion of pressure work into internal energy Honly for compressible fluidsL

-HT : “uL > 0 = HirreversibleL convertion of tangential stress work into internal energy

T : “u ª ‚i,j

Ñ

ti,j ∂uj

∂xi

Enthalpyconservation r Dt HHL = -“.@qD - HT : “uL + Dt HpL

EOSs

ü Thermal Equation of State (Mixture of Ideal Gases); Units of Mass

p- r TRu

W= 0

ü Caloric Equation of State (Mixture of Ideal Gases); Units of Mass

h`i@TD = h

`f ,i +‡

Tref

Tc` p,i@tD „ t 8i, 1, Ns<

H` @T , YmassD := ‚

i=1

Ns

h`i@TD Yi;

U` @T , YmassD := H

` @T , YmassD -Ru T

W;

4 SummaryMCEqns.nb

Constitutive Laws

ü Postulates of Non-Equilibrium Thermodynamics

1) Quasi-equilibrium: equilibrium thermodynamics relations apply to systems that are not in equilibrium, provided the gradients are not toolarge;

∂t HDSL = -⁄i, j=1n J ∂2S

∂wi ∂w jNeq,wi=0

∂t HwiL w j

yi = state variables off equilibrium

yi,eq = state variables at equilibrium

wi = yi - yi,eq

wi = 0 at equilibrium

2) Linearity: all fluxes Ji can be written as linear relations involving all affinities c j;

Ji = ⁄j=1n ai, j c j

If the following choice of fluxes and affinities is made:

ci := T ∂wi HDSL = -T ⁄j=1n J ∂2S

∂wi ∂wjNeq,wi=0

wj affinity

Ji := ∂tHwiL flux

then:

∂t HDSL = 1T

⁄i=1n Ji ci

3) Coupling between fluxes and affinities can occur only if the difference of the tensorial order is not an odd number; only true for isotropiccontinua;

4) Reciprocity; the coefficients in the flux-affinity relationships are symmetric in absence of magnetic fields:

ü Equation of Change of Entropy

r Ds

Dt= -H“ .sL + g s = entropy flux; g = rate of production of entropy

The Gibbs equation for a particle moving with the average mixture velocity reads:

T Ds

Dt=

DU

Dt+p

r DHrLDt

-‚j=1

ns

m j DIY jM

Dt

Continuity equation :DJ 1

rN

Dt=

1

r DHrLDt

= -H“ .uL

Species mass equation of change :DIY jM

Dt= -

1

r I“ . J jM +

w j

r

SummaryMCEqns.nb 5

Internal energy equation of change :DU

Dt= -

1

r H“ .Hq+ qradLL -

p

r H“ . uL -

1

r Ht : “uL +‚

j=1

ns

IJ j. X jM

X j = external body forces

with the rate of production ê consumption of the j - th species : w j := ‚k=1

nr

Dn j,k rk

Substituting the substantial derivatives from the equation of continuity, species and internal energy conservation yields:

the entropy flux :

s =1

T Hq+ qradL -‚

j=1

ns

n j m j V j

the rate of production of entropy :

g = -1

T2 HHq+ qradL.“TL -‚

j=1

ns

n j V j. “m j

T-

1

T X j -

1

T Ht : “uL -

1

T ‚j=1

ns

m j w j

which indeed has the form :

∂t HDSL =1

T ‚i=1

n

Ji ci

ü Flux of Entropy

Define e as:

e := q+ qR -‚j=1

ns

n j H j V j

then:

s =e

T+‚

j=1

ns

n j S j V j

ü Rate of Entropy production

1. Define the "affinity" of k-th reaction:

Ak := -‚j=1

ns

m j Dn j,k

-1

T ‚j=1

ns

m j w j = +1

T ‚k=1

nr

rk Ak

The "affinity" the k-th reaction is in equilibrium if Ak is zero; if Ak is non zero then the reaction in in nonequilibrium, its net rate rk becomesnon zero and drives the state towards equilibrium.

