12
In the format provided by the authors and unedited. Túlio M Nunes 1,2 , Benjamin Oldroyd 2 , Larissa G. Elias 3 , Sidnei Mateus 3 , Izabel C. Turatti 1 , Norberto P. Lopes 1 . 1 NPPNS, Departamento de Física e Química, FCFRP, Universidade de São Paulo, Brazil. 2 Behaviour and Genetics of Social Insects Laboratory, School of Life, Earth and Environmental Sciences A12, University of Sydney, NSW 2006, Australia. 3 Departamento de Biologia, FFCLRP, Universidade de São Paulo, Brazil. Evolution of queen cuticular hydrocarbons and worker reproduction in stingless bees © 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. SUPPLEMENTARY INFORMATION VOLUME: 1 | ARTICLE NUMBER: 0185 NATURE ECOLOGY & EVOLUTION | DOI: 10.1038/s41559-017-0185 | www.nature.com/natecolevol 1

In the forat provided by the authors and unedited ... · PDF fileIn the forat provided by the authors and unedited Supplementary Information Evolution of queen-worker signalling in

Embed Size (px)

Citation preview

Page 1: In the forat provided by the authors and unedited ... · PDF fileIn the forat provided by the authors and unedited Supplementary Information Evolution of queen-worker signalling in

In the format provided by the authors and unedited.

Supplementary Information

Evolution of queen-worker signalling in stingless bees

Túlio M Nunes1,2, Benjamin Oldroyd2, Larissa G. Elias3, Sidnei Mateus3, Izabel C. Turatti1, Norberto P. Lopes1. 1 NPPNS, Departamento de Física e Química, FCFRP, Universidade de São Paulo, Brazil. 2 Behaviour and Genetics of Social Insects Laboratory, School of Life, Earth and Environmental Sciences A12, University of Sydney, NSW 2006, Australia. 3 Departamento de Biologia, FFCLRP, Universidade de São Paulo, Brazil.

Evolution of queen cuticular hydrocarbons and worker reproduction in stingless bees

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

SUPPLEMENTARY INFORMATIONVOLUME: 1 | ARTICLE NUMBER: 0185

NATURE ECOLOGY & EVOLUTION | DOI: 10.1038/s41559-017-0185 | www.nature.com/natecolevol 1

Page 2: In the forat provided by the authors and unedited ... · PDF fileIn the forat provided by the authors and unedited Supplementary Information Evolution of queen-worker signalling in

Supplementary Methods

Behavioural analysis

In order to determine the frequency of worker ovary activation for Lestrimelitta limao and Plebeia

minima, three colonies of each species were observed. Queens were kept in their colonies for three months,

and throughout this period the process of provision of food and oviposition was regularly observed to

determine whether workers lay eggs. The advancing front of the broodnest (where new cells are constructed

and oviposition occurs) was observed daily for one hour per colony for 20 consecutive days. Following these

observations, queens were removed and the colonies kept queenless for the following three months. The

behaviour of workers engaged in cell construction was observed daily for one hour for each colony for 20

consecutive days and instances of worker oviposition recorded. Additionally, 20 workers working on brood

cell construction were collected from each hive and dissected under 20x magnification in order to determine

the frequency of ovary activation under queenright and queenless conditions.

Chemical analysis

Queens were individually collected in 2.0 ml vials (Sigma-Aldrich) and killed in by freezing.

Cuticular compounds were extracted from the entire insect by adding 1.0 ml of hexane to the tube and resting

for 5 minutes at room temperature. The queens’ body was then removed, the extract dried under a stream of

nitrogen and resuspended in 50µL of hexane. Chemical analysis was carried on a gas chromatograph coupled

with mass spectrometer (Shimadzu model GCMS-QP2010). The temperature profile used for the analysis

was: rising from 120º C- to 300° C at 8° C/min, then hold for 10 min. The identity of the compounds was

obtained through the analysis of the mass fragments, comparison with synthetic compounds, and commercial

mass spectra libraries. The area under the peaks was used to calculate the relative proportion of each

compound in the cuticular profile.

