351
IN-PLANE, FLEXURAL, TWISTING AND THICKNESS-SHEAR COEFFICIENTS FOR STIFFNESS AND DAMPING OF A MONOLAYER FILAMENTARY COMPOSITE Final Report (Part I ) NASA Research Grant NGR-37-003-055 by C.W. Bert & S. Chang School of Aerospace, Mechanical & Nuclear Engineering The University of Oklahoma Norman, Oklahoma 73069 Prepared for National Aeronautics and Space Administration Washington, D.C. March 1972

IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

IN-PLANE, FLEXURAL, TWISTING AND THICKNESS-SHEAR COEFFICIENTS

FOR STIFFNESS AND DAMPING OF A MONOLAYER FILAMENTARY COMPOSITE

Final Report (Part I )NASA Research Grant NGR-37-003-055

by

C.W. Bert & S. ChangSchool of Aerospace, Mechanical & Nuclear Engineering

The University of OklahomaNorman, Oklahoma 73069

Prepared for

National Aeronautics and Space AdministrationWashington, D.C.

March 1972

Page 2: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

1. Report No. 2. Government Accession No.

NASA CR-H2I4I4. Title and Subtitle

IN-PLANE, FLEXURAL, TWISTING AND THIOCOEFFICIENTS FOR STIFFNESS AND DAMPIMONOLAYER FILAMFNTARY COMPOSITE

CNESS -SHEARNG OF A

7. Author(s)

C. W. Bert and S. Chang

9. Performing Organization Name and Address

School of Aerospace, Mechanical, and Nuclear EngineeringThe University of OklahomaNorman, Oklahoma 73069

12. Sponsoring Agency Name and Address

National Aeronautics and Space AdministrationWashington, D. C. 20546

3. Recipient's Catalog No.

5. Report Date

6. Performing Organization Code

8. Performing Organization Report No.

10. Work Unit No.

50! -22-03-0311. Contract or Grant No.

NGR-37-003-05513. Type of Report and Period Covered

Contractor Report14. Sponsoring Agency Code

15. Supplementary Notes

16. Abstract

Results are presented for elastic and damping analyses resulting in determinationsof all of the various stiffnesses and associated loss tangents for the completecharacterization of the elastic and damping behavior of a monofilament composite layer.For the determination of the various stiffnesses, either an elementary mechanics -of -materials formulation or a more rigorous mixed -boundary-value elasticity formulationis used. For determining the loss tangents associated with the various stiffnesses,either the viscoelastic correspondence principle or an energy analysis based on theappropriate elastic stress distribution is used.

The numerical results obtained from this analysis compare favorably with someexisting analytical and experimental results for various practical combinations ofconstituent materials, specifically boron-epoxy, boron-aluminum, and E glass-epoxycomposites. Finally a complete set of property curves for a boron-epoxy monofilamentcomposite for a frequency range of 50 to 2,000 Hz are presented to facilitate elasticand damping analyses of a structure consisting of multiple layers of such a composite.Design data for other composites, namely, boron-aluminum and E glass-epoxy, whichare valid for a similar frequency range, are summarized in tabulated form. Completecomputer program documentation and listing are given to facilitate calculations of monolayerprop" fly ya|i|pc. fnr nrppr rnmpnsitps

1 7. *J<eyTWord^ (Suggested by, Author(s) )Composite materialsVibration dampingStiffnessVibrationMicromprhanirs

18. Distribution Statement

Unclassified - Unlimited

19. Security dassif . (of this report) 20. Security Classif. (of this page)

Unclassified Unclassified21. No. of Pages 22. Price*

338

For sale by the National Technical I nformation Service, Springfield, Virginia 22151

Page 3: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

IN-PLANE, FLEXURAL, TWISTING AND THICKNESS-SHEAR COEFFICIENTS FOR

STIFFNESS AND DAMPING OF A MONOLAYER FILAMENTARY COMPOSITE

CONTENTS

Page

ABSTRACT tii

SYMBOLS v

I. INTRODUCTION 1

1.1 Introductory Remarks 1

1.2 A Brief Survey of Micromechanics Analysis ofFilamentary Composite Materials . 5

II. ELASTIC ANALYSIS 11

2.1 Introduction and Hypotheses 11

2.2 Longitudinal In-plane Stiffnesses 16

2.3 Transverse In-plane Stiffnesses 20

2.4 Longitudinal Flexural Stiffnesses 26

2.5 Transverse Flexural Stiffnesses 30

2.6 Twisting Stiffness 33

2.7 Longitudinal Thickness-Shear Stiffness . . . . . . 39

2.8 Transverse Thickness-Shear Stiffness 50

III. DAMPING ANALYSES : 55

3.1 Introduction . 56

3.2 Longitudinal In-plane Loss Tangents . . . . . . . . 59

3.3 Transverse In-plane Loss Tangents 63

3.4 Longitudinal Flexural Loss Tangents 64

3.5 Transverse Flexural Loss Tangents . 67

3.6 Twisting Loss Tangent 67

Page 4: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

3.7 Longitudinal Thickness-shear Loss Tangent .... 68

3.8 Transverse Thickness-shear Loss Tangent .69

IV. NUMERICAL RESULTS AND COMPARISON WITH EXPERIMENTALRESULTS 71

4.1 Comparison with Conventional MicromechanicsResults 71

4.2 Storage Moduli and Associated Loss Tangents ... 79

4.3 Design Curves arid Tables - Storage Moduli andAssociated Loss Tangents Versus Frequency forVarious Fiber Volume Fractions 81

V. CONCLUSIONS 83

APPENDIXES 85

A. BOUNDARY-POINT-LEAST-SQUARE METHOD ... 85

B. MODELS AND MEASURES OF MATERIAL DAMPING 88

C. DETAILS OF FORMULAS DERIVED IN SECTION II .... 114

D. EXPERIMENTAL DETERMINATION OF COMPLEX STIFF-NESS AND DAMPING OF A BORON FIBER . 125

E. COMPUTER PROGRAM DOCUMENATION 127

REFERENCES 129

TABLES . . . 145

FIGURES 214

COMPUTER PROGRAM LISTING 253

ii

Page 5: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

ABSTRACT

To make a static or dynamic structural engineering analysis of a

structure laminated of fiber-reinforced composite material, one must

know beforehand the macroscopic equivalent orthotropic plate properties

of a single layer. In the case of a monofilament composite layer,

which consists of only a single row of parallel, equally spaced rein-

forced filaments embedded in the matrix material, flexural and twist-

ing stiffness analyses must be carried out in addition to the in-plane

and thickness-shear stiffness analyses owing to the inhomogeneous pro-

perty distribution along the thickness direction of the layer.

In this work are carried out elastic and damping analyses result-

ing in determinations of all of the various stiffnesses and associated

loss tangents for the complete characterization of the elastic and damp-

ing behavior of a monofilament composite layer.

For the determination of the various stiffnesses, either an

elementary mechanics-of-materials formulation or a more rigorous

mixed-boundary-value elasticity formulation is used. The solution for

the latter formulation is obtained by means of the boundary-point least-

square error technique. .

Kimball-Lovell type damping is assumed for each of the con-

stituent materials. For determining the loss tangents associated with

the various stiffnesses, either the viscoelastic correspondence principle

or an energy analysis based on the appropriate elastic stress distribution

is used.

iii

Page 6: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

The numerical results obtained from this analysis compare favorably

with some existing analytical and experimental results for various

practical combinations of constituent .materials, specifically boron-

epoxy, boron-aluminum, and E glass-epoxy composites. Finally a

complete set of property curves for a boron-epoxy monofilament com-

posite for a frequency range of 50 to 2,000 Hz are presented to

facilitate elastic and damping analyses of a structure consisting of

multiple layers of such a composite. Design data for other composites,

namely, boron-aluminum and E glass-epoxy, which are valid for a

similar frequency range, are summarized in tabulated form. Complete

computer program documentation and listing are given to facilitate

calculations of monolayer property values for other composites.

IV

Page 7: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

SYMBOLS

A cross-sectional area of a typical rectangular mono-filament element

A a general m x n coefficient matrix

A transpose of A

A ann x nsymmetric matrix defined in eq. (A-5)

A,,A cross-sectional areas of the respective fiber andmatrix regions in a typical rectangular element

A heredity constants, eq. (B-21)

a(x,),a(x») wave amplitudes at positions x.. and x.

a ,a -,a free-vibration amplitudes corresponding to the i-th,1 i-t-i i-i-n ,,.,x_h> and (i+n)th cycles

a, coefficients of the fiber-region series solution to thePrandtl torsion problem

a initial amplitude

a ,a' coefficients of the biharmonic series solution to eq. (20)n n valid in the respective fiber and matrix regions (i=f,m)

B constant defined in eq. (118)

B n-dimensional column vector of prescribed boundary values

K an n-dimensional column vector defined in eq. (A-6)

b material damping coefficient defined in eq. (B-10)

b critical material damping coefficient

b, ,b , coefficients of the matrix-region series solution tothe Prandtl torsion problem

b ,b' coefficients of the biharmonic series valid in the re-n n spective fiber and matrix regions (i=f,m)

C damping coefficient defined in eq. (B-22)

C' damping coefficient defined in eq. (B-8)d

Cw, empirical constant factor

Page 8: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

C. .C.. fiber-matrix interface, inter-element, and externalboundaries, respectively

c viscous damping coefficient

c Kelvin-Voigt complex damping coefficient defined ineq. (B-4)

DI 1 longitudinal flexural stiffness

D.2 Poisson flexural stiffness

D»7 transverse flexural stiffness

D,, twisting stiffnessDO

d distance between the origin and the center of the n-thelement fiber; see fig. 7

E Young's modulus

E,.,E Young's moduli of the fiber and matrix materials, re-I m ,spectively

E. equivalent Young's moduli (i=x,y,z)

E 1 , , £ _ » , £ _ « Young's moduli of a specially orthotropic material inII x^directions (i=l,2,3)

E^j equivalent Young's modulus for flexural loading

2E mean-square error

Ei(u) exponential integral defined in eq. (B-18)

e base of the natural logarithms, e ~ 2.7183

F(T]) function defined in eq. (51)

F exciting force amplitude

F, damping forced

F (p).F'(p) functions of the normalized radial coordinate pdefining the series representation of the matrix-region Airy stress function, eq. (55)

F spring forceS

F F2'F3'F4 integrals defined in eqs. (136,137,182, and 183)

G shear modulus

VI

Page 9: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

G f , G m shear moduli of the respective fiber and matr ix 'materials

44' 55' 66 composite shear moduli: transverse thickness-shear,longitudinal thickness-shear, in-plane

g loss tangent

g, parameter of the Biot model

gE-.,etc. subscripted loss tangents where the subscripts (i.e.refer to the associated moduli or stiffnesses; for example,8Eii signifies the loss tangent associated with the major

Young's modulus EJJ

HPMF half-power magnification factor

h total thickness of a single layer

I centroidal rectangular moment of inertia per unit lengthof a longitudinal cross section

I ,1 principal rectangular moments of inertia of a typicalrepeating cross section

I_ weighted moment of inertia defined in eq. (119)

i unit imaginary number ^ /"-T

K shear coefficient

k,k spring constant, complex spring constant

k* stiffness associated with the total in-plane force

k'1 complex spring stiffness defined in eq. (B-12)

k Kelvin-Voigt complex stiffness defined in eq. (B-3)

k' Kimball-Lovell complex stiffness defined in eq. (B-ll)

L effective length of spring

•Ln natural logarithm

log logarithm with base 10

N bending moment per unit width

MF, MF1 magnification factors defined in eqs. (B-38) and (B-16)

m mass

n normal coordinate; degree of heredity, eq. (B-21)

vii

Page 10: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

P axial tensile force

P1 expression defined in the first of eqs. (C-30)

Q total shear force (Section 2.7)

Q quality factor (Appendix B)

Qf,Q shear forces in the respective fiber and matrix regions

Q.. elastic coefficients for the plane-stress state (i,j=l,2,6)

R1»R2»R3'R4 integrals defined in eqs. (C-24)

RMF resonant magnification factor

r radius of the fiber

S1'S2'S3'S4 integrals defined in eqs. (C-25)

S,, transverse thickness-shear stiffness

S,.,- longitudinal thickness-shear stiffness

t time

t,,t7 two different specific values of time

U mean displacement defined in eq. (86)

U strain energy per cycle defined in eq. (148)

U, flexural strain energy in an elemental volume

U, damping energy per cycle

U, specific dissipative energy defined in eq. (B-22)

U ,Um strain energies per cycle respectively of the fiberand matrix materials

U shear energy per unit lengths

U strain energy per unit length

U,,UT damping energy per cycle respectively of the fiberand matrix materials

u,v,w rectangular components of a displacement vector

u displacement

u displacement amplitude of vibration

viii

Page 11: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

i i iu ,v ,w

Ur'U9

Ust'Ust

u.v.w

u ,w

V,,Vf' m

W

I'

X1'X2

a

QT.P.V

"'

V

Vaverage

effective

r0

rectangular components of a displacement vector in thefiber (i=f) and matrix regions (i=m)

plane polar components of a displacement vector

static displacements; see Appendix B

mean rectangular components of a displacement vector

residual displacements defined in eqs. (87)

volume

fiber and matrix volume fractions, respectively

spatial attenuation constant defined in eq. (B-33)

temporal decay constant defined in eq. (B-30)

mean z-component of displacement defined in eq. (86)

rectangular coordinates; see figs. 3-9

rectangular coordinates associated with the fiber (x.),transverse (x£) , and thickness (x-j) directions

two different specific values of position (Appendix B only)

the arrow symbols signify that the expression is alsovalid with the roles of x and y interchanged

angle of twist per unit length

constants defined in eqs. (31)

heredity constants in eq. (B-21)

transverse flexural curvature

longitudinal flexural curvature

loss angle

average thickness-shear strain

effective thickness-shear strain

plane polar component of the shear strain

spatial attenuation rate defined in eq. (B-34)

Page 12: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

Yfc decay rate defined in eq. (B-31)

v ,Y »Y rectangular components of shear strainyz zx *^y

6 ratio of height to width of the typical composite crosssection

5 logarithmic decrement defined in eq. (B-28)

8 logarithmic attenuation defined in eq. (B-32)s

e Biot parameter in eq. (B-17)

e ,eQ plane polar components of the normal strainr W

e >e >e rectangular components of the normal strainx y z

e. average normal strains (i=x,y,z)

el'e2'e6 generalized plane-stress-state strain components

.£ damping ratio

|,T1 normalized rectangular coordinates; see eq. (74)

p,9 normalized polar coordinates; see fig. 4(b)

, functions defined in eqs . (174)

X X = l-v12v21

X ratio of constituent-material shear moduli, X = G,/Gt m

X I ratio of constituent-material Young's moduli, X1 = E /Ei m

\l \l = (X-D/CX41)

^ ratio of width to fiber diameter of a typical mono-filament cross section

-..f m

Poisson's ratio

Poisson's ratios of the fiber and matrix materials

v. . Poisson's ratios of an orthotropic material (i,j = 1,2,3)

v. . equivalent mean Poisson's ratios

TT pi » 3.1415962

) summation symbol

Page 13: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

°£»°m axial stress components in the respective fiberand matrix regions

o. plane-stress-state stress components in rectangularcoordinates (i=l,2,6)

a. equivalent mean plane-stress components (i=l,2,6)

a tensile stress; cf., figs. 4 and 6

cr stress amplitude

T dummy time variable in eq. (B-19)

T ,T longitudinal and transverse thickness-shear stresses,respectively

* (t) hereditary kernel defined in eq. (B-21)

$ ,§ Airy stress functions for the respective fiber andmatrix regions

CP phase angle

* i icp ,cp Neumann torsion functions (i=f,m)

cp mean angle of rotation of the cross section

"i i\ >\ Saint-Venant flexure function (i=f,m)

" i iY ,Y Dirichlet torsion function ( i=f,m)

aj angular frequency, rad/sec

u/ resonant angular frequency

J/, ,iju_ angular frequencies def ining the half-powerpoints of the frequency spectrum

2 2 2 2 2 2V Laplace operator; V s(d /ox )+(3 /3y )

2 2dimensionless Laplace operator; 7 =+

Superscripts:

f,m signifies the respective fiber and matrix materials

I,R signifies the respective imaginary and real parts ofthe quantity represented by the main symbol

denotes differentiation with respect to time

X I

Page 14: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

SECTION I

INTRODUCTION

1.1 Introductory Remarks

Engineering structural design requirements for aerospace vehicle

structures demand a maximum of strength and stiffness at minimum weight.

In order to fulfill these requirements, engineers have been searching

for new and better materials. This led to the development of glass-

fiber-reinforced plastics in the case of pressure vessels, and to the

use of carbon or boron filamentary composites in the case of stiffness-

critical structures such as fuselage panels. In addition to being highly

efficient structurally (strength/weight and stiffness/weight) , the

modern composite structures present modern structural designers with a

unique advantage over the conventional homogeneous materials in that they

can be designed to give different properties in different directions as

required by the particular application. This is commonly achieved by

*laminating several layers of the monofilament composites with the fila-

ments of each layer oriented in some prescribed direction. Before

macroscopic properties of such laminates can be predicted, it is necessary

to determine the macroscopic behavior of a single monofilament layer.

*In contrast with those filamentary composites with many small reinforcing

filaments randomly distributed throughout the entire cross section, there

is only a single row of regularly-spaced filaments embedded in the midplane

of the layer for the monofilament composites (reference 1).

Page 15: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

Owing to their oriented nonhomogeneous nature, one-layer filamentary

composite materials behave as an orthotropic material on a macroscopic

Ibasis. Thus, to use these advantages fully, orthotropic properties of

;the composites must be characterized from the knowledge of constituent

material properties and their respective geometrical configurations.

In the case of a one-layer filamentary composite with many small parallel

:filaments more or less randomly distributed throughout the cross section,

'the complete characterization of the in-plane macroscopic composite

(properties requires four independent elastic coefficients. These coef-

ficients are: two moduli or elasticity E .. , E22' one mo^u^us °* rigidity

G ; and one independent Poisson's ratio v. _ (reference 2) . The flexural66 •!•*

and twisting stiffnesses are then related to the in-plane moduli by the

formula (reference 3) ,

h/2

Ell/X> V12E22/X* E22/X> G66> z* dz

where

However, for a monofilament composite such as boron-epoxy,

consisting of only one row of filaments whose diameter is relatively

large in comparison with the thickness dimension, there is a large amount

*In usual notations, "1" is the filament direction, "G.." (i,j=l,2,3)

denoted the shear modulus in the ij-plane, and v. . (i,j=l,2,3) denotes

the j-direction normal strain-due to unit i-direction normal stress.

Page 16: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

of relatively flexible matrix material located at an appreciable distance

from the filament axis. (See figure 1). Thus, the conventional practice

(references 3 and A) of assuming homogeneous property distribution in

the thickness direction will not be expected to be valid in predicting

the macroscopic flexural and twisting stiffnesses of a monofilament com-

posite. In view of this, flexural and torsional analyses must be car-

ried out in addition to the in-plane analyses in order to describe the

behavior of such a composite completely. Furthermore, owing to the

*presence of a relatively flexible matrix material, the thickness-shear

flexibility is expected to be significant (references 5 and 6) for the

filamentary composites.

In the dynamic analysis of a structure consisting of multiple

layers of filamentary composites, the damping characteristics are just

as important as the stiffness characteristics. The damping properties

of a composite may be characterized in a number of ways (reference 7;

also, see Appendix B) .

There have been a few experimental investigations on damping character-

istics of sandwich materials and filamentary composites (references

8-19).

Pottinger (ref. 8) measured the temporal decay of axial vibrations

of bars of glass fiber-epoxy and boron fiber-aluminum composites in the

frequency range of 1 kHz to 100 kHz.

Often referred to as transverse-shear, here the term thickness-shear

is used, so that the term transverse can be reserved to refer to the

direction normal to the longitudinal (filament) direction and con-

tained in the plane of the layer.

Page 17: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

Schultz and Tsai (refs. 9 and 10) used the free vibration decay and

resonant response of cantilever beams made of unidirectional and angle-

plied glass fiber-epoxy composites in the 10 to 10,000 Hz range.

James (ref. 11) and Bert et al. (ref. 12 and 13) used the temporal

decay of free-free sandwich beams. The facings of the ref. 12-13 beams

were of glass fiber-epoxy.

Clary (ref. 14) conducted resonant response experiments of free-

edge plates made of unidirectional boron fiber-epoxy composite material

to study the effect of fiber orientation.

Bert et al. (refs. 15-17) carried out resonant response measurements

on a free-edge, circular, truncated conical shell with an aluminum

honeycomb core and glass fiber-epoxy facings.

Richter (ref. 18) used the rotating beam deflection technique to

determine the damping characteristics of glass fiber-epoxy at low fre-

quency (0.01 to 1.07 Hz.).

Kerr and Lazan (ref. 19) made hysteresis measurements on a sand-

wich beam with both core and facings of glass fiber-epoxy.

Analytically, Hashin (references 20 and 21) determined complex moduli

of viscoelastic composites (particulate and filamentary) by develop-

ing a correspondence principle which relates the effective elastic

moduli and creep compliances of^the viscoelastic composites. However,

his analyses are not applicable to those cases where the effective

elastic moduli are not explicitly obtained. Since the steady-state re-

sponse of the filamentary composite structure is of our main concern in

this investigation, the wavelengths of the modal profiles are in general

much greater than the filament diameter or the thickness dimensions; thus,

Page 18: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

the Kimball-Lovell type material damping (reference 22) is assumed to

hold. The analysis similar to reference 13 is carried out by using the

numerically obtained stress distributions for the effective elastic

coefficients, and the results are presented in terms of complex moduli

for each assumed loading mode: in-plane, flexural, twisting, and so forth.

In the following subsection 1..2, the current literature on micro-

mechanics analyses of filamentary composites are briefly surveyed.

In Section II, detailed elasticity and mechanics-of-materials analyses

are made to obtain various macroscopic elastic properties pertinent for

the characterization of one-layer composites. In Section III, the elastic-

analysis results are used to calculate the damping properties of the

composites; and in Section IV, the damping properties in terms of complex

moduli are summarized, and some typical numerical results are compared/

with existing analytical and experimental results.

1.2. A Brief Survey of Micromechanics Analysis of Filamentary Composite

Materials

Since the development of practical methods for manufacturing parallel-

filament-reinforced layers of composite materials in the 1950's (references

23, 24), the field of micromechanics analysis mushroomed rapidly starting

with the pioneering analyses of Outwater (reference 25) in the United

States and of Beer (reference 26) in Germany. By micromechanics analysis

is meant an analysis which leads to the prediction of the macroscopic

properties--elastic moduli-- of the composites based only on reinforce-

ment configurations, and the properties and volume fractions of the

Page 19: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

constituent materials.

Chamis and Sendeckyj, in their recent survey of the field (ref. 4),

listed 109 references concerned with the prediction of thermoelastic

properties of the fibrous composites. Since a unidirectional filamentary

composite will behave macroscopically as an orthotropic materials, a

complete description of the elastic properties of the composite requires

nine independent elastic coefficients: three Young's moduli (E.... .E .E-.,) ,

three shear moduli (G,, ,G_,-,G,,) , and three Poisson's ratios (v, 2>V23>V31^ '

where the subscript (or subscripts) refers to the orthotropic axes of

the composite along which the properties are measured (see figure 1.)

The analytical methods which have been used in previous micromechanics

analyses may be categorized as:

(1) Netting analysis method

(2) Mechanics-of-materials method

(3) Self-consistent model method

(4) Variational method

(5) Exact classical elasticity method

(6) Statistical method

(7) Discrete element (finite element) method

(8) Semiempirical method

(9) Microstructural method

In netting analysis, fibers are assumed to provide all of the

longitudinal stiffness and the matrix material is assumed to provide the

transverse and shear stiffnesses and the Poisson's effect. This is

Page 20: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

equivalent to assuming the disjointed fiber-matrix model, and thus pre-

dicts relatively low values for E_2 and Gj_ (references 25 and 27).

The mechanics-of-materials methods were pioneered by Ekvall (reference

28). In his analysis, the macro-composite properties are expressed in

terms of the averaged stress-strain states, which, in turn, are expressed

in terms of the constituent properties using displacement continuity

and force equilibrium conditions at the matrix-fiber interface. In

general, the predicted transverse and shear stiffnesses are lower than

the experimental values. Thus, the method was later improved upon by

using the concept of restrained matrix model in which the strain in the

matrix parallel to the fiber is assumed to be zero (ref. 1). This method

was later extended to account for the effect of voids in the composite

by Greszczuk (reference 29), and the effects of misalignment by Nosarev

(reference 30).

The self-consistent model method is based on the assumption that

the strain field of a single fiber embedded in an infinite (reference

31) or a finite (reference 32) matrix is indistinguishable from that of

the composite. The results of such analyses are generally accurate

for the case of low-fiber-volume fractions only.

The variational method is based on the energy theorems of classical

elasticity (reference 33) in which lower and upper bounds of the layer

properties are obtained from the theorems of complementary and potential

energy, respectively (references 34 and 35). The upper and lower bounds

are very far apart for composites with high fiber-matrix-stiffness ratio

such as boron-epoxy composites. Thus, correction factors such as contiguity

and misalignment factor, etc. need to be brought in to obtain closer

Page 21: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

agreement between the theoretical predictions and the experimental re-

sults (references 34 and 36).

The exact classical elasticity method has many variations depending

on the methods of solution (references 37-39). With the exception of the

relatively simple case of a circular fiber embedded in a circular matrix

material, the solution cannot be obtained in a closed form and thus

various numerical methods must be used. These are practical now with the

aid of modern high-speed digital computers. In all cases, the problem is

formulated with an assumption that the fibers form a regular array

(rectangular or hexagonal); a solution is sought for the resulting

mixed boundary-value problem, subjected to the usual assumption of per-

fect bonds between the fiber-matrix interface and a set of imposed

boundary conditions (uniform tension, shear, etc.). The elastic field

thus obtained is then averaged over the cross section and the boundary

to yield the desired equivalent macroscopic elastic properties of the

composite.

In the statistical methods, the composite is modelled by the random

distribution of the fibers in the matrix materials. Very little success

has been achieved by this method (ref. 20)owing to the statistical averag-

ing process that leads to insurmountable computational difficulties.

The discrete element method was pioneered by Foye (references 40 and

41) for the prediction of E22'G12'V12' 3nd V23° HiS resu^ts ^or circular

filaments in square arrays are in good agreement with those of Ekvall

(ref. 28) and Greszczuk (ref. 29). The method may also be applied to

cases with nonlinear matrix behavior as well as random array arrangements

(ref. 41); however, so far its use has been relatively limited.

Page 22: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

The semiempirical method which is most commonly used to date is

due to Tsai (ref. 34). He assumed that the properties of a filamentary

composite with non-contacting fibers may be predicted by a linear inter-

polation between the lower and upper bounds obtained from the variational

method. This linear interpolation was improved upon by Tsai and Halpin with

a more refined nonlinear interpolation (ref. 3). There are other semi-

empirical models (ref. 4) based on the equivalent section concept, parallel

and series connected elements, and the incorporation of certain empirical

factors.

The microstructural method was proposed by Bolotin (reference 42).

Postulating that the fiber behaves as a small rod and that the distances between

the fibers are small in comparison with the characteristic distance of the

body and using a variational principle, he derived the displacement equilib-

rium equation similar to those for a Cosserat medium, that is, a medium

possessing an unsymmetric stress tensor containing couple stresses. Later,

this microstructural model was applied by Herrmann et al.to investigate the

transverse wave propoagation in filamentary composites (reference 43).

Most of the micromechanics analyses described above are based on the

*hypotheses that: (1) The fibers are regularly spaced and aligned. (2)

The fiber and matrix materials are homogeneous and linearly elastic. (3)

There is a complete bond at the fiber-matrix interface. (4) The com-

posite is free of voids. (5) The composite is initially at a stress

*As a rule, these hypotheses are adhered to in the above discussed

analyses. However, there are exceptions in which one or more hypothesis

is relaxed, for example, perfect interface bond is not assumed for the

netting analyses.

Page 23: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

free state. (6) The composite behaves as a homogeneous general ortho-

tropic material macroscopically.

There have been a few experimental investigations on the damping

characteristics of composites (refs. 8-19). In general, it was agreed

upon that for small oscillations, the filamentary composites exhibit

anisotropic, linear viscoelastie behavior. Damping properties of some

non-metallic materials are summarized and tabulated in reference 44.

Analytically, Hashin developed a correspondence principle which re-

lates the effective macroscopic .elastic moduli to the effective

viscoelastie moduli (reference 45). This correspondence principle was

then applied to particulate and fibrous composites for the determination

of macroscopic complex moduli of such composites (refs. 20 and 21).

Unfortunately, this correspondence principle cannot be applied to cases

where the effective elastic moduli are not explicitly obtained in a closed

form. Bert etal., in their investigation of the damping in a shear-

flexible sandwich beam (ref. 13), observed that the damping character-

istics of composites may be related to the ratio of the dissipated energy

per cycle to the total potential energy stored per cycle. The analysis

is based on the assumption that the wave length of the normal modes is

large in comparison with the thickness dimension of the beam.

10

Page 24: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

SECTION II

ELASTIC ANALYSES

This section is concerned with the detailed elastic analyses lead-

ing toward predictions of macroscopically equivalent orthotropic pro-

perties of a monofilament composite layer. The composite layer is

modelled by a typical repeating cross section consisting of a rec-

tangular matrix with a centrally oriented circular-cross-section fiber. Var-

ious in-plane, flexural, twisting, and thickness-shear properties are

obtained from the solutions of a series of mixed boundary value problems

with approximately prescribed boundary conditions.

2.1 Introduction and Hypotheses

Macroscopically, a single layer of filamentary composite material

behaves as a specially orthotropic material with respect to three mutually

orthogonal planes: the plane normal to the fibers, the plane of the

layer, and the plane normal to the first two planes. The intersection of

these three planes forms three mutually orthogonal axes: the longitudinal

(or fiber) direction, the transverse direction (normal to the fibers

and contained in the plane of the layer), and the thickness direction

(normal to the plane of the layer). Therefore, a complete character-

ization of the elastic properties in three dimensions requires nine

independent elastic coefficients (ref. 2). However, in many structural

engineering applications of filamentary composite materials or the

laminates of such, they are used in the form of thin panels or plates

11

Page 25: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

due to the weight considerations in such applications. In view of this,

the thickness dimension of the composites is usually much smaller than the

other dimensions and the radius of curvature of the structure. The three

stress components Oo.d,, and O- therefore may be regarded negligibly

small in comparison with the remaining three stress components, namely,

*a.,,0-, and a, . This is referred to as the generalized plane stress state.1 i o

The constitutive equation for the generalized plane stress state is given

by

(1)

f \1 1°2

i>. >

> -

Qll Q12 °

Q21 Q22 0

. ° ° 2Q66,

1

el

e2

[*6,

where the elastic coefficients Q.. are symmetric, i.e.,

Q i j = Q j i

Hence, there are only four independent elastic coefficients. Equation (1)

may also be written in terms of the engineering moduli E.... , E??, G _, and

Poisson's ratios V2i

as

In terms of double-subscript stress notation (ref. 3. p. 16) ,

where the x_-direction is normal to the plane of the layer.

12

Page 26: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

EU/X 0

0

G12.

1

' « !

£2

heI 6 )

(2)

where

= 1 - V12v21

Again, there are only four independent coefficients since the symmetry

in the coefficient matrix, which is a consequence of the existence of the

elastic potential (ref. 2), demands that

V12/E11 = V21/E22

It follows readily from equations (1) and (2) that,

Eii/X

Q12 = V12Q22

Q66 = G66

(3)

Hence, for a single layer of filamentary composite with many small

filaments more or less randomly distributed throughout the entire cross

section, in-plane macroscopic behavior is characterized by specifying

the four elastic coefficients Q.j, Q22> Qj~, and Q^ or equivalently, by

the in-plane engineering moduli E , £„„, G,-, and one of the Poisson's

ratios v,, or voi •

13

Page 27: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

Owing to the presence of the relatively flexible matrix material,

the thickness-shear flexibility, is expected to be significant (refs.

5 and 6) for the filamentary composites. Therefore, for complete macro-

scopic property characterization, one will need to specify flexural,

twisting, thickness shear stiffnesses, and flexural Poisson's ratios,

in addition to the in-plane properties. The above-mentioned type of com-

posite has a more or less homogeneous distribution of properties through the

thickness. Thus, only two additional stiffnesses, namely the thickness-

shear moduli G and G,,, need to be calculated, since the flexural and

twisting stiffnesses may be obtained by the previously stated formula,

rh/2(Dn,D12,D22,D66) = J (HU /X,V 1 2E 2 2 /X,E 2 2 /X,G 6 6) z dz (4)

-h/Z

where D ,D ,D , and D denote the longitudinal, Poisson, transverse, and11 12 a DO

twisting stiffnesses, respectively, and h = the thickness of the layer. How-

ever, for a monofilament composite, equation (4) is not expected to hold

because of a more predominant inhomogenelty in the property distribution

through the thickness. In view of this, for the complete characterization

of macroscopic elastic behavior, flexural, as well as torsional, analyses

must be carried out.

Given constitutive properties of the constituent materials and the

fiber-matrix geometrical configurations, determinations of these macroscopic

equivalent orthotropic properties may be carried out in a number of ways

as summarized in reference 4. In the subsequent analyses, approaches

based on mechanics-of-material and classical elasticity theories are used

14

Page 28: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

to obtain solutions which are manipulated to yield the required equivalent

orthotropic properties. The elastic solutions obtained in this way are

used in Section III to analyze the damping characteristics of the filament-

ary composite materials where Kimball-Lovell type material damping (see

Appendix B) is assumed to prevail.

The longitudinal in-plane and flexural stiffnesses and the trans-

verse thickness-shear stiffness are handled easily for mechanics-of-

materials analyses. For the remainder of the elastic properties, classical

elasticity analyses are used to formulate a series of appropriate mixed

boundary value problems. Then these problems are solved numerically by

means of the boundary-point-least-square method, as described in Appendix

A, to yield the desired equivalent macroscopic properties.

The monofilament composite material is exemplified by a repeated

rectangular cross section consisting of a circular-cross-section fiber

centrally located, and surrounded by matrix material as depicted in

figure 2.

The basic hypotheses used consistently in the subsequent analyses are

summarized as follows:

HI. Fibers and matrix respectively are homogeneous, linearly elastic,

and isotropic.

H2. Both fibers and matrix are free of voids.

H3. The fiber-matrix interface bonds are perfect without transitional

region between them.

HA. Initially, the composite is in a stress-free state and all

thermal effects are neglected.

15

Page 29: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

*H5. Inertial and damping effects are neglected.

2.2 Longitudinal In-Plane Stiffnesses

In this subsection, two in-plane engineering moduli of elasticity,

namely, major Young's modulus E . and in-plane longitudinal shear modulus

G,, , will be discussed. The major Young's modulus E,, is estimated fromDO 11

the law of mechanical mixtures; whereas, the in-plane longitudinal shear

modulus G is obtained from the result of classical theory of elasticitybo

analysis by Adams and Doner (reference 46).

Major Young's Modulus EI1. - A typical repeating element of a mono-

filament composite element is subjected to a uniform longitudinal strain

e, as shown in figure 2. The longitudinal stresses induced in the fiber

and matrix, respectively, are:

' am = Em el

where E and E are the longitudinal Young's moduli of elasticity of the

filament and matrix, respective.'ly.

The total equivalent longitudinal force P in the composite is

P = 0fAf + amAm (6)

where A., and A are the cross-sectional areas of the filament and matrix,r m

respectively.

The equivalent major Young's modulus EI. of the composite is readily

Damping is treated separately in Section III.

16

Page 30: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

obtained from equations (5 and 6) as

P/(Ael)=(EfVEmAm)/A

where

A = Af + Am (8)

The volume fractions of fiber and matrix are defined as

V. = A /A , V = A /A (9)t t m m

In terms of the volume fractions Vf and V , the major Young's modulus

EI, is written as

EfVf + EmVm

or

Em

since

- Vf (12)

Since Ef > E in general, equation (11) shows that E varies linearly with

respect to V from the matrix modulus (at V = 0) to the fiber modulus

(at V, = I). For a monofilament composite with a square typical element,

17

Page 31: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

the fiber volume fraction ranges between 0 and 0.785. Therefore, the values

of E.../E can vary between 1 and 94.4 for E /E = 120 (borori-epoxy).11 >n f m

Equation (11) is usually known as the simple law of mechanical

9

mixtures or "law of mixtures" for brevity. This relationship is also

valid for the cases where the filament material is transversely isotropic

with the plane of isotropy coinciding with the cross section of the filament,

The Young's modulus E in eq. (11) is then interpreted as the longitudinal

Young's modulus of the fiber.

Since the interaction between the constituent materials, owing to the

difference in their Poisson's ratios, is neglected completely in this

simplied analysis, the major in-plane Young's modulus E . calculated from

eq. (11) is the lower bound as demonstrated by Hill (reference 47). How-

ever, the effects of the difference in the Poisson's ratios of the con-

stituent materials have been shown theoretically to be minute (references

39, 47 and 48) and confirmed experimentally. Therefore, for all practical

purposes eq. (11) may be deemed satisfactory for the prediction of E .

In-plane Longitudinal Shear Modulus G ,,. - Consider one quarter of

a typical repeating element of a monofilament composite as depicted in

figure 3. The displacement field corresponding to the applied longitudinal

shear loading is then assumed to be of the form

u = v = 0, w = w(x,y) (13)

with the corresponding stress components:

»• i — n r.i /Av i- i — r i.

18

Page 32: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

Substitution of equation (14) into the equations of equilibrium yields the

governing partial differential equations that must be satisfied in the

fiber and matrix regions

=0 (i=f,m) (15)

The boundary conditions depicted in figure 3 are

mG ow /9y = 0 along y = 0 and y

mw = 0 along x = 0

m -w = w along x

(16)

In solving the problem posed by equations (15) and (16) , the interfacial

continuity conditions on the displacement and the shearing stress need

to be considered. This leads to:

w f = w m on C 1 (17)

and ,

G, ^w /bn= G 6w An on C,E m 1 (18)

where n signifies the outward normal to the boundary C1. The boundary-

value problem defined by eqs. (15-18) are then solved by the f in i t e

difference method (ref. 46), and the effective macroscopic shear modulus

19

Page 33: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

of the composite is determined from

Comparisons of the shear modulus predicted by eq. (19) to those obtained

from other analyses (refs. 35 and 38) showed that equation (19) is in

closer agreement with the experimental values (ref. 46).

2.3 Transverse In-plane Stiffnesses

Consider a typical repeating element subjected to a uniform tensile

stress of magnitude a in the y direction as depicted in figure 4(a).

Because of symmetry about both coordinate axes, only one quarter of the

repeating-element cross section needs to be considered, as shown in figure

4(b).

Assuming that a state of plane strain exists in the xy (or £f])

plane and further that each constituent material is isotropic in this

same plane (that is, the fibers can be transversely isotropic), one can

formulate the problem in terms of the Airy stress function $ (reference

49). This requires satisfaction of the following governing partial

differential equation in the absence of body forces which vary nonlinearly

with the spatial coordinates:

tfS1 =0, in A. (i=f,m) (20)

4where v" is the bihartnonic operator, f denotes fiber, and m denotes

matrix.

The general solutions of equation (20) in polar coordinates (p,9)

20

Page 34: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

are of the form (ref. 49) :

$f(p,9) = b fp2 + bfp3 cos 9 + Y (a*pn+bo i ^i n nn=2,3,...

cos n 0 (21)

Ap,9) = a™ log p + bomp2 + cos 9 + cos 9

+1n=2 ,3,...

, m n m n+2 , 'm -n,. 'm -n+2. . ov(a p -fb o + a p +b o ) cos n 9 (22)n n n r n

Owing to the symmetry about the x-axls, only those series terms

which are even functions with respect to 9 are retained in equations

(21 and 22). In the usual notations, stress, strain, and displacement

*components are related to the Airy stress function « by :

Og =

2 2

(p-I

I (23)

cr = (1-l-v) E"1 [(1-v) af-v

ee = (l+v) E"1 - \> or] > (24)

The superscripts f and m which signify fiber and matrix regions, re-

spectively are omitted from equations (23-27) for brevity.

21

Page 35: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

,-lre = E~ [o -v (C5 + 0Q)1 = 0z z r w

Vrg - 2 (1 + v) E- Trfl

u /R = (1 + v) E"1 f [(1 - ,v) O -v OQ] dpr J t o

uQ/R = (1 + v) E'1 J p[(l-v) aQ-v orl dO - J ur dO

(25)

where v is the Poisson's ratio.