2. Definedj as :

dj =nj

n K T Vsj -

mj

r “p + ‚

k=1,k≠j

ns ∂mj

∂xk p,T,xkHk≠jL “ck - Xj -

mj

r ‚k=1

ns

nk Xk

ck : molar fraction of k - th species

p = n K T ; for a perfect gas only

6 SummaryMCEqns.nb

mj nj = rj

Vsj =∂mj

∂p T,xkHk≠jL

3. thenthe rateof entropyproductionbecomes:

g = -1

T2 He .“TL - n K ‚

j=1

ns

V j. d j -1

T Ht : “uL -

1

T ‚k=1

nr

rk Ak

which has also the form :

∂t HDSL =1

T ‚i=1

n

Ji ci

ü Main Results of Non-Equilibrium Thermodynamics

Forces (causes of changes) are nonhomogeneities in the fields of pressure, “p, of temperature, “T, and of mixture composition, “ c j, flowvelocity, “u, reaction affinities Ak and body forces X j:

Forces Hcauses of changesL are tensors of order 0, 1, and 2 :

“ p, “T , “ c j, Ak, X j, “u, d j

Order 1 Tensors : “ p, “T , “ c j, d jA“ p, “ c j, X jEOrder 2 Tensor : “uOrder 0 Tensors : Ak

Fluxes (effects) are tensors of order 0, 1, and 2:

Order 1 Tensor : e ó “T , “ p, d jA“ p, “ c j, X jEOrder 1 Tensors : J j ó d jA“ p, “ c j, X jE , “T , “ pOrder 2 Tensor : t ó “u, AkOrder 0 Tensors : rk ó Ak, “u

In matricial notation:

e

J j=

Heat conductionHFourierL

Dufour effectHDiffusion - ThermoL

Soret effectHThermal DiffusionL

Mass diffusionHFickL

“T

d jA“ p, “ c j, X jE

t

rk=

Viscosity 00 Identity

“uAk

ü Constitutive Laws for Momentum Fluxes

g = -1

T Ht@“vD : “vL

What are the constitutive laws for the flux t ?

For the linearity postulate:

ti,j = ‚k=1

3

‚l=1

3

ai,jl,k

∂vl

∂xk

Viscous Stress Tensor : t = - m I“@uD + “@uDTM +2

3 m - k “ .@uD U

SummaryMCEqns.nb 7

m is the multi -component shear viscosityk is the multi -component bulk viscosity

ü Constitutive Laws for Mass and Energy Fluxes

g = -1

T2 IeA“T, djE.“TM - n k ‚

j=1

ns

VjA“T, djE.dj

What are the constitutive laws for the fluxes e and Jj ?

The linearity postulates allows us to write:

e = -a0,0

T “T - n k T ‚

j=1

ns ao,j

nj mj dj H1L

Jj = -a0,j

T “T - n k T ‚

j=1

ns ai,j

nj mj dj H2L

with:

n K T

nj dj = Vsj -

mj

r “p + ‚

k=1

ns ∂mj

∂xk “xk - Xj -

mj

r ‚k=1

ns

nk Xk

This form implies that both “T and dj can in

principle contribute to both the energy e and mass fluxes Jj !!

ü Constitutive Laws for Diffusion Fluxes (related to diffusion velocities: Jj = cj Vj)

ü Multi-Component Diffusion Equation

For a Multi-Component mixture, the diffusion velocities Vi or diffusion fuxes J j are related to the forces (“@ciD, “Log(p), Log[T]) through aset of Ns PDEs:

‚j=1

Ns ci c j

Di, j IV j - ViM = “@ciD - HYi - ciL

“@pDp

-‚j=1

Ns ci c j

rDi, j D jT

Y j-DiT

Yi “@TDT

, 8i, 1, Ns<

which is difficult and time consuming to solve.

DiT are the multi-component thermo-diffusive coefficients.

The generalized Stefan-Maxwell diffusion coefficients satisfy:

i,j ~ i,j

where i,j are the binary diffusion coefficients as found from the C-E theory.

‚j=1

ns ni nj

n2 i,j IVj - ViM = diffusion velocity

-“xi ordinary diffusion

-Hxi - yiL “Log HpL pressure - driven diffusion

-“Log@TD ‚j=1

ns ni nj

n2 i,j

DjT

nj mj-

DiT

ni mithermal diffusion HSoret effectL

+yi

p

r

mi Xj - ‚

k=1

ns

nk Xk external forced diffusion

8 SummaryMCEqns.nb

ü Stefan-Maxwell Equation

If Yi = ci then the pressure gradients have no effect, and if we can neglect the diffusion-thermal (Dufour) effect, then we obtain the Stefan-Maxwell eqns for a mixture of Ns species.