Relationship between queen chemical profile and worker reproductive behaviour

In order to determine the correlation between queen chemical profiles and worker reproductive

behaviour we used a phylogenetic generalised linear model for binomial response1 using the package

"phylolm"2, as implemented in R environment3. In the analysis, the dependent variable is a binary trait coded

according to queen influence on worker reproductive behaviour (State 0 – Queen presence does not interfere

on worker reproduction; State 1 – Queen presence influences worker reproductive behaviour as in “category

B” in the introduction). The independent variables are represented by the relative concentration of each class

of queen cuticular compound, which were analysed individually in different models. To ensure that effects of

individual compounds were not neglected, we also carried out phylogenetic generalised linear model

analyses using individual compounds.

We used a model comparison approach4 using AIC (Akaike Information Criterion) to rank

competing models.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

NATURE ECOLOGY & EVOLUTION | DOI: 10.1038/s41559-017-0185 | www.nature.com/natecolevol 2

SUPPLEMENTARY INFORMATION

Page 3: In the forat provided by the authors and unedited ... · PDF fileIn the forat provided by the authors and unedited Supplementary Information Evolution of queen-worker signalling in

Evolution of queen cuticular hydrocarbon profile

In order to infer how queen cuticular profile evolved in Meliponini, we performed ancestral state

reconstruction using relative abundance of each class of compound as continuous data. Analyses were

performed under a likelihood framework using the R package phytools5. Values were colour-coded so that

the variation in colour correspond to the variation in relative abundance.

Evolution of worker reproductive behaviour

Ancestral state reconstruction analyses were performed to assess how worker reproductive behaviour

evolved in stingless bees. The influence of queen presence on the reproductive status of workers was

categorically coded with three possible states: workers always lay eggs, even in queenright colonies; workers

lay eggs only in queenless colonies; or workers are sterile and never lay eggs.

Reconstructions were based on Bayesian posterior probability distribution. Stochastic

reconstructions were used to estimate a Bayesian posterior probability distribution. Our analyses used the

results of 1000 stochastic character maps to calculate probabilities at each node for each of the traits6.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

NATURE ECOLOGY & EVOLUTION | DOI: 10.1038/s41559-017-0185 | www.nature.com/natecolevol 3

SUPPLEMENTARY INFORMATION

Page 4: In the forat provided by the authors and unedited ... · PDF fileIn the forat provided by the authors and unedited Supplementary Information Evolution of queen-worker signalling in

Table S1 – List of stingless bee species used in the study categorized by the reproductive behavior of workers under queenright and queenless conditions.

Species Worker ovary activation

Classification for this study

References

Frieseomelitta silvestri ST A da Cruz-Landim (2000)7

Frieseomelitta varia ST A Boleli et al. (1999)8

Tetragonula carbonaria ST A Gloag et al. (2007)9, Nunes et al. (2015)10 Tetragonula hockingsi ST A Palmer et al. (2002)11 Friesella schrottkyi QL B Sakagami et al. (1973)12, Nunes et al. (2014)13 Leurotrigona muelleri QL B Terada (1974)14, Sakagami and Zucchi (1974)15,

da Cruz-Landim (2000)7 Plebeia lucii QL B Teixeira (2007)16

Melipona scutellaris QR C Tóth et al. (2002)17 Melipona quadrifasciata QR C Tóth et al. (2002)17, da Cruz-Landim (2000)7

Lestrimelitta limao QR C This study Nannotrigona testaceicornis Plebeia minima

QR QR

C C

Sakagami et al. (1993)18 This study

Plebeia remota QR C Van Benthem et al. (1995)19, Tóth et al. (2004)20 Plebeia droryana QR C Machado et al. (1984)21, Tóth et al. (2004)20,

da Cruz-Landim (2000)7 Scaura tenuis QR C Mateus et al. (1999)22 Tetragonisca angustula QR C Grosso et al. (2000)23, Tóth et al. (2004)20 Tetragona clavipes QR C Sakagami and Zucchi (1967)24, Tóth et al. (2002)17 Scaptotrigona aff depilis QR C Beig (1972)25, Paxton et al. (2003)26 Partamona vicina QR C Azevedo (2001)27 Trigonisca nataliae QR C Mateus et al. (2006)28 Austroplebeia australis QR C Drumond et al. (1999)29, Drumond et al. (2000)30 QR,workershaveactivatedovariesinqueenrightcolonies;QL,workershaveactivatedovariesunderqueenlessconditionsonly;ST,permanentlysterileworkers.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

NATURE ECOLOGY & EVOLUTION | DOI: 10.1038/s41559-017-0185 | www.nature.com/natecolevol 4

SUPPLEMENTARY INFORMATION

Page 5: In the forat provided by the authors and unedited ... · PDF fileIn the forat provided by the authors and unedited Supplementary Information Evolution of queen-worker signalling in

Table S2 – Queen cuticular compounds and relative concentration for each species analyzed by GC-MS. Cells are coloured according to increasing relative concentration. The last column is the p value for phylogenetic regression analyses carried out for each compound (see methods).