The rectangular components of stress and displacement components are

then related to polar components of stresses and displacements by:

2 20=0 cos 9 + OQ sin 9 - T - sin 2 9x r y rw

2 2a = a sin 9 + a_ cos 9 + T n sin 2 9y r 9 r9

T =(1/2) (o -aQ) sin 2 9 + T Q cos 2 9x y r H rw

(26)

u = u cos 9 - u_ sin 9

v = u sin 9 -J- UQ cos 9r v

(27)

The unknown coefficients of the series solutions, namely, a , b ,1 i ' ia , b (i = f,m), are then determined from the symmetry conditions and

the boundary conditions depicted in figuru A(b), and those on C. , the

fiber-matrix interface.

From the symmetry of geometry and loading, it is apparent that the

22

Page 36: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

coefficients of the odd terms in the series must vanish.

u - K -b, = b, =1

a = bn n

'm

m ,m ma = b =an n n = b = 0 (n=odd)

> (28)

Also, in view of the interfacial continuity conditions, the following

relationships must be satisfied.

f m f m f m f mur = Ur • U0 = V Tr9= Tr9

/or>\(29)

Thus, coefficients b , a ,b ,a ,a may be expressed in terms of

b"1 and b'm .n n

f m= (Y b

n n

a"1 = m[-(n+l)b™ + V bn"' ]/n

r. \,ni / i[(l-a)bn - (n-

f (30)

where

2 Gf/Gm

a B X(3-4vm+D/(3-4vf+X)

s 4xU-vm)/(X-l)

(31)

f23

Page 37: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

Y = U(3-4v )m

Finally, the remaining coefficients a , b , b , and b1 are so chosen

that the boundary conditions on the external boundary are satisfied at

a discrete set of points. (See Appendix A; also, references 50-52).

The macroscopic equivalent transverse in-plane properties may now

be determined from the average of the displacements on the boundary.

The plane-strain stress-strain relations of an equivalent homogeneous

rectangular element that undergoes the same average deformation as the

monofilament composite element are of the form (ref. 2),

e = <5 /E - v O /E -v a /E xx xx yx y y zx z z -

(32)a = E (v a /E + v o /E )z z xz x x yz y y

where xy indicates that the same equation holds with the roles of x and

y interchanged, and a superscript bar indicates the average stress, strain,

and property values of the equivalent homogeneous orthotropic material.

Also, because of symmetry of the stiffness coefficient matrix,

XL.E. = v.iEi (i,j = x.y.z, i!*j) (33)

For the case considered,

°y T °o ' °x = ez = ° (34)

Substitution of equations (34) into the second and the third of equations

24

Page 38: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

(32) yields two simultaneous equations for the determination of E and

V

e = a /E - v a /Ey o y zy z z

o = v a /Ez yz o y

(35)

From equation (35), the minor Young's modulus £„_ and the major Polsson's

ratio V, o are determined as

? = E = E a2 / (E e o+o2)22 y zo z y o z

^. 0 = v =0/012 zy z o

(36)

where,

E = E,. = E + (E, - E ) V,z 1 1 m v f m ' f

I 0 d? dTl/ (u26)2

= f Cv] d_5 (H25r)

> (37)

Although the major Poisson's ratio v,- may be obtained from the second

of equations (36), many experimental and analytical results (references

28,41,48, and 53) show that the rule of mixtures may be used to pre-

dict v,o with sufficient accuracy. In view of this, the following

Page 39: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

simplified formula for Vj~ instead of the latter of eqs. (36) will be

used in Section 3.3 for the determination of the loss tangent associated

with v.'12'

(38)

On the other hand, elementary model prediction (Reuss estimate)

of the minor Young's modulus E__ results in the following expression

E22 = [<Vf/Ef> + (W'"1 (39)

which gives much lower values than those obtained experimentally. In fact,

Hill (reference 54) and Paul (reference 55) showed that equation (39)

gives the lower bound on the elastic modulus for a macroscopically

isotropic composite. There are some mechanics-of-materiaIs analyses

(ref. 1) which predict greater values for E~. at low fiber volume

fractions and smaller values for £„„ at high fiber volume fractions.

In contrast, the classical theory of elasticity approach (ref. 56)

predicts a value of E~2 which is consistently higher than the experi-

mental values.

2.4 Longitudinal and Poisson Flexural Stiffnesses

As stated previously, for a monofilament composite layer, the

longitudinal and Poisson flexural stiffness D and D,2 cannot be cal-

culated from the in-plane properties E .,£„»,v,~ and v?. due to the

fact that the assumption of macroscopic homogeneity of the material in

the thickness direction is no longer valid. Therefore, in this subsection

Page 40: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

a relatively simple mechanics-of-materials analysis is used to obtain the ef-

fective flexural stiffnesses.

Longitudinal flexural stiffness Dj '. - An element of a monofilament com-

posite layer subjected to a pure bending moment is shown in figure 5.Owing to

symmetry of the loading and geometry, only one quarter of the cross

section needs to be considered for the analysis. As a first approximation,

assume that the Bernoulli-Euler hypothesis holds throughout the cross

section; then the strain distribution is given as

e = a, y (40)z

where ot, = longitudinal bending curvature, and z = distance from mid-z

plane.

Then, the longitudinal stress in the fiber and matrix are given by:

The flexural strain energy in an elemental volume one unit long

and having cross-sectional area (a,.+a ) is:f m

Ub = (1/2)J ^f'V daf + (1/2)J (am /Em)da

af

or

2Ub2 Pr 2 2 2 i, l^6r 2

/OS = (E,-E ) y^ (r -yVdy + Em nry dyz t in J m j

27

Page 41: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

which integrates to give

,/<* * = (E -E )(nr4/32) + E (ur)V/6 (42)D z cm m

For an equivalent homogeneous orthotropic one-quarter section:

<43>

where E.. is the equivalent longitudinal Young's modulus for flexural

loading.

Equating the right-hand sides of equations (42 and 43), and solving

for E,. /E , one obtainsl l m

E =1 + U'-l)(3TT/16uV) (44)m

where

X1 s Ef/Em (45)

Finally, the layer flexural stiffness is given by the equation

-u&r

or/L\ -3

(46)

Recalling that the in-plane Young's modulus E.^ is estimated from the

law of mechanical mixtures (see Section 2.2):

28

Page 42: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

(X'-l) Vf = l+(X'-l)TT/(4u26) (47)

the ratio E..- /E . is expressed as

(X'-l)(3TT/l$A3)]/[l+U'-l)TT/4a26] (48)

In general, X',u, and 6 are greater than 1; thus, the ratio in

equation (49) gives a value less than 1. This shows that for a monofil-

ament composite, the longitudinal flexural stiffness D as estimated,

eq. (4), by using the in-plane Young's modulus will be unconservative.

Poisson flexural stiffness. - Due to the nonuniform distribution

through the thickness, the transverse Young's modulus £^2 and the Poisson's

ratios v,9 and v51 are dependent locally on the thickness coordinate of the

composite. To carry out the integration indicated in eq. (4), £-„, v,2> and

v?1 must be expressed explicitly in terms of the thickness coordinate. In

the following analysis, a typical monofilament composite element is

considered to be made from the thin dy strip depicted in figure 5(b).

S22*

Thus, on assuming eqs. (38 and 39) to hold for the estimates of E?_ and

, ~ of the elemental strip, one obtains the following expressions:

For O^y^r, (or

*The Reuss estimate, eq. (39), gives excellent results for com-

puting the effective transverse Young's modulus for a thin strip, fig.

5(b), consisting of discrete rectangular aggregates of constituent materials,

29

Page 43: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

(49)

J

where X1 is the moduli ratio as defined in eq. (46) and "H is the normalized

thickness coordinate (T|=y/r) .

In view of eqs. (49), the Poisson flexural stiffness for the monofil-

ament composite element is calculated by the following equation:

D12/D12 ={ I F(7° (50)

where D is the Poisson flexural stiffness of a homogeneous element of

the same size and consisting entirely of matrix material, and the function

F(T13 is defined as follows:

D?2(51)

/£„(!»]

2.5 Transverse Flexural Stiffness

The transverse flexural stiffness is obtained in a way similar to that

discussed for transverse tension (Section 2.3). Here, two edges of a typical

element are subjected to linearly varying stress distributions that are

equivalent to pure bending moments. (See figures 6(a) and (b) .)

In view of the antisymmetry condition, the Airy stress functions in

polar coordinates are of the form

00

$f(o,9) = bfp3 cos 9 + Y (afpn+bfpn+2) cos n 9 (52)1 /_j n nn=3,5,...

$m(p>9) = b^o cos 9 + a,"1 p" cos 9 (Cont'd. on next page)1 L 30

Page 44: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

- In=l ,3 , . . .

. m m n+2 'm -n 'm -n+2. n - ._ v( a + b p + a p + b p )cos n 9 (53)

Equations (52 and 53) sat isfy the biharmonic equations, equations (20)

(Section 2.3). In view of equations (29) (Section 2 .3) , that specify

continuity of displacements and stresses at the fiber-matrix interface,

those coefficients defining the series solutions may be readily inter-

related as:

a - [-(n+l)« b m+ P b ]/nn n n

b r= Q- b

'm-a m= [-(n+1) bm+ Y b "']/n

n n n

(54)

where #, 3, and > are as defined previously in equations (31).

In view of equations (54) , the matrix-region Airy stress function

may be written as

(p,9) = b p cos 9 + a o cos 9

[Fn(p) b™ + Fn(p)bnm] cos n 9 (55)

n=l,3,...

where

31

Page 45: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

F (p) s [-(n+1) p" + + (1-a) p"°+2]/n

(p) s [Yp-n - (n-l)p~n + np"n+2]/n

The coefficients b, , a, , b , and b (n=3,5....) are then deter-1 l n n

mined from the boundary conditions depicted in figure 6(b):

xy

T =0xy

v = 0

v = 0

0 S/U, T =0

on

on

on

on

? = u

1 = 0

T) = 0

"H = U6

(56)

Since the second and third of equations (56) are identically satisfied by

equation (55), these coefficients are determined from the first and fourth

of eqs. (56) in the sense of least square error at a discrete set of

points on the outer boundary § = u and T< = u& (see Appendix A).

The macroscopic equivalent flexural stiffness D-« of a typical element

may now be calculated from the applied bending moment M, and average weighted

curvature aiji/dy °n the f\ = U6 edge.

22 y=u6r (57)

where

M = 2 (ar) o /3o 1r32

Page 46: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

2 ^ I(2r /I) J 5 [v] d5 / (58)

o

I = 2UV/3

Finally, substitution of equation (58) into equation (57) yields the

desired result:

D22 = (2 °0"r/9) s ESV/3T1] dl' (59)

2.6 Twisting St i ffness

To determine the macroscopic equivalent twisting s t i f fness D,, of aDO

one-layer monofilament composite, a rectangular cross section consisting of

N repeating typical elements is considered. (See figure 7.) Because of the

symmetry condition, only the quarter of the cross section, which lies in the

first quadrant of the xy plane, needs to be considered.

In the usual notation, u,v, and w are the displacements; and a is the

angle of twist per unit P.- length. Then, for a small angle of twist a-, we

have (reference 57) :

i-ayz, v = oxz, w = orcp (x,y) in R. (i=f,m)

iwhere cp (x,y) are the z-component displacement functions to be determined

from the equilibrium and boundary conditions. The strain and stress

components are readily found to be:

33

Page 47: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

and

ex = ey

exz=

ez = exy

a = o = o = T = 0x y z xy

xzT =yz

, (i=f,m)

(i-f

(60")

On application of the equations of equilibrium, one finds that the

first and the second of these equations are identically satisfied and the

third equation gives

V2 ¥ in f,m) (61)

where

' 2 2 2 2 2V = (8 /dx ) + <* /dy ) (62)

The stress equilibrium condition across the fiber-matrix interface GI

requires the satifaction of

\ (dcpf/dn) - (dcpVdn) +(\-l)[y (dx/dn)- x(dy/dn) ] on (^ (63)

where n is the outward normal to the boundary C.. .

Displacement continuity requires that:

34

Page 48: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

Cpf = cpm on C (64)

\or, equivalently,

dcpf/ds = dcpm/ds on C (65)

where s is the arc length along the boundary C . Similarly, on

the vertical inter-element boundary C_ (see figure 7),

. j+1 , and [dcpm/d7l].

(66)

where j and j-H refer to the jth and (j+l)-th repeating elements.

Finally, the stress-free condition on the outer boundary C- (see figure 7)

leads to

dcp /dn = [y (dx/dn) - x (dy/dn) J on C3 (67)

The aforementioned torsion problem, equations (61-67) , may also be formulated

*ialternatively in terms of the complex conjugate ¥ that satisfies the

Riemann-Cauchy equations

dcpVdx = oi'Vdy , depVdy =-oYi/Sx (68)

It is readily shown, in view of equation (68), that the alternative

formulation leads to:35

Page 49: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

* o •

V Y1 = 0 , in R. (i=f,m) (69)

XYf = Y1" + ^ (X-l) (x2 + y2) + constant on C

A - A

dY /dn = dYm/dn

[dYm/dTl,

(1/2) (x2+y2) + constant

on

on

on C

(70)

(71)

(72)

(73)

For later convenience in numerical analysis, these equations are

normalized by introducing the following notations:

= x/r, -n = y/r, cp = cp/r , , V2 = (d2/d|2)+(d2/dTl2)

(74)

Then, the governing differential equations and the boundary conditions

become:

V2f1=0 , V2cpL=0 in A (i = f .m)

(§2+-n2)

fX (dcpr/dn) = (dcpm/dn)

d f f / dn=dY m / dn , dcp f/ds

(d?/dn) -| (dTj/dn)

(75)

on C (76)

[Ym,cpm]j+1 (7?)

36

Page 50: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

? 4 T])

dcpm/dn = U (d£/dn) - | (dT]/dn) ]

. on (78)

and the stress components are:

xz1 - a G^ r [(dcpVdQ-TVJ = o GI r [(dfVdTD-T]]

Z

(i=f,m) (79)

The solution to the problem is obtained by assuming series solutions

for each of the fiber and matrix regions in all N elements that satisfy the

governing partial differential equation exactly in their respective

regions. For example, in terms of polar coordinates with the origin at

the center of the N-th fiber, the solution for the fiber and matrix

regions takes the form:

(n)

..tn'(n)

(n)'(n) cos k 9(n)

>

> (80)

It is interesting to note the fiber-region solution coefficients a,K

may be readily expressed in terms of matrix-region solution coefficients

b. by the use of boundary conditions on C , equation (76).

37

Page 51: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

ao = [bo

= 2b1/(X+D +

= xi(brd)

(81)

where

(82)

In view of equations (81), only the coefficients b. nead to be determined

from the boundary conditions on C. and C~, namely, equations (77 and 78),

since a, and b , may be readily calculated from b by the use of (81). OnK. •• K K

writing b , in terms of b, , one has

cos 9 bk(pk+XlP"

k) cos k 0 (83)

k=l 2IV. !.}«-)•••

The problem is now reduced to the determination of the coefficients b, by

the satisfaction of equations (77 and 78) at a discrete set of points on

C_ and C_ in the sense of least square error (see Appendix A).

After determining b, , one can calculate readily the stress components

from equation (79). Finally the torsional stiffness D,, is obtained from—_^

Superscripts are omitted here for brevity.

38

Page 52: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

the following equation in a closed form. (See Appendix C for details.)

D,, = (-y T ' + x T ) dx dy/a66 J J xz yzA..+Af m

2 r4 Gm {A JJ [Y f- k (?2+-n2)] d| dT] + JJ [^ - % (?W) ] d? dT] }

A f Am(84)

2.7 Longitudinal Thickness-Shear Stiffness

Owing to the presence of relatively flexible matrix material, the

effect of thickness-shear deformation needs to be considered in the struc-

tural application of monofilament composite materials. As the thickness-

shear stresses are not distributed uniformly across the cross, section, the

effective thickness-shear strain needs to be known for the calculation

of effective thickness-shear stiffnesses. It is a commonly accepted practice

to relate the effective shear strain to the average shear strain by means

of a correction factor K which is usually referred to as the shear coef-

ficient (reference 58).

K= V - /Y ff „. "(85)average effective

Since the thickness-shear strain distribution is dependent on the shape of

the cross section on which the thickness-shear stress acts, it is also re-

ferred to as shear shape factor.

In 1921, Timoshenko derived a theory of flexural beam vibration in

which the effects of rotatory inertia as well as that of thickness shear

Page 53: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

were taken into account (reference 59). The shear coefficient K was

defined as the ratio between the average shear strain and that at the

midplane. This yielded a value of 2/3 for a homogeneous, rectangular-

section beam. However, this value of the shear coefficient gave poor

agreement with experimental results. In view of this, numerous

attempts were made to obtain a better value for K which would be in

closer agreement with experimental results. Based on the high-fre-

quency mode of beam vibration, Mindlin and Deresiewicz (reference 60)

obtained a value of 0.822 for a rectangular cross section; whereas,

based on the static mode, Roark (reference 61) gave a value of K of

5/6. Recently, Cowper (reference 62) used a different static approach

to derive a formula for K which is in good agreement with those obtained

by other investigators. This latter approach is deemed to be satisfactory

for long-wavelength, low-frequency deformations such as those encountered

in the vibration of monofilament composites.

Therefore, in this subsection, Cowper's analysis (ref. 62) is

extended to the nonhomogeneous case consisting of a typical repeating

element of a monofilament composite to obtain the effective thickness-

shear strain. The thickness-shear stiffness, which is defined as the re-

sultant shear force divided by the effective shear strain, can then be ob-

tained as a direct consequence of the analysis.

First, the thickness-shear distribution is obtained from the analysis

of a tip-loaded monofilament cantilever beam shown in figure 8(a).

Denoting the displacement components as u,v, and w, one defines the

mean displacements of the cross section and mean angle of rotation of the

cross section cp by the following equations:

Page 54: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

ITU = (I/A) Jj u dx dy

A

W = (I/A) JJ w dx dy

A

Cf> = (I/I ) JJ xw dx dy

(86)

where A denotes the entire cross-sectional area, and I is the moment

of inertia of the cross-sectional area with respect to the y axis. Then

the actual displacements of a point on the cross section are written as

x c p + w (87)

where u and w are the residual displacements which are equal to the de-

viations of the actual displacements from the weighted mean displacements.

In view of the definitions, equations (86),

u dx dy = w dx dy = xw dx dy = 0 (88)

The stress-strain relation

T /G = u, + w,xz 'z x

(89)

where a comma represents partial differentiation with retipect to the

spatial variable that follows it, may now be written as

W, + CO = (T /G)-w, -u,'z xz x z

(90)

41

Page 55: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

where the shear modulus G is to be interpreted as that of the fiber

or matrix material depending on whether the material point is located

in the fiber or the matrix region of the cross section. Finally, the

integration of equation (90) yields the desired kinematic relations among

the mean values of the midplane slope W, ; flexural slope cp; and thez

ef fec t ive shear strain Y f f:

W,z + cp = (I/A) JJ [(Txz/G) - w, x ] dx dy = Yef£ (91)

A

For a tip loading, the shear force Q is uniform along the entire length

of the beam, hence, the first part of the integral in equation (91) is

evaluated as

JJ <Txz/G) dx dy = (Qf/Gf) + (Qm/Gm) (92)A

where 0,. and 0 represent the respective shear forces that act on thef m

fiber and matrix regions and are related to the total shear force Q by

Q = Q f + Q m (93)

In view of eq. (87), the remaining term in the integral of eq. (91) is

JJ w,x dx dy = Jj(w,x - cp) dx dy (94)

A A

where cp is defined in the third of eqs. (86). Combining eqs. (91-94),

one obtains the effective thickness-shear strain expression,

42

Page 56: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

Yeff = W'z + * = (1/A) W+'W "IJ

where Cf and hence w, the displacement field, needs to be known in terras

of the parameters defining the geometrical configuration and the con-

stituent properties before the integration can be carried out. Assuming

that the deformation of the cross section can be approximated by that of

a tip-loaded cantilever, and allowing the constituent materials to be

transversely isotropic with the plane of isotropy normal to the fiber

axis, one can readily formulate the problem using the Saint-Venant semi-

inverse method (refs. 57 and 63).

First, displacement components are assumed to be:

u1 = B [% Vj_ (-6-z) (x2-y2) + V<- z2 - (1/6) z3]

v1 = B v. C-z) xy (i=f,m)

w1 =-B{ x (Iz - fc z2) + X* + [(E./Gp-Zv.K^xy2)}

> (96)

where B is a constant to be determined from the boundary conditions;

E. is the Young's modulus in the fiber direction; G. is the shear

modulus in the vertical plane parallel to the fiber axis; v. is to be

interpreted as the Poisson's ratios v-,=v__; and \ = \. (x,y) (i=f,m)

are functions to be so chosen as to satisfy equilibrium conditions

in their respective regions.

The stress components are readily calculated from equation (96)

to be:

43

Page 57: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

o1 = o1 - T1 = 0x y xy

Txz = - BGi

= - BE. (l-z) x

(i=f,m)

-*!3 Xy}

(97)

If the constituent materials are isotropic, E., G., and v. respectively

of the constituent materials are related by

(i=f,m) (98)

Substitution of the stress components in equations (97) into the equili-

brium equation yields the following governing partial differential

equations (Laplace's equations in two dimensions):

= o (i=f,m) (99)

which must be satisfied in the respective regions A,, and A .r m

Consideration of displacement cont inui ty at the fiber-matrix inter-

face C requires tha t :

f m f m f mu = u , v = v , w = w o n C

1(100)

Apparently, the first and the second of equations (100) cannot be satisfied

unless the two Poisson's ratios are equal. However, the interaction

44

Page 58: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

between the constituent materials due to the differences in the Poisson's

ratios has only weak effects as evidenced by many theoretical analyses

) (refs. 39, 47, and 48). Hence, it will be assumed for the subsequent

analysis that

V, = v = v (101)I tn

With this assumption, equation (101), the first two of equations (100) are

identically satisfied and the third leads to

Xf =xm on Cl (102)

Continuity of surface traction at the interface C requires that

T (dx/dn) + T (dy/dn) = T (dx/dn) + T (dy/dn) (103)xz y xz y

where n denotes the outward normal coordinate to C. , hence, (dx/dn)

and (dy/dn) are the direction cosines of the unit normal vector to the

interface C .

In terms of the stress components defined in equations (97) , the

condition of equilibrium at the interface, equation (103), is cast readily

in the following form:

f ~mGf (dx/dn) - Gm(d X /an)

=-(Gf-Gm) [[% Ox2 + (L-i? v)y2](dx/dn)+(2+v)xy(dy/dn)]

on Cl (104)

The condition that the lateral surface is free from surface traction

45

Page 59: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

leads to

(d xm/dn) = - j[% v x +(l-^v)y ](dx/dn) + (2+v)xy(dy/dn) 1

on C2 (105)

The solutions to the problems posed by the governing differential

equations (99) and the boundary conditions, eqs. (102,104,105) are now ob-

tained by assuming a pair of series solutions which are harmonic in the

respective fiber and matrix regions. The coefficients of these series

solutions are determined so as to satisfy the boundary conditions in the

least-square-error sense (see Appendix A, also Section 2.6.)

Since the solution procedure is very similar to that of Section

2.6, it will be high-lighted by listing these equations which are pertinent

to the solution.

With the introduction of the following transformation,

/ ™-\ / ^" ^ 1 / J s • e* \— v / v Tl = \7/t" v =V / y i i = i mIA / i. ) M y / L j J^ J^ / L \ 1. L 9 lllj

9 9 9 9A + ((106)

eqs. (99), 102, 104, and 105) are rewritten in the following form, which

is convenient for numerical analysis:

= 0 in A. (i = f,m) (107)

X™ on c

HdXf/dn) -(dx

m/dn) = -(X-l) [l%v§2 + (l

+ (2 + v) f 71 (dtl/dn) on q (109)

46

Page 60: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

(dxm/dn) 2V 5 -Kl-Vv) Tl] (d|/dn)

+ (2 + 0) ? -n (dT1/dn)j on C, (110)

The series solutions, which are harmonic in the respective regions,

are assumed to be:

X - a akP

cos

k=l

(111)

\m = b + ) (b p + b p ) cos k 9O £_j K ~K

k=l

In view of eqs . (108 and 109), which warrant displacement con-

tinuity and stress equilibrium conditions, the coefficients a , a, ,

and b , (k = 1,2,...) may be expressed in terms of b as:™* K K.

a = bo o

= 2

a3 =

ak =

2 b3/U+l)+

(k = 3,4,...)

-(1/4)]

b = - X, b- k I k(k = 3,4,...)

where

= (X-D/(X+D

(112)

47

Page 61: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

Because of the anti-symmetry of the displacement component w with

respect to the £ axis, it may be shown readily that those coefficients

with even subscripts are zero. The condition that the lateral surface

is free from surface traction, eq. (110) , takes the form:

1 cos (k-1) 9 + X1p"k"1 cos (k+1) 9]

[(3+2v)p~2 cos 2 9 - 3p~4 cos 4 9]

U-D [ \ v S2 + U-iv)7\2]

k bR

k-1, 3, 5

sin (k-1) 9 + sin (k+1) 9]

[(3+2v) p"2 sin 2 9 - 3p~4 sin 4 9]

(113)

(2 + v) 5

-1(tan 6<;9<TT/2, OS^, T1=U5)

Next the coefficients b (k • 1,3,...) are obtained according toK

the boundary-point least-square method as described in Appendix A.

With the coefficients b, thus obtained, the constant B which

appears in eqs. (96 and 97) is calculated from the condition that the

resultant shear force is equal to the externally applied tip load Q:

il Zdy = Q (114)

48

Page 62: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

Since the stress components in eqs. (97) satisfy equations of equili-

brium in the absence of body forces, the following relation must hold:

or

T1 = BE. x = - T1 - T1 (i=f,m) (115)zz,z i zx,x zy,y

T1 + T1 + BE. x = 0 (i = f,m) (116)zx,x zy.y i

In view of eq. (116), eq. (114) may be written as

• ci=f,m

= Y [I [(x T1 ), + (y T1 ), ] dx dyL JJ zx 'x zy yi=f,m A.

B Ei x dx

i=f,m A.

B Ei x dx

i=f,m A.

IE (117)

where A,, and A are the cross-sectional areas of the respective fiberf m - - -

and matrix regions and I is the weighted moment of inertia of the

cross section. From eq. (117), the constant B is readily obtained as

B = Q/IE (118)

where

49

Page 63: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

* dx

i=f,m A.

Finally, the longitudinal thickness-shear flexibility S is obtained

from eq. (95) as

S55 = [Q/(2 6r)]/Yeff

rr i 2 -i= A TT, [%V (I -I ) - (A/I ) x ft +xy )dx dyl (120)

'•E x y y JJA

For an equivalent homogeneous beam with a rectangular cross

section, the longitudinal thickness-shear stiffness is given by

S55 = KA G55/(2^6r) (121)

where the shear coefficient K is obtained as (ref. 60)

K -'10 (l+v)/(12+llv) (122)

Thus, on equating eqs. (120) and (121), one obtains the equivalent

shear modulus G,-c as

x y

- (A/T ) f[ x (Xl+xy2) dx dy]"1 (123)y JJ

2.8 Transverse Thickness-Shear Stiffness

A typical repeating one-quarter cross section shown in figure 9 .

is considered. As a first approximation assuming that the Bernoulli-

50

Page 64: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

Euler hypothesis holds, we make an elementary Jourawski-type mechanics-

of-materials analysis to obtain the shear stress and strain distri-

butions in the cross section due to the application of shear force Q

along the vertical boundary of the cross section. (See figure 9(a).)

Then the strain energy is calculated and Castigliano's principle is

applied to obtain the macroscopic shearing strain v . The transverseX

thickness-shear stiffness S.. is then obtained in terms of definite44

Integrals arising from the strain energy calculations.

Assuming that the cross section remains plane, one obtains the

flexural strain distribution as

€x - - a,x y (124)

where e denotes the flexural strain of an element located at a distanceX

y from the midplane, and ry, denotes the bending curvature of the mid-X

plane. The corresponding stress distribution is

Ovi = - ,<v y E (i=f,m) (125)X X !•

Summing the moment due to the stress distribution, one finds that

the flexural moment acting on the cross section is

o -(2/3) Em(u6r)

J[l+(X1-D(u6)HI '

M = \ (126)x

(2/3) Em (U6r)3 a,in

N

where

51

Page 65: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

X1 = Ef/Em , 5 = x/r (127)

From equation (126) , the flexural stiffness of a strip Ax in

width is found to be

f (2/3) Em(u6r)3 [l+(X' -1) il6) ~3(1-|2) 3/2]

<*&l (128)

(2/3) E

In view of equations (125-128) , the flexural stress distribution

is now given by the expression:

- (Mx/D22) y E. (i-f,m) (129)

The thickness-shear distribution T is then obtained readilyxy

from the equilibrium of the forces acting on the strip. (See figure

U6r u&r

-f Co X] dy + f [a x] _.. dy = T Ax (130)J x j x y J u x Jx+Ax x yy y ,

Solving for T in equation (130) and using equation (126), one obtains

-1 P6*Txv = (A Mx/Ax) °22 J Ei y dyy

where

AM = [M ] - [M 1 (132)X X X+AX XX

Since the shear force Q = A M /Ax and the integral on the right-X A

hand side of equation (131) can be evaluated, the thickness-shear52

Page 66: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

distribution is given by:

For

T = G vxy f xy

(Q /2D )EX X Ul

(Q /2D ) E r2 [<U6)2 - T12)]; (r2-y2)X X ul

(133)

and, for r<x<ur

Txy = GmYxy=(Qx/2Dx)(134)

In view of equations (133 and 134), that part of the strain

energy per unit z-length due to shearing stresses is readily cal-

culated.

U = (l/2)f I T v dx dys J J.• ^ xy xy

ff m

(135)

where

S/21 1 9 1/2 -?} • [(U6)J+U'-l)(l--n ) ' J dTl (136)

J {(8/15)(u6)5-(l-T12) [(u6)4-(2/3)(u6)2(l-Tl2)+(l/5)(l-T12)2]}-

53

Page 67: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

•3 9 7/9 9T<W6) + U'-DU-TI) ' ] dT| (137)

Using Castigliano's theorem, one can compute the mean macroscopic

shearing strain y from equation (135) as

Yxy

= (3Qx/2ur) [2/(5 0^6) ](u-l)+(3/4) G ~ F 1 + ( 3 / 4 ) G ~ F (138)

The average transverse thickness-shear stiffness S// is given

by

B.. = Q /Y = KAG..44 xx xy 44

= (2ur Gm/3)[(2/5)(u-l)/(u6) +(3/4) (F 'Vp ]-1 (139)

where

X = G£/Gt m

For a homogeneous rectangular corss section, Cowper's shear

factor K is given by eq. (122). Thus, the equivalent transverse

thickness-shear modulus G,, is given by

G44 = S44/(2u6r K)

54

Page 68: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

SECTION III

DAMPING ANALYSES

This section is concerned with the analyses leading toward the char-

acterization of dynamic properties of a single layer of roonof ilament

composites. Many solids, whether they are metallic or otherwise, exhibit

a damping ef fec t ; this phenomenon is essentially due to the dissipation

of energy associated with the deformation. It is convenient, especially

in the case of steady-state vibrational analysis, to represent the dy-

namic properties of the solid by the use of complex dynamic moduli .

For example, the major Young's modulus EI . may be considered to be of

the form

R Iwhere i = /^T , E^ is the storage modulus and Ej is the loss modulus,

since the latter is associated with that component of the strain 90

out of phase from the stress component which gives rise to the energy

dissipation (reference 64). Alternatively, equation (142) may also be

written as

E = E* (1+ig ) (143)il ii b

where g is referred to as the loss tangent which is related to theEll

storage and loss moduli by the equation,

55

Page 69: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

g = (E.J/E *) = tan Y (144)&

Here the term, y , is the phase angle by which the sinusoidally varying

strain component lags behind the accompanying stress component on the

phase plane, and is referred to as the loss angle. (See Figure 10.)

In the following subsections, detailed analyses based on the results

of Section II are made to obtain the loss tangents associated with all

the stiffnesses necessary for the characterizing of the damping properties

of a single layer of monof ilament composite.

3.1 Introduction

As previously discussed in Section 1.1, one of the main advantages

that composite materials have over conventional homogeneous materials

is their macroscopic anisotropic nature which gives the modern structural

designer the ability to design stiffness and damping properties and strengths

to fit the requirements of the application by means of lamination. In the

dynamic analysis of a structure consisting of multiple layers of composites,

as in the case of elastic characteristics, damping characteristics of a

single. layer must be known beforehand in order to predict the dynamic

behavior of the laminated structure.

There have been numerous experimental investigations on damping

characteristics of sandwich and filamentary composite materials (ref. 8-19).

Analytically, Hashin (ref. 20-21) derived a correspondence principle for

the determination of complex moduli of viscoelastic composites (particulate

and filamentary). This correspondence principle is particularly suitable

when the elastic moduli are of a form explicit in terms of the moduli of

the constituent materials. However, Hashin's approach cannot be applied

to cases where the moduli are. given in terms of numerical elastic results.

56

Page 70: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

Kimball and Lovell (ref. 22) observed that many engineering materials

undergoing sinusoidal motion exhibited energy losses which were proportional

to the square of the amplitude and independent of the frequency. Bert

et al- (ref. 13), in their investigation of damping in sandwich beams,

assumed Kimball -Love 11 type damping for the facing and core materials

and obtained good agreements between the theoretically-calculated and

experimentally-obtained values of the logarithmic decrement for free vibra-

tion.

It is noted that the ratio of the total damping energy dissipated per

cycle Uj to the total potential energy stored per cycle U can be related

to the logarithmic decrement 6 as follows (reference 65):

6 = (1/2) ln[l-(Ud/U)] (145)

For most structural materials, where the logarithmic decrement is small,

it may be approximated by

6 = (l/2)(Ud/U) (146)

In turn, the loss tangent g may be related to 6 by (See Appendix B for

details.)

g = (l/2n)(Ud/U) (147)

The total potential and dissipative energy per cycle of a solid under-

going sinusoidal motion are given by *

(148)

(149)

*Repeated subscripts denote summation where i,j = 1,2,3.

57

Page 71: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

where fK. and e.. denote respective stress and strain amplitudes,

C, the damping coefficient, and V the total volume (fiber and matrix)d

occupied by the composite.

In performing the integration indicated in equations (148 and

149), the stress distributions are approximated by those obtained from

the elastic analyses of Section II. Inherently, the stress distributions

are dependent on the excitation frequency; however, for the frequency

range of interest here (well below any micro-scale resonance), the

stress distributions obtained from the elastic analyses of Section II

are expected to be valid.

For the monofilament composite element under consideration

here, with the exceptions of in-plane longitudinal shear modulus G,,ob

and the Poisson's ratio v,~» the following general procedure is adopted

for the calculation of loss tangent of the composite element:

1. First, with the composite element subjected to an appropriate

*loading , the strain energy is calculated for the respective fiber and

matrix regions (U and U ).

2. In view of equation (147), the damping energies for the re-

spective fiber and matrix regions are obtained as follows:

U* = 2n gi U1 (i=f,m) (150)

*By an appropriate loading, we mean the type of loading which

is appropriate for the property under consideration, i.e., longitudinal

tension for £,,> etc.

58

Page 72: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

3. Then, the composite loss tangent associated with the pro-

perty under consideration is computed as

g = (l/2n) U/ U (i=f,m) (151)

i i

The determinations of the real parts of the complex moduli;

namely, the storage moduli; are carried out in an analogous manner to

that of Section II by simply replacing the elastic property parameters

with their respective counterparts in the complex moduli.

As for the determinations of the loss tangents for the in-plane

longitudinal shear modulus G,, and the Poisson's ratio VT -, , Hashin'sDO Lf.

correspondence principle is used. The equivalence of the correspondence

principle and the general procedure described above is substantiated

analytically for the case of the longitudinal Young's modulus E and

numerically for the case of the transverse Young's modulus E_2-

In the subsections that follow, detailed analyses are carried

out for the loss tangents corresponding to all of the stiffnesses

characterizing the composite properties.

3.2 Longitudinal In-plane Loss Tangents

Two loss tangents, namely gg and gG/i£> wiH De obtained in

this subsection. As previously discussed in Section 2.2, the major

Young's modulus E is obtained explicitly from the law of mixtures,

whereas the longitudinal in-plane shear modulus G,, is based on the

results of the elasticity analysis of Adams and Doner (ref . 46) .

59

Page 73: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

Loss tangent §Eii associated with the Major Youns's modulus E.,,

In terms of the notations used in Section 2.2, the total strain energy

per cycle in the respective fiber and matrix regions are calculated as

follows:

Uf = (1/2) JJ af6l dx dy = (1/2) Afof6lAf

(152)

Um = (1/2) JJ Vl dx dy = (1/2) A^Am

In view of equations (152 and 150) , the total strain energy per cycle

in the composite and the damping energy per cycle are readily cal-

culated as follows:

(Afaf + AmOm)€l (153)

Ud = " (fifAf°f + SmVn)el (154)

where gr and g are the loss tangents associated with the longitudinalr m

Young's moduli of the fiber and matrix materials. The composite loss

tangent ggi-i associated with the major Young's modulus E ^ is now

readily calculated on substituting equations (153 and 154) into equation

(151).

= (8fVf

In view of equations (5 and 9), equation (155) may be written

in terms of volume fractions V, and V and X" as follows:f m

60

Page 74: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

' Vf + Vm)/a' VV (I56>

where

as

X' = E R/E R (157)r m

D

The composite storage modulus EI1 is obtained from eq. (10)

E R = V,ER + V ER (158)11 f f m m

It is interesting to note that identical results for the

storage modulus and the loss tangent can also be obtained on utilizing

the elastic-viscoelast ic correspondence principle of ref. 21. Re-

placing the elastic moduli in the right-hand side of eq. (10) with the

corresponding complex moduli, and separating the real and the imagin-

ary parts, one obtains

E.. = (VCER+V ER)Cl + i (gcV,E

R+g V E*) /(VtER+V ER)

11 f f m nr Bf f f 6m m m' f f m m'

(159)

from which equations (156 and 158) readily follow. This substantiates

the equivalence of the correspondence principle and the formula (151).

Loss tangent gc^c associated with the in-plane longitudinal

Pshear modulus G,,. - As mentioned previously, the storage modulus G,,

DO DO

is approximated by the elastic analysis of Adams and Doner (ref. 46) .

To calculate the loss tangent &Gf.f. according to eq. (151) would require

61

Page 75: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

lengthy numerical analyses for the determinations of the stress and

strain distributions. To avoid this, it is surmised here that the

results of ref. 47 may be empirically approximated by a much simpler

formula due to Hashin and Rosen (ref. 35), which is given here in

modified form as follows:

G66/Gtn = CV

(160)

where Cy,. is an empirical factor brought in here so that the shear

modulus as calculated by equation (160) coincides with that given

in ref. 46, X is the fiber and matrix shear-moduli ratio defined in

eq. (31), and Vf is the fiber volume fraction.

In view of the explicit expression of eq. (160), the loss

tangent %>&(.(* ^s readily obtained on replacing A. by its complex counter-

part.

\ = XR (1 + ig ) (161)

where

*/G*) (i+g g )/(i+8 2)r m (j.. (j O

f m m

?, = (gr - gr ) / (l+gr gr )Gf Gm Gf Gm

Substitution of equations (161 and 162) into eq. (160) yields:

(162)

62

Page 76: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

2

CVf

{[XR( l -V f)4(l+V f)]2 + [\R(l-V f)gx]2} -1 (163)

66 m{gr [U-V,2)UR (1-g 2)+l] + 2\R(1+VL G f X

+ Vf } '

m

(164)

3.3 Transverse In-plane Loss Tangents

Based on the result of elastic analysis and the observation made

in section 2.3, two loss tangents ggoo and gvi2 associated with the in-

plane transverse Young's modulus £„„ and the major Poisson's ratio v,~

will be obtained as follows.

Loss tangent Sg associated with the transverse in-plane Young's

modu1us. - Owing to symmetry in the loading depicted in fig. 4, shear

stresses ^ and T vanish. Hence, the total strain energies per cyclej\z y

for the fiber and the matrix regions, respectively, are:

2.' i ' v~v 1^V'"2viax°v+2Txv ^dX dy

J- A y i *• y J

(i = f ,m) (165)63

Page 77: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

where the stress components o ,O ,T are given by the equations (C-4 ,x y xy

5, and 6). In view of equations (150 and 165), the damping energies per

cycle are:

y]dx dy (i=f,m) (166)

A.

The loss tangent §£00 is tnen readily calculated from eq. (151).

n

The storage modulus £«„ is calculated from the first of equations (36)

by means of appropriate storage moduli of the constituent materials

corresponding to the particular frequency of excitation.