‚j=1

Ns ci c j

i, j IV j - ViM = “@ciD 8i, 1, Ns<

ü Fick's Law

For a binary mixture (Ns=2) the Stefan-Maxwell reduces to the Fick Law:

V1 = -1,2 “@Log@c1DD or J1 = -1,2 “@c1D

where 1,2 is the binary diffusion coefficient between species 1 and 2.

We can extend this result to a mixture diluted in the Ns-th component and obtain:

V j = - j “ALogAc jEE or c j V j = - j “Ac jE 8 j, 1, Ns - 1<where j º j,N , with j,N being the binary diffusion coefficients ofthe j - th species diluted in the N - th species.

However, only HN - 1L of the i are linearly independent since‚i=1

N

ci = 1, and‚i=1

N

ci Vi = 0; thus :

N =⁄j≠Nj “cj

⁄j≠N “cj

The diffusion velocity VN* is found from :

VN = -‚i=1

N-1

ci Vj = ‚i=1

N-1

i “ci

ü Constitutive Laws for Energy Fluxes

Heat Flux Vector : q = - k“@TD + r ‚i=1

Ns

hi Yi Vi + Ru T ‚i=1

Ns

‚j=1

Ns ci c j DiT

Wii, j IVi - V jM - qR

q =- k “@TD heat conduction

-‚i=1

ns

‚j=1

ns n K T DiT

ri xi xj

i,j IVj - ViM diffusive - thermo HDufour effectL

+‚j=1

ns

nj Hj Vj heat transport by diffusion

-qR heat transport by radiation

k is the multi - component thermal conductivity coefficient !!!

SummaryMCEqns.nb 9

ü Finite Rate Kinetics Source Term

w jAT , p, c jE := ‚k=1

Nr

Dn j,kIr f ,k - rb,kM

rkAT , p, c jE := Kk@TD ‰j=1

Nq

c jn j,k

Kk@TD := Ak Tak ExpB EkR T

F

Non-equilibrium thermodynamics

ü Postulates of Non-Equilibrium Thermodynamics

1) Quasi-equilibrium: equilibrium thermodynamics relations apply to systems that are not in equilibrium, provided the gradients are no toolarge;

∂tHDSL = -⁄i,j=1n J ∂2S

∂wi ∂wjNeq,wi=0

∂tHwiL wj

2) Linearity: all fluxes can be written as linear relations involving all affinities; Ji = ⁄j=1

n ai,j cj

3) Coupling between fluxes and affinities can occur only if the difference of the tensorial order is an odd number; this holds true only forisotropic continua;

4) Reciprocity: the coefficients in the flux-affinity relationships are symmetric in absence of magnetic fields;

ü System in near-equilibrium postulate

yi = state variables off equilibriumyi,eq = state variables at equilibrium

wi = yi - yi,eq

wi = 0 at equilibrium

S HwiL = entropy off equilibriumSeq Hwi = 0L = entropy at equilibrium

The equilibrium condition implies that S HwiL has a maximum for wi = 0,that is all entropy first derivatives wrt wi are zero at equilibrium :

∂S

∂wi eq,wi=0

= 0 i = 1, ns

therefore, the Taylor series for S at wi = 0, reads :

S HwiL = Seq H0L + ‚i=1

n ∂S

∂wi eq,wi=0

wi +1

2 ‚i,j=1

n ∂2S

∂wi ∂wj eq,wi=0

wi wj

DS := Seq H0L - S HwiL = -1

2 ‚i,j=1

n ∂2S

∂wi ∂wj eq,wi=0

wi wj

DS = -1

2 ‚i,j=1

n ∂2S

∂wi ∂wj eq,wi=0

wi wj

10 SummaryMCEqns.nb

DS = - ‚i,j=1

n

eq,wi=0

wi wj

∂tHDSL = - ‚i,j=1

n ∂2S

∂wi ∂wj eq,wi=0

∂tHwiL wj

ü Linearity Postulate

Linear Relation between fluxes Ji and affinities cj is postulated(small departures from equilibrium)

Ji = ‚j=1

n

ai,j cj

ai,j direct HdiagonalL couplingsai,j off diagonal couplings

ü Onsager postulate (reciprocity)

The coefficients in the flux-affinity relationships are symmetric in absence of magnetic fields

ai,j = aj,i

What is the optimal choice for fluxes and affinities,so that the Onsager principle will hold ?