Compound Austropleb

eiaau

stralis

Tetrag

onulacarbon

aria

Tetrag

onulaho

ckingsi

Leurotrig

onamue

lleri

Trigon

iscanataliae

Partam

onavicina

Scap

totrigon

ade

pilis

Tetrag

onaclavipes

Scau

rate

nuis

Tetrag

oniscaang

ustula

Frieseom

elittasilvestri

Frieseom

elittavaria

Nan

notrigon

atestaceicornis

Lestrim

elittalim

ao

Friesella

schrottkyi

Pleb

eiadroryana

Pleb

eiaminim

a

Pleb

eiaremota

Pleb

eialucii

Melipon

aqu

adrifasciata

Melipon

ascutellaris

Pva

lue

(p

hylo

gene

ticre

gres

sion

)

C12

0.9

0.83

C13

0.8

0.83

C14

2.1

0.83

C15

0.1

1

C16

0.2

0.83

C17

0.4

0.83

C18

0.1 0.1

1

C19

0.2 0.5

0.93

C20

0.2 0.1

0.1

1

C21

0.4 3.3

0.1 0.1

0.1

1.4 2.6 0.2

0.34

C22

0.2 0.4

0.2

0.99

C23

2.2 3.0 0.1

0.4 1.1 7.6 0.4

13 0.6

1.1 19 1.4 0.8 1.3 0.6

1.0 3.4 0.78

C24

0.3 0.2

0.4 0.3

0.2 0.2 1.0 0.7 0.2 0.2 0.2

0.6 0.7 0.83

C25

6.1 1.4 0.1 0.5 1.9 0.6 5.1 7.5

6.6 9.5 16 10 18 44 13 13 7.8 11 27 19 0.24

C26

0.4 0.2 0.1

0.5

0.4 0.2

0.6 0.6 1.1 0.6 1.1 0.5 0.1 0.3 0.6 0.9 0.4 0.45

C27

5.4 1.0 0.8 1.7 12 0.3 5.1 3.0 4.6 18 16 16 11 4.3 5.3 6.4 1.6 3.5 11 6.9 5.3 0.87

C28

0.4 0.4 0.7 0.1 1.2

0.1 0.2 0.2

0.2 0.4 0.6 0.1

0.3 0.2

0.8 0.4 0.3 -

C29

3.4 1.9 3.9 5.7 8.4 0.2 1.2 2.9 11 2.9 3.9 7.7 2.9 1.4 2.9 3.0 5.9 4.2 13 1.9 2.9 0.17

C30

0.2

0.1

0.0 0.2 0.2

0.1 0.1 0.4

0.1 0.4 0.4 0.6

0.30

C31

3.6 1.0 0.3 6.1 2.4 0.8 0.3 2.5 7.7

3.3 2.8 3.8 1.5

0.9 3.7 1.8 5.4 0.6 1.1 0.26

C32

0.2

0.1 0.1

0.4

0.6

0.86

C33

3.1

3.4 1.1 1.0 0.0 0.9 1.3

3.9

3.7 0.4

0.2

0.4 0.5

0.4 0.55

C34

0.3

0.3

0.98

C35

2.1

0.5

0.4

0.5

0.6 0.9

0.63

MeC12

0.4

0.82

MeC13

1.8

0.83

MeC14

0.9

0.83

MeC15

1.3

0.83

MeC16

0.01

1

MeC17

1.2

0.87

MeC18

0.1

0.84

MeC19

0.4 0.2

0.98

MeC21

0.2 0.6

0.2

0.3

0.61

MeC22

0.2

0.99

MeC23

1.0 4.2

0.1 0.7 1.8

2.7 0.3 0.3 0.4 1.2 0.5 0.0 1.8 0.8

0.2

0.55

MeC24

0.3 0.5

0.1

0.2

0.1

0.1

0.79

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

NATURE ECOLOGY & EVOLUTION | DOI: 10.1038/s41559-017-0185 | www.nature.com/natecolevol 5