Loss tangent gvi „ associated with the in-plane major Poisson's

ratio. - Since the in-plane major Poisson's ratio v, ~ is related to the

constituent Poisson's ratios v and vf by a simple law-of-mechanical-

mixture formula, eq. (38), the complex Poisson's ratio v, is readily

obtained in a manner similar to that used for E •, , eq . (159), by the use

of Hashin's correspondence principle as follows:

(167)y til in J. J- ill It Im

where

R „ R . .. RV12 = Vf + Vm

g = (g V.v,R + g V v R)/(V,v,R+V v R)V , o V . - f f & v m m f f m m '12 f m

(168)

3.4 Longitudinal Flexural Loss Tangents

In this subsection are treated damping analyses for determining

64

Page 78: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

the loss tangents §DII and ^Di? associated with the longitudinal and

Poisson flexural stiffnesses. The former is obtained according to eq

(151), whereas the latter is obtained by the application of Hashin's

correspondence principle.

Loss tangent goi-i associated with the longitudinal flexural

stiffness . - In view of eq. (42) derived previously in Section 2.4,

the strain energies per cycle in the fiber and matrix regions are

readily obtained as follows:

nf 2 P RU = a, E.. TTTz r

Um = {[63<ur)4/6] - (rrr4/32)j

(169)

Using eqs. (150 and 151), one can readily obtain the following

expression for the longitudinal flexural stiffness:

gD

{("UI-l)(n/32)+(&3U4/6)}- (170)

D

The storage stiffness D is readily calculated from eq . (46) with

the help of eq. (44) by replacing the static moduli and the Poisson's

ratios with their respective real parts of the corresponding complex

moduli and ratios.

Loss tangent gpi? associated with the Poisson flexural stiffness. -

According to Hashin ' s correspondence pr inciple , the complex Poisson

f lexura l s t i f fness D._ may be calculated from equation (50) by replacing

65

Page 79: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

the elastic moduli and Poisson's ratios appearing on the right-hand

side of the equation with their respective complex moduli and Poisson's

ratios as follows:

2 r3 { J [FR

(171)

R Iwhere F (TJ) and F (T\) are the real and imaginary parts of the function

F(T|) defined in equation (51) . Separating the real and imaginary parts

on the right-hand side of equation (171), one readily obtains:

DR2= 2 Em r3[J [FR(TO-gE F^DJdTI + (1/3) [ (u&)

3-l]vR A Rj- (172)o m

= 2 ER Jo m

where

A = (I+im m

A = Real ( A)

m m m m

A = Imaginary ( A )

(U6) 3-l]vR A

m

2 2

m

2 2

'v ' J • Am m : m

(173)

> (174)

66

Page 80: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

*» • [ l-\ ( 1-*v » + t2 \ *v Itn . tn

The loss tangent gDi o can now be calculated from eqs. (172-173)

to yield:

~ /^D12/D12

1§D12 l ^o \ F (71) + F <T° df | f<1 3 ^^ "L Vm

• {J (175)in jm

3.5 Transverse Flexural Loss Tangent

Owing to antisymmetry in loading with respect to the J\ axis

as depicted in fig. 6, shear stresses T again vanish as for the case

of the transverse in-plane Young's modulus £„„, Section 3.3. There-

fore, the total strain energy and damping energies per cycle are given

by the eqs. (165 and 166). The loss tangent gDoo and tne storage

Rstiffness D-« are obtained by a procedure similar to that described

in the first subsection of Section 3.3.

3.6 Twisting Loss Tangent

For a composite layer subjected to a pure twisting torque, all

the stress components except T and T vanish. Thus, the strainr xz yz

energy and the damping energy per cycle in the fiber and matrix re-

gions, respectively,are calculated from the following formulas:

67

Page 81: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

[[ (T2 + T2 ) dx dy / (2 G.) (l=f,m) (176)J J x z yz ixz yzAL

2n gG u\ (i=f,m) (177)i

where the shear stress components T and T are as given by eqs.

(C-19 through C-22) for each typical composite element depicted in

fig. 7. With the strain energies and damping energies calculated

from eqs. (176 and 177), the loss tangent goA associated with the

twisting stiffness D,, is obtained readily from eq . (151).bo

3.7 Longitudinal Thickness-Shear Loss Tangent

In view of eqs. (97) , the strain energies per cycle for the fiber

and matrix regions are:

1)1 = IJ (Txz+Tyz)dX d^/(2 Gi)+ IJ az dX dy/<2 VA. A.1 (i=f,m) (178)

where the strain components are as given by eqs. (97). According to

eq. (147), the damping energies per cycle in the respective fiber and

matrix regions are therefore equal to:

"a ' 2" SG. II (TxZ+V>dlt d>'/(2 V

+ 2n gE JJ a2 dx dy 1(2 E.) (i=f ,m) (179)

68

Page 82: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

The loss tangent ggss assoc*-ate<l with the longitudinal thickness-

shear stiffness is then calculated according to the general procedure

described in Section 3.1 with the help of eq. (151).

3.8 Transverse Thickness-Shear Loss Tangent

The strain energies per cycle for the fiber and matrix regions

may be readily calculated from the results of elastic analysis in

Section 2.8, eqs. (128, 129, and 135-137), as follows:

uf = ufs

(180)

um = ums

(181)

where the subscripts s and b refer to shear and bending, respectively;

F. and F_ are as defined in equations (136 and 137); and F_ and F, are

given by the following expressions:

F3 = J {(u-5)/[l + (X'-l)(u6)"3(l-?2)3/2]}2(l-F32)3/2 d£ (182)

69

Page 83: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

= J

(183)

In view of equations (181 and 182) , the damping energies per

cycle in the respective fiber and matrix regions are equal to:

(184)

m

(185)"m

Finally, the loss tangent associated with the transverse thick-

ness-shear stiffness is calculated on substitution of equations (180,

2181, 184, and 185) into eq. (151). It is noted that Q , the square

of the shear force per unit z-length, cancels and thus the loss tangent

is expressed in terms of the loss tangents, moduli ratios, and Poisson's

ratios.

This completes the damping analyses for the determinations of

the loss tangents associated with all the stiffnesses pertinent to

the characterization of the damping behaviors of a single layer of a

monofilament composite. The results obtained herein are used in the

next section, Section IV, for the construction of the design curves and

comparisons of the numerical results with available analytical and

experimental data.70

Page 84: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

SECTION IV

NUMERICAL RESULTS

In this section, numerical results as obtained from the foregoing

elastic and damping analyses, Sections II and III, are presented. First,

in Section 4.1, the results of the present elastic analyses are compared

with some available analytical and experimental results obtained else-

where as a verification of the present analyses. Secondly, in Section 4.2,

property data deduction procedures for some of the constituent materials

are briefly described. Then comparisons of the dynamic stiffnesses and

their associated loss tangents are made with the limited experimental

results which are available. Finally, in Section 4.3, the results of the

present analyses are summarized in the form of a set of design curves for

boron-epoxy composites, and in a tabulated form for boron-aluminum and

glass-epoxy composites. This set of design curves is particularly useful

in predicting the elastic and damping behavior of structural elements

consisting of one or more layers of monofilament composites (reference 63).

4.1 Comparison with Conventional Micromechanics Results

This section is concerned with the numerical comparisons of the

stiffnesses calculated from the present analyses with those obtained else-

where in order to assess the accuracy of the present analyses. Two aspects

of the comparisons to be considered here are:

71

Page 85: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

1. Comparisons of the in-plane and thickness-shear stiffnesses

with those obtained from conventional micromechanics analysis

where the composite layer consists of many small fibers randomly

or regularly distributed throughout the entire cross section;

see fig. l(b) .

2. Comparisons of the flexural and twisting stiffnesses with those

deduced from the in-plane stiffnesses by the use of eq. (4).

Major Young's modulus E. - There have been many analytical in-

vestigations to determine the major Young's modulus E (refs. 1,39,47, and

48) ranging from a simple mechanics-of -materials analysis to a more sophis-

ticated elastic analysis. In all cases, however, it was demonstrated that

the effect of difference in the Poisson's ratios of the constituent materials

is negligibly small. In fact, Hill (ref. 47) showed by a variational method

that the rule of mixtures, eq. (11), is the lower bound. Therefore, for all

practical design purposes, eq. (11) is deemed sufficiently accurate. Further-

more, experimentally, the published data for Narmco 5505 boron-epoxy com-

posite (reference 64) gave values of E . to be 30.6 x 10 psi in tension and

34.0 x 10 psi in compression; whereas, the value of 30.3 x 10 psi was

obtained from eq. (11) by using nominal Young's modulus values of 60 x 10 psi

for boron and 0.5 x 10 psi for epoxy.

Major in-plane Poisson's. ratio V, ? . - Many analytical investigations

have shown that the major Poisson's ratio may be predicted by the rule of

mixtures, eq. (38), with sufficient accuracy. In particular, Abolin'sh (ref.

53) presented in detail the derivation of eq. (38) where the major Poisson's

ratio of the fiber v, may be allowed to be transversely isotropic with the

plane of isotropy normal to the fiber. However, in his derivation, no

72

Page 86: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

allowance was made for the actual fiber cross-sectional shape. Within the

context of mechanics-of-materials theory, Bert showed that eq. (38) holds

for circular cross-section fibers (reference 65). Halpin and Tsai (reference

66) devised an interpolation method and applied it to the elastic numerical

results in a graphical form obtained previously by Hermans (reference 67) to

show that the numerical data can be empirically approximated by eq. (38).

As a further verification of eq. (38), the numerical results for v, 7, as

obtained from the second of eqs. (36), are shown in table I for various

fiber volume fractions. It is observed that, for all practical purposes,

the rule of mixtures, eq. (38), may be used for estimating the major Poisson's

ratio Vj~- Unfortunately, comparison with the experimental result (ref. 64)

showed that the theory predicted a much lower value of 0.30 against 0.36

for Narmco 5505 boron-epoxy composite with a fiber volume fraction of 0.50.

This is attributed mainly to the discrepancies in the nominal constituent-

material data used for calculation.

Minor Young's modulus E_-. - The minor Young's modulus E.- as

calculated from the first of eqs. (36) and those obtained by other investi-

gators are plotted against Young's modulus ratio E../E for various fiber

volume fractions for comparison as shown in figure 11. Foye has summarized

the results of analytical investigations on the various estimates of the

transverse properties of filamentary composites (ref. 40). It was concluded

that, in general, the transverse stiffness is relatively insensitive to the

types of models chosen. The specific analytical results for E^j chosen

here for comparison are those due to Tsai (reference 68) and Adams and Doner

(ref. 56). In fig. 11, it is observed that the present theory predicts

values for £„„ which are consistently lower than those of Tsai and of Adams

73

Page 87: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

and Doner. However, it must be.remembered that in their analyses, a

square-array composite model was used. Thus, the free-edge effect was

completely eliminated. In the present analysis, a single-layer model

was chosen in order to obtain a more realistic representation of the

layer property on the micro-scale. Hulbert and Rybicki (reference 69)

showed in their recent paper that the free-edge effect for some filamentary

composites may range from 9.870 (for boron-epoxy) to 5.0% (for boron-

aluminum) at a fiber volume fraction of 0.50. It is believed that this

accounts for the lower estimates of the present analysis shown in fig. 11.Chen

and Cheng (ref. 38) chose a hexagonal-array model and gave some numerical

results for an E glass-epoxy composite and showed that their result from

the elastic analysis is well within the previous results obtained by

Hashin and Rosen (ref. 35) and Dow and Rosen (reference 70). The present

analysis also gave a result that is bounded by the results of the above

two references (refs. 35 and 70).

In-plane longitudinal shear stiffness G,,. - Adams and Doner (ref.OP

46) determined the in-plane shear modulus G,, using a square-array model

and compared their results obtained from an over-relaxation procedure with

other analytical results (refs . 35, 38, and 71) and a limited number of

experimental resul ts . Excellent agreement was observed between their re-

sults and the complex-variable elastic solution of Wilson and Goree (ref .

71), whereas comparison wi th the analyt ical work of Chen and Cheng (ref .

38) and that of Hashin and Rosen ( re f . 35) showed some discrepancy due to

the hexagonal-array model used by these investigators. A fai r agreement

is observed between Adam and Doner 's results and that of experiment;

theoretical values being consistenly lower by 5.37» for boron-epoxy, 6.7%

74

Page 88: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

for carbon-epoxy, and 13.5% for glass-epoxy composites. From ait engineering

design point of view, an explicit formula such as the one given by Hashin

and Rosen ( ref. 35) would be highly desirable. For this reason, an

empirical correction factor Cy*: was introduced in Hashin and Rosen's formula

in order to bring their results to coincide with that of Adams and Doner

(ref. 46).

Longitudinal flexural stiffness DI . - In eq. (48), it is observed

that the ratio E^. /E,, represents a measure of flexural stiffness ef-

ficiency which is less than unity for all realistic values of the parameters.

In effect, this means that, unlike those composites containing many small

fibers, the longitudinal flexural stiffness D.... calculated from eq. (4)

using the in-plane major Young's moudlus would be highly unconservative.

A lower bound for the equivalent Young's modulus can be estimated readily

from a "netting type" analysis in which the contribution of the matrix

material to the composite flexural stiffness is completely neglected. This

leads to the expression, originally derived by Margolin (reference 72).

Analysis (^) (186)

In table II are shown the flexural stiffness efficiency, E /E , for

various constituent-material combinations, aspect ratios 6 , and volume

fractions (reference 73) . It is noted that the effect of 6 on the flexural

stiffness efficiency is much stronger than those of a and V .

Flexural stiffness efficiencies for various constituent-material

combinations and fiber volume fractions are plotted as shown in figure 12

for square typical elements, i.e., a square array of fibers. For example,

75

Page 89: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

in the case of a boron-epoxy monofilament composite with a fiber volume

fraction of 0.50, conventional theory, eq. (4), predicts a value for

flexural stiffness D... that is twice as large as the actual flexural

stiffness for a single layer. Also shown in the figure as dashed lines

are lower-bound estimates for fiber volume fractions of 0.20 and 0.70.

It is seen that the lower-bound estimate, eq. (186), increases in accuracy

as the fiber becomes stiffer (large Ef/E ratio), and as the fiber volume'

fraction increases.

Poisson flexural stiffness D 2> - The values of Poisson flexural

stiffness as calculated from the present analysis, eq. (50), are compared

with those calculated from eq. (4) by the use of in-plane stiffnesses and

Poisson ratios. Again, it is found that Poisson flexural stiffnesses cal-

culated in a conventional fashion are much greater than those of present

analysis as demonstrated in Table III. For all of the composites compared,

it is observed that for a low Ef/E ratio (<6) and low fiber volume fraction

(<0.40), Dj» as calculated from eq. (4) is in fair agreement, the difference

being less than 7%. However, for a high-stiffness-fiber composite such as

boron-epoxy, the conventional formula, eq. (4), over-estimates by as much

as 40% or more at a fiber volume fraction of 0.60.

Transverse flexural stiffness DO?- ~ 1° order to assess the trans-

verse flexural stiffness efficiency in an analogous manner as that of

longitudinal flexural stiffness, the ratio of the value of D~? as obtained

from eq. (59) and that obtained from eq. (4) is plotted against the Ef/Em

ratio for various fiber volume fractions as shown in figure 13. It is

observed that the conventional estimates from eq. (4) are again on the

unconservative side. However, variance in the transverse flexural rigidity

76

Page 90: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

efficiency due to fiber volume fraction is relatively weak. This is

perhaps due to the rather insignificant stiffening effect that the fiber

has on the transverse in-plane and flexural stiffnesses. For a boron-

epox

Page 91: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

to note the similarity and symmetry in the ¥ - value in the first and

the second quarter-sections. It is also of interest to note the decrease

in the V - value in the third quarter-section that is farthest from the

origin. This means that for a layer containing many fibers, the

torsional rigidity (not the layer twisting stiffness) can be approxi-

mated as the number-of-fiber multiples of the torsional rigidity of a

slqgle element.

Figure 16 shows the twisting stiffness ratio D,,/D,, for variousDO OO

values of fiber volume fractions and shear modulus ratio G./G .f m

Comparisons of the twisting stiffnesses for a square single

element cross section calculated from eq. (84) and eq. (4) are tabulated

as shown in Table IV. It is apparent that a twisting analysis is a must

in predicting the layer-twisting stiffness.

Longitudinal thickness-shear stiffness G ,.. - For a small-fiber

composite or parallel laminates consisting of many layers, it is generally

accepted that the longitudinal thickness-shear modulus G,.,- is equal to the

in-plane longitudinal shear modulus Gfi, (references 75 and 76). However,

in the case of a single-layer composite with only a single row of fibers,

the longitudinal thickness-shear modulus G,.,- is expected to be greater

than the in-plane shear modulus G,, due to the shear-stiffening effect of

the fiber. Bert used an approximate Jourawski-type shear theory to pre-

dict that the ratio G ,,/G,, may vary from 2.86 for boron-aluminum to 37

for boron-epoxy composites with a volume fraction of 0.482 (ref. 73). In

the present more refined analysis, this ratio is found to vary from 1.5

for boron-aluminum to 16.2 for boron-epoxy composites with a volume fraction

of 0.5 .78

Page 92: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

Numerical results for the longitudinal thickness-shear imxlulu;;

are summarized as shown in figure 17 for various volume fractions and

constituent-material combinations.

Transverse thickness-shear modulus G... - The transverse thick-44

ness-shear modulus G,, is plotted against volume fractions for various

constituent-material combinations as shown in figure 18. Comparison with

the analytical results obtained by Heaton (ref. 75) showed that fair

agreement is observed for fiber volume fractions below 0.5, but at higher

fiber volume fractions, 0.6 say, the present estimate for boron-epoxy

composites gave a 14% higher value for G,,. The discrepancy is attributed

to the differences in the models chosen for the analyses; Heaton's model

being that of a multi-fiber square array.

4.2 Storage Moduli and Associated Loss Tangents.

Prior to evaluations of the dynamic stiffness and damping be-

havior of a layer of a monofilament composite characterized by nine

stiffnesses and a Poisson ratio with their respective associated loss

tangents, accurate dynamic constitutive properties of each constituent

material must be known. A survey of the literature revealed that

numerous experiments have been made to determine damping characteristics

of glass (references 77-80) , epoxy (ref. 9), and aluminum (references

81-83). However, apparently no such data are available on boron. Because

of different experimental techniques and perhaps slight differences in

material compositions in the specimens, the damping properties obtained

by these investigators do not always correlate with those obtained for

the composite specimens. Therefore, it would be necessary to have avail-

79

Page 93: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

able good data for the constituent-material properties for the micro-

mechanics prediction of the composite macroscopic properties. However,

sometimes this may be difficult to obtain experimentally, for example

due to frailty of fibers in the filamentary composites or nonlinear

effects (see Appendix D) .

In view of this, a scheme for obtaining in-situ constituent

material properties from tests on composites may be necessary. Some

successful attempts at deducing such constituent-material properties

were reported by Papirno and Slepetz (reference 84) and Bert (reference

85) for static properties. Therefore, this deduction procedure was

used in the present investigation properties to obtain the dynamic

properties of some of the constituents from the test data on filamentary

composites when necessary.

To characterize the isotropic behavior of the material completely,

two independent moduli and their associated loss tangents must be known.

For the subsequent data deduction, it is assumed here that each material

behaves elastically in dilatation. With this assumption and the knowledge

of the Young's modulus and associated loss tangent, the second pertinent

modulus (shear modulus or Poisson's ratio) and its associated loss

tangent may be readily obtained.

The dynamic Young's modulus and associated loss tangent for boron,

epoxy, E glass, aluminum alloy 2024-T3, and aluminum alloy 6061 are

summarized as shown in figures 19-23. Data for E glass (fig. 21) were

obtained from ref. 79; for aluminum 2024-T3 (fig. 22), from ref. 81;

for aluminum 6061 (fig. 23), from refs. 81 and 8; and curve B for epoxy

(fig. 20), from ref. 9.

80

Page 94: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

Curve A for epoxy (fig. 20) was deduced from the experimental

data on glass-epoxy filamentary composites by Mazza et al. (reference

86); and the data for boron (fig. 19) were deduced from curve A and the

experimental results on boron-epoxy filamentary composites of the

same reference.

A quick comparison showed that the prediction of the loss

tangent associated with the transverse Young's modulus for glass-epoxy

is in good agreement with the experimental results of ref. 9, both vary-

ing from 1% to 3% for the frequency range between 20 and 2000 Hz.

The same comparison for boron-epoxy filamentary composites also

indicated excellent agreement on the prediction of the loss tangent

associated with the transverse Young's modulus; in both cases, ref. 86

and the present analysis, the value of loss tangent varies between 1.6

and 2.0% in the frequency range 20-400 Hz.

Pertinent data for the complete characterization of the con-

stituent properties are summarized in Tables V-IX.

4.3 Design Curves and Tables - Storage Moduli and Associated Loss

Tangents Versus Frequency for Various Fiber Volume Fractions

The results of the present analyses are summarized in the form

of design curves for a boron-epoxy filamentary composite as shown in

figs. 24-33 for the frequency range 50-2000 Hz. and the fiber volume

fractions V = 0.4, 0.5, and 0.6. In application, the curve A series

should be used for better predictions of the composite stiffnesses

and associated loss tangents; the Curve B series is included for com-

parison purposes only.

81

Page 95: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

In Tables X-XX1X are listed all the pertinent dynamic stiffnesses

and associated loss tangents for the characterization of the layer

properties of boron-aluminum and E glass-epoxy composites for the

same ranges of frequency and fiber volume fractions.

82

Page 96: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

V. CONCLUSIONS

Elastic and damping analyses resulting in determination of

all pertinent stiffnesses and associated loss tangents for the

characterisation of the elastic and damping behavior of a mono-

filament composite were carried out.

The numerical results obtained for the stiffnesses and

associated loss tangents compared favorably with some existing

analytical and experimental results for some typical filamentary

composites, such as, boron-epoxy, boron-aluminum, E glass-epoxy.

The results of the flexural and twisting stiffness analyses

showed that these properties cannot be deduced accurately from the

in-plane-properties, and, thereby, the necessity for such analyses

for a monofilament composite layer.

The assumption of Kimball-Lovell type damping was shown to

be equivalent to the elastic-viscoelastic correspondence principle

for the case of the in-plane longitudinal stiffness.

The results of this investigation were summarized in a set

of design curves for a boron-epoxy composite, and in a set of design

data tables for boron-aluminum and E glass-epoxy composites. The

former were applied to the problem of predicting resonant frequencies

nodal patterns, and damping ratios for laminated boron-epoxy plates

83

Page 97: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

(references 6k and 87) and achieved excellent agreement with available

experimental results, for six different plates (ref. lit).

Recommendations for future investigation. - For future re-

searches, the following topics are suggested:

1. Experimental characterization of the complete set of dynamic

stiffness and damping properties of various filamentary

composite materials of technological importance.

2. Analytical investigation of the viscoelastic behavior of

composite materials with thermo-mechanical coupling.

3. A unified viscoelastic analysis for filamentary composite.

84

Page 98: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

APPENDIX A

BOUNDARY-POINT LEAST-SQUARE METHOD

Numerous approximate methods are available for the solution of

boundary-value problems. To name a few, there are the Rayleigh-Ritz,

Galerkin, Kantorovich, finite element, relaxation, and collocation

methods. Of these methods, especially with the availability of modern

digital computers, probably the boundary-point least-square version

(ref. 5) of the collocation method is the most efficient for solution of

mixed boundary-value problems, such as those investigated in Section

II. The main useful features of the method are:

1. It may be applied to mixed boundary-value problems with re-

lative ease.

2. The assumed solution may be made to satisfy the boundary conditions

at a set of sufficiently dense points in the sense of minimiz-

ing the square error; hence the solution may be made independent

of the number of boundary points chosen.

In general then, the solution is reduced to the satisfaction of a set

of overdetermined algebraic simultaneous equations

AX = B (A-l)

where 7( >mx ncoefficient matrix (m>n), X -• n-dimension column vector

of unknown coefficients, B = n-dimension column vector of prescribed

85

Page 99: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

boundary values, m = number of chosen boundary points, and n = number

of unknown coefficients.

2Then the mean-square-error matrix (E ) for equation (A-l) is given

as

2 *+** *N* T1 ***** «•/

E = (AX-B) (AX-B) (A-2)

where the superscript T denotes the transpose of the matrix quantity

which it follows.

On minimizing equation (A-2) with respect to X, one obtains

(XTA)X = (ATB) (A-3)

or

A*X" = B* (A-4)

where A is an nxn matrix given' by

A = A1^ (A-5)

and B is an n-dimension column vector given by

B = Tk1"! (A-6)

Finally, the solution-coefficient vector X that minimizes the square

error is obtained readily from equation (A-4) by using a number of standard

computer scientific subroutines. However, care must be taken in the choice

86

Page 100: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

of appropriate forms of the stress functions and in the choice of

boundary points to avoid any boundary points at which the prescribed

boundary values are identically satisfied.

87

Page 101: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

APPENDIX B

MODELS AND MEASURES OF MATERIAL DAMPING

Bl. Mathematical Models for Material Damping

Internal friction or damping in materials can be caused by a variety

of combinations of fundamental physical mechanisms, depending upon the

specific material. For metals, these mechanisms include thermoelasticity

on both the micro and macro scales, grain boundary viscosity, point-

defect relaxations, eddy-current effects, stress-induced ordering, inter-

stitial impurities, and electronic effects (ref. 7). According to

Lazan (ref. 7 ), little is known about the physical micromechanisms

operative in most nonmetallic materials. However, for one important class

of these, namely polymers and elastomers, considerable phenomenolo^ical

data have been obtained. Due to the long-range molecular order associated

with their giant molecules, polymers exhibit rheological behavior inter-

mediate between that of a crystalline solid and a simple liquid. Of

particular importance is the marked dependence of both stiffness and damp-

ing on frequency and temperature.

The purpose of developing, a mathematical model for the rheological

behavior of a solid is to permit realistic results to be obtained from

mathematical analyses of complicated structures under various conditions,

such as sinusoidal, random, and transient loading. According to reference

7 , as early as 1784 Coulomb recognized that the mechanisms of damping

88

Page 102: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

operative at low stresses may be different than those at high stresses.

Even today, after more than 2500 publications on damping have appeared,

major emphasis is placed on linear models of damping for several reasons:

they have sufficient accuracy for the low-stress regime and linear analyses

are computationally more economical than nonlinear ones.

The simplest mathematical models of Theological systems are single-

parameter models: (1) an idealized spring, which exhibits a restoring

force linearly proportional to displacement and thus displays no damp-

ing whatsoever, and (2) an idealized dashpot, which produces a force

linearly proportional to velocity. Obviously, neither of these models

are very appropriate to represent the behavior of most real materials.

The next most complicated models of rheological systems are the

two-parameter models: (1) the Maxwell model, which consists of a spring

and dashpot in mechanical series, as shown schematically in figure B-l(a);

and (2) the Kelvin-Voigt model, which is comprised of a spring in

parallel with a dashpot, as shown in figure B-l(b). The Maxwell model

is a fair approximation to the behavior of a viscoelastic liquid. How-

ever, as a model for a viscoelastic solid, it has several very serious

drawbacks (ref. 7) ; there are no means to provide for internal

stress and for afterworking. The Kelvin-Voigt model overcomes these

deficiencies and is a first approximation to the behavior of a viscoelastic

solid. However, it has the following disadvantages (ref. 7): there

is no elastic response during application or release of loading, the

creep rate approaches zero for long durations of loading, and there is

no permanent set irrespective of the loading history.

89

Page 103: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

It should be mentioned that the Kelvtn-Voigt model is the simplest

one which permits representation as a complex quantity when subjected to

sinusoidal motion. To show this, one can write the following differential

equation governing the motion of a single-degree-of- freedom system con-

sisting of a sinusoidally excited mass attached to a Kelvin-Voigt element:

. . . . ,_ , >.mu+ cu + ku = Fe (B-l)

where m = mass, c = viscous damping coefficeint, k = spring rate, F H

exciting force amplitude, iu s circular frequency of exciting force,

u = displacement, i =/-\~ , t 2 time, and a dot denotes a derivative

with respect to time. Assuming that sufficient time has passed for the

"ktransients to die out, we can write the steady state solution of equation

(B-l) as follows:

u = u ei(U>t - *>- J [ (k-m*2) + iuc]'1 eiu)t (B-2)

where cp = phase angle between the response (u) and the exciting force,

and 7i £ displacement amplitude.

It is noted that the terms containing Kelvin-Voigt coefficients k and

iu)c can be grouped into a single Kelvin-Voigt complex stiffness (k) as

follows:

It can be shown that they do die out for a mechanical system, for which

c, m, and k are all positive quantities.

90

Page 104: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

k = k + iiuc (B-3)

Alternatively, the Kelvtn-Voigt element coefficient could have

been grouped into a single complex damping coefficient (c ) as follows:

c = c - (i k/co) (B-4)

The force (F.) in a dashpot is given by

Fd = c u = icucuei(U)t ' *> (B-5)

The energy dissipated per cycle (U,) in a dashpot undergoing

sinusoidal motion can be calculated as follows:

f p - n u ) 2Fd du = Fd u dt = ncum (B-6)

In 1927, Kimball and Lovell (ref. 22) observed that many

engineering materials exhibited energy losses which were contradictory

to equation (B-6). Specifically, they found that U, was proportional

~2to u but independent of co, i. e.

(B-7)

~Later work by Wegel and Walther (reference _>8) also showed that U , « "u

but C, was a weak function of CD. Still later, for stresses below the

fatigue limit of the material, Lazan (references 7,89 ) showed that IK <* 7i

and C' was practically independent of to.

91

Page 105: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

Equating the energy dissipated per cycle in the Kimball-Lovell

material, equation (B-7), to that in the dashpot, equation (B-6), one

obtains

C' = TTCU) (B-8)d

To utilize the Kimball-Lovell observation in practical structural

dynamic analyses, it was desirable to have an expression for the as-

sociated damping force, i.e. an equation analogous to equation (B-5),/

which governs a dashpot. According to Bishop (reference 90) this was

first done by Collar. Combining equations (B-5, B-8), one obtains the

following "frequency-dependent damping" relation:

Fd = (b/cu) u (B-9)

where b is a constant given by

b = CJ/TT (B-10)

The kind of damping represented by equation (B-9) has been called fre-

quency-dependent damping, since the usual dashpot coefficient c is now

replaced by the quantity b/tu.

For the damper represented by Eq. (B-9), it is convenient to replace

k in the undamped system by the Kimball-Lovell complex stiffness

(reference 91):

k' = k + ib (B-ll)

where it is now noted that both k and b are assumed to be independent of

frequency. This representation has been used extensively in aircraft

92

Page 106: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

structural dynamic and flutter analyses (references 92,93).

An alternative to equation (B-ll), is to use the concept of a complex

damping coefficient, originated by Myklestad (reference 94), in which the

spring constant is replaced by

k" = Cieim (B-12)

where C, and tn are constants.

Although Kimball and Lovell's original work was based on data

obtained during steady-state sinusoidal motion, the models represented

by equations (B-9, B-ll, B-12) have been applied to free vibrations as

well (refs. 90, yi ,95). To alleviate the difficulty of the interpreting of

m in equation (B-9) for the case of free vibration or for multiple-fre-

quency forced vibration, Reid (reference 96) suggested the following form:

Fd - b| u/u| u (B-13)

where the bars denote that the absolute value of the quantity between

them is to be used.

In summary, four different versions of material damping have been

discussed. In terms of the differential equation for free vibration,

they may be written as follows:

mil + (b/iu) u + ku = 0 (B-14a)

mu + (k + ib) u =0 (B-14b)

mil + C^e^u = 0 (B-14c)

mu + b | u/u | u + ku = 0 (B-14d)

93

Page 107: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

The models represented by equations (B-14) have been criticized

by many investigators for various reasons:

1. In equation (B-14a), the interpretation of uu is dubious (refer-

ences 96,98). Milne (reference 97) suggested that it is associated with the

imaginary part of the pair of complex roots, but went on to state that

there is no clear justification for this interpretation.

2. Equations (B-14b) and (B-14c) are equations with complex coef-

ficients and the meaning of this is not clear (refs. 95, 9/) . Further-

more, although they have complex exponential solutions, neither the real

nor imaginary parts alone are solutions (refs. 97, 9&).

3. Equation (B-14d) is a nonlinear differential equation, due to

the behavior of | u/ii | (ref. 97).

4. None of the models represented by equations (B-14) can be sim-

ulated, even on a conceptual basis, on an analog computer (refs.

96, 98 ).

5. The model represented by equation (B-14a) does not meet the

Wiener-Paley condition (references 99,100) of causality for physically

realizable systems, as was shown in references 98,102-103.

6. Equation (B-14b) fails to give the proper relations of a

damping force that is proportional to displacement and in phase with

velocity. This can be alleviated by use of a more unwieldy expression

proposed in references 104,105.

Incidentally reference 106 claimed that none of the equation

(B-14) models result in energy dissipation that is independent of

u) (the reason for abandoning the Kelvin-Voigt model) . However, an error

in this reasoning, which makes it invalid, was pointed out in reference 107.

94

Page 108: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

It can be shown that the sinusoidally forced vibration version of

free vibration equations (B-14a,b,c) are exactly equivalent. Probably

the most popular form for writing this is as follows:

~- iu)tmil + (k 4- ib)u = Fe (B-15)

The major criticism of the use of equation (B-15) is that it results

in a conventionally defined magnification factor (see Section B2), correspond-

ing to zero frequency, which is not equal to unity for g 0 (ref . 90) .

This difficulty can be eliminated by redefining the magnification factor as

follows:

MF' =

where

u' =st

and k1 is the stiffness coefficient associated with the total in-plane force

amplitude, i.e.

k1 = (k2 + b2)^

Thus,

MF1 = (k2 + b2)%/[k-mu)2)2 + b2]^ = (1 + g2A[(lVVu>n2)2 + g2]^

The major advantages of using the equation (B-15) model for steady-

state yibrational and flutter analyses are as follows:

1. The analysis is considerably simplified in comparison with that

for viscous damping, as pointed out in reference 108.

2. The analysis is linear.

3. The complex-modulus concept has long been in common use, especially

95

Page 109: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

in connection with measurement of the damping properties of elastomers,

polymers, etc. (reference 107).

4. The complex-stiffness approach has been used very successfully

in flutter analysis for approximately three decades (refs. 92,93 ,107 ,109 )

In view of these considerations, the complex-stiffness approach is

used in the main portion of the present report. However, for completeness

and comparison, a number of other more complicated approaches are also dis-

cussed in this section.

To overcome some of the deficiencies of the Kelvin-Voigt and Max-

well models, they were combined in various ways to obtain the three-para-

meter models shown in figure B-l(c) and (d). It can be shown (reference

110) that by properly selecting the values of the coefficients, the two

models can be used interchangably. In other words, the model repre-

sentation is not unique. In fact, both representations have been called

the "standard linear solid", "standard linear material," "simple an-

elastic model", or "standard model of a viscoelastic body" (references

111-114)- Unfortunately, few materials have been characterized by the use

of the standard linear solid. Perhaps the most extensive characterization

has been carried out for flexural vibration of 2024-T4 aluminum alloy:

by Granick and Stern (reference 82,115) in air and by Gustafson et al.

(ref. 81) in vacuo.

Obviously one can go on from a three-parameter model to a four-

parameter one, etc. Continuing this process, one obtains two well-

known models (ref. Ill): the Kelvin chain, shown in figure B-2(a),

and the generalized Maxwell model, shown in figure B-2(b). The be-

havior of such systems can be written in either differential or integral

form, as discussed in detail in reference 111. However, the complexity of

96

Page 110: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

such a model has limited its use both experimentally (in characterizing

engineering materials) and analytically (in performing dynamic analyses).

Thus, for engineering applications, there is a continuing search for

models which are simple, yet represent the behavior of real materials

with sufficient accuracy.

A relatively simple model, which is somewhat similar to the generalized

Maxwell one, is due to Biot (reference 116);see figure B-2(c). The number

of simple Voigt elements in this model is allowed to increase without bound,

so that the damping force is represented by the following expression:

rtF = gj Ei [-e(t-T)](du/dT) dT (B-17)

where T is a dummy variable; e ,g = parameters, and Ei(u) is the exponential

integral

P~uEi(u) = (eJ o

Caughey (ref. 98) made a detailed study of Biot's model for both

free and forced vibration. He showed that for uu/e > 10, the energy dis-

sipated in Biot's model is within 4% of being independent of frequency (u>)

and thus essentially depends only upon the square of the displacement

amplitude. Milne (ref. 97) studies the Biot model by means of the con-

volution integral. . ..

Neubert (reference 117) introduced a variant of the Biot model, in

which a different distribution function for the local stiffness-damping

ratio is used. Milne (ref. 97) also studied this model via the convolution

integral. Milne introduced a new synthesized model of his own. However,

97

Page 111: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

the main conclusion of his investigation was that, for practical engineer-

ing purposes, the choice of a rheological model is not critical, provided

that the range of constant damping is kept the same and the damping is

sma11.

The linear hereditary theory of material damping was originated in

1876 by Boltzmann (reference 118). In this theory, the energy loss is

attributed to the elastic delay by which the deformation lags behind

tne applied force. It is called a hereditary theory because the in-

stantaneous deformation depends upon all of the stresses applied to the

body previously as well as upon the stress at that instant. The damping

force is given by

• <J-r

u (T ) dr

where t = actual time, T = an instant of time (dummy variable), u =

displacement, and $ = hereditary kernel or memory function. Often the

hereditary kernel depends upon the difference (t-T) only; then equation

(B-19) becomes:

•r-J -00

Fd = I *(t - T) U(T) dT (B-20)

It is most advantageous to determine the hereditary kernel from^

experimental data. It has been found to be a monotonically decreasing

function which can be represented mathematically as follows:

n$(t) = £ A.e'V (B-21)

Such a system is said to have a heredity of degree n and A. and or.

98

Page 112: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

are called heredity constants. Hobbs (ref. 112) lias shown that a first

degree hereditary model is equivalent to a simple anelastic model

(standard linear solid) .

Volterra (reference 119) has presented a method of determining the

hereditary kernel from material response to either suddenly applied

loading or to sinusoidal excitation. He also presented plots of mag-

nification factor and phase shift versus frequency for a wide range of

parameters of a single-degree-of-freedom system with first-degree

hereditary damping. For certain combinations of the parameters, the

magnification and phase characteristics are quite different from that

of a viscously damped system; yet for certain other combinations, the

characteristics are quite similar.

Numerous nonlinear mathematical models have been proposed to per-

mit better correspondence between theory and experiment. However, all

of them, by their very nonlinear nature, are more complicated to apply

in structural dynamic analyses of practical engineering systems. Perhaps

the simplest one is damping energy per unit volume and per cycle pro-

portional to stress to a power (ref. 7 ):

Ud = Cd^m (B-22)

where GJ and m are material constants and a is the cyclic stress

\amplitude. It is noted that m = 2 corresponds to the Kimball-Lovell re-

lation (linear theory) discussed previously. It has been found that m

varies from 1.8 to 6.0, generally being near 2.0 at low stress amplitudes.

Tne hysteresis loop associated with the complex-modulus model,

equation (B-ll), is elliptic in shape; see figure B-3(a). However,

99

Page 113: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

the hysteresis loops determined experimentally have sharp corners at both

ends and are nearly linear in the low-stress, low-strain region, as shown

in figure B-3(b). According to ref. 7 (page 97), in 1938 Davidenkov

proposed a nonlinear mathematical model which results in a similar shape

of hysteresis loop. Further work on this class of model has been carried

out by Pisarenko (reference 120) .

Rosenblueth and Herrera (reference 121) proposed a nonlinear model

which eliminates the causality difficulties of the complex-modulus model.

Chang and Bieber (reference 122) introduced a nonlinear hysteresis model

in which there is no hysteresis damping unless the displacement amplitude

exceeds a certain threshold value.

B2. Measures of Material Damping

In this section, various definitions of damping are discussed in

the context of a complex-modulus material.

Energy Dissipation Under Steady-State Sinusoidal Vibration. - Energy

dissipated per cycle (U.) in the form of internal frictional heating is

one measure of damping. Howeve'r, this quantity depends upon the size, shape,

and dynamic stress distribution (which in turn, depends upon the particular

mode of vibration). In view of the above difficulties, the specific damping

energy (U, ) is usually considered to be a more basic property of the

material, rather than the structure. The U, is defined as the damping energy

per cycle and per unit volume, 'assuming a uniform dynamic stress distribution

throughout the volume considered. Thus, the total damping energy is

Ud = JV Udv dV (B'23)

100

Page 114: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

where V = volume. The usual units of U, are in-lb/cvcle and of U, ,a • dv

3in-lb/in -cycle.