If the following choice of fluxes and affinities is made:

ci := T ∂wi HDSL = -T ‚j=1

n ∂2S

∂wi ∂wj eq,wi=0

wj affinity

Ji := ∂tHwiL flux

then:

∂t HDSL =1

T ‚i=1

n

Ji ci

ü Equation of Change of Entropy

r Ds

Dt= -H“.sL + g

Continuity equation :D I 1

rM

Dt=1

r D HrLDt

= -I“.vèM

Species mass equation of change :D IyjMDt

= -1

r I“.JjM +

wj

r

Internal energy equation of change :DU

Dt= -

1

r H“.Hq + qRLL -

p

r I“.vèM -

1

r It : “vèM + ‚

j=1

ns

IJj. XjM

Xj = external body forces

with the rate of productionêconsumption of j - th species : wj := ‚k=1

nr

Dnj,k rk

The Gibbs equation for a particle moving with the average mixture velocity reads:

T Ds

Dt=DU

Dt+p

r D HrLDt

- ‚j=1

ns

mj D IyjMDt

Substituting the substantial derivatives from the equation of continuity, species and internal energy conservation yields:

SummaryMCEqns.nb 11

Substituting the substantial derivatives from the equation of continuity, species and internal energy conservation yields:

the entropy flux :

s =1

T Hq + qRL - ‚

j=1

ns

nj mj Vj

the rate of production of entropy :

g = -1

T2 HHq + qRL.“TL - ‚

j=1

ns

nj Vj. “mj

T-1

T Xj -

1

T Ht : “vL -

1

T ‚j=1

ns

mj wj

ü Flux of Entropy

Define e as:

e := q + qR - ‚j=1

ns

nj Hj Vj

then:

s =1

T Hq + qRL - ‚

j=1

ns

nj mj Vj

s =1

T e + ‚

j=1

ns

nj Hj Vj - ‚j=1

ns

nj IHj - T SjM Vj

and finally

s =e

T+ ‚j=1

ns

nj Sj Vj

ü Rate of Entropy production

g = -1

T2 HHq + qRL.“TL - ‚

j=1

ns

nj Vj. “mj

T-1

T Xj -

1

T Ht : “vL -

1

T ‚j=1

ns

mj wj

The contribution to entropy production due to gradients of chemical potentials, temperature and external forces is:

g = -1

T2 HHq + qRL.“TL - ‚

j=1

ns

nj Vj. “mj

T-1

T Xj

g = -1

T2 HHq + qRL.“TL -

1

T ‚j=1

ns

nj Vj. T “mj

T- Xj

g = -1

T2 HHq + qRL.“TL -

1

T ‚j=1

ns

nj Vj. T “mj

T+1

T ‚j=1

ns

nj Vj.Xj

---------------------------------------

T “mj

T= T

“mj

T-

mj

T “T

T= “mj - mj

“T

T= “mj - IHj - T SjM

“T

T= “mj - Hj

“T

T+ T Sj

“T

T

“mj =∂mj

∂p T,xk Hk≠jL “p +

∂mj

∂T p,xk Hk≠jL “T + ‚

k=1,k≠j

ns ∂mj

∂xk p,T,xk Hk≠jL “xk

Vsj =∂mj

∂p T,xk Hk≠jL

12 SummaryMCEqns.nb

Sj = -∂mj

∂T p,xk Hk≠jL

“mj = Vsj “p - Sj “T + ‚k=1,k≠j

ns ∂mj

∂xk p,T,xk Hk≠jL “xk

T “mj

T= Vsj “p - Sj “T + ‚

k=1,k≠j

ns ∂mj

∂xk p,T,xk Hk≠jL “xk -

Hj

T “T + Sj “T

---------------------------------------

g = -1

T2 e + ‚

j=1

ns

nj Hj Vj .“T -

1

T ‚j=1

ns

nj Vj. Vsj “p - Sj “T + ‚k=1,k≠j

ns ∂mj

∂xk p,T,xk Hk≠jL “xk -

Hj

T “T + Sj “T +

1

T ‚j=1

ns

nj Vj.Xj

g = -1

T2 He.“TL -

1

T2 ‚j=1

ns

nj Hj Vj.“T -1

T ‚j=1

ns

nj Vj.Vsj “p -

1

T ‚j=1

ns

nj Vj. ‚k=1,k≠j

ns ∂mj

∂xk p,T,xk Hk≠jL “xk +

1

T ‚j=1

ns

nj Vj.Hj

T “T +

1

T ‚j=1

ns

nj Vj.Xj

g = -1

T2 He.“TL -

1

T ‚j=1

ns

nj Vj.Vsj “p -1

T ‚j=1

ns

nj Vj. ‚k=1,k≠j

ns ∂mj

∂xk p,T,xk Hk≠jL “xk +

1

T ‚j=1

ns

nj Vj.Xj

Jj = mj nj Vj = rj Vj

g = -1

T2 He.“TL -

1

T ‚j=1

ns

nj Jj.:Vsj

mj “p +

1

mj ‚k=1,k≠j

ns ∂mj

∂xk p,T,xk Hk≠jL “xk -

Xj

mj>

---------------------------------------

Define Lj as :

Lj :=Vsj

mj “p +

1

mj ‚k=1,k≠j

ns ∂mj

∂xk p,T,xk Hk≠jL “xk -

Xj

mj

so that:

g = -1

T2 He.“TL -

1

T ‚j=1

ns

nj Jj.Lj

---------------------------------------

Define dj as :

dj :=nj mj

n K T Lj -

1

r “p +

1

r ‚k=1

ns

nk Xk

substitute Lj in dj to have :

dj =nj

n K T

mj Vsj

mj-mj

r “p +

mj

mj ‚k=1,k≠j

ns ∂mj

∂xk p,T,xk Hk≠jL “xk -

mj Xj

mj-mj

r ‚k=1

ns

nk Xk

n K T

nj dj = Vsj -

mj

r “p + ‚

k=1,k≠j

ns ∂mj

∂xk p,T,xk Hk≠jL “xk - Xj -

mj

r ‚k=1

ns

nk Xk

introducing the definition of the diffusional forces dj in g yields :

SummaryMCEqns.nb 13

g = -1

T2 He.“TL -

1

T ‚j=1

ns

nj Jj.Lj =

= -1

T2 He.“TL - n K ‚

j=1

ns

Vj.dj

---------------------------------------

If we define

Ak := -‚j=1

ns

mj Dnj,k

as the "affinity" of k-th reaction, then the contribution to the entropy production due to chemical reactions is:

-1

T ‚j=1

ns

mj wj = +1

T ‚k=1

nr

rk Ak

---------------------------------------

g = -1

T2 He.“TL - n K ‚

j=1

ns

Vj.dj -1

T Ht : “vL -

1

T ‚k=1

nr

rk Ak

ü Rate of Entropy production as inner product between fluxes and affinities

∂t HDSL =1

T ‚i=1

n

Ji ci

g = -1

T2 He.“TL - n K ‚

j=1

ns

Vj.dj -1

T Ht : “vL -

1

T ‚k=1

nr

rk Ak

It follows that :

∂t HDSL ~ g

Curie's postulate insures that coupling might occur only betweentensors whose order differs by an odd number,that is:

Order 1 Tensors : e ó “T, djA“p, “xj, XjEOrder 1 Tensors : Jj ó djA“p, “xj, XjE , “T

Order 2 Tensors : t ó “v, AkOrder 0 Tensors : rk ó Ak, “v

or in matricial notation:

e

Jj=

Heat conduction Dufour effectHdiffusion - thermoL

Soret effectHthermal diffusionL

Mass diffusion

“T

djA“p, “xj, XjE

t

rk=

Viscosity 00 Identity

K“vAk

O

ü Constitutive Laws for the Momentum Flux

g = -1

T Ht : “vL

For the linearity postulate:

14 SummaryMCEqns.nb

ti,j = ‚k=1

3

‚l=1

3

ai,jl,k

∂vl

∂xk

For the Onsager principle:

ai,jl,k = al,k

i,j

Since the pressure tensor is symmetric, then:

ai,jl,k = aj,i

l,k

Combining the two properties yields:

ai,jl,k = ai,j

k,l

Therefore:

ti,j = -1

2 ‚k=1

3

‚l=1

3

ai,jl,k

∂vl

∂xk+

∂vk

∂xl

where only 21 ai,jl,k are independent, and are the elastic constants of the continuum medium.