SUPPLEMENTARY INFORMATION

Page 6: In the forat provided by the authors and unedited ... · PDF fileIn the forat provided by the authors and unedited Supplementary Information Evolution of queen-worker signalling in

MeC25

3.2 3.9

5.0 0.5 3.9

1.9 1.0

5.1 3.3 3.2 1.7 2.0 5.1 0.3 8.6 1.9 0.43

MeC26

0.3 0.6

0.7

0.7 0.2

0.1

0.1

0.62

MeC27

1.3 5.9 4.6

14 1.1 2.4

4.7 1.0 0.1 11 1.5 8.4 3.8 0.3 3.1 1.1 2.8 1.1 0.67

MeC28

0.2 1.6 4.1

0.7

0.5 0.1 1.6 0.2

0.3

0.65

MeC29

0.8 15 36

7.1 1.5 0.1

4.6 0.4 0.2 5.1 1.2 17 2.7 2.4 2.7 3.0 1.8 2.7 0.58

MeC30

0.1 1.7 2.4

0.4

0.2

1.4 0.4 0.75

MeC31

0.7 7.0 2.3

1.9 7.8

4.5 0.3

5.0 0.6 0.5 0.8 4.0 1.6 0.7 2.2

0.43

MeC32

0.4

1.0

0.5 0.93

MeC33

0.2

0.5 9.4

0.2

11

0.1 0.4 0.7

1.7 11 0.69

MeC34

1.2

1.3

1.0 0.81

MeC35

8.3

0.4 4.6

7.4

0.6

12 0.71

MeC36

1.3

0.83

MeC37

1.3

0.83

DimeC22

0.1

0.83

DimeC23

0.1 0.3

1.5

0.89

DimeC25

0.8 1.0

0.4 0.4

0.2

0.5 0.5 1.0

0.4

0.55

DimeC27

0.4 1.4 0.9

0.8 0.5

1.5

4.9 0.4

0.6

2.5

0.24

DimeC28

0.1

1

DimeC29

0.2 8.1 17

1.0

0.1 0.5

2.8

1.7

0.82

DimeC31

1.1 2.2 1.1

8.0

1.0

0.3 0.3

0.5

4.4 0.89

DimeC32

0.7

0.83

DimeC33

5.5

11

2.4

1.3 0.96

DimeC34

1.0

0.83

DimeC35

9.7

4.5

2.8

1.7 0.93

DimeC37

0.8

0.83

C15:1

0.1

1

C17:1

0.1

1

C18:1

0.1 0.0

1

C19:1

0.2 0.2

1

C20:1

0.0 0.3

0.1

0.88

C21:1

0.2 2.0

0.2

0.2

1

C23:1

0.5 5.0

0.2 17

0.1 2.8

0.0 6.2

0.97

C24:1

0.1 0.1

0.3

0.99

C25:1

0.7 1.1

0.2 4.0 6.7 1.2

6.6 0.1 3.2 0.1 20

0.4 5.0 0.1

4.5 0.7 0.34

C26:1

0.1

0.4

0.2

-

C27:1

0.4 1.1 0.2 0.2 13 0.6 6.8 8.0 0.1 0.7 3.7 8.1 0.3 9.6 0.2 13 0.5 3.5 0.3 6.8 1.1 0.29

C28:1

0.2 0.1

0.2 0.2

0.3

0.1

0.1

-

C29:1

1.5 6.0 16 5.2 17 0.8 1.2 7.2 13 3.8 3.0 15 3.2 4.4 0.2 9.5 2.8 11 3.2 9.5 1.9 0.21

C30:1

0.5

0.4 0.7

1.3 0.8

0.7

0.33

C31:1

1.8 12 7.6 19 5.7 3.8 0.2 8.0 25 13 5.0 14 1.3 1.6 0.2 19 35 19 29 16 21 0.47

C32:1

0.8

0.2

0.2 0.6

0.4

0.4 0.3

0.3 0.39

C33:1

1.7

30 1.8 4.3 0.0 2.1 12 2.1 8.0

0.8 0.2 0.5 7.3 4.3 2.0 4.8 2.1 4.9 0.18

C34:1

0.4

1

C35:1

1.7 0.8

9.7 2.4 1.8

1.0

6.1

0.7

4.1

0.3 3.0

0.5 0.13

C37:1

2.0

0.83

C21:2

0.1

1

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

NATURE ECOLOGY & EVOLUTION | DOI: 10.1038/s41559-017-0185 | www.nature.com/natecolevol 6