Resonant Magnification Factor Under Steady-State Sinusoidal Ex-

citation. - The resonant magnification factor (KMF) is defined as the

dimensionless ratio of the response at resonance to the excitation,

where both the response and the excitation must be specified in the

same units (see figure B-4) . These quantities may be in units of dis-

placement, velocity, acceleration, or strain. Unfortunately, the re-

sonant magnification factor is dependent upon the structural system con-

figuration as well as upon the damping property of the material, so that

it is considered to be a system characteristic, rather than a basic material

property.

Incidentally RMF is not applicable to nonlinear systems, since then

it depends upon the excitation level. (In a linear system, RMF is independ-

ent of the level of excitation.)

Bandwidth of Half-Power Points Under Steady-State Sinusoidal Excitation,

The separation (OJ^-ULJ,) between the frequencies associated with the half-

power points increases with an increase in damping (see figure B-5) and thus

can be used as a measure of damping. A more meaningful definition is to

normalize by the associated resonant frequency (UD ), i.e. use the dimension-

less bandwidth given by

Ttiis measure is the basis for determination of damping by the original

Kennedy-Pancu method (reference 123) .

The quality factor Q is defined as the reciprocal of the dimensionless

101

Page 115: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

bandwidth.

Derivative of Phase Angle with Respect to Frequency, at Resonance. -

This measure is the basis for determination of damping by an improvement

(reference 124) of the Kennedy-Pancu method.

Loss Tangent Under Steady-State Sinusoidal Excitation. - Applying

the complex-stiffness (see Section Bl) to the material property represent-

ing stiffness, namely the Young's modulus (E), we obtain

E - ER(1 + ig) (B-24)

*Thus, the loss tangent is defined as follows:

g H E X /E R (B-25)

I ** R ***where E = loss modulus and E is called the storage modulus.

Referr ing .to figure B-6, we obtain the following relation:

g = tan y = E X / E R (B-26)

or

= arctan E /E (B-27)

*Also known as the "loss coefficient", "loss factor", or "damping

factor".

**Also sometimes called the "dissipation modulus."

***Also sometimes called "elastic modulus" or "real modulus."

102

Page 116: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

The quantity y is called the loss angle and equation (B-26) explains

the origin of the term loss tangent for g.

,') Cyclic Decay of Free Vibrations. - In a linear system, free vibrations

decay exponentially (see figure B-7). The larger the damping, the faster

is the decay. Thus, the logarithmic decrement 6 is defined as follows:

6 s £n (a../a_. .,) (B-28)

where £n s natural logarithm.

For a power-law material, eq. (B-22), to have 6 independent of

amplitude, m must be 2 (see Section B3 for proof). When m=2, the follow-

ing means of calculating 6 is more practical, especially when damping

is small:

6 = (1/n) In (ai/a1_)fl) (B-29)

where n is any arbitrary integer.

Temporal Decay of Free Vibrations. - Another measure associated with

the decay of free vibrations is the temporal decay constant v , defined as

follows (reference 7 , foldout opposite p. 35):

Vt =' (-t2"tl)" ln t U(t1)/u(t2)] (B-30-)

where t. and t« are two different values of time, arbitrary except that

t_ > t. and (t_ - t.) must be an integer number of periods of damped

vibration. The quantities u(tj) and u(t?) are the respective displacements

at times t and t_. It is seen that the usual units for v are sec

103

Page 117: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

An alternate way of specifying the temporal decay is the decay

rate y , which has units of decibels per second (db/sec) and is defined

as follows:

Yt = 20 (t2 - t L ) ~ l log [uCt^/uO^)] (B-31)

or

-1 Vt ( t2 ' h*Yt = 20(t2 - tL) log e = (20 log e)v f c *, 8.68 vt

where log s logarithm to the base 10.

Spatial Attenuation of a Plane Wave in a Slender Bar. - If

one propagates a plane, harmonic wave in a slender bar made of a homo-

geneous, linear material , the wave exhibits exponential decay with axial

position (x), analogous to the temporal decay of free vibration (which

may be considered as a standing wave). Analogous to the logarithmic de-

crement (see above), we have the logarithmic attenuation 6 , defined asS

follows in terms of amplitudes a(x.) and a(x?) at stations x1 and x_:

6g = In [a(x1)/a(x2)] (B-32)

Analogous to the temporal decay constant, we define the spatial

attenuation constant v as follows:•— s

vs = (x2 - x "1 In ra(x1)/a(x2)] (B-33)

The unit of v is in" .s

Finally, analogous to the decay rate, we define the spatial

attenuation rate y as follows:s

104

Page 118: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

YS = 20(x2 - x^" log [aCx^/aCx.,)] w 8.68 vg. (B-34)

The unit of Y is db per unit length.s

It should be cautioned that the determination of damping by wave

attenuation requires that the cross section of the bar be compact (pre-

ferably round or square) and that the largest cross-sectional dimension

be very small compared to the wave length of the traveling wave. Further-

more, the two stations along the bar, at which the wave measurements are

made, must be: (1) sufficiently far from the point of impact that initial

transients have died out and (2) sufficiently far from each other so that

a measurable change in amplitude occurs. Kolsky discussed these points

in detail in reference 125.

B3. Inter-Relationships Among Various Measures of Damping for

Homogeneous Materials

Here we consider a single degree-of-freedom system consisting of a

mass supported on a mass less spring made of a homogeneous Kimball-Lovell

or complex-modulus material. Then the governing differential equation

for simple harmonic excitation is equation (B-15), which has the following

steady-state solution:

•" (B-35)

where

u *sj [(k-nxu2)2 +b2]~1/2 (B-36)

9 = arctan [b/(k-mu)2)] (B-37)

The magnification factor (MF) is defined as follows:

105

Page 119: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

MF = u/u (B-38)s c

where u is the so-called static displacement, defined as follows:st

u ="F7k (B-39)S C

Combining equations (B-36, B-38, and B-39), one obtains the

following relation:

M F = { f l - (u)/tun)2]2+ (b/mu2)2]-"172 (3-40)

where u> is the natural frequency (i.e. the resonant frequency of the

undamped system), given by:

The critical material damping coefficient (b ) is the minimum value

of b for which the free vibratory motion is non-oscillatory. It is

obtained from the following relationship:

(bc/2roun)2 = k/m = u)2 (B-42)

or

bc = 2roa>2 (B-42)

The damping ratio £ is defined as follows:

C s b/bc (B-43)

Combining equations (B-40, B-42, and B-43), one arrives at the

following general, dimens ionless relationship:

106

Page 120: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

MF = {[l-(u>/u>n)2]2 + 4£2}~1/2 (B-44)

! It Is seen easily that MF is a function of only two parameters: the fre-

quency ratio (uj/u) ) and the damping ratio (£). It should be mentioned

that equation (B-44) is somewhat different than the known relationship

for a single-degree-of-freedom Kelvin-Voigt viscously damped system,

even though the damping ratio £ is defined analogously ( = c/c ,

where c = 2mu> ).c n

The resonant magnification factor (RMF) is defined as the value

of MF at resonance, which is taken here to occur when <p = 90 . In view

of equation (B-37), this implies that the resonant frequency is m .

Thus, at resonance, equation (B-44) reduces to the following simple

expression:

RMF = ( 2 C ) " | (B-45)

Thus, it is seen that the same simple relationship between the damping

ratio and the resonant magnification factor holds as does for a Kelvin-

Voigt system. Although the resonant amplitude can be measured accurately,

there are problems in measuring the static deflection in complicated

structures (due to signal-to-noise rat io limitations of instrumentation).

For this reason, in s t ructural dynamics, RMF is seldom used as a measure

of damping.

The damping energy, i.e. the energy dissipated per cycle, can be

computed as follows:2rr/u>

(B-46)o p

Ud = i Fd du = Fdu dt

where F, is the damping force, given by

107

Page 121: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

(B-47)

Substituting equations (B-35) and (B-47) into equation (B-46) and

integrating, we obtain the following result:

U, = nb H2 (B-48)a

To convert equation (B-48) to the form of equation (B-22), with

m=2, it is necessary to divide by the volume and to relate u to n.

Now the force amplitude is :

"F = Aa = ku . (B-49)

where A H cross-sectional area.

Assuming the spring is a mass less and uniform bar, we have

k = AE/L (B-50)

where L = effect ive length of spring and E = Young's modulus of the bar.

Combining equations (B-48, B-49, B-50), one obtains the following result:

"< = UJ/V = (nbL/A)(o/E)2 (B-51)dv d

Comparing the form of equations (B-22) and (B-51), we see that

for a Kimball-Lovell mater ia l , m = 2 and

Cd = nbL/AE2 (B-52)

It should be noted that -Lazan (reference 7 , chap. II) has shown

that these results are independent of the stress distribution and the

specimen geometry, provided that m = 2.

108

Page 122: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

In view of equations (B-42, B-43, and B-44), equation (B-52) can

be expressed in the following more useful form:

(B-53)

According to equation (B-48), the damping energy (and thus,

excitation power) is proportional to the square of the displacement

amplitude u (and thus, the MF). Then the power is one half of what it

is at resonance when MF = RMF//2. In view of equation (B-45), the half

power magnification factor (HPMF) is related to the damping ratio as

follows :

HPMF = RMF//2 = (2/2 £)~l (B-54)

To determine the two sideband frequencies (to = (u and u> ) cor-

responding to ha l f power, we combine equations (B-44) and (B-54) to

2obtain the following quadrat ic expression in u) :

(2/2 O2 = [1 - (u>/u>n)2]2 + 4C2

which has the following positive roots:

O* (B-55)

It is interesting to note that equation (B-55) is identical to the analogous

2expression for the lightly damped Kelvin-Voigt system, i.e. (c/c ) «1.

For small damping (£ «%) ,

""n

109

Page 123: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

Thus, we get Che following relation between the dimension less bandwidth

and the damping ratio £:

K (B-56)

In the original Kennedy-Pancu method (reference 123), this relationship is

used to determine the damping ratio from the geometry of an experimentally

determined Argand plot (a polar-coordinate plot of response amplitude

versus phase angle).

In terms of the quality factor Q, equation (B-56) may be rewritten

as follows:

(B-57)

It is interesting to note that in order for the half-power frequencies

to be real, the damping ratio £ must be no greater than f2/2 sa 0.707. How-

ever, this is not a severe limitation for actual structural materials .

The potential energy (strain energy) stored in our single-degree-of-

freedom mathematical model is given by:

Q ** (2C)-l

U = d> F du8

where F is the spring force, given bys

F = kus

(B-58)

(B-59)

Thus ,

u

U - k < [ « du = ku2 /2 (B-60)

Combining equations (B-48) and (B-60), we obtain

2nb/k (B-61)

110

Page 124: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

Using equations (B-41, B-42, B-43), we can rewrite equation (B-61)

in the following more useful form:

U./U = 4Tr£

or

c = (l/4n)(Ud/U)

(B-62)

(B-63)

The loss tangent is defined as follows for the system considered

here:

g = b/k (B-64)

g " 2C

Inserting equations (B-41, B-42, B-43) into equation (B-64) we

obtain the following useful relationship:

(B-65)

The following useful relationship, which is sometimes taken as a

fundamental definition of damping (ref. 104), is obtained here by

combining equations (B-63) and (B-65):

(B-66)

Taking the derivative of phase angle cp with respect to frequency

U), one obtains the following result from equation (B-37):

g = ( l /2rr)(U d /U)

dep/dto = 2bmuj/[ (k-mu)2)2+b2] (B-67)

At resonance (subscript R), defined by u)=u) /k/m, equation (B-67)n

becomes:

(dcp/du>)_ = 2mu) /b (B-68)K n

Combining equations (B-42, B-43, and B-68), we obtain the following

111

Page 125: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

very useful result:

[u> (dcp/du)) I"1 ! (B-69)n t\

It is interesting to note that although the MF vs. cu relation,

equation (B-44), is different than the corresponding relation for a Kelvin-

Voigt viscously damped system, equation (B-69) is identical to its cor-

responding relationship for a Kelvin-Voigt system. Equation (B-69) is used

to determine the damping ratio from an experimentally determined Argand

diagram in the improved Kennedy-Pancu method (ref . 124).

The transient solution of the system represented by equation (B-14a)

can be written as follows:

u- = 7J • e~Cu >n t sin ( /T^2 u, t - cp) (B-70)

From its definit ion in equation (B-28), the logarithmic decrement 6

can be determined as follows:

6 = In -— ^ = In e^nT = £u> T (B-71)e-On(t1+T)

where T is the period of damped oscillation, given by

T = (2nC/u)n)(l-C2)"1/2 (B-72)

Thus, we now have

6 = 2rrC (1'C )2 x - l / 2 (B-73)

2For small damping (£ «1), equation (B-73) can be replaced by the

following approximate expression:

! 6 w 2nC I (B-74)

112

Page 126: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

Combining equations (B-65) and (B-74), one obtains the following:

6 = ng (B-75)

In view of equation (B-63) and since the specific energies are

given by;

we have

Udv S VV' Uv =

Udv/4TrUs

(B-76)

(B-77)

However, the specific strain energy is

Uy = a /2E (B-78)

A power-law-damping material is defined by equation (B-22).

Combining this relation with equation (B-78), one obtains:

(E (B-79)

Thus, it is clear that £ is independent of stress amplitude only for a

KL (Kimball-Lovell) material (m=2). Then

(B-80)C = E Cd/8TT

g = E Cd/4n

or, in view of equation (B-65),

(B-81)

Furthermore, since the logarithmic decrement of a KL material with

small damping is approximately proportional to the damping ratio as shown

by equation (B-74), the following approximate relation holds:

(B-82)6 «s E Cd/4113

Page 127: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

APPENDIX C

DETAILS OF FORMULAS USED IN SECTION II

Cl. Airy Stress Function and the Associated

Stress, Strain, and Displacement Components

Some useful formulas pertaining to analyses carried out in Section

2.3 and 2.5 are summarized as follows. See the main text and the list

of symbols for the definitions of notations used. It is to be noted that

the same formula will apply to fiber as well as matrix regions with ap-

propriate interpretations of the material property values, E and v, etc.,

and choices of terms in the series. For example, in the fiber region,

terms containing negative powers of p must be omitted to prevent a

singularity in stress.

Polar stress components. - Stress components o , afl, and T -. are

given by:

-2 ' 10 = a p +2b + 2 b, p cos 9 - 2 a.p"J cos 0r o o 1 1

a n n - n " 2

nn=2,3,...

[a n(n-l)pn"2 + b (n-2) (n+1) pn

n n

+ a' n(n+l) p"n"2 + b' (n+2) (n-1) p"

n] cos n 9 (C-l)

114

Page 128: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

-2 ' -3a_ =-a p + 2 b + 6 b, p cos 9 + 2 a.p cos 99 o^ o 1 1

00

+ I [an n(n-l) pn'2 + bn(n+2) (n+1) p

n+a^ n(n+l)p"n '2

I n=2,3 , . . .' -n-+ b (n-2)(n-l) p""] cos n 9 (C-2)

1 -3T Q ~ 2 b. p sin 9-2 a^p sin 9

+ T [a n(n-l)pn~2 + b n(n+l)pr

f^A n nn=2,3 , . .

-a' n(n+l) p"n"2 - b' n(n-l)p"n] sin n 9 (C-3)n n

Rectangular stress components. - Stress components o ,o , and Tx y xy

are given by:

o _3O = a p" cos 2 9 + 2 b + 2 b.p cos 9 - 2 a. 'p cos 3 9x o ^ o i l

00

-V I a n(n-l)pn"2 cos (n-2) 9 + b (n+1) pn[n cos (n-2) 9L> . \. n n

n=2,3, . , .

- 2 cos n 9] + a1 n(n+l)p"n"2 cos (n+2) 9

+ b ' (n- l)p" n [n cos (n+2) 9 + 2 cos n 9] ) (C-4)n J

a - -a ft'2 cos 2 9 +2 bQ+ 6 b^ cos 9 + 2 a^p~ cos 3 9

09

+ Y (a n (n-l)pn~2 cos (n-2) 9+b (n+1) p"[n cos (n-2) 9L> I n n

n=2 ,3 , . . .115

Page 129: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

+ 2 cos n 9] + a' n(n+l)p~ cos (n+2) 0

3"nLn cos (n+2) 9 - 2 cos n 9] j (C-5)

-2 -3 2rx = aop Sln 2 6 ~ 2 biP sin 6 + 2 a]p sin 9 (1-4 cos 9 )

a n*.n-i;fn'2 ' ' ^ n ' ^ ~ n~ 2

n=2,3, . . .

[a n(n-l)pn"2 + b n(n+l)pn - a1 n(n+l) pn n

b', n(n-l)p"n] sin (n+2) 9 (C-6)n

Rectangular displacement components. - Displacement components u

and v are given by:

E (l+v)"1(u/R)=-a p"1 cos 9 + 2 b (l-2v)p cos 9

- bLp2 [3+4 (1+v)] cos 2 9 + a[p"2 cos 2 9

oo

+ ] |-a np cos (n-1) 9 + b p [-n cos (n-1) 9

n=2 ,3 , . . .

+ 2 (l-2v) cos (n+1) 9 - 2 sin n 9 sin 9]

+ a1 np"0"1 cos (n+1) 9

+ b^p"n+1 [n cos (n+1) 9+2 (l-2v) cos (n-1) 9

+ 2 sin n 9 sin 9] } (C-7)

116

Page 130: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

E (l-fv)"1(v/R)= -aQp"1 sin 9 + 2 bo(l-2v)p sin 9 + 4 blP

2(l-v) sin 2 9

OB

+ ajp" sin 2 9 + Y |an np""1 sin (n-1) 9

n=2,3,...

+ bnpn+1[ n sin (n-1) 9 + 2 (l-2v) sin (n+1) 9-1-2 sinn 9cos9]

+ a' np"11"1 sin (n+1) 9

+ b'p"n+1 [n sin (n+1) 9-2 (l-2v) sin (n-1) 9-2 sin n 9 cos 9 ](•n J

(C-8)

C2. Details of Formulas Used in Section 2.6

Dirichlet torsion function ¥ (p.9) (i-f.m). - Torsion functions

Y and Y that satisfy Laplace equation in the fiber and matrix regions,

respectively are assumed to be:

OB

Yf(p,9) = a + Y a, pk cos k 9 (C-9)O £j K

oo

fm(p,9) = b + Y (b pk + b p"k) cos k 9 (C-10)

Relationships among fiber-region and matrix-region coefficients a

and b .- For the nth element, the distance of the fiber from the origin is

d = 2(n-l)p. The boundary conditions at the fiber-matrix interface are:

117

Page 131: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

-i) (5on C,

dY f/dn = dVm/dn

(C-ll)

On the interface C..,p=l, hence, equations (C-ll) becomes

X(a +Y a. cos k 9) = b +7 (b. +b .) cos k 9o LJ k o L> k -k

k=l ,2 , . . . k=l ,2 , . . .

Z d c o s 9)

y k a, cos k 9 = y k (b - b . ) cos k

k=l ,2 , . . . k-1,2,...

(C-12)

(C-13)

Equating the coefficients of cos k 9 in equations (C-12 and 13), we

have:

[bo + <X-D(HO/2] /X

ak = 2 bk/(X+l) (k-2,3,. . .)

-l

b i= ^ibu- k I k(k-2,3,...)

(C-14)

where

= (x-D/(x+D (C-15)

118

Page 132: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

Inter-element boundary conditions between the n-th and (n-H)-th

elements . - On the inter-face boundary C2 where £ = (2 n-1) u, the

local coordinate systems [p,.x, O/.v ] ,[|/ .\ , TL .-> ] (1=1, 2, ...n) are inter-

related as

p(n)=p(n+l) ' 9(n) = " ' 9(n+l) ' \u)' ^ 5(n)

(C-16)

Thus the boundary conditions = Y ,lNand M ^(n) (n+1) (n;

which warrant the displacement continuity and stress equilibrium on C_

become, respectively:

2 Xl(dHu) p'n) cos 9(n) (C-17)

and

(k-1) G^-X^^j1 cos (k+l) 9(n)]

-22\1u p cos 2 9(n) (C-18)

Shear stress formulas. - The shear stresses T ,T (i=f,m) in

the fiber and matrix regions of the n-th element are calculated from

equations (79 and 80) (Section 2.6) as follows:

119

Page 133: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

Txf/((*XGmr) = (^f/^TD - Tl

CO

k a,n sin

k-1,2,...

ZK.~" J. ) £. 9 • • ,

bk ' - p ' Sin

V k-1= - ) k a, p cos (k-1) 9 + 5 (C-20)L J k K / a

+ (X,d)p" 2 sin 2 9 - 11 (C-21)

k bk[pk~ l cos (k-1) 9 - J^p"1*"1 cos (k+1) 9 ]

p"2 cos 2 9 + I (C-22)

Torslonal rigidity calculations for the nth element. - The torsional

rigidity D, ^ for the n-th element is calculated from equation (83 and 84)

as

120

Page 134: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

D(n) / (Gm r > = X (2 W + (2 (C-23)

where

R2 = JJ dT] = TT

R = JJ Ym dP dT]

m

(C-24)

= b ( 4 u 6 - n) + b, [(4/3)o i ( 1 - 6 ) + X. (n - arctan 6) ]i

Z bk

k=4 ,6 , . . .

k=4,6 , . . .

R4 = (4/3) U46 (1+62) + 4u2 6 d2 + d

2]

s, =tan 6 k+2

sec 0 cos k 0 dQ

C(k+2)/2]

Im=l

n/2

csckH' 9 cos k 9 d9

tan"16 T121

Page 135: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

/(k-2ori-3)

m=l

»= J

tan 6sec 9 cos k 9 d9

[(k-m+2)/2]

^y y <-i)l—> t->m=l n=l

k-1 [(k-2nri-3)/2]

n+l.-m 2 m-1,1.c2.m-k ^k-m+1I 5 (.l+o ; C_ ,2n-l

m-1 n-1

(k-2)/2 [(k-2m+3)/2]

Im=l

-2tn+2n-3

2n-l

J2(n-l)

) (C-25)

J

C3. Details of Formulas Used in Section 2.7

Saint-Venant flexural function \ (p,9) (i=f>ni).- Flexural functions

\ and x that satisfy the Laplace equation in the respective fiber and

matrix regions are assumed in series form as follows:

f V kX (P»e> = aP cos k 9

k=l,3

Xm(p,9) (bkpk + cos k 9

k=l,3

> (C-26)

Note that in equations (C-26), coefficients with even-numbered

subscripts are zero due to the anti-symmetry condition with respect to

the TV-axis.

122

Page 136: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

Relationships among fiber-region and matrix-region coefficients.

a. and b,. - In view of the displacement-continuity and the stress-

equilibrium requirements at the fiber-matrix interface, where p = 1,

a. are related to b, , on substitution of eq. (C-26) into eqs. (109 andK K

110) , as follows:

akXa,

_k

(C-27)

+ b_k (k = 1,3,...)

(k = 5,7,...)

- (X - 1) (3+2 v)M

Xa, = b - b + (X - DM•j Z — Z

Equation (C-27) may be solved for a. and b in terms of b to yield:

2 b1/(X+D - X1(3+2v)/4

2 b3/(X+D

2 bk/(X+D (k-3,5,...)

• (C-28)

_3

-k

+ (1/4)]

(k=3,5,...)

where \. is as defined in eq. (C-15).

Longitudinal thickness-shear stiffness S,.,.. - In view of notations

in eq. (106), the longitudinal thickness-shear stiffness expression, eq.

(120), may be written as

123

Page 137: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

4 6 U / 3 ] / P ' (C-29)

where

" - (2/3) 6u4 [0(62-1) -2 62]

jA). + JJ

m

II. ft'< -1tan" 5 - (n/4) + uV(6~ lH

m

tan"^)] -1- t a n 6 ) + ^n - 26/( l+6)]

• . t an - f i TT/2J G (9) d6 + 4

-1tan 6

G (9) d9

(bj/4) u sec20 + (b3/6) <a sec 9) 6 cos 0 cos 3 9

sec

cos 9 cos k 9

6 esc 0) cb.Qcsc

(C-30)

CdH-3)-1 <u6 csc 9)k+3csc

• cos 9 cos k

12

Page 138: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

APPENDIX D

EXPERIMENTAL OBSERVATION ON THE

DAMPING BEHAVIOR OF A BORON FIBER

In the damping analysis of a monofilament composite, it was found that

the loss tangent gg,, associated with the in-plane Young's modulus is re-

lated to the volume fractions, stiffness ratio, and the loss tangents of

the. constituent materials by the equation, [eq. (156)]

g = (X1 V g -I- V g )/(\' V + V )Ell f Ef m Em f

In the case of boron-epoxy composite, the stiffness ratio \' is usually of

the order of 120; whereas the loss tangent of boron is expected to be about

one-tenth that of epoxy. The complete omission of the contribution of

the boron fibers to the damping of the composite will then lead to a com-

posite loss tangent which is unreasonably low.

Unfortunately, so far as known to the authors, no experimental data

dealing with the damping behavior of boron material alone are available

in the literature. In view of this, a crude exploratory experiment was

carried out on an Avco 4.5-mil-diameter boron fiber in order to assess

roughly the order of magnitude of damping in the boron material. A boron-

fiber cantilever with a concentrated mass attached at its tip was deflected

a certain prescribed distance and then released to oscillate in the vertical

125

Page 139: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

plane. The profile of the oscillation was recorded by a 16-mm motion-picture

camera (set at 64 frames per second) until the motion of the fiber decays

and returns to its initial equilibrium position. The decaying sinusoidal

motion of the concentrated mass at the fiber tip is then reconstructed from

the frame-by-frame observation of the film. The experiment was repeated

several times with different initial deflections.

The logarithmic decrement was obtained from the displacement versus

time plots of the fiber tip (figure D-l) and then related to the loss

tangent using eq. (B-75) from Appendix B. Averages of several runs were

summarized as in figure D-2, where logarithmic decrements 6 based on the

number of cycles elapsed were calculated for three cases with initial

deflections equal to 1.5, 1.0, and 0.5 inch, respectively. These curves

show clearly the amplitude dependency of the logarithmic decrement which

is attributed mainly to the air damping. In view of the air damping which

predominated, the loss tangent at small deflections, as estimated from

this experiment, is of the order of 0.02 to 0.05, which is roughly ten

times that of the estimated loss tangent for boron in vacuum (see Section IV)

It is concluded that, in order to assess the material damping of a boron

fiber, the experiment must be carried out in vacuum to eliminate the

effects of air damping which is both nonlinear and amplitude-dependent.

126

Page 140: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

APPENDIX E

COMPUTER PROGRAM DOCUMENTATION

The computer program for computing the stiffnesses and the

associated loss tangents consists of one lead-in program and ten

subroutine programs.

The lead-in program is concerned with the input of the material

data, calling of each subprogram, and the output of the computed

results.

The input data consist of various pertinent material data

such as Young's modulus, shear modulus, Poisson's ratio, and their

respective loss tangents for specific frequencies as listed in Tables

V-IX.

Each subprogram is concerned with the calculation of a

specific stiffness and associated loss tangent based on the input

data. For example, subprogram COMPE11 calculates the major Young's

modulus En and the associated loss tangent gg .

Each subprogram is designed to accomplish three functions:

1. Generation of the parameters necessary for solution,

2. Evaluation of the stiffness, and

3. Evaluation of the loss tangent.

The program was written in FORTRAN IV language as prescribed

127

Page 141: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

in IBM System Reference Library Form C-28-6274-3.

A complete listing of the computer program is presented at

the end of this report.

128

Page 142: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

REFERENCES

1. Ekvall, J.C.: Structural Behavior of Monofilament Composites. AIAA

6th Structures and Materials Conf., Palm Springs, Calif., Apr.

1965, pp. 250-263.

2. Lekhnitskki, S.G.: Anisotropic Plates, 2nd. ed., (English Translation).

Gordon and Breach, N.Y., 1968, p. 41.

3. Ashton, J.E.; Halpin, J.C.; and Petit, P.H.: Primer on Composite

Materials: Analysis. Technomic Publishing Company, Inc., Stamford,

Conn., 1969, Ch. 3.

4. Chamis, C.C.; and Sendeckyj, G.P.: Critique on Theories Predicting

Thermoelastic Properties of Fibrous Composites. J. Composite Matls.,

vol. 2, no. 3, July 1968, pp. 332-358.

5. Chambers, R.E.; and McGarry, F.J.: Shear Effects in Glass Fiber Re-

inforced Plastics Laminates. ASTM Bulletin, no. 238, May 1959,

pp. 38-41.

6. Khischenko, Yu M.: Effect of Shear on the Modulus of Elasticity of

Specimens of Glass Fiber Reinforced Plastics Tested in Transverse

Bending. Industrial Laboratory, vol. 30, no. 6, June 1964, pp.

937-939.

7. Lazan, B.J.: Damping of Materials and Members in Structural Mechanics.

129

Page 143: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

Pergamon Press, 1968, Oxford, England.

8. Pottinger, M.G.: Material Damping of Glass Fiber-Epoxy and Boron

Fiber-Aluminum Composites. Rept. ARL 70-0237, Aerospace Re-

search Laboratories, Wright-Patterson Air Force Base, Ohio, Oct.

1970 (AD-721191).

9. Schultz, A.B.; and Tsai, S.W.: Dynamic Moduli and Damping Ratios

in Fibers-Reinforced Composites. J. Composite Matls., vol. 2, no.

3, July 1968, pp. 368-379.

10.. Schultz, A.B.; and Tsai, S.W.: Measurements of Complex Dynamic

Moduli for Laminated Fiber-Reinforced Composites. J. Composite

Matls., vol. 3, no. 3, July 1969, pp. 434-443.

11. James, W.L.: Calculation of Vibration Damping in Sandwich Construction

from Damping Properties of the Cores and Facings. Rept. 1888,

Forest Products Laboratory, U.S. Dept. of Agriculture, Madison, Wis.,

Dec. 1962. •

12. Nordby, G.M.; Crisman, W.C.; and Bert, C.W.: Dynamic Elastic, Damping,

and Fatigue Characteristics of Fiberglass-Reinforced Sandwich Struct-

ure. Rept. USAAVLABS TR 65-60, U.S. Army Aviation Materiel Laboratories,

Ft. Eustis, Va., Oct. 1965 (AD-623128).

13. Bert, C.W.; Wilkins, D.J., Jr.; and Crisman, W.C.: Damping in Sandwich

Beams with Shear-Flexible Cores. J. Eng. Industry, Trans. ASME, vol.

89B, no. 4, Nov. 1967, pp. 662-670.

130

Page 144: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

14. Clary, R.R.: Vibration Characteristics of Unidirectional Filamentary

Composite Material Panels. Composite Materials: Testing and Design

(Second Conference), Amer. Soc. Testing & Mat Is., Spec. Tech. Publ.

497, 1972.

15. Bert, C.W.; Mayberry, B.L.; and Ray, J.D.: Vibration Evaluation of

Sandwich Conical Shells with Fiber-Reinforced Composite Facings.

Rept. USAAVLABS TR 68-85, U.S. Army Aviation Materiel Laboratories,

Ft. Eustis, Va., Dec. 1968 (AD-685318).

16. Ray, J.D.; Bert, C.W.; and Egle, D.M.: The Application of Kennedy-

Panchu Method to Experimental Vibration Studies of Complex Shell

Structures. Shock and Vib. Bull., Bull. 39, Pt. 3, U.S. Dept. De-

fense, Jan. 1969, pp. 107-115.

17. Bert, C.W.; and Ray, J.D.: Vibrations of Orthotropic Sandwich Conical

Shells with Free Edges. Int. J. Mech. Sci., vol. 11, no. 9, Sept.

1969, pp. 767-779.

18. Richter, H.P.H.: Photographic Method for Measuring Material Damping

and Dynamic Young's Modulus at Low Frequencies Applied to a Fiberglass

Reinforced Resin Structure. Proc. 18th Ann. Tech. & Mgt. Conf.,

Reinf. Plastics Div., Soc. Plastics Industry, Inc., 1963, sec. 4-D.

19. Kerr, L.; and Lazan, B.J.: Damping and Fatigue Properties of Sandwich

Configuration in Flexure. Rept. ASD TR 61-646, Aeron. Systems Div.,

Wright-Patterson Air Force Base, Ohio, Nov. 1961 (AD-272016).

131

Page 145: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

20. Hashin, Z. : Complex Moduli of Viscoelastic Composites - I. General

Theory and Application to Particulate Composites. Int. J. Solids

& Structures, vol. 6, no. 5, May 1970, pp. 539-552.

21. Hashin, Z.: Complex Moduli of Viscoelastic Composites- II. Fiber Re-

inforced Materials. Int. J. Solids & Structures, vol. 6, no. 6,

June 1970, pp. 797-807.

22. Kimball, A.L.; and Lovell, D.E.: Internal Frictions in Solids.

Physical Review, ser. 2, vol. 30, 1927, pp. 948-959.

23. Miller, K.D., Jr.; and Breslau, S.M.: Fiber-Reinforced Plastic as a

Rocket Structural Material. Jet Propulsion, vol. 26, no. 11, Nov. 1956,

pp. 969-972.

24. Rosato, D.V.; and Grove, C.S., Jr.: Filament Winding: Its Development,

Manufacture, Applications and Design. John Wiley & Sons, Inc., N.Y.

1964.

25. Cutwater, J.O., Jr.: The Mechanics of Plastics Reinforcement in Tension.

Modern Plastics, vol. 33, no. 7, March 1956, p. 156ff.

26. Beer, F. : Die Festigkeitseigenschaften Kreuzweisebewehrter Kunstoffe.

VDI Zeits., vol. 101, Apr. 1959, pp. 463-468.

27. Brown, R.L., Jr.: Simplified Stress Analysis of Filament Reinforced

Plastic Pressure Vessels. Soc. Plastic Engrs. J., vol. 17, 1961, p. 989.

28. Ekvall, J.C.: Elastic Properties of Orthotropic Monofilament Laminates.

Paper 61-Av-56,ASME Aviation Conference, Los Angeles, Calif., Mar. 12-16, :

132

Page 146: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

29. Greszczuk, L.B.: Theoretical and Experimental Studies on Properties and

Behavior of Filamentary Composites. SPI 21st Conference, Chicago, 111.

1966, sect. 5-B.

30. Nosarev, A.V.: Effect of Fiber Curvature of the Elastic Properties of

Unidirectionally Reinforced Plastics (in Russian). Mekhanika Polimerov,

vol. 3, 1967, p. 858.

31. Hill, R.: Theory of Mechanical Properties of Fiber-Strengthened Materials:

III. Self-Consistent Model. J. Mech. Phys. Solids, vol. 13, Aug.

1965, pp. 189-198.

32. Whitney, J.M.; and Riley, M.B.: Elastic Properties of Fiber Reinforced

Composite Materials. AIAA J., vol. 4, no. 9, Sept. 1966, pp. 1537-

1542.

33. Sokolnikoff, I.S.: Mathematical Theory of Elasticity, 2nd. ed.

McGraw-Hill Book Co., Inc., N.Y., 1956, Chapt. 7.

34. Tsai, S.W.: Structural Behavior of Composite Materials. NASA CR-71, 1964.

35. Hashin, Z.; and Rosen, B.W.: The Elastic Moduli of Fiber Reinforced

Materials. J. Appl. Mech., vol. 31, no. 2, June 1964, pp.

233-232; errata, vol. 32, Mar. 1965, p. 219.

36. Wu, T.T.: On the Parametrization of the Elastic Moduli of Two-Phase

Materials. J. Appl. Mech., vol. 32, no. 1, Mar. 1965, pp. 211-214.

37. Haener, J.; and Ashbaugh, N.: Three-Dimensional Stress Distribution

in a Unidirectional Composite. J. Composite Matls., vol. 1, no. 1, •,

133

Page 147: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

Jan. 1967, pp. 54-63.

38. Chen, C.H.; and Cheng, S., Mechanical Properties of Fiber Reinforced

Composites, J. Composite Matls., vol. 1, no. 1, Jan. 1967, pp. 30-

41; errata, vol. 1, no. 2, Apr. 1967, p. 207.

39. Bloom, J.M.; and Wilson, H.B.: Axial Loading of a Unidirectional Compos-

ite, J, Composite Matls., vol. 1, no. 3, July 1967, pp. 268-277.

40. Foye, R.L.: An Evaluation of Various Engineering Estimates of the

Transverse Properties of Unidirectional Composites. SAMPE, National

Symposia, vol. 10, 1966, p. G-31.

41» Foye, R.L.: Structural Composites. Quarterly Progress Reports no. 1

and 2, AFML Contract No. AF 33(615)-5150, 1966.

42. Bolotin, V.V.: Basic Equations of the Theory of Reinforced Media.

Polymer Mechanics, vol. 1, no. 2, 1965, pp. 23-30.

43. Herrmann, G.; and Achenbach, J.D.: On Dynamic Theories of Fiber Re-

inforced Composites. AIAA/ASME 8th Structures, Structural Dynamics

and Materials Conference/ Palm Springs, Calif., Apr. 1967, pp. 112-118.

44. Chi, S.H.: Bibliography and Tabulation of Damping Properties of Non-

metallic Materials. Rept. WADD-TR-60-140, Wright Air Development

Division, Wright-Patterson Air Force Base, Ohio, Sept. 1962.

45. Hashin, Z.: Viscoelastic Fiber Reinforced Materials. AIAA J., vol. 4,

no. 8, Aug. 1966, pp. 1411-1417.

134

Page 148: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

46. Adams, D.F.; and Boner, D.R.: Longitudinal Shear Loading of a

Unidirectional Composite. J. Composite Matls., vol. 1, no. 1,

Jan. 1967, pp. 4-17.

47. Hill, R. : Theory of Mechanical Properties of Fiber-Strengthened

Materials: I. Elastic Behavior. J. Mech. Phys. Solids, vol. 12,

1964, pp. 199-212.

48. Bloom, J.M.: Nonconservative Behavior of Composite Materials. Kept.

AFML-TR-68-10, Air Force Materials Laboratory, Wright-Patterson

AFB, Ohio, Jan. 1968 (AD-666676).

49. Timoshenko, S.; and Goodier, J.N.: Theory of Elasticity, 3rd. ed.

McGraw-Hill, New York, 1969, pp. 132-136.

50. Conway, H.D.: The Approximate Analysis of Certain Boundary Value Prob-

lems. J. Appl. Mech., vol. 27, no. 2, June 1960, pp. 275-277.

51. Conway, H.D.; and Leissa, A.W.: Application of the Point Matching

Method to Shallow Spherical Shell Theory. J. Appl. Mech., vol. 29,

no. 4, Dec. 1962, pp. 745-747.

52. Hulbert, L.E.; and Niedenfuhr, F.W.: On the Numerical Solution of Certain

Classes of Boundary Value Problems. Presented at the 19th Annual

Meeting of the Association for Computing Machinery, Denver, Colo.,

Aug. 27, 1963.

53. Abolin'sh, D.S.: Compliance Tensor for an Elastic Material Reinforced

in One Direction. Polymer Mechanics, vol. 1, no. 4, 1965, pp. 2.8-32.

135

Page 149: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

54. Hill, R.: Elastic Properties of Reinforced Solids: Some Theoretical

Principles. J. Mech. Phys. Solids, vol. 11, 1963, pp. 357-372.

55. Paul, B.: Prediction of Elastic Constants of Multiphase Materials.

Trans. AIME, vol. 218, no. 1, Feb. 1960, pp. 36-41.

56. Adams, D.F.; and Doner, D.R.: Transverse Normal Loading of a Uni-

directional Composite. J. Composite Matls., vol. 1, no. 2, Apr.

1967, pp. 152-173.

57. Muskhelishivili, N.I.: Some Basic Problems of the Mathematical Theory

of Elasticity, 4th ed. P. Noordhoff, Ltd., Groningen, The Nether-

lands, 1963, sec. 139, pp. 609-626.

58. Timoshenko, S.: Strength of Materials, Part I, 2nd. ed. D. Van

Nostrand Co., Inc., New York, 1940, pp. 170-171.

59. Timoshenko, S.: On the Correction for Shear of the Differential

Equation for Transverse Vibrations of Prismatic Bars. Philosophical

Magazine, ser. 6, vol. 41, 1921, pp. 744-746.

60. Mindlin, R.D.; and Deresiewicz, H.: Timoshenko's Shear Coefficient

for Flexural Vibrations of Beams. Proc. 2nd. U.S. Nat. Congr. Appl.

Mech., 1954, pp. 175-178.

61. Roark, R.J.: Formulas for Stress and Strains, 3rd. ed., McGraw-Hill

Book Company, Inc., New York, 1954, pp. 119-121.

62. Cowper, G.P.: The Shear Coefficient in Timoshenko's Beam Theory. J.

Appl. Mech., vol. 33, no. 2, June 1966, pp. 335-340.