If the medium is isotropic then the stress-strain relationship is indipendent of rotations of the reference frame, and there are only 2 independentconstants, that is m, the shear viscosity, and k, the bulk viscosity:

t = -m I“v + H“vLTM +2

3 m - k H“.vL U = -2 m S

where:

S =1

2 :I“v + H“vLTM -

2

3 m - k H“.vL U>

The shear and bulk (?) viscosity coefficients are found from the C-E theory

This is the linear stress-strain relationship adopted in the Navier-Stokes equations.

By replacing this last expression in g yields:

g = -1

T H-2 m S : “vL

g =2 m

T HS : SL +

k

T H“.vL2

where:

S =1

2 :I“v + H“vLTM +

2

3 m - k H“.vL U>

Since g r 0 for the 2 - nd principle of thermodynamics, and HS : SL r 0, H“.vL2 r 0, it follows that :

m, k r0

ü Constitutive Laws for the Chemical Reactions Flux

g = -1

T ‚k=1

nr

rk Ak

rk = rfk - rb

k = Kfk HTL ‰

j=1

ns

cj,kn' - Kb

k HTL ‰j=1

ns

cj,kn''

SummaryMCEqns.nb 15

ü Constitutive Laws for the Energy and Mass Fluxes

g = -1

T2 He.“TL - n k ‚

j=1

ns

Vj.dj

What are the constitutive laws for the fluxes e and Jj ?

The linearity postulates allows us to write:

e = -a0,0

T “T - n k T ‚

j=1

ns ao,j

nj mj dj H1L

Jj = -a0,j

T “T - n k T ‚

j=1

ns ai,j

nj mj dj H2L

with:

n K T

nj dj = Vsj -

mj

r “p + ‚

k=1

ns ∂mj

∂xk “xk - Xj -

mj

r ‚k=1

ns

nk Xk

This form implies that both “T and dj can in

principle contribute to both the energy e and mass fluxes Jj !!

---------------------------------------

For a perfect gas

p = n K T

mj = mj,0 HTL + k T LogAp xjE = mj,0 HTL + k T Log@p D + k T LogAxjEwhich implies:

Vsj =∂mj

∂p=k T

p=1

n;

∂mj

∂xj p,T,xk Hk≠jL=k T

xj;

∂mj

∂xk= 0

that is, the diffusional forces can be cast as:

n K T dj =nj

n-nj mj

r “p + n k T “xj -

nj mj

r

r

mj Xj - ‚

k=1

ns

nk Xk

dj = “xj + Ixj - yjM “Log HpL -yj

p

r

mj Xj - ‚

k=1

ns

nk Xk

---------------------------------------

From the C-E kinetic theory of diluted gases:

e = -l' “T - n k T ‚j=1

ns DjT

nj mj dj H3L

Jj = -DjT

T “T -

n2

r‚j=1

ns

mi mj i,j dj H4L

where, the coefficient l' is found from the C-E theory.

These are the generalized Fick equations for the mass fluxes.In matrix form they read:

@JD = @D “B Tdj

F

---------------------------------------

16 SummaryMCEqns.nb

---------------------------------------

Comparing (1-2) with (3-4) yields:

l' =a0,0

T

Multi -component thermal -diffusion coefficients: DjT = ao,j = aj,o

Multi -component Fick diffusivities: i,j =r K T

n mi mj

ai,j

nj mj+

1

ni mi ‚k=1,k≠j

ns

ai,k

Solving the generalized Fick equation wrt “B Tdj

F yields:

“B Tdj

F = -@D-1@JD

that is:

di = ‚j=1

ns ni nj

n2 i,j

DjT

nj mj-

DiT

ni mi “Log@TD + ‚

j=1

ns ni nj

n2 i,j IVj - ViM

These are the (ns-1) generalized Stefan-Maxwell equations.

Multi-component Stefan-Maxwell diffusivities: i,j = Ii,jMThe generalized Stefan-Maxwell diffusion coefficients satisfy:

i,j ~ i,j

where i,j are the binary diffusion coefficients as found from the C-E theory.

---------------------------------------

For a binary mixture, the generalized Stefan-Maxwell equations reduce to :

n2 1,2

n1 n2 Hd1 + kT “Log@TDL = V2 - V1

with kT :

kT :=r

n2 m1 m2 D1T

1,2

referred to as the thermal-diffusion ratio coefficient.