SUPPLEMENTARY INFORMATION

Page 7: In the forat provided by the authors and unedited ... · PDF fileIn the forat provided by the authors and unedited Supplementary Information Evolution of queen-worker signalling in

C23:2

0.2

0.3

0.97

C25:2

0.2

0.1

1

C27:2

0.0

0.1

0.1

1.5

0.86

C29:2

0.2

0.4

1.6

0.6

0.4

6.3 2.0

0.64

C30:2

0.2

1

C31:2

0.5

0.6

0.3

11 7.2 2.4 8.5 0.2 2.1 0.4 0.6 5.7 9.1 1.0

0.62

C32:2

0.4

0.1

0.99

C33:2

9.1

5.1

6.9 7.4 9.4

1.6 0.3 1.4 1.7 5.8 1.3

0.46

C34:2

0.1

1

C35:2

6.7

5.4

2.0

19

0.0 6.5

3.8 6.3

-

C36:2

0.7

0.84

C37:2

1.9

0.84

C33:3

0.1

1

C35:3

0.2

1.5

0.85

C12Es

0.2

0.83

C14Es

0.1

1

C16Es

4.0

0.82

C18Es

7.2

0.1

0.83

C20:2Es

-

C20:1Es

1.6

5.2

0.90

C20Es

3.9

0.82

C22:1Es

4.3 0.1

0.83

C22Es

0.2 0.4

0.97

C24:1Es

0.5

0.83

C24Es

0.7 0.3

0.94

C26:1Es

3.1

0.83

C26Es

0.2 1.2

0.86

C28:1Es

5.9

0.83

C28Es

0.5 2.7

0.86

C30Es

0.1

0.83

C32:1Es

0.2 6.5

-

C32Es

4.8

0.82C12:2Al

0.2

0.82C12:1Al

-

C12Al

0.1

1

C14:1Al

0.3

0.83

C15Al

0.1

1C16:1Al

0.2

1

C18:1Al

0.1

1

C20:1Al

3.9

0.83

C20Al

0.5

0.83

C22:1Al

14

0.83

C24:1Al

0.1

1

C16Ac

0.1

1

C18:2Ac

0.1

1

C18:1Ac

1.0

0.1

0.6

1

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

NATURE ECOLOGY & EVOLUTION | DOI: 10.1038/s41559-017-0185 | www.nature.com/natecolevol 7

SUPPLEMENTARY INFORMATION

Page 8: In the forat provided by the authors and unedited ... · PDF fileIn the forat provided by the authors and unedited Supplementary Information Evolution of queen-worker signalling in

Sum

92 97 99 100 100 86 86 91 100 99 100 100 100 100 100 100 100 100 100 100 100

%NI

7,8 3,4 1,4 0 0 14 14 9,3 0 1,1 0 0,2 0,2 0 0,2 0 0 0 0 0 0

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

NATURE ECOLOGY & EVOLUTION | DOI: 10.1038/s41559-017-0185 | www.nature.com/natecolevol 8

SUPPLEMENTARY INFORMATION

Page 9: In the forat provided by the authors and unedited ... · PDF fileIn the forat provided by the authors and unedited Supplementary Information Evolution of queen-worker signalling in

Table S3 – Shannon diversity index based on relative concentration of each compound per species.

Study species Shannon diversity index

Austroplebeia_australis 3.605 Tetragonula_carbonaria 3.009 Tetragonula_hockingsi 1.979 Leurotrigona_muelleri 2.148 Trigonisca_nataliae 0 Partamona_vicina 2.969 Scaptotrigona_depilis 2.844 Tetragona_clavipes 2.898 Scaura_tenuis 2.266 Tetragonisca_angustula 2.541 Frieseomelitta_silvestri 2.641 Frieseomelitta_varia 0 Nannotrigona_testaceicornis 3.033 Lestrimelitta_limao 2.546 Friesella_schrottkyi 2.039 Plebeia_droryana 2.687 Plebeia_minima 2.417 Plebeia_remota 0 Plebeia_lucii 2.402 Melipona_quadrifasciata 2.430 Melipona_scutellaris 2.569

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

NATURE ECOLOGY & EVOLUTION | DOI: 10.1038/s41559-017-0185 | www.nature.com/natecolevol 9

SUPPLEMENTARY INFORMATION

Page 10: In the forat provided by the authors and unedited ... · PDF fileIn the forat provided by the authors and unedited Supplementary Information Evolution of queen-worker signalling in

Table S4 - Ancestral state reconstruction of worker reproductive behaviour. Posterior probabilities for each state represented in piecharts in Figure 1. Numbers in brackets correspond to node number in Figure S2.