136

Page 150: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

63. Bert, C.W.; and Siu, C.C.: Vibration and Damping of Laminated,

Composite-Material Plates Including Thickness-Shear Effects.

Final Report (Part II), NASA Research Grant NGR-37-003-055,

School of Aerospace, Mechanical & Nuclear Engineering, Univ.

of Oklahoma, Norman, Okla., Mar. 1972.

64. Hadcock, R.N.: Boron-Epoxy Aircraft Structures, Chap. 24 in Handbook

of Fiberglass and Advanced Plastics Composites, edited by G. Lubin.

Van Nostrand Reinhold, N.Y. , 1969, pp. 628-660.

65. Bert, C.W.: Lecture Notes on Introduction to Analysis and Design

of Composite-Material Structures. Univ. of Oklahoma, Jan. 1970.

66. Halpin, J.C.; and Tsai, S.W.: Environmental Factors in Composite

Materials Design. AFML-TR-67-423, Air Force Materials Laboratory,

Wright-Patterson AFB, Ohio, 1967.

67. Hermans, J.J.: The Elastic Properties of Fiber Reinforced Materials

When the Fibers are Aligned. Proc. Konikl. Nederl. Akad. van

Wetenschapp., Amsterdam, vol. B70, no. 1, 1967, pp. 1-9.

68. Tsai, S.W.: Mechanics of Composite Materials, Part I - Introduction.

AFML-TR-66-149, Part I, Air Force Materials Laboratory, Wright-

Patterson AFB, Ohio, June 1966.

69. Hulbert, L.E.; and Rybicki, E.F.: Boundary Point Least Squares

Analysis of the Free Edge Effects in Some Unidirectional Fiber

Composites. J. Composite Mat Is., vol. 5, no. 2, April 1971,

137

Page 151: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

pp. 164-175.

70. Dow, N.F.; and Rosen, B.W.: Evaulation of Filament-reinforced

Composites for Aerospace Structural Applications. NASA Report

CR-207, April 1965.

71. Wilson, H.B., Jr.; and Goree, J.G.: Transverse Shear Loading in

an Elastic Matrix Containing Two Elastic Circular Cylindrical

Inclusions, Mathematical Studies of Composite Materials III.

Rohm and Haas Co. Report S-98, Huntsville, Alabama, June 1966,

pp. 30-38.

72. Margolin, G.G.: Elasticity Modulus in the Bending of Thin Speci-

mens of a Unidirectional Glass Reinforced Plastic. Polymer

Mechanics, vol. 3, no. 4, 1967, pp. 737-740.

73. Bert, C.W.: Flexural Micromechanics of a Composite Material

Containing Large-Diameter Fibers. Presented at the 60th Annual

Meeting of the Oklahoma Academy of Science, Norman, Okrla., Dec.

1971;.to be published in Proceedings, vol. 52, 1972.

74. Ely, J.F.; and Zienkiewicz, O.C.: Torsion of Compound Bars -

A Relaxation Solution. International J. Mechanical Sciences,

vol. 1, no. 4, July 1960, pp. 356-365.

75. Heaton, M.D.: A Calculation of the Elastic Contants of a

Unidirectional Fiber-Reinforced Composite. Brit. J. Appl.

Phys. (J. Phys. D.), ser. 2, vol. 1, 1968, pp. 1039-

1048.

138

Page 152: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

76. Wu, C.; and Vinson, J.R.: On the Nonlinear Oscillations of Plates

Composed of Composite Materials. J. Comp. Matls., vol. 3, no. 3,

July 1969, pp. 548-561.

77. Gemant, A: The Measurement of Solid Friction of Plastics. J. Appl.

Phys., vol.11, no. 10, Oct. 1940, pp. 647-653.

78. Blum, S.L.: Some Physical Factors Affecting the Internal Damping

of Glass. J. Amer. Ceramic Soc., vol. 38, no. 6, June 1955,

pp. 205-210.

79. Tamchyna, J.; and V. Zvonar: Static and Dyanmic Properties of

Glass-Reinforced Plastics. Polymer Mechanics, vol. 1, no. 1,

Jan.-Feb. 1965, pp. 102-105.

80. Masri, S.F.: Cumulative Damages Caused by Shock Excitation.

Shock and Vibration Bull., Bull. 35, pt. 3, Jan. 1966, pp. 57-71.

81. Gustafson, A.J.; Mazza, L.T.; Rodgers, R.L.; and Mcllwean, E.H.:

Development of Test Methods for Measuring Damping of Fiber-

Reinforced Materials, USAAVLABS Technical Reprot 70-42, U.S.

Army Aviation Materiel Laboratories, Fort Eustis, Va., June 1970.

82. Granick, N.; and Stern, J.E.: Material Damping of Aluminum by

a Resonant-Dwell Technique. NASA TN D-2893, Clearing House

for Federal Scientific and Technical Information, Springfield,

Va., 1965.

83. Bodner, S.R.; and Fraser, A.F.: Vibrations and Wave Propagation in

139

Page 153: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

Aluminum Alloys at Elevated Temperatures. Trans. Soc. Rheology,

vol. 6, no. 1, 1962, pp. 157-177.

84. Papirno, R.; and Slepetz, J.: Determination of Matrix and

Filament Stress-Strain Properties from Tests Made on Com-

posites, Composite Matls., Paris, Apr. 2-3, 1970), NATO,

Advisory Group for Aerospace Res. and Dev., AGARD-CP-83-71, Sept.

1971. AD-732741.

85. Bert, C.W.: Plasticity and Creep Analysis of Filamentary Metal

Matrix Composites SC-DR-720055, Sandia Laboratories, Albuquerque,

N.M., March 1972.

86. Mazza, L.T.; Paxon, E.B.; and Rodgers, R.L.: Measurement of

Damping Coefficients and Dynamic Modulus of Fiber Composites.

USAAVLABS-TN-2, (AD-8690 25) , U.S. Army Aviation Materiel Lab-

oratories, Fort Eustis, Va., May 1971.

87. Chi, C.C.: Forced Vibration of Laminated Anisotropic Plates

Including Thickness-Shear and Damping Effects. Ph.D. dissertation,

Univ. of Oklahoma, Norman, Okla., May 1972

88. Wegel, R.L.; and Walther, H.: Internal Dissipation in Solids for

Small Cyclic Strains. Physics, vol. 6, 1935, pp. 141-157.

89. Lazan, B.J.: A Study with New Equipment of the Effects of Fatigue

Stress on the Damping Capacity and Elasticity of Mild Steel.

Trans. Am. Soc. Metals, vol. 42, 1950, pp. 499-549.

140

Page 154: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

90. Bishop, R.E.D.: The Theory of Damping Forces in Vibration Theory.

J. Roy. Aeron. Soc., vol. 59, no. 539, Nov. 1955, pp. 738-742.

91. Soroka, W.W.: Note on the Relations Between Viscous and Structural

Damping Coefficients. J. Aeron. Sci., vol. 16, no. 7, Jul. 1949,

pp. 409-410, 448.

92. Theodorsen, T.; and Garrick, I.E.: Mechanism of Flutter- A

Theoretical and Experimental Investigation of the Flutter Problem.

NACA TR 685, 1940.

93. Scanlan, R.H.; and Rosenbaum, R.: Introduction to the Study of

Aircraft Vibration and Flutter. Macmillan, 1951; Dover, 1968.

94. Myklestad, N.O.: The Concept of Complex Damping. J. Appl. Mech.,

vol. 19, no. 3, Sep. 1952, pp. 284-286.

95. Lancaster, P.: Free Vibration and Hysteretic Damping. J. Roy.

Aeron. Soc., vol. 64, no. 592, Apr. 1960, p. 229.

96. Reid, T.J.: Free Vibration and Hysteretic Damping. J. Roy. Aeron.

Soc., vol. 60, no. 544, Apr. 1956, p. 283.

97. Milne, R.D.: A Constructive Theory of Linear Damping. Paper C.4,

Symposium on Structural Dynamics, Loughborough Univ. of Tech-

nology, Loughborough, England, 1970.

98. Caughey, T..K.: Vibration of Dynamic Systems with Linear Hysteretic

Damping (Linear Theory). Proc. 4th. U.S. Nat. Congr. Appl.

Mech., vol. 1, 1962, pp. 87-97.

141

Page 155: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

99. Paley, R.E.A.C.; and Wiener, N.: Fourier Transforms in the Complex

Domain. Am. Math. Soc. Colloquium Publicat., vol. 19, 1934.

100. Garcia - Moliner, F.; and Thomson, R.: Linear Response Functions

and the Phenomenological Equations of Internal Friction. J. Appl.

Phys. ,vol. 37, no. 1, Jan. 1966, pp. 83-89.

101. Fraeijs de Veubeke, B.M.: Influence of. Internal Dampikng on Air-

Craft Resonance. AGARD Manual on Elasticity, vol. 1, chap. 3, 1960.

102. Grandall, S.H.: Dynamic Response of Systems with Structural

Damping. Air, Space, and Instruments (C.S. Draper Anniv. Vol.),

S.Lees.ed. McGraw-Hill Book Co., 1963, pp. 183-193.

103. Crandall, S.H.: The Role of Damping in Vibration Theory. J. Sound

&Vib., vol. 11, no. 1, Jan. 1970, pp. 3-18.

104. Pinsker, W.: Structural Damping. J. Aeron. Sci., vol. 16, no. 11,

Nov. 1949, p. 699.

105. Scanlan, R.H.; and Mendelson, A.: Structural Damping. AIAA J.,

voLl, no. 4, Apr. 1963, pp. 938-939.

106. Naylor, V.D.: Some Fallacies in Modern Damping. J. Sound & Vib.,

vol.11, no. 2, Feb. 1970, pp. 278-280.

107. Scanlan, R.H.: Linear Damping Models and Causality in Vibrations.

J. Sound & Vib., vol. 13, no. 4, Dec. 1970, pp. 499-509.

108. Bishop, R.E.D.: The Behavior of Damped Linear System in Steady

142

Page 156: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

Oscillation. Aeron. Quart., vol. 7, no. 2, May 1956, pp. 156-168.

., 109. Cunningham, H.J.: In Defense of Modern Damping Theory in Flutter

Analysis, J. Sound &Vib., vol. 14, no. 1, Jan. 1971, pp. 142-144.

110. Bland, D.R.: The Theory of Linear Viscoelasticity. Pergamon Press,

1960, pp. 3-4.

111. Parke, S.: Logarithmic Decrements at High Damping. Brit. J. Appl.

Phys., vol. 17, no. 2, Feb. 1966, pp. 271-273.

112. Flugge, W.: Viscoelasiticty. Blaisdell Publishing Company, 1967,

p. 14.

113. Hobbs, G.K.: Methods of Treating Damping in Structures. AIAA

Paper 71-349, presented at the AIAA/ASME 12th Structures, Structural

Dynamics and Materials Conference, Anaheim, Calif., Apr. 19-21, 1971,

114. Huang, T.C.; and Huang, C.C.: Free Vibrations of Viscoelastic

Timoshenko Beams. J. Appl. Mech., vol. 38, no. 2, June 1971,

pp. 515-521.

115. Granick, N.; and Stern, J.E.: Material Damping of Aluminum by

Resonance-Dwell Technique. Shock & Vib. Bull., Bull. 34, Pt. 5,

U.S. Dept. Defense, Feb. 1965, pp. 177-195.

116. Biot, M.A.: Linear Thermodynamics and the Mechanics of Solids.

Proc. 3rd. U.S. Nat. Congr. Appl. Mech., 1958, pp. 1-18.

117. Neubert, H.K.P.: A Simple Model Representing Internal Damping

in Solid Materials. Aeron. Quart., vol. 14, no. 2, May 1963, pp.

143

Page 157: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

187-210.

118. Boltzmann, L.: Zur Theorie der elastische Nachwirkung. Annalen

der Physik und Chemie, suppl. 7, 1876, pp. 624-654. .

119. Volterra, E.: Vibrations of Elastic Systems Having Hereditary

Characteristics. J. Appl. Mech., vol. 17, no. 4, Dec. 1950,

pp. 363-371.

120. Pisarenko, G.S.: Vibrations of Elastic Systems Taking Account

of Energy Dissipation in the Material. Kiev, 1955; Engl. transl.,

WADD TR-60-582, Wright Air Development Div., Feb. 1962 (AD-274743)

121. Rosenblueth, E.; and Herrera, I.: On a Kind of Hysteretic Damping.

J. Eng. Mech. Div., Proc. ASCE, vol. 90, no. EM4, Aug. 1964, pp.

37-48.

122. Chang, C.S.; and Bieber, R.E.: Synthesis of Structural Damping.

AIAA J., vol. 6, no. 4, Apr. 1968, pp. 718-719.

123. Kennedy, C.C.; and Pancu, C.D.P.: Use of Vectors in Vibration

Measurement and Analysis. J. Aeron. Sci., vol. 14, no. 11,

Nov. 1947, pp. 603-625.

124. Pendered, J.W.; and Bishop, R.E.D.: A Critical Introduction to

Some Industrial Resonance Testing Techniques. J. Mech. Eng.

Sci., vol. 5, no. 4, Dec. 1963, pp. 345-367.

125. Kolsky, H.: Stress Waves in Solids. Oxford Univ. Press, 1963;

Dover, 1963.

144

Page 158: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

TABLE I. COMPARISON OF LONGITUDINAL IN-PLANE POISSON'S RATIO.

Ef/Em

120.

5.3

24.1

Longitudinal In-Plane Poisson's Ratio v,«

Eq. (30)

0.331

0.317

0.316

0.292

0.286

0.273

0.260

0.299

0.284

0.269

Eq. (38)

0.322

0.311

0.300

0.288

0.282

0.270

0.258

0.294

0.282

0.268

Vf

0.3

0.4

0.5

0.6

0.4

0.5

0.6

0.4

0.5

0.6

145

Page 159: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

TABLE II. LONGITUDINAL FLEXURAL STIFFNESS EFFICIENCY OF

MONOFILAMENT COMPOSITES.

Composite

Steel-Epoxy

S glass-Epoxy

Boron-Epoxy

Boron-Al.

E./Ef m

74

24

120

6

• 6

1.00

1.00

0.95

0.90

0.95

0.93

1.00

0.85

0.90

0.95

0.85

0.90

0.95

0.85

U

1.11

1.06

1.11

1.11

1.06

1.16

1.00

1.38

1.23

1.11

1.38

1.23

1.11

1.38

Vf

0.636

0.708

0.673

0.707

0.746

0.743

• 0.785

0.482

0.572

0.673

0.482

0.572

0.673

0.482

E ( b ) /E11 ' 11

Eq. (48)

0.616

0.683

0.683

0.755

0.755

0.730

0.755

0.578

0.636

0.697

0.549

0.614

0.681

0.678

Eq.(142)

0.608

0.677

0.677

0.750

0.750

0.725

0.750

0.542

0.608

0.677

0.542

0.608

0.677

0.542

146

Page 160: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

TABLE III. COMPARISONS OF POISSON FLEXURAL STIFFNESS

FOR COMPOSITES HAVING SQUARE TYPICAL ELEMENTS.

Composite

Boron-Epoxy

Glass-Epoxy

Boron-Al.

FiberVolumeFraction

0.4

0.5

0.6

0.4

0.5

0.6

0.4

0.5

0.6

[D12]eq. (50) ' [D12]eq. (4)

0.725

0.593

0.567

0.780

0.657

0.638

0.930

0.835

0.833

147

Page 161: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

TABLE IV. COMPARISONS OF IN-PLANE LONGITUDINAL SHEAR MODULUS AND

EQUIVALENT SHEAR MODULUS AS CALCULATED FROM THE TORSION ANALYSIS.

Composite

Boron-Epoxy

E Glass-Epoxy

Boron-Al .

Gf / Gm

135.

23.4

6.7

Fibervolumefraction

0.4

0.5

0.6

0.4

0.5

0.6

0.4

0.5

0.6

Ratio G,, /Gbo m

In-Plane

2.30

3.23

4.67

2.16

2.84

3.80

1.84

2.22

2.72

Equivalent in Torsion

25.30

38.98

55.66

5.04

7.34

10.13

2.01

2.58

3.29

Page 162: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

oooooooooooooooooooooooo

oUJa

3Zoc

ZUJ

O Uo

Of.UJa.

a.<oUJ

•>

85

UJ Oo

ofUJo.

UJ

o.<£

a:u.

ooooooooooooI I I I I I I I I I I IooooooooooooooooooooooooUJ UJ UJ UJ UJ LU U-' UJ U-' UJ UJ U-i

oooooooooooc

ooooooooooooooooooooooooUJUJUJUJUJUJUJUJUJUJUJUJ

O O O O O O O O O O O O

ooooooooooooUJ UJ UJ UJ UJ UJ UJ UJ UJ Uj UJ UJ

oooooooooooo

OOOOOOOOOOOOoooooooooooo^ I || I til m 111 II i II I Lll Ij I 1J1 Ul pi

OOOOOOOOOOOO

ooooooooooooUJ UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ

o o o o o o o o o o o o

o o o o o o o o o o o o

o o o o o o o o o c o o

i r r - o o o o o o o o o c••* M \f\ t* O O

-4 cv;

149

Page 163: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

=>o

UJoocLUa

3

QC

OO

UJoorUJa

a<£UJ

a»o

LUO

atUJa

UJ

UJ

UJ *da: Tu.

ooooooooooooooooooooooooLULUUJUfUJUjUJUJUJUJLUU 1

« o < 7 - f * » » r o f " o o ^ ^ > £ ) c r -

ooooooooooooI I I I I I I I I I I IooooooooooooooooooooooooUJ UJ UJ LL' Ul UJ U-> UJ U.I UJ UJ UJcooif\pjr-«CKvO»roc^f^^^••^•^•f^f^^tn^^floflol*^f>l*>fOf>f^f>(*\CrIJ*lf»*^i

oooooooooooo

•^<^>-4«^i>4<-lf^i-<i>4«-l»'o'ooooooooooooUJUJUJUJU.'UjUJUJUJUJU.IUJ^o>O4-i*\o«r\»-«o>ti^'Ch-f*-ooeoa'OCfvj»r>^flDr'>•4rH^^^rM(M(vjrM(v(vim

oooooooooooo

ooooooooooooooooooooooooLUUJUJUJUJUJUJUJU.IUJUJLU• * « C » * - - - ^ O v ^ * < N » < C k f > C V J^>^<5r-p"^>^ i rv«*»rs i ro f \ .l-lff***^*!-!****^.^,^****

OOOOOOOOOOOO

•^•^^(wjF^t— < » M i — «i^>-t<^»H

OOOOOOOOOOOO

ujujuju;ujujujujujujujujo ^ ' M ^ m o ' w o o f M f o o« •c«oo^»^«Domvr* i -«•^•-••^»<<-<t-<»H<\jr j«M'>Jf*>

oooooooooooo

ooooooooooc-oooooooooooooUJUJUJUJU.'UJUJUJUJUJUJU,'^ocrvjoi^omo^-tntro•4- »*im,of-oD^'vj^)u">«*-'j>^ •*^-*^-^«t-*rr»f^r^f^ooooooooooco

ooooooooooooooooooooooooUJUJUJU-'UJUJUJUJUJUJU-UJ00 CO OD QO QO OC QD 00 CD 00 00 00o D o o a o a o o c o D O C o o e o c c c c f l o•* ' t>r>t4>4- '*«»' ' * - '»> '»<tooooooooooco

vr^-ocoooooooc?»^<> j i r > ^oooooo

-j «\j ir\ N o o-* fs.

Page 164: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

OenLU0.

13Zoc

OO

O

UJ

oc.UJO.

I/)

UJ

zUJO

ee.UJ

LUxOUJ

I/)Q.

UJ

OUJ >vief X

ooooooooooooUJ UJ UJ UJ UJ tU UJ UJ UJ UJ UJ UJO i r k » - < < 6 o m e D 9 > h - ^ c c o oOOr r >>* i r t eD<o<cc \ j r « imxCeo»<i-irsimi*>m(MrvirMrvjrsj

OOOOOOOOOOOOI I I I I I I I I I I IooooooooooooooooooocooocLU 111 LLJ UJ LU LLJ Ul 111 LL II' ILILU

i f \*-* \ f \<G\F,cD\r ' { f ' ' - t t*- tv r-f \ j O f ^ - < — ' v O l f \ > O ' - < i r i / > > C > Ornfncsi(M«-tfMi- iPO<\i<vj«MfM

oooooooooooo

_l*^,_ll-<l_l_lf-lf-<_l~-ll—ll-tooooooooooooI|J t|l I-LJ Ul Ui LU 111 LU Hi 1(1 LU Ul

~<i^Of r><M»-*u" |^irvo<\ i<£>O D O O O > O f \ ) d f r > ^ ^ " O « — ' ^^^•- l<M(M(M<\l(M(Mm mrC

oooooooooooo

oooooooooooooooocoooooooI

UJUJUJLUUJUJUJUJUJLUUJLUt r > > M e o o o u > o > f r i i r « ^ h - < ^< c * - t f > j t ^ - * - * o * ~ < f ' t m r ^Os--»-*'- '<MCM<M-<«-"0-<'^

oooooooooooo

^ * 4 *4 4 <4 4 ^ 4 >4 vM 4

ooooooooooooUJUJUJUJUJUJUJUJUJUJ U» LUo — rs j i r i«^(y>moocsj foo^ > s C > o ^ 3 r - ^ o c o r ^ i / \ > O ' -(^,_4 r4t-4 l^^4i- l(VrNJ(\J(VJI*>

oooooooooooo

ooooooooooooooooooooooooUJUJUJUJUJUJUJUJUJUJUJUJ•ooco i r ioocro^- i ^aooi fNO>f \ t f ^o«ooo( \ j<£ i r t «t *(Mf jd^^ i r^^ -d f. r^««^

oooooooooooo

ooooooooooooOOOOOOOOOOOO

U-UJlJjUJLLUJLUU-lUJUJU-U-l

«*^>r^>«*-«*^'*«*>t>»->>'^•«*>J-^^-«*-<^^->t«*>tf\J«\)fMry|(\J«NJf\J«\jCVj«M(\JfM

oooooooooooo

i / \ r - o o o o o o o o o oi~i<Mir^ooor oc

—i rvj IT. r- c- o-« fM

151

Page 165: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

§

Zo

UJo

ocUJa.

oo

UJ

ceUJa.

V)a.<cUJ

UJo

ac.UJa.

a.xOUJ

t/l&

oUJ *Jtt TU.

, — « -ooooooooooooIll I I I I I I I I

UIUJU-UJUJUJUJU.-UJUJUJUJ

ooooooooooooI I I I I I I I I I I Iooooooooooocoooooooooooo(y LLJ m UJ UJ \\t UJ III 111 111 II I HI

oooooooooooo

ooooooooooooI I I I

U'UJUJUJUJlUUJUjUJUJU.'UJ

oooooooooooo

,-(.^•-'•-(^-11—lI-4«-«--4^li-'^-ooooooooooooUJ 111 UJ UJ |l I LLJ HI II I LU III 11 I UJ

oooooooooooo

OOOOOOOOOOOO

ooooooooooooI I I I I

UJUJUJUJUjUJUJUjUJu.'UJUJ

oooooooooooo

ooooooooooooUJ IJJ UJ Ul 1JJ LLJ UJ 111 UJ l i UJ 111

oooooooooooor***t-t*-ll^f*m*****t-»r-' i—I

oooooooooooo

ooooooooooooLJJUJlAJUJUjUJUjUjU- 'UJLJJUJ

O O O O O O O O O O O O_4>»<»Mf-4l—ll—l»<>-lr>tf—)•—><-<

oooooooooooo

i T h - O O O O O O O O O O

-^ cv; o o-W «VJ

152

Page 166: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

UJoocUJo.

oo

zUJoatUJa.

o

UJ

zUJo

2a.

ft.«o

•oUJ

OOOOOOOOOOOOOOOOOOOOOOOO

UJUJUJUJUJUJUJUJUJUJUJLU<B~4 \e \&~* tD(T ' * -O< \ r \ r± tn

rrifrt«r\f«i«Ne'»«*< i«r»o^- oo

O O O O O O O O O O O OI I I I I I I I I I I IO O O O O O O O O O O OO O O O O O O O O O O O

UJ UJ UJ UJ LU UJ UJ UJ UJ UJ UJ U.ii T lU^^ r ^ fVJ fNJ fNJ rvJ . J ' l ^ yOO•4»>4*M>M<-4t-4<M (_4 l^^l ,a(V

C M f M C N J f M f V J f S j M P a f V i f M t V f V ;

O C 3 O O O O O O O O O O

OOOOOOOOOOOOOOOOOOOOOOOO

UJU^UJUJUJUJUJUJU.LUUJIUmr- . - 4CO- *h - rO foeD< \ j oc .oco ru jN j— < <M <\j oc oc -j O- h- >ofOrnrr i»r i(r((^fr fr i f>ir^)OC

OOOOOOOOOOOO

*4v- lv4«4*4«-««4v4»Mv4|»4>-4

O O O O O O O O O O O O

UJUJUJUJUJUJUJU.IUJUJUJUJfM«^ro«Oh-co»h.4- f^ . of*^ ^ • • ^ • • t ' t ^ ^ ^ - ^ ^^ fn* ' * ^ '4 > «f r«»«»«t«» ' f r«a- * -OOOOOOOOOOOO

OOOOOOOOOOOOOOOOOOOOOOOO

QJLUUJUUUJUJUJU-'UJLUU.'UJO i r o e o o u n o o o o o or ^ O v O t ^ < o « o ^ ^ f M O D i r o»Mr j cv<MrN j f sJ f> f r ^ ^ t f> r * -

OOOOOOOOOOOO

(M(M<V>(NJ<M<M(MfM-rM«\j(\j«MOOOOOOOOOOOO

UJUJUJUJUJUJUJUJUJUJUJUJr - r -F -ococooop f loac r - r ^ i ^OOOOOOOOOOOO«>4i-rf>>4t-lt-rft-<>^f_4i-l.^t-l>-4

OOOOOOOOOOOO

l-4>-4f-4f-4«-ll-4»-4l-4l-4i-4l»l<-lOOOOOOOOOOOO

UJUJLUUJULlU^UJUJLUU-l jLjU-oooooooooocof^ f^ fO f\ fO fH fO f^ f^ f^ f*^ f*< C < O < O ^ » O < O ^ > ^ ^ O 4 < C < C

O O O O O O O O O O O O

oUJ *>'Of Xu. •— rj IT h- o

153

Page 167: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

E-i

§<SE-

co

Q

£ HE-1 f-1<* HH COu oCO Srn O< 0

O E-<

<C W

saE?SQ OO S32: os1/5 «s•• <*10 tj-

5 -st"O c\)^ sCMI-)^ €Z OM SQ HC3 S

S3rj <;

O 5S

"^SW QZ OQ

S*

*«ggI

O0

*Q

u.

0oot

***

JJUJQ

^

O

*H^

D

(X

»

**

^»P"

1

^<VJoCM

3L0ZM4

31

<1ZOa0

****

0 0

*• 01 UJUJ (MOV 0 *

•« <M CM

O O

O O

z uJ ujUJ CM «•S (0 «JU, CM -UJ IA I/J

O O

0 OK O Oz

*» UJ HI UJ** ^J) *4 O

UJ (W COO (t (MM

0 0

(M (M— o O

a uj LU•* O Of/UJ UJ CO CO

o o o o o o o o o oU l U J U I U I U J U J U j U J U J U J

o i n c O N o * ^ ( \ ) f v j -( M ( \ i ( M C M ( M < V J ( M C V J N ( M

o o o o o o o o o o

o o o o o o o o o oUJ UJ UJ Ul 'JJ aJ a) uj Hi u)9 C O < M < n N M < | f l t O N•4 QO CM oo m *^ ^ o in ^o

o o o o o o o o o o

o o o o o o o o o oo o o o o o o o o o

ui uj uj uj uj uJ '.u ID uj uj^ ** ^ o m (M ^ *^ tf'm C M l O O t c O N ^ v Q N * *f * > i n < n f o n < \ j f \ j r g w

O O O O O O O O O O

C J f t j C J C M C M W r u C V J N C Jo o o o o o o o o oU J l U U J U J U J U J U J v J J ' j U U J

s r n e o i ^ o 7 < C c C ^ o^ ^ ^o *o *o o o o *o < \ J f M C M f M ( M M C M ( V J f V « > J

O O O O O O O O O O O O

<H-<

(JZ NOJ K3 ac u.UJ Ioru,

o o o o o o c o o o o oUJ JJ UJ 'JJ 'OJ .U Jj jj 'aJ J J "bo o o o o o o o c o o cO O O O O O O O O O O Oo o o o o o o o c o o o

O O O O O O O O O O O O

154

Page 168: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

XW

tu

o o o o o o o o o o o oU J I U U J U J U J U i U J U J U J U J U j U JN N O l O < V J « t O ' O C O » * » O O< M - O - * O < » f O O C D < B N - O- O O O O O O O O O C O N N N Nm m n ( V ( M < M ( v j N c g ( M ( g ( go o o o o o o o o o o o

CO

:zs o

X

M

ooin

fixW CdE- H<«; MM COB oPL,CO £c/o o«* oQ H

•a. WSS

3 Hg fe

% O

CT»• C°\

§ E-"

(M>H O

^SM Z(3 M

£§H »JO «?O ZSo

w

£

OOo0

«M

<KJUJ0

f>N

•4

«

*4t

^ .

*H-1

(\J0PJ

.3Z(M

3

<

Z0KOO

*

O O O O O O O O O O O O

31 U J U l U J U J U J t U a j l U U J U J l U ' i J

o o o o o o o o o o o o

o o o o o o o o o o o oH - O O O O O O O O O O O Oz

•* UJ U J U J U U J U J U J U J U J U J ' l J ' l j U J•^ ^ o tin •• o i \ft o vn co t/) u**

o o o o o o o o o o o o

( \ J f \ J < N j M M < V J ( \ I C V J ( \ J ( \ i ( \ J < \ i

aO O O O O O O O O O O C

U J I l l U J U J L U t U U J ' J J U J U J u J U J^ < 0 « « « M * « « M ^ * 4 « 4 ^ O « ^ « 4

* ^ N i / i t > N ' / > ' n - < o o r » 'n c a < \ j — o o o o o o o op i n f > o f ) f ) f ) n p ' i f r i ' * i ( \ j

O O O O O O O O O O O O

<o

•Jij3O•J'<r

o o o o o o o o o o o o

M 'U UJ UJ J .U il UJ I1 :JJ J '.t! J»• o o o o o o o o o c o oa o o o o o o o o o o o oI U O O O O O O O O O O O CI l/> ^. mf (M '.r> K. M <\| -ft N. «< (V

o o o o o o o o o o o o

155

Page 169: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

oo

UL>

Ooo

XUJN

zUJXu.UJ

o o o o o o o o o o o oU J U J U J U J U J U J U J U J U j a J U J U J

o o o o o o o o o o o o

o o o o o o o o o o o oU J U J U J U J U J U J U J U J U J ' l ^ U J U J

o o o o o o o o o o o o

JUJo

MOrg

Z

X

UJ

ZUJua:UJa

o o o o o o o o o o o oo o o o o o o o o o o oU J U I U J U J U J U J U J U J U J L U U U J

o o o o o o o o o o o o

IZOaoo*

— oUJ UJ

o o o o o o o o o o o oU J U J j J U J U J U J ' J J t i J U J U J U j U J« * N — \ C C M C O O O < O O 4 NO « m < O 9 v O l f > ( N J 9 > ^ a O Nco N o if) <J •* « ^ m n n r oDl*Jf)l*)'*)' ') i*)'*)' r l ' l1?')"'>

o o o o o o o o o o o o

<a

U.'

atu.

o o o o o o o o o o o oN UJ UJ •..! 'U UJ il ;l IU 'U 'ii J ''.'^ - O O O C O O O O O O O Cz o o o o o o o o o o o oU J O O O O O C O O C O O CI IPS — (\j '/•»*. — - v j ' r i s . — CM

o o o o o o o o o - ^ o o

156

Page 170: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

X

a

o o o o o o o o o o o oo o o o o o o o o o o o

U J U J U U J U J I j U U J l U U J U J l U U Jo o o o o o o o o o o o

o o o o o o o o o o o o

oo<t

<•^wCO E-C/5 MO CO

2o s2W Qr ^ \E-* CJ

3 HB§CO S£CO <C

** nQ Es o<q g

0§HE-. CA

g^^t

CO CM- O:z CM

°s3i§l04 2§1gsw o2 CQ

?:^e••

K-w

o

u.

ooo•^

<KJUJo

o«•

••

3Xa

»*>

<*-

*«»*n*•i«*VI\vorj

X3z1

3J<1

OaoCD

***»

*

O O O O O O O O O O O Oo o o o o o o o o o o o

u. m ^ u j u j c u u j u j u j u j u j u j u j3 O O O O O O O O O O O Oz o » i O ( \ j o i < 0 c o c > a j « t f i n oa o - » f 4 < \ j ' n n i n < f « < t < t < »

( M ( V < ( N J < M N M ( M M ( V ( M ( M ( M

O O O O O O O O O O O O

«• o o o o o o o o o o o oZ II I 1 1 1 I I 1

(M uj U ) U J l i l l U U J U J U J l U U J U - > U J U J— u « 7 > i n * " D i n ( 7 o < v o i n < » i r >o o m « n f n o t n o u - « o { M O *z a c o « o ( U M C o c o o i / i « « «O ilj *0 ^ ^ ^ ^ CD CD *O >0 v O

o o o o o o o o o o o oI 1 1 1 1 1 1 1 1 1 1 1

o o o o o o o o o o o oo o o o o o o o o o o o

f t L U U J U J U J a J a J L U U J U J U J U J U j— C M O C C t O Q O ' O O N O O 4 < Co ( \» in«oo — N *» « m n in inZ D O O C D C O O ' O O C T ' O O ' O O(X C M O j M r g M N C \ I C \ j O J f V ( \ j ( \ j

O O O O O O O O O O O O

<o

zUJ3oUJau.

o o o o o o o o o o o o

M uj ui ij -u 'jj uj a: lu iu J 'u IDt- o o o o o o o o o o o oa o o o o o o o o o o o oUJ O O O O O O O O O O O OX 1/»N«-(\)!PN — fVJtn*. — M

o o o o o o o o o o o o

157

Page 171: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

X3

a

o o o o o o o o o o o oo o o o o o o o o o o oU J U J U J t U U J U J l U U J l U U i l U t Uo o o o o o o o o o o o

o o o o o o o o o o o o

ws£-• E:•Z. MCd EHO S=5^ O£~

CO W

§ E-"HCQ

f~"^ 0^W 5£f _j f*j

«=* 0M

8 *"10 §en s:•< ^Q H

< §o o2s

SgZ>S23 CM

co z;co 5H ^»

*-2goc; ^Si^iCd Q3 m

S-1 rr*.i I-M

ggi

0o

^o

u.>

0oo•

<H

UJo

in•

•*

Xa

«

«.^**»

iN0PJ

X

z

J1z0aoCD»

***»

o o o o o o o o o o o oo o o o o o o o o o o o

U. l i l l x l U J U J U j U J U J U J U J U J t U U J3 O O O O O O O O O O O OZ O > ^ < V J O ^ O D O N ^ ^ i n < Oo: o < « ( v i N i * > m ' n « 4 ' < 4 4

( \ J N < M N ( \ I ( \ J ( \ J ( M ( M ( V ( N J < V J

O O O O O O O O O O O O

K O O O O O O O O O O O OZ 1 1 1 1 1 1 1

(M UJ I J J U J U J l L I U J U J U J U J ' X l U j ' U j U J

z a a o - t t i - c N f l c c f l O c o a

o o o o o o o o o o o o1 1 1 1 1 1 1 1 1 1 1 1

o o o o o o o o o o o oo o o o o o o o o o o o

Cij m u J U J u J u J l y u l l . l i J v J i x i u j

Z N N N N O O C D O C D O O t C O O O )

o o o o o o o o o o o o

w<*-o

> o o o o o o o o o o o oZ N U UJ JJ It J ,J AJ ii.1 .'! _, u -±•i. H O O O O O O O O O O O Oj a o o o o o o o o o o o oO UJ O O O O O C O O O O O Oiu i L"* N •• w in N. -• M m (>»••• Ma ............O. C O O 3 O O O O O O O O

Page 172: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

Za

o o o o o o o o o o o oo o o o o o o o o o o o

U J U J U J U J U J U J U J U J U J U J U J U Jo o o o o o o o o o o o

O O O O O O O O O O O O

t~" n «2 HCd 5215 O2S6-1 tdCO E-1CQ HO CO

ft

w oH f X

u

o wco £CO <

SB O

** oM

3*7to ®^ X^N

CO £co 5H SO Hf\ +£^

OJ i-3O «?"3 1

JT* Q

gg

s-=^sgg

OO<0

o

UL

ooo—

<^J0

^*•

•4

Za

*«*4ft

*iMOM

X3Z

3j<1

OaoCD

***

o o o o o o o o o o o oo o o o o o o o o o o o

UL u j u j m u j u j u j u J U J u J U J U J i i i3 O O O O O O O O O O O O3j 0^ ^& ^^ 0^ ^0 ^D O^ C^ t & lA ^DCC ^9 ** ftp (^ ^0 fO ^0 ^T ^T ^r ^« ^

o o o o o o o o o o o o

o o o o o o o o — — — —N > O O O O O O O O O O O OZ 1 1 1 1

- u N n - i n ! n s o n a ! * n ! »3 ( v m o n a j i o N c o o t f C N j Oz a • » - » w w f t j « « o o n i ' > « «

O O O O O O O O O 0 O O1 1 1 1 1 1 1 1 1 1 1 1

o o o o o o o o o o o oo o o o o o o o o o o o

f\l u ju j iy j i j ju ju ix ju ju j i j j i i j iu• x C D O f y ^ C J ^ O C O O O O f v j

Z l O v O ^ i f ^ N N N N N N N

in o o o o o o o o o o o o

<H-<

uZ NUJ t"j aO UJUJ Z

u.

o o o o o o c o o o o o

UJ -XI UJ UJ UJ iU UJ HI LU Jj i! UO O O O O O O O O O O Oo o o o o o o o o o o oO O O O O O C O O O O O

o o o o o o o o o o o o

159

Page 173: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

oo

UJV.OJMUJ

ooooooooooo<">iji OJ |jj lit iit iii m UJ U- UJ UJ LL1

oooooooooooo

ooo

*****CO

oCM

XUJ»xu.

«VJ

UJo

oooooooooooo1 1 1 I1J y i Hi UJ 1 1 1 UJ 1 1 1 UJ LL u I UJ

oooooooooooo

oooooooooocooooooooooocoLLJ 11J III LU 111 UJ LU l| ; UJ UJ Ul LLJ

a o e D c r a v c r a c r ooooPJCVJ«M'*JIN<M«MMf«r>'ri'*^

O OOOOOOOOOOO

3X.QC

IZoocoo*

UJM O<NJu) oeO UJ

a

O O O O O O O O ^ •* ~* —io o o o o o o o o o o o

I I I IUJUJUJUJUJUJUJUjUJujUJUJ

O O O O O O O O O O O O

a>oUJ

O O O O O O O O O O O O

UJUJUJUJU. 'UJU-U_UJUJUJUJ

<o

u5 tO VO UJUJ 1OL

o o o o o o o o o o o o

* - > > ~ * i i r i ( -O O O OOOOOOOOO

LUUJUJUJUJUJUJU-iUJU/UJU'ooooooooocoooooooooooor*oocoooooooooo

OOOOOOOOOOOC"

If

Page 174: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

o o o o o o o o o o o o

^<s a

co :s<fl n-,'Q E-

2

COen

CO W

3 S

siE O

00o

SS<i* o

•va

MX

ttl

oo °a o° t^

ooo

ro

91ee.

<>-

o

": "•»ii! «\j

»

««t**-I

O<M

X3Z

X

a(Xooc

**

UJ^u.

CO

Of.

UJ(Ni O

UJ at.O UJ

a.

arv»rsj >oUJ UJ

uZUJ

OUJor

UJX

o o o o o o o o o o o oUJ UJ UJ UJ UJ UJ UJ UJ UJ. UJ UJ LU. ^ '*Oj ^ ^ -f* *fO tJ l ^'. * f *Q' ^ Y W ^ • ^ ~ ^ V*-' 00 00' AJ-*GD ^oo OD oo oo r f*. - 1 * t - ^ r

oooooooooooo

ooooooooooooUJ UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ LLJ

oooooooooooo

ooooooooooooooooooooooooyj LU LU UJ LU 111 111 LLJ 111 UJ LU LU

ooooooooooooI I I I

LUUJUJUJUJUJUJUJUJUJUJUJ

ooooooooooooUJUJUJUjUJLUUJUJUjUJUJUj

oooooooooooo

OOOOOOOOOOOO

UJUJULlUJUJUJUJUJUJUJU-'UJooooooooooooOOOOOOOOOOOOoooooooooooo

161

Page 175: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

I/)o o o o o o o o o o :>

uJSoCr,

£[£)

C3 °

<c Q vb?• w .CO 5 °

8£-§ ;co rt? Cx >E-^ _,•el. WM e-Bn

52££<t fe 0

08^'fcCO Ea ^- «. j ,-•)• ^t "S **t-J *— * ._Q M *~

gfe t2S Q

coo

5 c*^

S-4 -fr .*

tt *wo *10 cvjK ^ • .