ü Returning to the mass fluxes (diffusion velocities):

By replacing the definition of di for diluted ideal gases in the generalized Stefan-Maxwell equation yields an equation for the diffusionvelocities in terms of state variables gradients:

‚j=1

ns ni nj

n2 i,j IVj - ViM = diffusion velocity

-“xi ordinary diffusion

-Hxi - yiL “Log HpL pressure - driven diffusion

-“Log@TD ‚j=1

ns ni nj

n2 i,j

DjT

nj mj-

DiT

ni mithermal diffusion HSoret effectL

+yi

p

r

mi Xj - ‚

k=1

ns

nk Xk external forced diffusion

---------------------------------------

SummaryMCEqns.nb 17

---------------------------------------

If only ordinary diffusion is significant then:

“xi = -‚j=1

ns ni nj

n2 i,j IVj - ViM

These are the Stefan-Maxwell equations.

---------------------------------------

For a binary mixture and when only ordinary diffusion is significant, they reduce to Fick 's law of diffusion:

xi Vi* = - 1,2 “xi i = 1, 2

Ji = - c 1,2 “xi i = 1, 2

with : Ji = ci Vi* = c xi Vi

* i = 1, 2

---------------------------------------

For a multi-component mixture diluted in the N-th component, that is (1-yN) , Fick 's law of diffusion can be written as:

xi Vi* = - i “xi i = 1, N

where i º i,N , with i,N being the binary diffusion coefficients ofthe i - th species diluted in the N - th species.

However, only HN - 1L of the i are linearly independent since‚i=1

N

xi = 1, and‚i=1

N

xi Vi* = 0; thus :

N =⁄j≠Nj “xj

⁄j≠N “xj

The diffusion velocity VN* is found from :

VN* = -‚

i=1

N-1

xi Vi* = ‚

i=1

N-1

i “xi

ü Returning to the thermal flux:

e = -l' “T - n k T ‚i=1

ns DiT

ni mi ‚

j=1

ns ni nj

n2 i,j IVj - ViM - n k T ‚

i=1

ns DiT

ni mi “Log@TD ‚

j=1

ns ni nj

n2 i,j

DjT

nj mj-

DiT

ni mi

e = -l' “T - n k T ‚i=1

ns

‚j=1

ns ni nj

n2 i,j DiT

ni mi IVj - ViM - n k “T ‚

i=1

ns

‚j=1

ns DiT

ni mi ni nj

n2 i,j

DjT

nj mj-

DiT

ni mi

e = - l' + ‚i=1

ns

‚j=1

ns n k DiT

ri xi xj

i,j DjT

rj-DiT

ri “T - ‚

i=1

ns

‚j=1

ns n k T DiT

ri xi xj

i,j IVj - ViM

Introducing the thermal conductivity for multi-component mixtures l as:

l := l' + ‚i=1

ns

‚j=1

ns n k DiT

ri xi xj

i,j DjT

rj-DiT

ri

yields:

e = - l “T - ‚i=1

ns

‚j=1

ns n k T DiT

ri xi xj

i,j IVj - ViM

18 SummaryMCEqns.nb

ü Finally, the heat flux q becomes:

q = e + ‚j=1

ns

nj Hj Vj - qR = - l “T - ‚i=1

ns

‚j=1

ns n k T DiT

ri xi xj

i,j IVj - ViM + ‚

j=1

ns

nj Hj Vj - qR

that is:

q =- l “T heat conduction

-‚i=1

ns

‚j=1

ns n k T DiT

ri xi xj

i,j IVj - ViM diffusive - thermo HDufour effectL

+‚j=1

ns

nj Hj Vj heat by diffusion transport

-qR heat by radiation transport

Replacing e and dj in :

g = -1

T2 He.“TL - n k ‚

j=1

ns

Vj.dj

yields:

g =l

T2 H“T.“TL -

k n

2 ‚i,j=1

ns xi xj

i,j IVj - ViM2

Since g r 0 for the 2 - nd principle of thermodynamics,

and H“T.“TL r 0,k n

2 ‚i,j=1

ns

xi xj IVj - ViM2 r 0, it follows that :

l, i,j r0

SummaryMCEqns.nb 19