Node State 0 State 1 State 2 Root (22) 0.919 0.030 0.051 Tetragonula clade + Austroplebeia australis (23) 0.878 0.020 0.102 Tetragonula clade (24) 0.004 0 0.996 Clade 26 + clade 27 (25) 0.971 0.028 0.001 Trigonisca natalie + Leurotrigona muelleri (26) 0.873 0.127 0 Clade 28 + Clade 41 (27) 0.990 0.010 0 Clade 29 + Partamona vicina (28) 0.997 0.002 0.001 Clade 30 + clade 31 (29) 1 0 0 Tetragona clavipes + S. depilis (30) 1 0 0 Clade 32 + Scaura tenuis (31) 1 0 0 Clade 33 + clade 35 (32) 1 0 0 T. angustula + Frieseomelitta clade (33) 0.939 0 0.061 Frieseomelitta clade (34) 0.045 0 0.955 N. testaceicornis +Plebeia clades + F. schrottkyi + L. limao (35) 1 0 0 Plebeia clades + F. schrottkyi + L. limao (36) 0.995 0.005 0 L. limao + F. schrottkyi +P. remota + P. droryana (37) 0.995 0.005 0 F. schrottkyi +P. remota + P. droryana (38) 0.984 0.016 0 Plebeia remota + Plebeia droryana (39) 0.997 0.003 0 Plebeia lucii + Plebeia minima (40) 0.884 0.116 0 Melipona clade (41) 0.991 0.009 0

State0,workersalwayslayeggs,eveninqueenrightcolonies;State1,workerslayeggsonlyinqueenlesscolonies;State2,workersaresterileandneverlayeggs.

Table S5 - Ancestral state reconstruction of queen cuticle composition. Relative concentration shown in colour code in Figure 2. Numbers in brackets correspond to node number in Figure S2.

Node Alkanes Methyl Alkanes Olefins Oxigenated

compounds Root (22) 25.24 35.40 36.88 2.48 Tetragonula clade + Austroplebeia australis (23) 24.78 39.34 33.85 2.03 Tetragonula clade (24) 10.73 61.82 27.34 0.1 Clade 26 + clade 27 (25) 25.85 20.22 40.86 3.07 Trigonisca natalie + Leurotrigona muelleri (26) 24.68 24.37 49.14 1.80 Clade 28 + Clade 41 (27) 27.62 27.65 39.86 4.88 Clade 29 + Partamona vicina (28) 26.82 24.86 40.49 7.83 Clade 30 + clade 31 (29) 29.04 19.56 41.59 9.82 Tetragona clavipes + S. depilis (30) 28.18 17.79 40.66 13.38 Clade 32 + Scaura tenuis (31) 30.21 19.04 42.47 8.29 Clade 33 + clade 35 (32) 32.64 19.48 41.76 6.12 T. angustula + Frieseomelitta clade (33) 36.20 15.00 44.70 4.23 Frieseomelitta clade (34) 39.45 7.03 50.40 3.47 N. testaceicornis +Plebeia clades + F. schrottkyi + L. limao (35) 33.49 20.75 40.65 5.09 Plebeia clades + F. schrottkyi + L. limao (36) 35.27 18.91 42.54 3.22 L. limao + F. schrottkyi +P. remota + P. droryana (37) 36.98 19.17 41.70 2.12 F. schrottkyi +P. remota + P. droryana (38) 37.00 20.38 40.93 1.65 Plebeia remota + Plebeia droryana (39) 28.78 16.77 53.72 0.72 Plebeia lucii + Plebeia minima (40) 34.67 10.37 53.86 0.70 Melipona clade (41) 34.10 28.69 35.71 1.49

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

NATURE ECOLOGY & EVOLUTION | DOI: 10.1038/s41559-017-0185 | www.nature.com/natecolevol 10

SUPPLEMENTARY INFORMATION

Page 11: In the forat provided by the authors and unedited ... · PDF fileIn the forat provided by the authors and unedited Supplementary Information Evolution of queen-worker signalling in

Figure S2 - Node numbers in the phylogenetic tree used for analyses.