^ iS 2== e *Si iwf^ Sss^g5H <sI

«• ff

K 5>< 2M -

^

M-*

'Sc^

O O O O O O C O < - > 0

Z L J L J U J U J L J U j X ' U r f L j L UtU • • • • ^ B l ' J O O t f i X Nx m n — o N vo vC in •» •*<\J — — — O O O O O O Oo j f V ( < M < M t M < M f u f y j < v r v J C V ;

o o o o o o o o o o

O O O O O O O O O O

U OJ Lh U_ LL. a. 'JJ LL' Uj U.'Z M — 0* CO <V lT> N — *^.LU i n w ^ ^ C O f X J ^ O i / * * * ^ - ^S (VJ — O O C N i O v C ^ i f - . ' i

ft X «flJ1 '/> « • » • * • » * * »

* O O O O O O T O O O

*»•0»- O O O O O O O O 3 31 O O O Q O O O .3 O J

•*r\j U -U U ai aJ 'J sJ if -J ijo rJ " v j n n o ^ j o o - o — —M -• O - » N . A J O * - n C > - > —

D -C 'C >O N N N V N- CO t,S. Z M M M (V) cvj (Vj oj rj !\ TV.

7 C O O O O O O O O O•1

i

_l O O O O O O O O — -<t t - O O O O O O O O r-O1 2 I IZ i— jJ u. u-' JJ u1 JL' ij _j ;;-• i-C M O O CC >O 'Xi — '-> ^- "J \ •"*^ A | (^ "A •* fV* ^ «• ^ _— ^^y, iv r^ i j ^ uo "^ *" w *^ ••*~ fi :t t <»j * r- o * — •"» - r.

» o o o o o o o o o o^

*ft"vj oj <\i ^ f\j -\j r\ j <\ i^i

• — o o o o o o o o o owQ. UJ u tu LL aj u.. t_ :ii -L' ^

^ ' ^ * O O j l 4 " ) ^ " ^ ^ ? T ^ — »oj vc o x -o <t n .^ M — — —u a: M rvj (Vj (\j rv; o, ry <\j "j rv.-

• rvj *\j ^J <\i fNj oj (\ 04 r., *>„

- > O O ' ^ O < ~ / O r - o ' - >

«• — r v i r v j o j c v / " ! I T " )> O O O O O O O _ ; . ; > J. Jv*/^ Nj X U ^ L J ^ . ' U ^ J a . ^ ^ J M ..j »- o o o c o o o o o r;"* *"• * * l r ~ ^ i C * * O ' ' r t r % i ' - ^ ' '^ ^^ ^ »* Vj V» \.' HM «>J 1 j .^ -w-

C3 J O C O O O O O O O -i' I /) N- — ' .0 ^ — I\J U'i >•

U 0

• 1 1 • 1 'aj u«\0 f!<r •*0 0fVJ M

O 0

^ o

UJ lU•X, N'/) f)if. iT* t

o o

0 „'-> O

4J JJIs- 'M— -\Jr, i.O, 'V

0 0

) .

0 O1 1

N 0

N 0•^ M

.4^ O

.3 ">

-V "VIri o

7^ N-O C-". r\;"J 'Vi

0 O

-» •*O .J

I^M '- '

*?• oC Vo o— ^J

o o o o o o •:.• _; o

162

Page 176: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

I

co8QCd

8COCO

z:<C

CO

CO

<i; CM2 OM CMQ

IIt-J 1-1

M-f53

H

I

oo

u.

ooo

UJa

o«•

(X

<o

**»«*)HI4<MOCM

ZOz

J

•oa3cc*

**

UJax

zoV«0

X

&

o

uz.u

UJau>

zUJuaUJa

UJ

aa.X

o o o o o o o o o o o oU I U J U J U J U J U J U J U J U J U J U J U J* i C N e > — N < M n r * ) " l * ** * * * i n i n < o i n u > i n i n u io o o o o o o o o o o o

o o o o o o o o o o o o

o o o o o o o o o o o ou ju ju jk iu ju j ' t i ju j i i j t i ju ju ji n < v j « - o ^ o > ^ o o o < ' oC D N > O * ( r I C v | C V I 0 4 - « - « — -«N N K I W N N N N K N N K

o o o o o o o o o o o o

o o o o o o o o o o o oU J U J U J U J i L i U J U J U J u . U U J U J•«n — ( n 4 < \ i n ^ i n t f > o < oN C O W n N — (O — v O O f l - O JK i n ^ C V j O O O O O O C O O D O C )m » n « n i n i n i n « « * « * «o o o o o o o o o o o o

o o o o o o o o — — -.-•o o o o o o o o o o o o

I I I IUJ UJ UJ UJ UJ UJ UJ UJ U) 'xl UJ UJ< 7 > « O C O M N * « O 9 > N C \ J OO « K O > O x l D < O C 7 > 7 > « ' C M( M < < O - « C 7 1 < O n r r ) ' * ) O 0 9 f « .M M M ( \ J » » « - « » N N t O O

o o o o o o o o o o o o

o o o o o o o o o o o oL u U J u J U J U J U J U J U . ' u J U J U J u JN n i n n ? > \ o o » < M i O i P ^ i f lN < T » " N r r ) ' * 1 - " O f l O f l O K U 1• * M M O O O O O O > C > C > 9 >N N N K N f w ^ N ^ j O i O v O

o o o o o o o o o o o c

^ ^ c v j t M M - v j n n r ^ n ^ ^o o o o o o o o o o o oIjJ ijj .jj UJ u (jj ij UJ L -J 'JJ u.'o o o o o o o o o o o oo o o o o o o o o o o oo o o o o o o o o o o oi/> N •• (\J /) N » < C J i r N »«C\i

o o o o o o o o o o o o

163

Page 177: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

sEx..

a ^^ «si« w§g^ sp"ss8U5tn^eQ O•K£ G~*

« s5 nO fc*SX. O

%£z*>& oM 00D

S e

wlZ". S

^sZ*

ooin

IL

ooo*

in

X(£

<c

**

<MON

Z

X

I

Oaoa***

Ul0.<to

x\s«<0o

oX

<oo

•o<0o

uZ

o>JUaa.

UJU

ItUJa

<0UJ*

NJ

O O O O O O O O O O O O

( y U J U J U J U J U J U J U J l i J U J U J U J

O O O O O O O O O O O O

O O O O O O O O O O O O

O O O O O O O O O O O O

U j u j U J U j j j u j i L ' a J U J U J j L i u j

- - - o o o o o o o o o

O O O O O O O O O O O O

O O O O O O O O O O O O

U J U J U J U J U . ' 1 1 / U J U . ' U J U J U J U J

N O D A j r O N « « ^ « * > O ^ O ^ ( N J

O O O O O O O O O O O O

O O O O O O O O * " — -"-"O O O O O O O O O O O O

I I I IU J U J U J U J U J U J U U . ' U J U j U J U J^f ^5 ^0 10 CO f^ ^ ^ CD ^ ^* ^^^fr ^0 ^3 ^f f^ C^ 00 ^5 ^D 4? ^O tf

•4 •* •* CM ** •* *•* ** CD CO CD CD

O O O O O O O O O O O O

O O O O O O O O O O O O

U J U J U J U J U J l U U J U j U J U J U J U JN o ^o in fn *^ 8 fvj in ^ (vi *f\

o o o o o o o o o o o o

O O O O O O O O O O O O

O O O O O O O O O O O OO O O O O O O O O O O OO O O O O O O O O O O O

O O O O O O O O O O O O

164

Page 178: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

I*.E^

fal

?.gCO C

Qfaj

O MO COCO OCO fe

*§Q O

CO^-

5o

CO Ej«

ts

wl

Si

oo

u.>

ooo

UJQ

Z.a

(MO<M

Z

Iroao•o

UJa<zVI

N«O<oo

zou.o

oo

•o<oo

aUJa

s <>-<

o o o o o o o o o o o o

U J U J U J U J U J U J U J U J U J L U U J U J

o o o o o o o o o o o o

o o o o o o o o o o o o

o o o o o o o o o o o oU J U J U J U J U J U J U J U j ' J J U J u J U J

o o o o o o o o o o o o

o o o o o o o o o o o oUJ Ui UJ UJ il UJ UJ Uj JJ UJ OJ u.

O O O O O O O O O O O O

o o o o o o o o — — - —O O O O O O O O O O O O

I I I IUJ UJ UJ UJ U,' UJ UJ U' UJ UJ 'U UJ

o o o o c o o o o o o o

o o o o o o o o o o o oU J U J U J U J U j U J i l J U J d J U J l b U J

o o o o o o o o o o o o

CJ'U

KH2

I

o o o o o o o o o o o oU il U. 'tl 'U U U .L1 -il :.U UJ aJo o o o o o o o o o o oO O O O C O O O O O O Oo o o o o o o o o o o o

O O O O O O O O O O O O

165

Page 179: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

ox

o o o o o o o o o o o oU J U J U J U J U J U J U J U J U J U J U J U J

g

o o o o o o o o o o o o

oo

u. UJXu.UJ

o o o o o o o o o o o oU J U J U J U J U J U J J J I U U J U J ' J J U J< \ J « . < ? 0 3 M I T ' ^ « > f S p v O Ni n r g — o o N O J i o — N o m r ocvj — o o o N v O i o i O i n i n i n i ni n i / ) i n « « « « « « « t f «o o o o o o o o o o o o

oo

**

-JUJa

CMo

z*«X

oo a

UJa

o o o o o o o o o o o oI I I I

U J U J U J U J U J U J U J U J U J U J 1 U U J

e D N ( O N( D C D O D 0 3

O O O O O O O O O O O O

Iooroa:

za V)

«/> ar»

— «0O UJ

O O O O O O O O O O O O

U J U J U J U J i i J U J U J U J L U U J U J U J

<Q

o o o o o o o o o o o o

u

uUJau.

o o o o o o o o o o o o.

K O O O O O O O C C O O Oa o o o o o o o o c o o ou, o o o o o o o o o o o o

O O O O O O O O O O O O

166

Page 180: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

oV

o o o o o o o o o o o oU J K J I U I U U J U J U J U I U J U J U U J

OS

£

c; :=>z: -z.«S M

**£CO O

cSii^ wg^^8l-i CU

.Bc§CO O

O O O O O O O O O O O O

OOin

u.>

ooo

Vu.UJ

o o o o o o o o o o o oU J U J U J U J U J U J l U U J l l l L b U - I U J( s i ^ o c o ( \ i i n N » < ' t f i n > o r vi n c M x < D ( M c o i n - > N i c i n n( M ^ o c o N t o < o t o i n m i n i n

o o o o o o o o o o o o

**n

CO E-<

2 o

rigH «g§M •<I

UJo

in

<MU(VJ

s2z

Izoaoo*

a.tz

z- UJ— uoo a:

UJa

o o o o o o o o o o o oo o o o o o o o o o o o

m n j u j i u u j t i j u L i u j u J U J U J L i J

o o o o o o o o o o o o

— <oo u

O O O O O O O O O O O O

U J U J U J U J i u u j u j U j i i J u j i i J ' j jN V C D ' * - * — < T f M ( ^ O C O nt n < M O > * * i * ) f \ « " « o o o i 0 >- « « - O O O O O O O O ( 7 ( 7 'c g o j C M M f w w r g o i j C V P J — —o o o o o o o o o o o o

<K<

UJ(Zu.

atilJL

o o o o o o o o o o o o

U J U U J U J U J j J U J U J u J i J U J l l JO O O O O O O O O O O Oo o o o o o o o o o o oO O O O O O O O O O O O

o o o o o o o o o o o o

167

Page 181: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

X••

o

o o o o o o o o o o o oU J U J U J U J U J U J U J U J U J U J U J U J

o o o o o o o o o o o os(j-

E- ^2t QU teO SZ SZ<. hHE- £;

CO O

8S3

&:C 6-LI! k_ik** r™

1!

S8H"t MMC_> £O Oen oCO<c |-Q faz fe:<s •=;.

t— 4CO Mco U,M Ogsh*E-< ("">CO E-*

t-4 ^-,<r CV« 0e cv

*s_

tilH-l £

gSB*fC2 2:E- QH tt!f *1 ^58 80t-} «-1•

l_4X

Cd

ej£

oo4)

•o

u.>

ooo9

<^_JUjo

«*rt

o2tr

in

<K<OtaM

*

*

*

*

*|T),

^

•«

<>JOftj

9i3Z

IOJ«1Zoa001it***

O 0

* uj a/UJ MMs in CMU. (VI •<•uj m in

o o

0 OK 0 OZ

— IU UJ UJ•• U N <OO O P»o a M (M

o o

<M OJ« 0 O(fl

{ft a ui uj•• IfV N*• <J it tOQ I M » r t ( f tIW ^V U '

• (VJ (Vj

0 O

** •••

> 00uZ N U '.t!•LI »- O Oj cr o oO U' O O•j.1 i in N

u. o o

0

IKo»•rtoino

o0

UJ<v«om

o

(MO

Ulo>«in(\4

0

C\J0

UJooo*M

O

o

UJCOcoCD

•*O

0u

UJ<0intf>

o

(voUJv«oirtU'(

O

O

UJ0oo(V)

o

o o<i! UJ

ni in(VI 00N \0« <t0 0

o oo o

UJ UJin Nl*. y>c 10

0 O

«v rg0 O

UJ UJn O1

«o <rtf ^™ "V

f\j (\j

0 0

(Vl *\J*^l \y

o o

UJ ujo o0 00 (J'/I N

o o

o

UJNin«o*o

oo

UJoCMn

0

CMo

UJCOn^

f^

O

fT)

0

JjOooM

o

oUJ•4_4

<0

*o

oo

UJininn

o

(M0

UJ•*ru•>

f\j

o

o

UJoo0(M

O

O

111

*Nin<•o

oo

UJNCO

0

CMO

UJNO.»"V

fM

O

o

UJco0in

o

o

(uin<oin•*0

oo

UJoQ

(M

O

CMO

ai9O

^CNJ

o

f«-l t

0

tuo0or~

o

o o

UJ UJ« Kin nin in•* *0 0

0 0o o

UJ UJo> mo •»<M (M

0 0

CM CM0 0

XI UJ•• -90 C7>ff prjV |T Jrti f\jV V ^W

0 0

-• .*w ^

0 O

dJ -Jo c0 O0 C— CM

O 0

168

Page 182: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

os(V

O O O O O O O O C O O Co o o o o o o o o o o oU J U J U J I U I U U J U J L U U J U J U J U - 1

O O O O O O O O O O O O

o o o o o o o o o o o o

g(x.

o

Swco e-B£si

C/5

E-< OCrt CVJ

ICU

oo

IL>

ooo

UJo

za

*»•0>•I

*<Mo(Vt

Xoz.M

XD-J<IzoaoOD»

**

UJsu.Hi

oo a

UJa

eg

—O

Ifla

UJ

o o o o o o o o o o o oUJ UJ UJ 'II 'XI U 'U u U 'JJ ill :j.:

o o o o o o o o o o o o

o o o o o o o o o o o oI I I I I I I I I I I I

U l l U U J U J U t l i J U J I U U L l U J U I U J9 9 N O O O < O < N < D O O « N O

o o o o o o o o o o o ot i l l

o o o o o o o o o o o o

UJ UJ UJ UJ il 'JJ 'U U J U LU iJ10 w ^ o ** m ^* ^ c^ co *^ ^

o o o o o o o o o o o o

s - <o

•a:E- <J

z111DoUJ

o c o o o o o o o o o oN UJ '±> JJ X) IJ II vJ 01 ij. sJ XI JK O O O O O O O O O C O Oa o o o o o o o o o o o oIL O O O O O O C O C O O O

o o o o o o o o o o o o

169

Page 183: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

XCVJ

O

CM

O

o o o o o o o o o o o oooooooooooooU t l l J U J U j U J U J U I ' U J U J U J U I U J

o o o o o o o o o o o o

ooin

ooo *

*

ZUJXu.UJ

o o o o o o o o o o o oUj UJ dJ LU UJ LU tl Lit liJ -L* UJ X'

o o o o o o o o o o o o

nJ X

ujo

oin01

XX

IMON

Xzh«XDJ

I

Ooroo«

**

CM U)•» Ooo a

(M- oO UJ

O O O O O O O O O O O O1 1 1 1 ( 1 1 1 1 1 1 1

U I U J U J U J U I U J U J U J U J U I U I U J

o o o o o o o o o o o oI I I I

o o o o o o o o c o o o

inin^o^oooi^^^^^

o o o o o o o o o o o o

g uUJooUJnru.

M'»-aUJr

o o o o o o o o o o o ou .J u iu -J jj a u J u j Jo o o o o o o o o o o oo o o o o o o o o o o oO O O O O O O O O O O O

o o o o o o o o o o o o

Page 184: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

X(V•aaN

O O O O O O O O O O O Oo o o o o o o o o o o oU J l U U J U J U J I D U J U l U J U J U J ' X lN - n O G » O * N ( D N O N N

O O O O O O O O O O O O

o

CO 6-CQ MQ CQ

IXssEH Oa.6-Bico 2to <i"* ncaSBJ O^Bco S

CO

.S

IICO »

oo

o

oo

• O

Ulo

Xa

l4NO<wX3z•-X3J

IZooroQ***

<t-<

UJ

u.UJ

(M U)

s °o a

w a<\j~ >0

O UJ

O O O O O O O O O O O O

UJ ijj 'JJ UJ UJ 'X! 01 UJ 'OJ UJ J 'dJ

O O O O O O O O O O O O

0 o o o o o o o o o o o1 I I I I I I I I I I I

U U J U J U l l U I J U J U J U J U J U J U J

O O O O O O O O O O O OI I I I

O O O O O O O O O O O O

01 ij jj dj -A/ u; _; 'u cj .'i.- +i a,

O O O O O O O O O O O O

uUJJuUJau.

UJr

O O O O O O O O O O O O

U J U J i l U J O J U J U j U j i J U l ' X l JO O O O O O O O O O O OO O O O O O O O O O O Oo o o o o o o c o o o ou i r ^ — ( M i r i N — ( M ' o r ^ — c jO O O O O O O O O O O O

171

Page 185: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

oo

V)o o o o o o o o o o o o

u.

ooo

Jlito

1a

**

nHI«(MUPJ

JLJZ•a.

IoaoOJ

**

«th-<O

a.CM(MOs(V(MU

UJNa.uj

zUJ

(M Oegu au in

a

<s><\jrga

UJliU.

uj

o o o o o o o o o o o o

U J U U J I U U J U J U J U J V U I U U J U JO C M < M O O C D O < O « « ( W O

o o o o o o u o o o o o

« M v 4 » « v « M M < « v 4 > ' > « « a « »

O O O O O O O O O O O O

U J U J U J U J U J U J U J U J U J U J U I U Jo t« *u i i u ( vu ) r« .M9 i | i i u r ^i n w - c o f \ j c u i n - i ^ < j i n n< M « « o ( U N « > < u « ; u > i n i n u >u ) i n t n « » « - » « c « « < r

o o o o o o o o o o o o

o o o o o o o o o o o oI I I I

«• 4) <\J tf» CVJ <7> — •-

o o o o o o o o o o o o

( \ j r \ j f y ( \ j t M r w o j o j c M ( \ j ( M t \ io o o o o o o o o o o o

U J U J U J U J U J U J U J U J U J U J U J U Ji n o c u i p f l ' C D r - o o o i N i pm r i o j — (v — - < - " - - o o o( V J C V ( f g ( \ J t M ( \ J ( \ J ( \ i ' \ J M C V J O J

o o o o o o o c o o o o

o o o o o o o o o o o o

N O J U J U J U J i J U J U I ' J J J J J U J J U Jt- o o o o o o o o c c o o• J L O O O O O O O 3 O O O OU . O O O O O O O O O O O CJ. U1N — O J U > P » — C V J U 1 N — IV

o o o o o o o o o o o o

172

Page 186: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

fc. " •C-.

t • '.I'

f~ OCJ«

8°ir, c—to p;*~ s".

<.: t-.cn£co r:UL^ O

mss5- «=.

t:X

r-.j

ooin

U.>

U

o

nuiVVJ

_J2a

*r»)

iCMUCM

i.J

ItLUaua>

4>-«

to

2.<M(VIUX(\JcvU

2.UJXLLUJ

CM

U

LOCM(ViC

UJu

a'jja

vO

o o o o o o o o o o o o

o o o o o u o u o o o o

U J U I U J U J U J U J U J L U U J U J U J U J

u u u u u u u o u u u u

C J O O O O U O ^ O O U O

U J U J L U L U ' J J I U U J L U U J U J U J ' J Ji V O T « ^ U L F C M U ' r t o * B r t * 9 U > ^ j r ^irifM — a j c M c u i r ) — r ^ x j u i nCM •* O GU N «U >i> <tl U) U! U' U)u i t f ) i n « « « - » « « ' » ' » ' CO O O O O O O O O O O C J

o o o o o t » o o « - — «-««o o o o o o o o o c o o

t i l lUJ JJ UJ 'JJ UJ JJ UJ U. UJ JJ UJ JJ^ m o ^. f) •* ^ ^ o o ^* cu^ V ^ ^ ^ * C O O « ^ C M ^ J ^j ino CM u> o r- <r IM CM r^- f) o ou•»• — r \ j < -« -« — • " • j i u 'U ' f l '

o o o o o o o o o o o o

C M r M ' " M C \ J C M ( \ J M C M r v j C M C M C Mo o o o o o o o o o o o

uj x1 u.' iu 'jj uj uj x UJ uj 'jj u,'- " C M ' n O C M C M O ' O D C t ' O C U'.M — c <j> <j> a; -i) X' i N uj is10 i O i/^ ^ ^ ^ ^ ^ «^ ^ ^

o o o o o o o o c o o o

o o c o o c o o o c o o

u .x. j_ jj ai jj '.u +• :J 'i. -u i:c o c c o o o r c - c c c :

U) >• — (V J1 *• -* C\i U) V — CM

O O C^ O O O O V *J O CJ O

173

Page 187: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

tf.o"'0fc fe.1£S £'O Hi

«t siE-< 0oen >-*8u^fcsse- CL,S6B°en E-'en s<e wS.;(=) 5.» iJ<c M

PL,cn O^B^ fc C \H £->E- 1cn J-

CMi-; oa~2^EL. g;

w 382 1^1cn K

<r 05KE:' <C

OO

o

u.

uoo

-

*_l

UJQ

^«4

•• ^^

a.a

m

I«cv<J(VJ

-I<I

<£UoroOJ

in

a.<MMOS<M(MU

a.UJXIL111

f\Ju

1/1<M(XQ

UJO

UJa

ina

o o o o o o o o o o o o

o o u o o w u o o u o u

U J u J u J U J U J u J U J U J u J U J U J U J

o o u u o u u o u o o u

U J U J U J U J U J I D U J U J U J U J u J U J

o o o o o o o o o o o o

o o o o o o o o — -• — —o o o o o o o o o o o o

I I I IU J U J U J U J U J J J U J U J J J ' i l U J U J

o o o o o o o o o o o o

t \ j t \ j ( \ j ( \ j t \ j c v ( \ i c \ i i \ j r v j C \ ' C \ io o o o o o o o o o o o

UJ LU ID UJ aj uj

o o o o o o o o o o o o

X

IBVJ

UJ'-tu,

Nh-uUJJ.

O O O O O O O O O O C O

uJ aJ a,1 j. ill 'ii u iij ID j 'ii dJo o o o o o c o o c - o oO O O O O U O J O O O OO O O O O O O O t ' O O Ou> i*- •» >\j u> ^ •• IM 'J) f>- •« r\j

o o o o o o o o o o o o

174

Page 188: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

oo

o o o o o o o o o o o o

O O O O O O O O O O O OO O O O O O O O O O O O

U / U J U J U J U J I U U J U J U J U U J U JO £ ^ O * O ^ O < Q v O ' < C ' O t OO O O O O O O O O O O O

O O O O O O O O O O O O

u.oX

OOOO. O O O O O O C O

U i U l U I U J U J U J L j U J u J U I X I U j

ooo

O O O O O O O O O O O O

CO

-IOJo

'XJofVJ

z3zzo

ocr32)«***

u.o

ao

2UJuaUJa

O O O O O O O O O O O O

UJ ,J UJ UJ UJ Jj '.J dJ '.U 'JJ UJ il— ro — m ^ M o ^ ^ ' n o T )N. D (M PO N. •- 4) •« O O ^ MK i n « C M O O C » O C O C O » C Omminininin**'***^'*O O O O O O O O O O O O

O O O O O O O O O O O OO O O O O O O O O O O O

UJ of UJ UJ UJ It) UJ UJ UJ U-' jj ill

o o o o o o o o o c o o

to

g

•• O O O O O O O O O O O O1/1

01 a U J i i i u J U J U J i i J U J U i u J u j U J a jo K e o o v N m i > ^ > o o i O ^ ' r )<0 -0 C O < 7 > C C C O O > 0 0 < \ J O > 0 > O O O >Q UJ • O < \ J - » O O > 3 » « r » C O C C C C N

• . . N N - N N O < O N > < 0 < O O O « O• ^ • • • • • • • • • • • •

O O O O O O O O O O O O

o

•J2U3OU)cr

N

O O O O O O O O O O O O

O O O O O O O O O O O OO O O O O O O O O O O OO O O O O O O O O O O O

O O O O O O O O O O C J O

175

Page 189: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

o o o o o o o o o o o o

,Iooin

ooo

*•»*

•oQV

o o o o o o o o o o o oo o o o o o o o o o o o

U J U J U J U J U J U U J U U U j U J U J£ £ ^ ) ^ * D ^ > C O ' 0 £ < Q * 0o o o o o o o o o o o o

o o o o o o o o o o o o

o o o o o o o o o o o o

n <M cvj —.-« -• — o o o o o

o o o o o o o o o o o o

UJQ

OfVJ

XDZ

ZoxU.

o o o o o o o o o o o o'Jj UJ UJ UJ 'JJ UJ JJ uJ '-Ll 'il UJ oJ•<rn»-|/><t'\j

>^ ^ i.O /> o O

N a ) ( M ' O K » « s O - ^ - O O * < \ lN i f t ^ M O O i y O C O C C C C C Cinmtninin'-n^ ^•C'*^o o o o o o o o o o o o

(VJ

_

ioaoo***

•coo

2LJU

aua

o o o o o o o o o o o oO O O O O O O O O O O O

U J U J U J U J l i J U J U J u J i J i l ' J j L . '

o o o o o o o o o o o o

<K<

o>ca

a«IU

o o o o o o o o o o o cUJ LJ UJ UJ UJ UJ UJ 'J UJ • i.1 LU 'JJ

o o o o o o o o o o o o

u2 IMUJ t-3 aO -j•JJ Z

u.

o o o o o o o o o o o oUJ U.' UJ 'XI UJ ID IU X UJ LJ U U.'o o o o o o o o o o o oo o o o o o o o o o o oO O O O O O O O O O O Oins... <\jtnN — CM'.ON— Mo o o o o o o o o o o o

176

Page 190: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

O O O O O O O O O O O O

wtig

oo

u.

ooo

JJo

zcr

I*t^o

I7oao

***

oas>c-oa

NU.o

•oooo

(ft«c•oo

uzaj3ouaU.

(Ua

•oUJ

rsi

aUJ

O O O O O O O O O O O OO O O O O O O O O O O O

UJuJiJU.'UJU'jjU'J-UUJUJ< e o < o ^ > o < £ o > c > o ^ « c v cO O O O O O O O O O O O*.***'*tf'»<fr<?*'»<r

O O O O O O O O O O O O

O O O O O O O O O O O O

U ixj LJ lii U LU UJ It! UJ Uj i' UJO I * ) S > ^ O « " O - * « * « « O On m oc <-> vrt oj o * -c vo if. <rO * < O N N C - C v C ( r > ( / > t f 1 ( T l D( \ 4 C M c a M C \ i . - \ j < \ j f U - v j r v j f y r v j

O O O O O O O O O O O O

O O O O O O O O O O O O

-UU'JJaJUjJ^UJ.UlLI.JaJ-,ri_in^;\i^)'*'.')ir»o'3f ^ » " V J ' * ) N - « O — 3 O ^ ^ VN l / 1 < t ( \ J O O J > 7 > O C X ' t p 3 >t n i O t f > t f > i n v f t < » • » « » * • <O O O O O O O O O O O O

O O O O O O O O O O O Oo o o.o o o o o o o c oU j U J L U U U . j J U U J U x L ' U l U- n ^ o o i a ! * > o < r r * > f k - i ' »O ^ - M O c V i J ) ^ , 1 * ) ^ — f i JCO• * m - 0 3 0 N - c - i r > v O - * u i i / ) i n

O O O O O O O O O O O O

<v <M cv/ fw fw fy <v cy <v oj AJ <vO O O O O O O O O C O O

U j U J U J L J U J t j U . l L L . U , U x i UO O O - 5 ^ - O N O O f \ j r v ) 0 0 ^N i n r w O ' N ^ c i o m ' t f ' s t n n— — " - O O O O O O O O O

O O O O O C O O O O O O

-<^f\lMrorvjfO'*>"')^*«o o o o o o o o o o c o

U J U J U J U j U , ' 1 X U - J - u J U - L L a .o o o o o c o o o o o cO O O O O O O O O O O Co o o o o o c o c o o ol^N — <V( n N _ f U i D ^ - « ! \ ;

O O O O O O O O O O O O

177

Page 191: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

UJa

o o o o o o o o o o o o

O O O O O O O O O O O Oo o o o o o o o o o o o

oo

ooo

<K_)

UJ

**

IOJoM

2.Jz

-J<I2oaoUJ

2.a

4O

oNinin

o\u.

inin

>nmo

UJuaua

toaM)u

UJau.

o o o o o o o o o o o o

o o o o o o o o o o o oU J U J U J U J U J U J U J U J U J U J U J U J

O O O O O O O O O O O O

o o o o o o o o o o o oU J U J d J U J U J U J U J U J U J U J U j U J— m -« ui <r c\j n >c ui ui o ojN C O C M m p - » < > D . » « O > O « C \ J .^ U^ (V O O 9 (7* Q) (u 0} QJtninu)U)u)in«^«'V-94'o o o o o o o o o o o o

o o o o o o o o o o o oo o o o o o o o o o o oU J u j U J U J U J J J U J U J U J U J U i l UM 3 CM co n QJ n j 3 (M ro * **^ ^ * ^ ? U CM f 0 CM ) C?

o o o o o o o o o o o o

o o o o o o o o o o o oU J U J U J U J U J U - ' U J U - ' U J U i L U U J

U l C M C M — UI — O - ' f l - C T t P — —

o o o o o o o o o c o o

*• *•* f c c f • 0 ^ f r* y *o c o o o o o o ' o o o o

'JJ IIJ UJ UJ (U 'li Jj 'JJ JJ ':'.' ,J 'U

O C C C C O C o O O O C

o o o o o o o o o o o o

o o o o o o o o o o o o

Page 192: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

o o o o o o o o o o o o

O O O O O O O O O O O Oo o o o o o o o o o o o

1 gE-<

a IS E8 w §CO o

^* r§ t^

^^4

«g

^

§£

b? ^3

siui ^N,rf £-<pu 1.— /Vl

°? 0

^ £S §C-? GG 5E-< J3

^§ §00gg

g*0 O•J Cti1•

r-iM

S -"ij

<C

ooin

o

u.>

u0o

«h-J

Ula

nU)t\j—

j1

<VJ

k-<

"•

*J£

»

*

£1

o(M

2JZ

2.

J<1£0ao

4^

**41

Ul Ul Ula NX

vt * <

o o

0 O

i U) Ul

S 0) C4u> « nin m n

0 U

0 0

a "ftO f- OUN N IPu. in in

0 0

0 0^ o of.OJ UJ JJ

U) U O «IP N 00v? ff in tn

0 0

(VI (\J«• 0 O

a uj ujin « a>

o u - «- n

o o

.- -.>• o o

^ N AJ UU-- H- 0 CJ IL O OO IXJ O OLU x in N

Ul

£o

o

Ul

0*.4

ro0

0

M

<v

ino

oo

UJ

0>0

o

(Mo

wo>

Si0

r\JO

uoQ

5J«

Ul UJ

O 0

O 0

Ul Ul

(O O•4 «•

n m

0 0

0 O

u> <rI*) N^ oin ino o

0 00 0

ai u* ji!<u «o

0 O

(M CM0 O

UJ JJo o

£ M

0 0

^ wo o

UJ '_o co ^o ^>(\i U)

u

0

o

Ul

<o0nu

0

<M•«Q

U)

0

oo

ai

*

o

<\o

U)<o

^o

.go

V^N

o((S.

Ul

o

u

Ul

inon0

o

o<oc^

o

uo

Ul

£«u

o

<MO

UJ")

N

o

no

UJco^JM

Ul

0

o

Ul<Jorou

0

•»•4

U^

o

oo

UJ

£'*•

0

OJo

UJo>

Iv

o

.•no

I/oQ

{J

t\J

Ul

0

o

o

Ul

Q

on0

o

UloGL)

O

O0

UJ

mt

f-

o

CMO

UJn

£

c

no

OJ0Q

CJ

(1>

Ul

o

0

o

UJ

Q

onw

o

Ultjcu

o

0o

UJ

in^

o

(\Jo

Ul(VJ

w

c

Cl

o

'JJoQ

(_>(k.

Ul Ul

O 0>

0 0

o o

Ul Ul

gs ipo> o>«W (\J

t> o

0 U

( UU4 (\JCD Q)

O O

o o0 0

OJ Ul

N «r- (u

0 0

(\J OJO 0

U, UlI*. —

iv ^

0 0

<r <rO 0

J., JAJo co oo w— ' CM

u u u o u u o u o o o u

179

Page 193: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

(fto o o o o o o o o o o o

81•* se*M

E-tO SS

C3 c ^

g£e-<H1^8U a.

to ot/1 o

•"* E-4

<«! X

w S^3 ^j

^ &H^5 ^5

sc 2:a; c^

^SC.-3 OJ

s«2: Eggegf- >j^^f.gM Qi

ISt^*

M «:

8s.j pf (

oo

*•0

u.

ooo•

~<.K_l(Ua

«r•w*rt

•^4

J

jj_a

f)

(VI

JlJZ

X

\oa.uQJ

IUa4Xin

\inin

NU.o

inaUJa

inin VO

ai

o o o o o o o o o o o oo o o o o o o o o o o oU J U J U J I U I U U J U J U J U J U J U J U J

o o o o o o o o o o o o

•**"*»*»««*«N«*P<W*«***<P<

o o o o o o o o o o o o

U J U J U J U J U J U J U J U J U J U J U J I j U

o o o o o o o o o o o o

U J U J U J U J U J U J I U U J U J U J U J U J— ri -< u> •» CM n «• ui ui o ai

o o o o o o o o o o o o

o o o o o o o o o o o oo o o o o o o o o o o o

4t-<

o o o o o o o o o o o o

( \ j ( \ i r g r v j ( \ j o j ( \ i o j c \ j r \ j ( \ j r v jO O O O O O O O O O O O

U J U J U J U J U J U J I X I U J U J J j U J l i J> O ' < p ) < v j n a i > u - i j i n r - v o ' * > c— — — N ( \ | O U > U ( 4 . ' < T - 3 - n C \ J

>0>O'Oi0 1n'9'*«*<t<*'*

o o o o o o o o o o o o

> o o o o o o o o o o o ou<£ IM UJ XI UJ XI U X XI U U 'Xi XI -XIJ.' fc- C O O O C O O C C O O Cj J. C O O O O O O O O O O Ou ixi o o o o o o o o o o u oXI X Ul N -• CM If! !*• -• f\J If) f>- — CV)•_t • • • • • • • • • • • •u, o o o o o o o o o o o o

180

Page 194: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

UJa<zV)

O O O O O O O O O O O Oo o o o o o o o o o o ot U U J U J U J U J U J U J U J U J U J U J U J

CD CD CD CD CO CD CD flD CD CD 00 CO

o o o o o o o o o o o o

o

in

oo

oN

o o o o o o o o o o o oU l l U l U U U ' J J U J ^ a J a i u J u ;O O O > M » n i / ) ( D n r > - - « — 03K

8to28

tO

oCw

u.>

ooot

O

UJa

rt>-I«<voN

X3Z

I

Oao03

a.oxIL

Oo a

a*a

oooooooooooo

o o o o o o o o o o o oU j U J U J U J U > U ; i X J U J U J U J U J U J

o o o o o o o o o o o o

o o o o o o o o o o o oI I I I I I I I I I I I

U J U J U J U J U J I L ' U J I U U J I U U . ' U Jo > o o c D N o n r > . < o i n — ( v i m

o o o o o o o o o o o o

I•

X

X.a *

*a

<o

o o o o o c o o o o o o

ooooo o o o o o o o

4O

UJJuUJau.

o o o o o o o o o o o oNl U J U U J l U U J j J i J l a J U J u J U u . 1H - O O O O O O O O O O O Oa o o o o o o o o o o o oJ O O O O O O O O O O O OJ L U 1 N - « f V l P N — < \ / i r N ~ ( \ J

o o o o o o o o o o o o

181

Page 195: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

UJa

o o o o o o o o o o o oo o o o o o o o o o p oUl UJ LU 111 UJ U> UJ UJ UJ UJ UJ UJ

00 CD 00 CD O 00 00 9 00 4) 00 OD

o o o o o o o o o o o o

ooI/)

zoX

o o o o o o o o o o o o01 uj uj uj uj a u i. 'xi uj uj x'

u.O O O O O O O O O O O O

ien CM

oo *

*n

-IUJo

in

Z3Z

IZOao

vu.o

zUJ<J

aUJa

o o o o o o o o o o o oU J U J U l U J U i U j U J U J U J l l l l i l U J

o o o o o o o o o ooo

o o o o o o o o o o o oI I I I I I I I I I I I

U J U J U I U J U J ' i j U J U J L U U J U J U J

o o o o o o o o o o o o

**

— o o o o o o o o o o o oQ. a l U J U J U j U J U J i i J U J U j U U j J J

fl1 f > - ' « ^ ' r i > o i n o i n a > ( j > — o•» <o < \ j r n i n m « o ^ — N n n c j o >O UJ * l * l < V - < O O O O > 0 > O > < 7 | i D

• ^ ( ^ ^ C T O ^ ^ ^ f l / C O C D C C Q W• • 4 • t » « « « « « f « « «

O O O O O O O O O O O O

<o

uz.u

a.u.

o o o o o o o o o o o oN UJ UJ U U 'il 'J JJ til UJ UJ 'II uJH O O O O O O O O O O O Oa o o o o o o o o c o o oUJ O O O O O O O O O O O O

o o o o o o o o o o o o

182

Page 196: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

IUJa

o o o o o o o o o o o oO O O O O O O O O O O O

I U U ) U ) U ) U ) U J U J I U U J U J U J U J< t t f ) « O C O O O O O « — — -C D f i C D C D C O C T ' O O O O O O« « 4 t f « « « < « 4 4 ' «CD flD O O O CD OD CD 00 00 00 CD

o o o o o o o o o o o o

UJ§oo

u.>

zoV

o

o o o o o o o o o o o oUJ UJ UJ UJ UJ ii uJ iii uj UJ uJ aj

o o o o o o o o o o o o

COCO

§8

CO

o

ooo

-JUJo

**

nKI

2OZ

IZOao

oNU.O

oo

zUloauia

o o o o o o o o o o o oU J U J U J l U U J . U J l u U J l i J U . ' u u u j

o o o o o o o o o o o o

o o o o o o o o o o o oI I I I I I I I I I 1 I

UJ UJ til UJ U.' UJ UJ UJ UJ UJ UJ 111

O O O O O O O O O O O O

wX.a

**

>0UJ

o o o o o o o o o o o oU J U I l U U J L L I U J U J U J u J i U L J U JH N f l ' O ^ O ' t f O 1 » « - * Nf5 — O ( D N N > O i r t f 1 i / 1 l / ) ' f f

— — — O O O O O O O O O

o o o o o o o o o o o o

<o

U:a.U.