Figure S3 – Principal Component Analysis of stingless bee queen cuticle profile. Friesella schrottkyi (black); Scaura tenuis (red) and Scaptotrigona depilis (green).

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

NATURE ECOLOGY & EVOLUTION | DOI: 10.1038/s41559-017-0185 | www.nature.com/natecolevol 11

SUPPLEMENTARY INFORMATION

Page 12: In the forat provided by the authors and unedited ... · PDF fileIn the forat provided by the authors and unedited Supplementary Information Evolution of queen-worker signalling in

References 1Ives, A. R. & Garland, T. J. Syst. Biol. 59, 9-26, doi:10.1093/sysbio/syp074 (2010). 2Ho, L. s. T. & Ané, C. Syst. Biol. 63, 397-408, doi:10.1093/sysbio/syu005 (2014).–408. 3R Development Core Team. R: A Language and Environment for Statistical Computing (R Foundation for

Statistical Computing, 2015). 4Burnham, K. P. & Anderson, D. R. Model selection and multimodel inference. 2nd edn, 488 (Springer, 2002). 5Revell, L. Methods in Ecology and Evolution 3, 217-223, doi:10.1111/j.2041-210X.2011.00169.x (2012). 6Revell, L. Methods in Ecology and Evolution 4, 754-759 (2013). 7da Cruz-Landim, C. Genetics & Molecular Biology 23, 83-88 (2000). 8 Boleli, I. C., Paulino-Simões, Z. L.; Gentile Bitondi, M. M. Journal of Morphology 242, 271-282, ISSN 1097-

4687 (1999). 9Gloag, R. S. et al. Insectes Sociaux 54, 412-417 (2007). 10Nunes, T. M. et al. Austral Entomology 54, 5, ISSN 2052-1758 (2015). 11Palmer, K. A. et al. Molecular Ecology 11, 2107-2113 (2002). 12Sakagami, S. F., Camillo, C., Zucchi, R. Journal of the Faculty of Science, Hokkaido University. Zoology Series

19, 361-421 (1973). 13Nunes, T. M. et al. Scientific Reports 4, 7449 (2014). 14Terada, Y. PhD thesis Universidade de São Paulo, Ribeirão Preto, Brazil (1974). 15Sakagami, S. F.; Zucchi, R. The Journal of the Faculty of Science, Hokkaido University, Series VI 19, 361-421

(1974). 16Teixeira, L. Master dissertation Universidade Federal de Viçosa, Viçosa, Brasil (2007) 17Tóth, E. et al. Molecular Ecology 11, 2661-2667 (2002). 18Sakagami, S. et al. 昆蟲 61, 323-340, ISSN 0915-5805 (1993). 19van Benthem, F., Imperatriz-Fonseca, V., Velthuis, H. Insectes Sociaux 42, 71-87, ISSN 0020-1812 (1995). 20Tóth, E. et al. Insectes Sociaux 51, 1-11 (2004). 21Machado, M. F. P. S., Contel, E. P. B., Kerr, W. E. Genetica 65, 193-198 (1984). 22Mateus, S., Nogueira-Neto, P., Zucchi, R. XVII Encontro Brasileiro Anual de Etologia, Botucatu – Brazil (1999) 23Grosso, A. F., Bego, L. R., Martinez, A. S. Sociobiology 35, 475-485 (2000). 24Sakagami, S. F., Zucchi, R. Journal of the Faculty of Science, Hokkaido Univer 16, 292-313 (1967). 25Beig, D. Journal of Apicultural Research 11, 33-39 (1972). 26Paxton, R. J. et al. Behavioral Ecology and Sociobiology 53, 174-181 (2003). 27Azevedo, G. PhD thesis Universidade de São Paulo, Ribeirão Preto, Brazil (2001). 28Mateus, S.; Matos, E.; Zucchi, R. VII Encontro Sobre Abelhas, Ribeirão Preto – Brazil (2006). 29Drumond, P. M. et al. Australian Journal of Entomology 38, 234-241 (1999). 30Drumond, P. M., Oldroyd, B. P.; Osborne, K. E. Insectes Sociaux 47, 333-336 (2000).

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

NATURE ECOLOGY & EVOLUTION | DOI: 10.1038/s41559-017-0185 | www.nature.com/natecolevol 12

SUPPLEMENTARY INFORMATION