O O O O O O O O O O O O

M .U U) JJ UJ HI 'JJ UJ 'JJ JJ 'JJ 'I, u.> - O O O O O O O O O O O Oa o o o o o o o o o c c o>JJ O O O O O O O C O O O O

o o o o o o o o o o o o

183

Page 197: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

xUJs

o e o o o o o o o o o oU J U J l U U J l U U J U J U J I D U J U J W

£ Ulo o o o o o o o o o o o

£to o

o

j N j c \ o j \o o o o o o o o o o o o

E-

aQ

03

^ V2s58

pl«

<rt feI±3 O

3 g_^3 S5IE S

?S0 M

II.s

£Hs: XM OC— 1 O^tD W

fccA^ Q^M OCxi Cd"3!.

gsI oi

sa 0H Cu1

U.>

Ooo

V-JUJ0

o

•«^

32a

*A

*

*#4

XOaUJi

(AW/

UJ»

***

XUJsu.UJ

1-z

-. uj— oUJo or

dJ

W)a

** 'OUJ UJ

«<

U J U J U J U J U J U J U J U I U J U J U J U JO 00 GO ^ O G ••• ^> ^ U*) GO• • • C D ^ ^ N t f l N N O ~ " f - " O D^ • * ) F ) ( < > ( V ) ( \ J f \ J ( f ) O > O O OC J C M < M < M N N M W f « f n n n

o o o o o o o o o o o o

o o o o o o o o o o o oo o o o o o o o o o o o

U J U J U J U J U J U J U J U J U J U J U J U J

fc ^^ Wg «o4 J ^J ^^ f | ^^ ^J ^J ••)

4t ^ f f 10 ^0 ^5 ^^ ** ^* 4f **•*o t » > i * ) f t f ) i ' ) * * » o i f > < o a oo o o o o o o o o o o o

o o o o o o o o o o o oU J U J U J U J U J U J U J U J i U U J U J U J

^ \rt trt o o o ^ ^ *? *^ o£ £ £ £ £ : £ £ £ ! ? £ ? 3^H ^^ >^ ^^ ^^ ^% * **. *«^ <" *. j*»

<K<

uz'.U3uUJau.

UJX

O O O O O O O O O O O O

"J UJ JJ ij .J -U' JJ XI - U 'lJ 'Uo o o c o c o o o o o oO O 3 C O C O O O O O 3o o o c o o o o c o o o

o o o o o o o o o o o c

Page 198: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

o o o o o o o o o o o o

f-<

§s«s:E-

COCQ

. i £5to

Q £•u g,.e M!<: E-•H %.BO

OCO >^en«X K

.oft58^ 0-CO SH

3 Oi-l O

B^o ss w

** iit5 MZ'. fc

§1*§

<^ZZ XM OQ 0.

£%H tno to§S»J ow u» 2si oiz oM fc

ft

00in•o-

UL

ooo«4

<

K

J

III

O

<M0•_

DJt

XUJX•4

UJ

UJNU,UJ

«4t«

*»<

> KX ZO - UJQ. •* OUJ «i o a

</) UJV) Q.

o

****4ft

ina

•* O01 UJ

U J U I U J U J U J U J U J U J U J U J U I U J£ M ) 4 ^ N O N O 4 C D C O i n

w w ~ ^ - - - n ^ ^ s ? l

o o o o o o o o o o o o

cvj (NJ CM c\j w CM CM CM CM CM CM CMo o o o o o o o o o o o

O C O h - C O - t f O C « * N - ^ i/) CD

^ f) fO ^ CM CM CM ifl O1 O O OCM CM CM CM CM CM CM CM CM fO fO fO

o o o o o o o o o o o o

o o o o o o o o o o o oo o o o o o o o o o o o

U J U J U J U J U J U J I U U J U J U J U J u Jo^ o •* co 9 co o ft ^ ^ tn ft( V j M M . . f t f t N N C G « » « N

o o o o o o o o o o o o

o o o o o o o o o o o oU J U J U J U J U J U J U J U J U J U J U J U J

^ ^ ^ ^ 1 ^ ^ ^ * * C O " O f t f t^^ ^^ ^1 *Q ^3 ^D ^3 ^D tf} [fi ^1 ^in ^ in in in in in in in m in ino o o o o o o o o o o o

<fc-<

<JzJL>3O•ucu.

UJi

o o o o o o o o o o o oJ li,' tii ;. j. !f.' .t! - j J K -o o o o o o o o o o o oo o c o o o o o o o o oo o o c c c o c c c o c

o o o o o o o o o c o o

185

Page 199: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

\ I V j C \ 4 < y c \ j C \ J C \ j C \ jO O O O O O O O O O O O

E-

§Oz<*;^enO ^^SsR =>w aE- M<S E-HM SZ« sO 0to —CO<C W

o£58§8H o

§eS w

?3O M

H fe

H B

^^:< JH

R^§&£-t |

O C/5

1sM O

w ws;

S50.i a:

Sg -i

ootO•o

u.

o0o•"*

<h-JUJo

*««4

3za

*»***<>XoaUJi

wtnvt<joUJ

***

X U) UJui <o nN 00 K

— * *

0 O

CV) (\J0 0

X UI UIUJ O 00N •* COU. ^ f)UJ <V <VJ

0 0

o oh- O Oz

•• UI UI UJ— U CO lAuj in —o a o o

Ui 1*) •*>

0 0

- 00ina uj ui

M O O

M <o O> Oui ui in <o

• <o <o

U J U J U I U t U J U J U J U J U I U J• » O 4 O « p ) « c > i n m£ « O 9 O C O r M 4 S ( ?^ ^ ^ m ^ i n o c o f l o c o

o o o o o o o o o o

C \ J ( \ J < V J C \ J ( V J C \ J O J ( V ( \ ) C Mo o o o o o o o o oU J U J U J i U U J U I ' J J U J U I U JN c o < t o < t — N - ^ m c o• O ^ N i n N N O — N C OW ^0 CV ^ f^ UI 0* O O O< N j ( \ j < M < \ j < \ j c \ j ( v j m m i * >o o o o o o o o o o

o o o o o o o o o oO O O O O O O O O O

U J I U U I U I U J U J U J U J U J U Jp j < o o n h - n — -«NN « o - < o n c g - < t < » oa a o o m i n o w o mN < \ j n n n n ^ m m N

o o o o o o o o o o

o o o o o o o o o o

UlUIUIUJUIUI ' l l t lJUJUJ< M l f ) - « l l p » « « O N f r I O NO t O f ^ ^ N ^ C A J « O O ^ )> o O ' C O o o o i n i n 4 'O ^ *0 O O O ^ ^ O ^0

O O O O O O O O O O O O

E? <0

D

aa.

O O O O O O O O O O O O

N 'U 'U Lb U 'J 'U ill .J 'J LJ J JK O O O O C C O O O O O Ca o o o o o o o o o o o o'11 O O O O O O O O C O O OX !fl N •- fM if> — (\) •.-! >x. -• C«

O O O O O O O O O O O O

Page 200: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

a

o o o o o o o o o o o ooooooooooooo

U I U J U I U J U J I U U J U I U J U J I U U Jo o o o o o o o o o o o

oc:O[t.

1<5E-

(A

<3•-

s£<cM

Bwen E-CO M<s toC5 p*^t ^*

^ OO

O

H ^*C (xj

CO 5

sCO O

§ §2^

0. fH_ X05 ^?^D P«•-^ w

^ CO

S3^sZ SM «t

1•

1-1s

0O

*O

u.>

OOO*^

<HJUJO

o

••«

.,a

n

**w4

XOaUJi

(0

. JO

ai*»*4t

*

o o o o o o o o o o o o

o o o o o o o o o o o co o o o o o o o o o o o

U. UJUIUJUJ lU lU l l l LUU 'DUJUJ3 O O O O O O O O O O O O

N N f M N C V l N N N N t t N C V J

o o o o o o o o o o o o

o o o o o o o o o o o o»• o o o o o o o o o o o oZ

(M U) UJ tu i i JUJUJ lL IUJUJ t i iUJUJUJ

3 ° 3 5 < 5 S ® O f \ l * ( n 5 N nz a o o « i » > a D N « o > o i n 9 < v

o o o o o o o o o o o o1 I 1 1 1 1 1 1 I 1 1 1

o o o o o o o o o o o oo o o o o o o o o o o o

(VI UJ l l l lU ' iJL j jUJI iJ lu iA iuJUJUJ

3 ^ O C V l O N ^ I ^ O O t V J I D NZ Q t ^ ^ ^ Q Q C O Q O ^ * 1 ^ * " " * *QB CM (vi (vi (vi (vi ^ (vj cvj ro ro ro f

o o o o o o o o o o o o

<O

uZ.U.'OOUJ1u.

-• — cj fv. CM jy <r mn" 1 ) * tfo o o o o o o o o o o o

N il i( i) O( J J 'JJ X' V U '.U JH - C O O O O O O O O O O Ot r o o o o o o o o o o o ou o o o o o o o c c o c or in N *• CM in N -• < v i r ^ — M

o o o o o o o o o o o o

187

Page 201: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

zD

a

o o o o o o o o o o o oo o o o o o o o o o o oU J t U t U U J U J U J U J U J U J U J U J U Jo o o o o o o o o o o o

1E-.

EgIS

£8Sgr6

eE6- 6«t 0

M —O WV) E-CO M

^ 8§ ^«rt OoBE-r^ r^

§ C*35C

« 3*£o orA t"'

g|8s

"•B« Os&f cA

toU <c2: i-5

S oCi2

z 2;M <<

1

OOin0

fc

oo0

w*

<»-

0

ineg

^

;;,

Z(Z

****«•

>•XoaUJ

I/)(A) '

JO

UJ

«

w

*

M

O

oo

U. UJ3 0Z U)

(VI

o

o»» oz

( UJ UJ- o «Z ft <0o uj in

a .»o1

oo

<v tu

^ •*«y COa eg

!•)

O

Oo

o

M

O

oo

UJ

£o1

ooHI

oo<v

o

oo

o

CM

o

o0

UJ

£o1

oo41ofs.

N

o

oo

o

At

O

Oo

s*o1

00

UJ

N(•»t\J

0

oo

o

(M

0

oo

UJ

*o1

oo

tu<£K

N

o

oo

o

(M

0

00

UJ

£o1

ooUJ

4Nrg

0

00

o

<VI

0

oo

UJ

K

o1

oo

UJ

<?(y.

(M

o o o o

O 0 0 0o o o o

o o o o

W M (VI <VI

O O O O

o o o oO O O 0

UJ (U U UJ

« 5* *o o o o1 1 1 1

o o o oo o o oUJ UJ 'JJ UJ

^ ^ go co00 O> O1 O1

eg cvj co (M

w

o

o0

0

eg

o

0o

UJ

?o1

0oUJ

Morn

o o o o o o o o o o o o

<K<

uzirDO

o o o o o o o o o o o o*J UJ 'JJ '' 'U JJ 'U 'JU JJ uJ J .U i;.'*- O O O O O O O O O O O OZ O O O O O O O O O O O Ou o o o o o o o c o o o o

o o o o o o o o o o o o

18

Page 202: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

3Za

o o o o o o o o o o o oo o o o o o o o o o o oU J U / W U J U U J U t U U J U J U J I Uo o o o o o o o o o o o

ai0t>-,

H

§

<tf-

gf

Q!

£g«»• r ^•4, tJM1*-'

8 Wco £-CO H

^8S CL,1 60°I-1 fcE- 52.« WS £

to 5

ISCO SC/5 OH 2:(X,>H

. XOH OO OH1-3 E^C |^ CO

S3$sz z:M<

OO

•o

*

oo*4

<t_

o

*^^

••«

3Z(X

****** ' '^»b£

oa01i

<joIII*•»

*****

o o o o o o o o

o o o o o o o oo o o o o o o o

3 O O O O O O O O

o o o o o o o o

O O O O O O O OH O O O O O O O Ojj

(M m uujujujujujuj i i i•* U < N O * < l r t > - *

Z Q* rO fO ^^ lo ^> ^^ tA f^^9 lij |A tf) lA lA |A \O ^9 O

o o o o o o o o1 1 1 1 1 1 1 1

o o o o o o o oo o o o o o o o

<\| U J U J i U U I U J U J U J U J*"* ^^ ^^ ^ ^O ^5 ^3 ^3 ^D•^ ^9 ^* ^D ^^ ^U *** ^J ^^

0 O 0 O

o o o oo o o o

o o o o

(VI N <VJ <M

o o o o

0 0 O O0 O 0 O

UJ UJ UJ UJ

SN N ao o o o1 1 1 1

o o o oo o o ouj uj uj ai

j j j S S So o o o o o o o o o o o

E-

4K<

uuJoJJau.

o o o o o o o o o o o oM 'U UJ 'JJ J 'U aJ u' 'JJ 'U OJ -1) iJ>- o o o o o o o o o o o oa o o o o o o o o o o o oUJ O O O O O O O C O O O C3: to N — M 'n "» — 'v 'r N- — t\j

o o o o o o o o o o o o

189

Page 203: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

oooooooooooo

M

00

@E-<«sM

8COoO<sO WE: E-><S Hi

co OJ3 &•

1"ISw ow z:S >M> xCO O

!&s i6- COMs2 M

O

U

S2<c

S

oo

*u.

ooo

UJe

<t-<o

(NJ<\J

UJ

u.UJ

xOaUJI

to

oUJ

*

CM

Za

fvj(LIO

aUJ0.

COa.

COCMUJ

UJ

UJOf

QfUJI

O O O O O O O Q O O O O

tjl' <!' UJ U' * ' UMfMJ' I1J VI Ml UJrn c> a ^^>«^r*<rps joDi r iocO 9 ' ^ < ^ C D O O C D « 4 U > N i r \ ^ D ' £O - O O O O O O O D e D O D ^ O ^ & & O~«Ji-«^|«-l^<^(P-_4 t«(i-l^l^-

oooooooooooo

CM(Mrv j fSJ (V<M<M(Mf<g (M<M^oooooooooooo^1 LU Uf HI III 111 LI I In 111 LL1 II III

o < c r ^ a o ^ r o * r ^ r - ^ « r o c^ e o < o > * > r ~ ^ ^ - r ~ > O - - ^ c D•4-rOfr««fNJ<M<Mirva OOOfM«Mfs i<MrMfvJMf \ j<M««r<* , rr,

OOOOOOOOOOOO

OOOOOOOOOCCOooooooooooooUJlUUJUJUJUJUJUJUjUJUJUJ^ • ^ ^ i f ^ O ' t — f ^ ^ ^ v A c o^eo^«*' i -*o-xr^«oc>«-i '*9>0 .9>O>9>c ro<o~4~* ' s > j r vJfMpjcg«Mrsj»«J«vj«^««fn»^«*»

oooooooooooo

l^«4>MOT<>_l«<li>4«M»4^l^4«-looooooooooootil m yj LU Uj 111 Ui 1)1 111 in i| mO O ^ a O f ^ C M O O O - ^ t ^ f ^ O D^ i r v ^ O O ^ h - f n r ^ ^ ^ tTN-OPoir»»Ti ir»r<o^h.o><vj ^iro(^^i»iV4i-4>>-i>4^4fNj fs j rwc^

ooooooooo oco

ooooooooooooooooooooooooUJUJUjUJUJ tUUJLL 'UJa-UUJo o o ^ o o o i n f v i c r ^ c ^-<om o o o ^ j f i ^ o i r o j f i f ' O "» t i r « n h - o * c a > o - - ( T > o o oo o f l C ' O D c o c D ( r a o o o r > - 4 3 s O ' Coooooooooooo

^«-><MCMPgrsjfrirp|r^rr, >f »frooooooooooor-

UJ UJ UJ UJ U.I UJ LJ U- L. LL' UJ U-oeoocooooor-oO O O O O O O O O ' ^ ' - Oo o o o o o o t r r o o oi /N^-^ - t f v i r ^ -^ - i fM i r^—'^ ;o o o o o o o o c cc io

Page 204: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

oooooooooooo

U4

ooin

XUJ

UJ

ooo

UJ

u.UJ

UJo

COmCO

**<

XoQLUJ

CO

o

«*

(M

a:

zUJ

<M OcuUJ OC<J uj

Q.

COa

<v<\J >OUJ UJ

OUJau.

orUJX

ooooooooooooUJUJUIUJUJUJUJUJUJUJUJUJi n«n»hr~c«>^ > oo^ > ^<MC7 > h-o c r v r o o r — ^ r - < M ^ ^ - m c o<Nj«M«\)«\j f \ j«\((virO(<»rnm.-ri(M<VJ*V»(V<M«M<\jfVJCJ«VJfVifS;

O OOOOOOOOOOO

<NJ«M<M<M«M<MC<g fV»«M«V<fNa fSJooooooooooooUJ 1(1 UJ nj m L1J yj UJ lAf yj IU ly

Of lOf» -oo<O' * ' - - r * ' * - maoi-40D<o^r-mr* i<~^' - ' r~oo^ • " n m ^ p g f v j f v j i n a s o o o«M«Mfsjp>jr>j r j ( \ («Nj<M'*>r<>(^

oooooooooooo

ooooooooooooooooooooooooUJUJUJUJUJIUUJUJUJUJUJUJ>j^-f«-inof*- ' j -r-er^in«j '^ f O f \ j O ^ « r ^ r ^ o o o - 4 ^o o o D o o t » r ^ r « - f ^ - c o < 7 > o o opgfN iPgCMrgrv j f v j fMrs jc t ro r r t

oooooooooooo

•^•^•^•^pH^ti^^-tr^"^!-*^^ooooooooooooUJUJUJUJUJUJUJUJIUUJUJUJcg - *o» f -on> f * -«o < o - *< \ J 'O< M r o m ^ ^ c r r " O O f \ j f o a om m u > i n ^ > < o ^ C T % « N J ' * ' i n c >"<»<»^«-«»^»-«—< ^- <\i (\i rvl (\i

O O < J < J O O O O * - » O U < - >

<^ .4«4»4^4 r4< - lOOOOOooooooooooooUJUJUJUJUJUJUJUJUJUJUJUJO v C O P " « M O — " « N l f O f \ J O C 7 > r -• ^ f s i f < ^ v n o o v / > e o « O r r > f M O « - 'O O O O O O O » * - < O « » > f S / —— • - 4 - ^ - ^ — J — < • — l > f l O o D O D O O

oooooooooooo

«^—«M<\J(\jCNfomfr»r«isj-«J-ooooooooooooUJUJUJUJUJUJUJUJUJUJUJUJoooooooooooooooooooooo oooooooooooooomr^--cvjin'^»-*<vji/>f>--^<vO O O O O O O O O O C J C

191

Page 205: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

I/)O O O O O O O O O O O O

1E-JZWO2

£

CO

E-< O

S3BgCO OCO O<z •-'o wis e-<< H

CO <3

Sfe§§o*£w Ho «*K^ ^Jc5 tti^ 2w oCO S

W >-l> 1§S i

^2Z iJ

S°0, W

a zM<a:

I

oo

*u.

oo *

****

Ca.

**

OJXNCV)u

UJxu.Ill

UJ

Jt.u,

L.Ia:

OJa

COa

*\j<>J O'U a/

O O O O O O O O O O O O

U J L U l U l U t U U u J U J a J U U J a Jo o - < N < \ ) i / i n * n L n < M < Mi n m m — n w r o O v O N a c rC O O C C D O D O O O D C O O O O OM M r v i O j M P J C J ( \ , M O j r v J M

o o o o o o o o c o o o

< \ l < V J < \ J ( M < V l M M f M < M < V J < V j O JO O O O O O O O O O O O

tu ai u.1 iu LU LU aj LJ u u u.1 iLiO C O N < D < t O C - < ^ < t ' . 0 0 0• * O C « 0 * ^ - l O N ^ O — N C O^ r o r O " ) ( \ ) ( V P J l O O l O O O( N j r g ( M C \ J M ! V ( \ ) > J < V j m O ' n

O O O O O O O O O O O O

O O O O O O O O O O O OO O O O O O O O O O O O

ij aJ a) UJ uJ UJ uj J ID ')J J xl•O O 0 >0 9> N f\j -\j cj -y i/i N3 > C 7 * ' O t > n r o * ^ c \ i < t O ! ? 'O O O > O - O > O O N £ £ ' C C O< \ J t \ J O J f \ J f V j W < \ J < \ ) W ( \ j f V , t \ J

O O O O O O O O O O O O

O O O O O O O O O O C ' O

U J l L i U J l U U j l J U ^ U j jj ^ ^J LLf \ J O > e o •* O — TT' — O'O0 9 - o n o L O o o c t) r. <»< r * i n i n o - c v i r - H . r < r c r-« ^ -» — —••-« »• M r\i <\j (M

O O O O O O O O O O O O

O O O O O O O O O O O O

ti 'jj U u.' UJ a.' 'jj «i x1 uj '—' x,n -• <> o -f> o ^o 'j' x c — No CD co a« •* in « — f- ..(-/•» —f M ! \ j r v j t \ i r o n n ' \ J c r ; o o

o o o o c o o o n o o r 1

— — fM!\|i\l'\Jin-«l..O'')»^O O O J O O O O O O C J

u .LI uu lu uj u. LJ u, .j u. — j.o o o o o c o o c • i "> i~>O O O ^ C O O O O ~ C. O•J O C (-• "5 O O C C O C Oi/IN — (\|J". N — r\) /I- N. — Aj

C O O O O O O O C O O f . '

Page 206: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

lua<Cfl

o o o o o o o o o o o oU J U J l k l U J U J U J U J U J U J U J l L ' U Jn o i ' M O N N K < o i n < o o o oi n i n m u ) « < « i o < o « o o so o o o o o o o o o o of * < M M * » m t * » * » * » * * M f« •«

O O O O O O O O O O O O

oo

u.>

zoN«>0o

o o o o o o o o o o o oU J U U J U J U J U J U J U J U J U J U J U J

o o o o o o o o o o o o

ooo

JJ

***«*<XXoauII/)in<oUJ

**

Xu.o

vOooo

zID

aUJQ.

o o o o o o o o o o o o

L U U J U J U J U J U J J J U j l l J L u U j U J

o o o o o o o o o o o o

o o o o o o o o o o o oUJ UJ UJ UJ UJ UJ 'JJ U.1 UJ UJ UJ Ulc o i f i < o — i n ^ — o o — m

o o o o o o o o o o o o

za

o•0o UJ

o o o o o o o o o o o oo o o o o o o o o o o oU J U J U J U J U J U J ' U U J U J U J U J i J

?5

<K<

UJoouau.

o o o o o o o o o o o o

o o o o o o o o o o o oN UJ JJ UJ OJ UJ iJ A :U \U LJ U U» - O O O O O O O O O O O Oa o o o o o o o o o o o oJ J O O O O O O O O O O O O

o o o o o o o o o o o o

193

Page 207: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

csg££)P

£

CO

8^HO HCd pe-< z££BSen oto ^-a;Q W3 E-t<5 H

cn oR f et-5 SB O

Dd w

a§r k~)tn H>J o<= s:

g»gl|&»-) cn«23 d3°(i, w2 SH <

I

ooin

u.

ooo

UJo

inCM

oza

**

*

Xoau

in

oUJ*

UJazV)

Xooo

Vli.

o

2UJu

*Q OO Hi

O O O O O O O O O O O O

U l t i J U J U I U J L U U J U j U J U J U J U J

O O O O O O O O O O O O

O O O O O O O O O O O O

O O O O O O O O O O O O

U> UJ UJ UJ lU U UJ UJ <*J lii ID >li

CO CO CO CO CD CO CO CC ^ C^ C^ O*

O O O O O O O O O O O O

O O O O O O O O O O O O

' X I U J U J U J U J U J U J l l U - I U J U J U J

O O O O O O O O O O O O

O O O O O O O O O O O O

U J U J U J U J U J U J U J ' i J U I U J l U L L l

O O O O O O O O O O O O

O O O O O O O O O O O OO O O O O O O O O O O O

U i U J U J U J U J U J U J a J U J U J U J l U

^M ^» ^^ co ^? *^ ^) & co ^^ *o in^ ^ ^ ^f tO m U^ r* j p| f^ pr^

O O O O O O O O O O O O

Cd

B^<sEH

<a

OU

O O O O O O O O O O O O

M UJ I'J -U aJ ^J >li liJ w ii _i J lijH O O O O O O O O O O C OT O O O O O O O O O O O OJL' O O O O O O O O O O O O

O O O O O O O O O O O O

Page 208: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

a«z

o o o o o o o o o o o oU J U J U J . U J U J U J U J , U J U J I I ) U J I U« m N — a - a - o i f i — N ' f r o• » ) I * > l * > l * ) N < \ J N I f l < » ' * <t -tO O O O O O O O O O O O

t-<

§o£2<c£.•

en8i-4 - ~— \o 3££ ;=)c.- •p»c ^-«

5 *1.i — I er

B 2;0

v; off> ^_x

<C W2 E-<C. H

a- 8

II— T ^^

13i ^'•=C iC

s 3en HU O-* ^s ot \ *^-1 1 r f w

ESH OC5 (U'3 ECO 1vJ CO

CT5

0

<o•o

u.^

ooo•

""KJUJo

*«4

o o o o o o o o o o o o

o o o o o o o o o a o ozo uj uj uj uj w ^ u jj :.j ui uv -Js <o* — r o c o f o ^ O j f n •» — *.••o o r o « u " > t n m m o ' O - s o o r >O o e o < D 3 c o c ^ a ) < 7 > ^ o < n < c > 'O i n ' * ) ' 0 ' * ^ r o r o ^ 0 ( ^ ) r r ) f o r r ) r ' i

o o o o o o o o o o o o

< \ j ( \ j ( \ j < \ j ( \ i < \ J c v i c g N < \ j c \ i r v j•» o o o o o o o o o o o o«.«• 2 m UJ UJ U UJ UJ UJ UJ UJ -. U_ '.U* o j n a f n c o u i f o — M c ^ o o 1

» x o ^ o i o o p j o ' n o ' O ' O c j ^< u. < o < o < o > o t n m u i > o > r O ' t f i J * > i n

o ( \ j ( \ j t \ j ( \ j M f t j < N j c y ' * ) n n i ' 1 )

x o o o o o o o o o o o ooa<jj

I / ) K O O O O O O O O O O O O< zJ <O UJ U J t i J U J U J l L ' U J U J U J U J U J U U JO O (J N P O O C M O O O > ' f l r ' * ' * l ' * l < *

ii* rt^ _^ M m M ff\ i»\ o r} t«'\ rti^^ w^ ^^ \» u t »v ^u • * •-* ** ' ' ^« » LU O (X i f ) » O O ' O N N a o O ' * ) i n ^ - ^

» o o o o o o o o o o o o»

*o

g <o

o•oo

z'JJDuUJ

10a

UJ

NJI-rejjx

O O O O O O O O O O < " > Oo o o o o o o o o o c oU J U j u j u J t i J U J u J a J i J U J U i i -• * < J O D O ( \ J — < f - 3 > ' \ J N < C O• * - > * 0 0 5 1 < O O 1 O f r > O I > - < C( 0 * * i n N c o N < v c \ j o a < c i< £ < O < O O v O O \ 0 v G IT! './>•» <}•

o o o o o o o o o o o o

-< — <MP4<NJ(Mroi' rl'n<»^o o o o o o o o o o o o

iJ jj iu uj •!_; 'u u IL _i J u;o o o o o o o o o o o oo o o o o o o c o o o oO O O O O O O O O 3 O OiP N •• tV; 10 N — <\, (T N- — <\i• » • • • • • • • » • »o o o o o o o o o o o o

195

Page 209: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

oX

O O O O O O O O O O O O

U l U I U I U I k U U J U J U J U J U J U J U JN O > N N r O N C > 9 4 < 0 C O af n O « O n ( M O O C 4 N f l O U l < } ' > 6in * **m(\i«Nn*iflifl

XoO O O O O O O O O O O O

oo

8UlXu.UJ

O O O O O O O O O O O O

U J l U U I U J U J u i U J U J u J U J U J U J

O O O O O O O O O O O O

ooo

**

UJa

o«•

XoaUJt«/)V)<O

UJ

-» ooo a

O O O O O O O O O O O Oo o o o o o o o o o o o

U J U J U J U J U J U J I L I U J U J U U J L J

O O O O O O O O O O O O

X.(X

o o o o o o o o o c o o

— «oo ui

O O O O O O O O O O O O

<»-<Q

OJJoUJIXu.

O O O O O O O O O O O O

M UJ UJ UJ IL) U UJ UJ UJ lil U J UJt- O O O O O O O O O O O CII O O O O O O O O O O O OUJ O O O C O O O O O O O O

O O O O O O O C O O O O

Page 210: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

oX

O O O O O O O O O O O O

U J U J U I U J U J U J U J U J U J U J U J U J

«0fc.

I!

g<£

H^CO SM t2O ^*^n5 2t

@EE-< O

S38% £<f H

P<323 Pi4 3£

CO 8rnW E-i

S S£ y

S

to P•J 0S oP 5E£^w >-<HH ^

QM

•-1 M

SB COH COpi ^1

^^ ^J& o

§ H

2;<C

OOin0

o

u.>

V

Q

Oo

•«

<KJUJa

oinCM•

»•

ji.a

***

x0aUJI

VI

_Jo

UJ

**«

*4t

O O O O O O O O O O O O

C\J (M (W (V CM <M C\i (VI CM -.V (M CVO O O O O O O O O O O O

3t U J U J U J U J U J U J U J U J a J v U a i L ^UJ o n f^» CO ^ O ^ •* f^*1 ^ {/) CO

a! « n n n N c C c M i n c > o o o

o o o o o o o o o o o c

%

O O O O O O O O O O O O^ O O O O O O O O O O O Oz

•• UJ U | | j U J U J U J U J U J U J U J U J U . ' U J•• U f M C M ' r ) ' r ' O » - N C \ J < M C ^ C M Co m m « « < o ^ > o > o o j ^ i n < T

O O O O O O O O O O O O

- O O O O O O O O O O O O

in a u j i i iu jaJUJuJuju ju- ' . jU j i . '

** ^3 ^^ ^^ ^3 fO t '9 t ^3 U^ f t *O^3 Uj O& CD ^^ O^ C^ ^^ ^^ O^ CO ^3 CO ^

IO O O O O O O O O O O O

<o

IS uzUJJuUJcra.

o o o o o o o o o c o c

Nl UJ .y uj uj UJ UJ <JJ jj liJ L.' <L UJK O O O O O O O O O O O OI T O O O O O O O O C O O OU J O O O O O O O O O O O Ol in N..M(\jinN~<\jir>*-->(Vj

O O O O O O O O O O O O

197

Page 211: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

feH

IS

ox

o o o o o o o o o o o oU J t I l l i t l l J U I V U U J U J U i U j m u J* O N — < O * < O O ' 0 « M l t > e O* N ( 7 > ( * > N O N O < O O r j ( V J» co N r * * n « i o o « M « « « «CO. CD C D f l D C O Q D C D ^ * 1 * * * * 1 * •"*

«ofeE-i

WO

«sE-<

»9§|

W 55t"1 \j<c oMN-/

8"£<! M

CQ

<t. g

CO O

B3fH

E Hfc* §H £E-H i_^CO H

i-P O

S|W >HJXpLi O

>-3 W•a; 1g $H W5

§Sgoo wQ S•-> «<

Oo«o

*o0o

<_»UJQ

<»•

*«4

•"" '

ia

*

**>•oaUJi

_joUJ#

*4t

^

O O O O O O O O O O O O

c g ( \ j < \ j < v ( \ J t N J N c j o J c v j c a c jo o o o o o o o o o o o

at u j U J u j u J U J U J U J U J U J u j a i u JUJ O CO N O O « O < — N < t m o CN M.CO <0 S ift N N < O * * N d C

ui w w w w c \ i S ! < \ l c 2 ? j « n S.

o o o o o o o o o o o o

o o o o o o o o o o o of O O O O O O O O O O O Oz

M UJ UJ UJ U l U J U t U J U J U J l L J U J U J U l

o o o o o o o o o o o o

• • O O O O O O O O O O O O

</> a t u t u u j u J U J U J U j u j u j u a j u** **^ ^ *o ^0 *o ^^^ *o o f^ ro co ^^^ ^3 ^* ^* ^* ** *^ ^y ^^ 9* tO *** ^? ^^o uj o o ^ o ^ o o o o O ' ^ o c r c u

O O O O O O O O O O O O

<o

o o o o o o o o o o o ouzUJ

UJ

u.

r>4HaUJi

' j J U J U J U J U J u J U J a j J ^ t i J U J U Jo o o o o o o o o o o oO O O O O O C O O O O Oo o o o o o o o o o o o

o o o o o o o o o o o o

198

Page 212: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

z(Ma*OX(M

O O O O O O O O O O O OooooooooooooU i l l J U I U J U J U U J U I U I U l U J U J

o o o o o o o o o o o o

1E-

3f **

%•X.f->

CO8. 1H-4

§EH U<C E-<H H

B CODCO £CO £^f ^Jf x

Q°2 E-*^» *^5

CO S

ast- LJ^^ J *&. fr^

r-g, Q

9-4 Q

co aH) r*"1

S o0 £&^^ H^O O

S3u§5

OO

o

u.>.

Q

0o—

<H

Ulo

••o

•«•

zct

***41

^>.X0aUJ

V)

<J0

_y»41

**•

O O O O O O O O O O O O

Z u j U J U J U J U J U J U J U J U J U J U J U jui o o o N c o ^ o 4 « * N ^ m c ox *^ o ^ ^ v^ in f^ f^ ^ ^* f^ co

! t ) £ £ £ £ £ " £ £ S 3 S So o o o o o o o o o o o

H O O O O O O O O O O O O2

(V Ul U I U I U J U J U I U I U J U J U J U J U J U J— o 9 9 o > i / ) ^ ^ ( w n o N S i no f n ^ j 9 c ^ ^ O ( \ i ^ c ^ o \ / ) ^ i nO f f N < M M < * N ^ < O O 9 i n 4 ) 9

Ul C O C O C O V C D C O C O « * > ^ « < « * « "

o o o o o o o o o o o o

o o o o o o o o o o o o• 1 O O O O O O O O O O O O

I/) ^ U l U I U I t t J U J U J l J i i J U J U ' J J U ;^^ f ^^ ^^ <O h ^ c^ ^^ ^U ^^ ^^ ^U^4 ^) ^9 ^^ 00 9^ ^U 4 ^M ^^ f *^ ^^ ^^C3 Ul ^^ ^^ ^^ 0^ C9 ^3 ^9 00 ^^ f ^^ ^?

O O O O O O O O O O O O

<;H

<O

UJOO!Uau.

o o o o o o o o o o o o

O O O O O O O O O O O Oo o o o o o o o o o o oo o o o o o o o o o o o

o o o o o o o o o o o o

199

Page 213: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

QN01

o o o o o o o o o o o ooooooooooooo

U l t t t U J l U U l U U i U J U t U l t UUlco

oooooooooooo

I oo

M'-gg?fe8

@££M M

88CO £3CO 55^c *_)_ O

co is;gasJ2 MP^ u^Cb O

Plto ^n3 >-•§gP P«& (£}

»J CO&- CO

sSg-O 2Tli. <5I

u.

ooo

I-u)o

in

u.Ui

O O O O O O O O O O O O

«• in co- N 00

o o o o o o o o o o o o

XaaUJ

J>

UJ»

***'

-« UOO K

IU&

o o o o o o o — — — — —o o o o o o o o o o o oI M ' U J V U t U t U U J U J U U J U J U I U Jc o « « N « i n n i o a o i n o i o

O O O O O O O O O O O O

a

O O O O O O O O O O O Oo o o o o o o o o o o o

<n a(M-• <0Q (U

o o o o o o o o o o o o

<Q

Uz.(UDOUJXu.

o o o o o o o o o o o oMJ in u m ui ai .J uj u '.u ai -Jo o o o o o o o o o o oo o o o o o o o o o o oo o o o o o o o o o o omN-««Mtf)N — <^inN — <vo o o o o o o o o o o o

Page 214: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

O

o o o o o o o o o o o oO O O O O O O O O O O O

U J U I U J U I U I U I U J U J U J U J U J U J

OO>0

to

OOO

UJQ

XOaUJIin

UJ»

*

o o o o o o o o o o o o

XUJXu.UJ

zM UJ- uoo «

UJa

O O O O O O O O O O O O

UJ UJ >JJ IU UJ UJ ID IJJ iL 'JJ UJ U

o o o o o o o o o o o o

o o o o o o o o o o o oU J U J t U U J U J U J U J U J U J U J l U U J

9 C^ ^ 0^ 9 ^ 9 ** ••^ ** "^ ^

o o o o o o o o o o o o

D

a I/)V) a<\j« »oO UJ

o o o o o o o o o o o oo o o o o o o o o o o oU J U J J U U I U J . ; L L U J I U U J U J

««« l f l l f l l f l l f l l ' p )M>«oOP g C J ( \ J < V J P J < \ J f M < M < \ J ( \ j C J ( N J

o o o o o o o o o o o o

<K<

uzu

UJau.

o o o o o o o o o o o oM UJ UJ ill J Ul LU .J J 'J LJ '11»- o o o o o o o o o o o oa o o o o o o o o o o o oUJ O O O O O O O O O O O O

o o o o o o o o o o o o

201

Page 215: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

«ofc

£1gCO

_1QwE-<c

B edC-

CO Hco cn<5 o

&si* o<s oCO E-<

tVj ^£

£|CO O

»-) Os*»>H

H wM O

^fe1

W COeg cow S> oa r,2 W

S ZE- <t

1

O0

0

u.>

uo0. ••

•*

AK_JUJ

o

•^4

*or

•-4

<

*** '

**^XuaillUJl

i

oUJ

***4^

V)

t-«

kCMCMOXf\l*M

2^UJNIt.iU

(M(NJa11v/

I/)CMCMQ

^><£UJy

aHIUJ

M

V)a<cUJ•«*

o o o o o o o o o o o o

o o o o o o o o o o o o

U J U J U j U J U J U J U J U J U J U J U J U J

in in in in « n . « « o i u o > « c 7 '

o o w o o o o o o o o o

( M C M C M C M C M C M C M C M C M C M C M r MO O O O O O O O O O O O

U J U J U J U J U J U J U J U J U J U J U J U Jo o j ^ f l U 4 O ^ ^*f^ < T U > U J• * ( D 4 ) 4 N i n N K ^ > o N ( O9 i r ) f r ) n ( M ( M C M t r > o * o o uC M C M C M C M C M C M C M C M f M n ) n » n

o o o o o o o o o o o o

o o o o o o o o o o o o

U J i y l U U J i J U J J J U J U J i J J J ' UO < M — « D O Q — C M C \ J < M < 7 > < O O >If) *O ^ O CO 10 9^ ) *O (D ^ ^*V ^J *O ^ ^U 00 O f*) VO *"

o o o o o o o o o o o o

o o o o o o o o o o o oo o o o o o o o o o o o

U J U J U J U J U J U J U J U J U J U J U J U Jo o o — o o o o o r u o o

O ^ ^ ^ C M ^ ^ ^ Q O C M ^ * " ' ' ©ui u> ui in ui vi u> •» •« « <r -a

4O

o o o o o o o o o o o o

VJ

"O•UJ.(X•4.

N

•tUJ

o o o o o o o o o o o o

o o o o o o o o o c o co o o o o o o o o o o uO O O O O O O O O O O Oui r» •* CM u> r» -. i\j L" ^> -• !X

o o o o o o o o o o o o

20

Page 216: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

'«ofr.

|•g '

.ae ^^*\

H QCd

CO g

<3 MhJ E~*

Q§Cxi OE- —<_i

B edE--

CO HCO fO

^" no S•2 O«t 0

CO t;

Cd CdJS j£iC>H <C

&*"" F * iCO Os:»40a sKS >H

W COff\ ff\xJ *^ JOu ^M ^35* o^fd•£4 l*JrfS 2", •E-^<

1

ooinw*•0

U.

woo•

•"

«.HUUJo

mU)CM

••4

J

Jt

X

(Vi

o

***»

*<

J*XoaUJ

(ftU)<_)0

UJ

*«**4>

VIXMt

2.CM<MOV(MCMO

&UJXu.UJ

KzUJ

(M VJ(Mu avj at

a.

•V)

in aCMCM >uO 'JJ•

»«

o o o o o o o o o o o o

o o o o o o o o o o w o

U J U J U J U I U U J U J U J U J l U U J t Uo o o < D i / ) « o u i O f \ J O > r om i n u ) * r o i o « t N M - « o > c j< O 4 ) « < O < O < 0 « 0 « N h - 4 ) N

o o o u u o u u o u o u

C M ( M ( V ) C \ J < M C M ( M ( M ( M C M ( M C \ Jo o o o o u o o o o o o

U J U J U J U J U J U J U J U J ' J J U J U J U Jo o j ^ a j » « j < T p - p - < » u i u j- « e o « < r N i n N N < < ; « < r » a ic r n n n c M c M C M U ' V o o uC M C M C M C M C M C M O J C M C M n f j n

o o o o o o o o o o o o

o o o o o o o o o o o o

U J U J J J U J l U ' J J U J U J U J X ' JJ UJ» - n n < j i ' O c o — o o u c nro« i n « o > K i n c D i n < t . N O < o< u < u « u < u ^ a i a ; o r ) U ) < u * *

o o o o o o o o o o o o

o o o o o o o o o o o oo o o o o o o o o o o o

U J U J ' J J U J U J U J U J U J U J U J U J U Jo o « r < o - < ' ' ) o f l U ' a ' ( r ) i n o* o < o c u o > r ^ o < ? * p - — MSn ' * < * ' j i N O ) a ; o c M O j > *i « - r * f > - r » i > > . f s . r ^ r ^ > o > o i n u )

Xto

4U

£.'JJJWUJ•3.

N)

a

o o o o c o o o o o o o

o o o o o o c c o o o c

JJ 'JJ X) OJ -J XI U 'il uJ U UJ Jwo o c o o c c o o c o oJ O O O Q C J O O O J O O

203

Page 217: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

«g

oo<0

V)X o o o o o o o o o o o o

oz?' C*

Wtn p

W oE-i v-3

8Sen H28C^ ^5T!

3 O<C O

en e-fSSF srr.( ^^f-f ^J

t lC"H ft^

CO OiJ O

'Ss

gg' 9fc Ww enw enP'S^S§2E- <c

t.H£s

IL>

uoo

-I111o

a.X

<u

**<

Xoaatl

V)V)

tii*****

(MCMoN(M(V0

3LUJNILUJ

UJ(M ONu aa iu

a

if> a(M(V >Oa u

uJJ_)

N

UJ X_ru.

o o o o o o o o o o o o

U J U J U J U J U J U J U J U J U J U J U J U J( M i p o D ^ f n m a ' t M i n o f n r no r - r - * m « i n c 7 > < r « N NM M M » « r t M ^ l M ( \ J C V i ( M ( M

(W(V(MCM(M<MOJNCV(VCWrg

o u o u u u w o u o o o

N(M(\l(VJ(M(VJCJ<VCa(MN(VJo o o o o o o o o o o o

t U U I U J U J U J U J U J U J U J U J U J u JW C U I ^ C U « U ' 9 ' * f > > 9 l l l < U» - < D « < T f « . t f ) r » r - < o — (^(n« r n r o n ( M C \ j ( \ j u > v o o u< \ j c u ( \ j < \ j O J f \ | { v i f y c \ j m m r no o o o o o o o o o o o

o o o o o o o o o o o o

U J U J U J U J U J U J J J U J U J U J U J U J•M rn CM n «• in co « in o* <o «om « i n o u < o ( M « o n r o t n v o «< u < ^ i « > t ) r ^ a i a ) O ' T i i n « c —M X M M M M M C v i c \ j ( v ( M no o o o o o o o o o o o

O O O O ^ M ^ O O O O Oo o o o o o o o o o o o

u jmuj t i i iuu ju j ' j j u j i i j u ju ja ) U ) C 7 > o f ) — c y o o o f v j o j' » ( v t ^ i n r y ' n c \ ) u i o > « — rwO N - N C D O O O C M — O O - K( j > t 7 > u > ( ^ » « - < « - C 7 i o u a ) r » ( > -o o o o o o o o o o o o

*• ~ ogf\j(MC\)'*)nnn«-9o c o o o o o o o c o o

•JJ U .U U JJ UJ JJ JJ JJ UJ UJ Uo c c o o o o o o o c cO O O O O U . J O O O O OO U O O U U O U U O U C Ji n i ^ M O i i n i ^ - ^ ' c M i n r ^ ^ o i

O C O O 0 0 0 0 0 3 0 U

204

Page 218: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

UOO O O O O O O O O O O O

ICOCO

W

8<c

ob-

CO

I<£M

8COCO

d<sCO fe!co 563 W

E- fa;CO O

C O

to

I•

M

til

Gl

Oo

u.

ooo

JUJ

o•»•

£cr

•cf

o

**

XoaUJi

**

tOo<o

NU.

•0oo

2UJua:UJa

ao

U2 M

o aO ujU X

O O O O O O O O O O O OO O O O O O O O O O O O

U J l U U J U I U J U t U J U J U J j J U J l l I

O O O O O O O O O O O O

O O O O O O O O O O O O

o o o o o o o o o o c oiij j j j fj j j i ^ |j i *jj '|i? 5 tO f ^ flC *0 / * ^ U '

O O O O O O O O O O O O

O O O O O O O O O O O O

111 LU iij t/J jj UJ 'jj 'J i; _J il U>f) ^ 'O ^0 J^ -^ *^ ' ^ "* ^5 ^^^ ^) ^) ^) ^J ^J CO ) <O C^ ^J ^

O O O O O O O O O O O O

O O O O O O O O O O C "o o o o o o o o o o o c

11, UJ LJ U. tU 'X UJ U-' tL' li. J UJ

O O O O O O O O O O O O

000600000000O O O O O O O O O O O O

<\j-^\-Oj^33'^*-vr'o-^'^ ^fO 1/5 (^« ^ ^ ^* ** "0 *•* O-j ^* fVr*^ fO ro ^f ift '^) j^ r^. »•« ^^ ^ to

o o o o o o o o o o o c

O O O O O O O O O O O

o o o c o o <_. o o o oO O O O O C C O C O O OO O O O C U O C t . O C O

O O O O O O C O O O O O

205

Page 219: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

o o o o o o o o o o o o

CO fc

ooin

u.

ooo

-IIDc

ftli-ftftft

Xoau

(ft

inftftftftft

<l-<

<0oXooa

u.o

vC•0ao

•0<oCJ

U

ooua

zUJuaIUa

o111

aa.1z

O O O O O O O O O O O OO O O O O O O O O O O O

U J U I U J U J U J L J U J U J U J L J J J l ui 0 v 0 4 > £ < 0 < O < 0 £ t C £ t O < OO O O O O O O O O O O O

* * * * • * * • * • * * • * • « • *

O O O O O O O O O O O O

_.*»«..-«.-. . — < V ( M l \ l < \ Jo o o o o o o o c o o oU J U J J J l u O i L l l L i L b U j ' ^ U J L jO O f ) < M O » 0 » 0 * O < \ ) C K i f >f ) O " * o « n o o c N c j / > v D N .f ) < M < M O < D N X - O o O O OC O < O c O N N N N - 0 0 - « - « - « —

O O O O O O O O O O O O

. M l \ | " V J M < \ | f M M f M . - \ j r v J M .jO O O O O O O O O O O O

ID LJ 11 ijj X) UJ ijj 'JJ oj OJ 'U ,,Jm O r ^ ' O i n ' O - ^ ' O - s r - ' O O0 > i O l f t O C J O i * > o r f l v O ( M < »^ " O ^ - o o i i n i n o n - J t / i i r(MM(\J(MMfM<M<V(»)^' r>f>

o o o o o o c o o o o o

o o o o o o o o o o o -o o o o o o o o o o o ou j u j u j u i i - ' a j L j a j U L j a j x< C N r > i n » « — O — " l O r o s• O ^ O M C C — i n o N O > < » t \ iy O i f t i n i f t ' O o o ' * ' . f o i n n r v i o• * ^ * * < t < » i n i r o N T -O O O O O O O O O O O O

O O O O O O O O O O O O

U LU U_- U il J _l UJ LJ _J U XN -« (\i (\; — <r "". --t O O * M« O N N v 0 3 > 0 > ' J > N l T * n - «'Of0rr)t»;wi''!poror0r«wlfr»

O O O O O O O O O O O O

— — N «M >M <\J n -0 i*) •*) •» -tO O O O O O O O O O O O

Uj Uj LJ JJ >Li «— '.U X uj ^ U. I—0 0 0 0 0 0 0 0 - C- ^ r.C J O O O O C :> -J O O O OO O O O O O O O O O O OlO N — <NJ in N -. r\J !j1 r>- -. (\j

O O O O O O O O O O O O

206

Page 220: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

o o o o o o o o o o o o

Ienin

oo

ooooooooooooo o o o o o o o o o o oU J U I k L t l i l l U U I U J U J U J U J U J U J

O O O O O O O O O O O O

O O O O O O O O O O O O

I < \ C V JO O O O O O O O O O O O

E-

|

4** y«— .

i-; QE

CO £3

§ &t-l£-!

Cl Ota oE- ^

ft8£CO MCO CO

ol< oCO E-ir/j 5;MJ E3

Si £

E SM tl£_, !

CO Oe

g8£JM§S^^ *^ -!_, jgi•

MHE

u.

O<•>o•

•^ '

*<V--1uO '

tf

X

•«-"

T

ro

<

»

»»< .

>•XoaiiiUJ1

<_J•Ju****

vOooX<o.A•V

z

u.

o<0oo

I/)oo

^_zuuKHI

M4

Ifla<£>

-—

jj HI uJ UJ OJ UJ

In 5 « w co *-,- — -00

o o o o o o

0 O 0 0 0 0

JJ til UJ UJ UJ UJ

S « 18 S 5) °M C^ W f^l N ^

O O O O O O

o o o o o oo o o o o oUJ UJ Ul til UJ UJoo 5* i*> ?y o Kn o i/> <o N N** O O O ** ^J* • * • * • * • * • *o o o o o o

o o o o o o

U U UJ OJ IU UJh^ •« <xj <o ^ o*C7> O O — (\j (VJ

_ C CT C71 O C* &

UJ U UJ U UJ U

o CM « <f •» in

O O O D O O

o o o o o o

UJ UJ - } Lj L1 * ^p* ^0 ^ *^ O ^

In c> n $ in in^ fy f^ ro 'O ^

O O 0 O O O

C O 0 O O 0o o o o o o

XI Uj UJ U.' UJ aJ^ N f) 0> OC <\)<M 30 CO 'O (V COTO ^ O CO ^ 'w<r <t <f> O K O>

o o o o o o

O O O O O O

iL U L.' -J LJ IU«3* O >C ^ \C **^Cv; -• 00 N \0 "">

,o ij* cc X co cc-

o o o o o o o o o o o o

> O . O O O O O O O O O D O

Z N U U J l - J j J J l - J j J U i _ i J - U . UL- H- O O O O O O C O C C O O3 C. O O O O O O O O O O C OO UJ O O O O O O O C O O O C

u, o o o o o o o o o o o o

207

Page 221: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

V)X oooooooooooo

sisto

owt-<ft

3eog52 O^ PH

co O53 O

OJE

5 o"IBw s:EH§ggfeE-< tn. w

^Sg°Swg »<s

II

g

&

oo

u.

oo

Ulo

**

xuaUJI

i/»u>

uu

*

UJa<in

Ninin

oNU.

inin

U)in

zUJ

aUJa

W)a

UJ

u

UJ(XIL

o o o o o o o o o o o oo o o o o o o o o o o ol U t U I U U I I U U I I U t U U I U I U I I U

O O O O O O O O O O O O

o o o o o o o o o o o o

o i n o o > C D N . t t / o a u a o « o

u o o o o o o o o o o o

o o o o o o o o o o o o

U J U J U J U J U J U J U J U J U J U J U J U JUI V* IM <W III PI •* P' ^ «•• O ^

o o o o o o o o o o o o

o o o o o o o o o o o oo o o o o o o o o o o ou j u i m u j t u u u u j u j j j u j u j ' j j

c^ ^1 ^^ ^^ ^^ c^ ro j •*• o^ ^^ ji»l ^ p ) n| pfj ff p ^ jf| uj y Qy

oooooooooooo

o o o o o o o o o o o oo o o o o o o o o o o o

U J U J U ^ t t J U J U J U J U J U J U J U J U J

o o o o o o o o o o o o

o o o o o o o o o o o oUJ ill :4J J,' X J.' HI U JJ IL' 'J LL'o o o o o o o o c o o oo o o o o o o o o o o ouip^«-i{vji.i^.-<t\jiji(^»"CMO O O U O O O O Q O O O

208

Page 222: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

o o o o o o o o o o o o

o o o o o o o o o o o oo o o o o o o o o o o o

?CO •

82aw<:rH

BCOen<"t

0s•I,

COCD•JBos:Q-

§

^C/^

^9z^oee-iJ<seMSpe-M

Ss1

•Mh-i

>-S

^^^O.C£l

ION

TIN

U:

<^.

daf_i— i81u

£S3M

fe>

12 -

>-( .X

2Cd

COCO

sawz<i

g

ooin0

u.>

uOo•

<H-_l

UJ

nU)

W4

J

(X

M

<

^

*»•»

**

^XUa4ji

V*i/J

oUJ

***«

SH

AP

E

X

Vininw

A

XU.

inintn

o

inino

>-2UJU

atUJ

M

ina<uUJ

•*

UJ

0

o

UJinCO

o

o

UJu>

cy

0

0o

ai

Mn

n

o

o

UJo•»•0

UJ UJ

0 0

o o

UJ UJ0* fOo m

0 U

o o

UJ UJU» l*>

£ £o o

0 00 0

UJ UJ

® (^^u c^l»> «0

0 0

0 O

UJ UJ<o mCF» ^CO ")

UJ UJ

0 0

0 0

UJ UJcu inO CM

0 0

o o

UJ UJ<U III

OJ CM

0 0

0 00 0

uj at

o^ w_^ {^*i n

o o

o o

UJ UJin Is-n vom m

UJ UJ UJ UJ UJ UJ<o •• in o o o

o o o o o o

O 0 0 0 0 0

UJ UJ UJ UJ UJ UJn •• rn •* oin n o « (\t <M

o o u o o o

o o o o o o

uj ai uj uj uj ujo n o u * w

w w £ " n n

o o o o o o

o o o o o oo o o o o o

UJ UJ UJ UJ UJ UJCD ^^ ^^ A) CO 00co ^ ^r cu cu QOC^ QJ QJ ^ (J^ 1^P) "1 (*) tf) U) ^

o o o o o o

o o o o o o

UJ UJ UJ UJ UJ UJco >o o> **> N inuu au N cu <u jjm n <M - « —

UJ

<o

0

o

UJo>in2o

0

UJ

<"o

oo

JJ

oJJ

cu

o

o

UJCVJyry

4u

o o o o o o o o o o o o

oUJ

O O O O O O O O O O O O

N JJ JJ uj x) UJ 'JJ UJ u.' vil 'Jj L UJK O O O O O O O C O C O Oa o o o o o o o o o o o ouj o o o o o o o o o o o oJ, If) N1 •• <V U) P" •• CVJ 'J' N> ••" CVJ

o o o o o o o o o o o o

209

Page 223: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

V)oooooooooooo

ggV) '-»

B oW

^Sgg<r OM O

8~8w*sQ enjs O,jy P^

3°B£Q 5

S3§ CTi*C CD

°?gCO Sa>H§ss^^g?^3g oO (si

pzM<JJ

^^ Q^O OI J pp,

I

u

td

sl£

UJa

ooooooooooooooooooooooooUJtUUJIUIMUJI l iUJIUU)U) lU

oo•o

u.>

oo

JUJa

aatul

V)VI<oUJ

**

<o

X < D 0 k O > O t 9 O v O > C O N N N NV> « « « « « « « « « < « « «

O O O O O O O O O O O O

M < M C V N < M ( M C M C V t ( M ( V C V I ( MO O O O O O O O O O O O

X U l U J U J U J U l U J U J U j U J U J U J U Jo t n o » n i n t n o » - r f » « » - o o 'x ( 7 « o s « o n < \ j « N / - < « « m « Nin o o o o o o o x t v i r g c g r gin ^ ~ * M ~ * * ~ - < ~ ~ ~ ~\ s » • • • • • • • • • • •

o o o u o o o u o o o o

(M(M(MNtM(\irgru(MCilM(Mo o o o o o o o o o o o

UlUJ IU lUUJUJ I i JUJ IJJUJUJUJa, u> y> •*) «u U) r» •« n) «• -« w O1

o o » \ o i n o ( \ i o n o t u < o N «N « « « « m i n u > o > n « i n u )u. ( M ( V t M « M « ^ C M « M « v n i n n i no • • • • • • • • * • • •

o o o o o o o o o o o o

o o o o o o o o o o o oH O O O O O O O O O O O OzU J l U U I U J U J U l ' J U U J l U U J U J ' J L J U J

in u « < u N N O ) o i o > > o « < » < r i nin m f * - « w - » N i i r > r r » < D 0 4 c o ou or r io jcv — ( v c v c u c o — c r ^ - « ovs UJ r )D i» ) r ) r ) f r i i * ) i *»u iu ' )«oa j

a • • • • • • • • • • • •o o o o o o o o o o o o

« o o o o o o o o o o o ovn(X U J U J U J U J U . ' U . I I U l i l i l l U J U . ' U J

in < o i n ( M r * ( M c \ j N 4 r ( \ j « o oID <u < r r - o t n j n « o ~ o r > - ( r > < uo u N N N < o o o o o o o ^ < o i n j ) i r

o o o o o o o o o o o o

•-••<Ni!\J<VJ(Mn'r)nfr''»'*> o o o o o o o o o o o ou^ N u u J U J U J a J U J a J u u J . u u j j jli! >- O O O O O O O O C O O O_> a o o o o o a o u o u o oo u; o a o o o o o o o o o ckit X VP>'"'C\JU1^»«CVltf!^»-CMIt • • • • • • • • • • • •u, o o o o o o o o o o o o

210

Page 224: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

aiOU.t-

UJa<z(A

O O O O O O O O O O O Oo o o o o o o o o o o oU J U J U J l U U J U J U J U j m U J U J U *

(Q

o o o o o o o o o o o o

OO

zOV

O

o o o o o o o o o o o oUJ UJ UJ 'AJ ' 0 UJ UJ 'Jj Ml UJ I'' *'J

^ ^ ^ ^ O vO ^ ^ ^ CO OD CJ

O O O O O O O O O O O O

COCO

CO ft,I O

•/; Ji*p« >H

M g

!d CO

OOO

su.O

UJO

O«•

za

XOalUI

V)

JO

UJ

z« UJ* uOy> a:

UJa

a*<r oO UJ

o o o o o o o o o o o oUJ ID UJ UJ UJ U U) IL; 'aJ UJ aJ U.l o a n o o i f . ro — f n < j - . o o

o o o o o o o o o o o o

o o o o o o o o o o o oo o o o o o o o o o o o

UJ UJ uJ nj uj u.1 u.' uj uj u.1 ai UJ

o o o o o o o o o o o o

O O O O O O O O O O O Oo o o o o o o o o o o oU J U J U J U . ' U J U J u J W U J U J U . : L J

XX

ti<O

Z NUj k.3 aUJ Xau.

o o o o o o o o c o o o

O O O O O O O O O O O O

UJ U XI Uj UJ .J LJ '_• ij UJ J UJO O O O O O O O O O O OO O O O O O O O C Q O Oo o o o o o o o c o o c

O O O O O C O O O O O O

211

Page 225: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

tua

o o o o o o o o o o o. c-O O O O O O O O O O O O

U i U J U J l U U J U J U J U J U J U J U J U j

ex:gt-

§1c~

to

•9iR *W 2f- R

si88CO — 'to<£

wg£<C£

5-4 ™?

ots?O E~*

p> 3S<£ ^

S H<?§CO 2ai1^3 s |

S 2H &f<f1

083 5p» O

gw2^E- <C

•XMX

0oino

Q_kb

>

Ooo•«*

»-_/UJ0

COin(M

^

ia

<t

<

****»<

XoaUJ1

V)

^

0

UJ

**4t

*

SE

N

^. |KV*

oV

0

>-z

* uoo a

UJ

M

a<»« <oO UJ

w

00

o

0

UJ

in

o

Wo

inC^

£o

01

UJ

5-0

0

ooUJoh»

$o

c o o f l o a o c o a j f l o a c o a o a i

o o o o o o o o o o o

o o o o o o o o o o o

W UJ i ^ Ijj (^ UJ- U i L( ..' t L<CV C O C P t O i D v O ^ CO sj \^, O

If) tO IO ^> IP IT) w ' N l * ^m m iv^ tf\ tf\ ir\ (** f*\ fi i^ iv^

^ ' '

O O O O O O O O O O O

(NJ C\J CNi CM C\» W C\J CVj (\J C\i CVJo o o o o o o o o o o

UJ (j)J ^ yj (j)J i*J lu UJ UJ tU UJ

^D IO ^3 ^y C) ro C^ ^0 ^O Cj <J^3 ^& ^3 fc^ tf iO ^^ ^^ ^ tO l

o o o o o o o o o o o

o o o o o o o o o o o1 1 1 1 1 ) 1 1

UJ UJ UJ UJ UJ UJ U. ' UJ UJ lLf "jjt C^ iO ^* ^3 ^3 ?*} ** tO Cw ^

••* j ' ^3 c^ (O cc u) r ( f

^3 ^D tO ^" f CO ^3 GP v*4 ^* ***

o o o o o o o o o o o

o o o o o o o u o o oo o o o o o o o o o o

UJ UJ UJ UJ UJ IU UJ 'JJ UJ UJ 'Vo o o ^ ^ ^ ^ c ^ ^ f v i n i * -^ o m c o m « — v i c o ^ O ' ( T xS 5 S 2 J 2 o ? ^ « «o o o o o o o o o o o

<o

zUJ3uUJau.

o c o o o o o o o o o oIS! UJ Hi UJ 'JJ U1 'U 'JJ .' -I U !.. •-»- o o o o o o o o o c o oa o o o o o o o o o o c oJJ O O O O O O O O O O O O

O O O O O O O O O O O O

212

Page 226: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

Ula<VI

ooooooooooooo o o o o o o o o o o oU l U I U J U J U I U f U I U I U J U I U I U J

CO CO CD CD CO CO CO CO CO CO 0 CO

oooooooooooo

oo<o o o o o o o o o o o o o

U l i J J U I U J U J ' J J U J U J U J U i U J U J^o — o-*oor>r*)N— o

oo o o o o o o o o o o o

ooo

**«**

s.oa.

O O O O O O O O O O O O

I U U J U J l l ) U j U J U J U J U J U J l U U Jm o m c o i p r o — '»><r — oc«

uto

ttoaaj(AV)

UJ«**

zUl

auia

O O O O O O O O O O O O

-« — «---ooooO O O O O O O O O O O OI I I I I I I I

U J U J U J U J U J U J U J U J U J U I I U U J* O 9 « v * 0 ) < O I P O D C D < M C \ l «c \ j i n o » 0 ' » * » n - « o 0 < o * c o NO C D < U t n « « « O > C \ J « « 0

o o o o o o o o o o o o

3

a o o o o o o o o o o o oo o o o o o o o o o o oU J U J U J L U i i J U J U J U J d J L U U J U J

ui

o o o o o o o o o o o o

IS

<a

uzUJ

UJau,

•sj

O O O O O O O O O O O O

o o o o o o o o o o o oo o o o o o o o o o o oo o o o o o o o o o o o

O O O O O O O O O O O O

213

Page 227: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

(a) Monofilament composite

(b) Composite with randomly distributed filaments

I. Filamentary composites.

214

Page 228: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

(a) Uniaxial loading

x, •*

I

J

•« c

— J

(b) Stress distribution

Fi.gure 2. Uniaxial loading of a typical composite elementin the longitudinal direction.

215

Page 229: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

Figure 3. L o n g i t u d i n a l shear loading of a typica l composite c lement ,

m

^-TWV»<

(a) ( b )Figure- 4. Transverse tension loading of a typical composite element

Page 230: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

(a) Pure bending of a typical element

dy

(b) One-quarter cross section

Figure 5. Longitudinal flexural loading of a typical mono-filament composite element.

2/7

Page 231: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

(a) (b)

Figure 6. Transverse flexural loading of a typical monofilament compositeelement.

218

Page 232: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

OOP OOP O OO

n th element (n-H)-th element Nth element

-\\

Figure 7. Torsional loading of a monofilament composite layer.

219

Page 233: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

(a) Tip loading of a monofilament beam

(b) Cross-sectional view

Figure 8. Tip loading of a monofilament composite

element.

22C

Page 234: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

(a) Transverse thickness-shear loading

(b) Equilibrium of stresses in atypical strip

Figure 9. Transverse thickness-shear loading of a mono

filament composite element.

221

Page 235: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

IMAGINARY AXIS

REAL AXIS

Figure 10. Concept of complex moduli and

loss angle.

222

Page 236: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

EUJ*x

(VICMu

fTSAI (Ref. 68)ADAMS a DONER

(Ref. 56)PRESENT THEORY

GLASS-EPQXY

ALUMINUN

10 20 40 100 200 400

Figure 11. Transverse Young's modulus.

223

Page 237: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

SQUARE TYPICAL ELEM

Eq. (48)Eq. (142)

100 200

Figure 12. Flexural stiffness efficiency.

224

Page 238: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

100 200

Figure 13. Transverse flexural stiffness

efficiency.

225

Page 239: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

(II90X (670)

0(0.012)

0(0.002)

0(-0.003)

(3650) (1400) (760)

(-0.001)

0(-0.001)

Figure 14. Comparisons of Prandtl torsionfunction (0x10 ) of a squarematrix with a circular insert.

Remarks; Numbers at the meshpoints denote the values ofxl(A obtained by Ely and?ienkiewics (ref. 75) andthose from the point-matchingmethod (in parentheses).

226

Page 240: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

co

u§gi-400MO

4J"2a •2 *•o a0>N 4-1-"I Cr-l 0)

C i<U

*W 4)o t<

•5 fe> «w

0)h3

Page 241: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

100

80

Eg 60

I I I I I I I I

X = Gf/6m

1 I I02 0.4 0.6

FIBER VOLUME FRACTION Vf

08

Figure 16. Twisting stiffness versus fiber volume fraction

228

Page 242: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

30

20

JP

10

I

0

1 ' TX=I35"

63

23 -

6.7

0.1 0.2 0.3 0.4 0.5 0.6 0.8

FIBER VOLUME FRACTION V,f

Figure 17. Longitudinal thickness-shear modulus.

229

Page 243: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

15

10

X^(T)(D

Fiber-Matrix

Boron-Epaxy

Steel-Epoxy

Gloss-Epoxy

Boron-Alum.

Ef/Em120

74

24

6

Gf/Gm135

78

262

656

O.I 0.2 0.3 0.4 0.5

FIBER VOLUME FRACTION Vf

Figure 18. Transverse thickness-shear modulus.

230

Page 244: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

(%)COCl

1N39NV1 SSOH

ClI

o»I

..J

S 8(isd9oo 3 smnoow S.ONOOA OHMVNAQ

too

CMQ

N

UJ

s

eono

UO

4-1

cVt>0

0)COo

•o

oo(0CO<0

•o

093

00

Io1-1aI

0)

231

Page 245: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

(%) 6 1N39NV1 SS01Q<0

Qin

Q 8 Qcvi

I I

1 1 I I

" K> CVJ 55c> o o o3 smnooifl s.ONnoA OIKIVNAQ

LD

OUJa:u_

§D.0)

C0160cw

COCOO

(B•i-lOOCOCOco

13

CO

CODt-l

•a§00

DO

g,O

OCN

D00•H

232

Page 246: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

(%) & 1N39NV1 SSOTQCO

\\

\o>IIu-

\\

roO

c<u00cco

1/1VIo

•o<u

CMo

NX

UJ

OUJo:

Oo0}(0CD

•ucCO

013

i— I3

TJo6

00c3O

eCDC

o

i-l300

t>o

(isd 9oi) 3 smnaow S.ONOOA OII/VVNAQ233

Page 247: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

(%) & 1N39NV1 SSOHo TJ-D d

• i

— LU

I

^

^

B

v

••

-

i 1~

ro cvj —d d o c

' I ' l l 1 '

1 —/ I1 _1// ~"

O) / —/

1 /

^ / "^>x /

^ *"* / ~T^J/

//

'

/ -/ ~

/

* ^ *f

/ _•

s/\ /\ 1 • -1 /\\ x

\1 \\I \1 NI \I x —\ \ :

\\

o

>

too

JJc<ukfvouc(0u

CO(0o

p— J

•oQ)4JTO

« -J

^^^ (JN o^r to^5 en

TO

^ T3

<\i O c

2g 5

0 ^^ i|| CO

**~ —60c3O5"

O• r-4

E

C

Q

•CMCM

cu

0 S— oo•H

roHi

0CM

E3C

E3

1— (TO

0U-l

(isd9oi) 3 smnaow S.ONOOA OIWVNAQ234

Page 248: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

(%) 1N39NV1 SSCTIooO'T

o>III

\

I —toO

N

Cd OO Z— uj

OUJocu_

c0)00cCO

COCOO

T3CU

UOCOCOCD

T3CCD

(03

OE

ooco

eCOc

CM

<u

oo

vOo

Eac•H

E

OU-l

3 sninaow s.ONnox235

Page 249: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

(%)GO

C>

1N39NV1 SSOHCO

O

fOQ

N

Q

Sa:u_

Q

8smnaow S.SMIOA nvNianiiQNcn 3NVTd-Ni

c.QJoocas

CO(OO

co•H

aOeninCD

C(D

•O

-a3

oo

O

•r-lCOOQ.

Ou

gCL01

CO

0)cCO

i—io.Ic

0)(-1

00

236

Page 250: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

1N39NV1 SSOH

LUa:u_

— O

c0)oocCO

en(0O

~O<Uu(0

•r-l •u aj0 u«J v-1en <nto Oa.•o Ec o01 uO u•H CAJ aico E

C OO CCO O(0 E

ou a,0 <u"-> ico cE o1-1cu oc xiCO•— < coa.1 ijc o

u-i

Dao

ouvy s.NOSsiod aorwi 3N\nd-Ni237

Page 251: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

(%) 3B 1N39NVJL SSCTICM

CM

roO

oS

trLI-

COIDO

T3 .CU CO4J <yCD 4J•H fl0 COO OCO OU

3 'gO

T3C uCO C

D -r^•o y-iO Oe cco 8

60 ^C X3 OO 0.

>-. CUI

(1)CO

cO

t-i Pcu o> ^(0C ega

C iJ« c

i-l Q»Cu 00I Cc a

\OCM

300

3Sd3ASNVdl 3NVTd-NI238

Page 252: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

1N39NV1 SS01

3 roQCM

I

o* d do •£- 8 §

$

I I

K)O

CvlO

O

C(U

CO

(O

O

•o0)

uoCOCO(XJ

-octo

T3 COo o6 et-i OCO Ocu

J= 4JCO C

0)^ 6

CO COC 1-1•H -i-l•O IW3 O4-1 C•r4 O00 e§ X

f-" XoCU CLC (UCD i

r-t. C

CU O1 l-lc o

CNJ

01

3oo

smnoow239

Page 253: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

'"OB8

1N30NVJ. SSO1

8i

CD

J

OJ

c0160CCD

COCOO

0)4-1TO

•I-lU •O 0)cn 4-1(0 •!-(

co inO

•O Q.

(0 Ou

CDCO 4-1(U Cc v

«*-! gM-l CD

CO U-<O^ c

cti OUi S

X >-,a) x;

1-1 O<4-l Q.

IIf-l

CDICn o•••< u

T3 O3 J34-1•r-l CD

00

C I-lO O

00CN

300

240

Page 254: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

Q10

(%) QG 1N39NV1 SSCT1QQ

CMQO

\ \ \ / / \ J

toQ

CMO

O

s

to°*

CMd

SS3NddliS NOSSIOd

oo

CO

O

0)60c01

Ulino

•o41

ooCOCO0)

•oc •CO O)

4-1CO ••-!

en en01 OC D .

M-l E>4-l O•H (J4-JCO 4-1

C~-i 0)

ECD

3 —iX -HQJ <4-l

f-4 O>M CoC Eoen Xco X

O

CD

O 0.CU 01

CN

OJ>J3oo•.-i

241

Page 255: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

(%) JLN39NV1 SSCT1QCMI

CD roO

N

UJ

oUJCEU.

QCM

Q(ISd 9OI)

SS3NddllS 3Sd3ASNVdl

G0)60CW4J

0)COo

•uatto •i-l 0)O 4-*O i-lCO COCO Oeg a.

B•o oti oaCO Cca 0)cu Bc <o

Oa

aM3Xcu

CUIM i

Ccu oCO Mh O0) J3>CO (0

a nn oH U1

Of>

CDV4

00

Page 256: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

1N39NV1 SSCTI

N

2

- O

* CVJ O

SS3NddllS 9NI1SIM1

CD60e<s •4J 0)

4-JCO -r<:

CO 0]O 0>

r-4 O.

s*O O4) CJ

(Q 4J«t-l Cu <uo aCO r-l10 -F-f

<4-lT3 OO Cm oeCOCO >im wc 8y^ n.

14-4 CUt-l I4J CCO G

00 O

CO

(U

00

243

Page 257: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

CMC>

1N39NV1 SSOT

\

roCi

roO

01 tJ

CO••-IOOCOCO(0

CDoo.

•o(0

c§CO

co •-(CO .,-1

CO 'i iC o4-1 CK-l O•H H

CO

COI

COCOa>

a,0)i

opoXI

ca>00

CD4J

00 COC COO O

CNCO

0)Ma00

TJ3

smnaow dV3HS-ss3N>oiHi244

Page 258: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

(%; 1N30NV1 SStnK? cviO O

IO

CVJo

§

2 gHV3HS-SS3N>OIH1 3Sd3ASNVdi

C01oncto

CO(OO

•o(1)

OOCO0]CD

-OCCD

co3

>- ^

co0)

coOQ.

COCOcuco

•r-l

-C

cuCO

CD

COcCDn

ocO

XoQ-0)ICO

60

245

Page 259: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

( o )

MAXWELL

(b)KELVIN-VOIGT

1

IU)

THREE-PARAMETER MODELS(STANDARD LINEAR SOLID)

Figure B-1. Two-and three-parameter viscoelastic models,

246

Page 260: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

ft ft ft

(a)KELVIN CHAIN

(b)GENERALIZED MAXWELL

£] tj g P g 6

I 2 3 4 n-l n (n

o(c )

BIOT

Figure B-2. Many-element vlscoelastic models.

247

Page 261: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

(o) ELLIPTICAL HYSTERESIS LOOP

(b) POINTED-END,STRAIGHT-SIDED HYSTERESIS LOOP

Figure B-3. Hysteresis-loop shapes.

248

Page 262: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

o:oo

<o

o<

NO DAMPING

SOME DAMPING

MORE DAMPING

FREQUENCY

Figure B-4. Effect of damping on magnification factor,(Not drawn to scale) .

UJ</>zo0.V)Ula:

SMALL DAMPING

LARGE DAMPING

FREQUENCY.w

Figure B-5, Effect of damping on half-power-point frequencyseparation (U)2-uJl) . (Not drawn to scale).

249

Page 263: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

IMAGINARYCOMPONENT

(LOSSMODULUS)

(STORAGE MODULUS)

REALCOMPONENT

Figure B-6. Concept of complex modulus and loss angle.

RESPONSE

TIME

Figure B-7. Exponential decay. (Not drawn to scale).

250

Page 264: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

O.r

• r-l

3

VjCO..0•H

oo

JD

ooc

p->,0)(U

CDO01•a

I CO*4-1 (0•H CDH BCO I60 a.O -H

Io0)VJD60

•r-l

CM

251

Page 265: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

0.3

O2

£

Q2

O.I

LEGEND

-0—0-

A A

-D— D-

INITIAL DEFLECTION

1.5 IN.1.0 IN.0.5 IN.

10 20CYCLES

Figure D-2. Logarithmic decrement versus cycles foran AVCO boron fiber.

Page 266: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

COMPUTER PROGRAM LISTING

PROGRAM NAME

COMPEI1

COMNU12

COMPE22

COMPG66

COMPD11

COMP012

COMPD22

COMPD66

COMPG55

COMPG44

PAGE

254

263

267

281

285

289

295

309

324

333

253

Page 267: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

CO

MP

Ell*****

,6<

«F

NT

2X

20

<

AM

DA

, A

MD

AP

. A

MD

A1 .

AM

DA

2 .

EF .

GE

F,

GF ,

GG

F • *

NJF ,

GN

JF

o •a w <o x t-U, (M J

1- UJz x aM l/^ »

1 30 Z X< o aUJ M

J (A Z» Z C* UJ X* Z X* - c» C u

PN

UM

.GN

UM

.RP

I * V

F .

VM

.E1 1

S.D

AT

AX

12

8* 8

< *

~ 1

1 ,

GE

1 1

*D

A3

• ZX <o •O (VI• — HZ 3 3o z a• o zX • ~UJ (VIo - <» 3 Ky z «uj a o

»«*- (VI

2

PA

RA

ME

TE

RS

R

MU

A

ND

D

EL

TA

^» ^ jX <U, U

M

v v or0 «• HO < UJ0 O Z X(VJ (VJ ui O• X > UJ

in MOX K 0

< oo x j << C J UJui c < aa u u *

o0oN

DE

LT

A

*3X Vor n

N •(VI V O0* <0 «•in o u.•- - fVJ< • X

•• •* IP

< ro <t- * O X< •-• < Ct

o a uj cM a a u.

O vC0 0

N —

80

0

2*D

EL

TA

<

» Vjt

a *^^ *?^^ ^C» a

o> *a oo- •

^V UJ X3 3 XZ Z ~a - Qx K a

z *u. c u.- u >

o0CO

u.>10 - 0

• * *- o o* UJ ZZ (L UJ> M H

uztM

o -2 inUJ •M O

• ino »UJ Oco inM

* V* ini i

- "" ^tt M M

U ro xZ*- o u.M C M

. ^4

oV„1

—) ^+4 («3

X (3* UJ(VI CDM Z ••

* * *O O UUJ Z Zor uj «-z z zoin

(VJin -c *1- O

UIC CDO Z

_•in

CO

IPUJ UJ(D Oz z* >-0 1-z zOJ oz u

(VJin

TA

.RM

U.D

EL

TA

.VF

///////.2

8X

.a

iDA

TA

*a

.I3

.a

R

MU

*a

.F7

.3,

3.3

V

F*a

,F

3,////<

< X •D X N« X U.

X •V X (8N • %O - <~ X h-• — Jo x u;X Q

uj <rK Z«- Kor o* IL (8

M(s.

0(

->

zz

0 J(VJ X• (VI V- " K M* X Hz u. zX * U.J V •

2 ^CM X X(M J(M X UJCM CM K

C Z ttO U. *

CM(M(M(M

(J

254

Page 268: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

E

zUJ

u.UJ

a

UJ

zUJXu.UJ

8H

z> cou «

zCO

VX•

in*ro

inroinvini

3OUJ - Za « uju. uj x

3 —

vXX

N •

a HUJ 7.I UJ

u

aUJCD

zro

v -.o •ro t<ro in

UJZro

v P»

aUJa

ro ^ro in

Uj <0 X vO3 X X7 H Z ZIM UJ < CO <C U!

Z - - H

in

co cz - ao a ou * u.roin

ororo

— (vj

•- aa ou.

z -

ro

zo

V (V)

ro Kro N• (VI

<C XX

UJ <

•- aa of u.4 (VIin ro

ro

zo(VI

7.OM V

r- XO X< •au.UJz3 ZJ UJ

°:UJ

zo

V (VIro •ro xfO N• N

<0 X

" K ZUJ < OH Z MM aa o• u.

u7.

O

UJzoum

uj *3 «-

3Za.«o•

(VI

o•^4

o v< <o oz z< <X uiX U,

Siu. a

*_ oa •» •*0 i• o(VI •1 roo xo \

•* VX O

V I •O V -• Z u-1- 3 ZO Z 3< a zo « az o *

• o(VI •i

3

<Xx

VV * v < o

x • i- •«->

ron

ZO Cu ainm

* iuM cr * u.u. iu

v• nx *-

3 *Z Z

v vV N CO

V O I• oo

«X ro

I * Xz < < «ID C O «x s z a

H - < < U , U 1 X X << O O O * * » *a « t * * a - « N <* z z < < < < zZ 3 3 0 0 0 0 aO Z Z Z Z Z Z . I

• in_, » « M * Z

Z »UJ Z

255

Page 269: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

u, •3 -z -O UJ• 19

u. »3 -Z -f t III• •

u, vO COo •• co

• Xu. <ai Ko <• ou. •Ul (/)» •-

CM »•< Ul

vco(M

Vo

I<o

XN,Vz3

at

X* oo -Z I

o u;• CD«• ** << zK Ztil <OQ O

Q.

OZ

V UlM 15CO •

CO Ul

- oCO Ul• a- u.

CO• V

** (00 O• ^*

** •CO *0X X

O Ul

n•*UJ•Xeo

V — •* ui n• • ••«co a uiUJ+•«•

Q xZ -

- u.oz

V <o •M aM <- O>- ZZ <u. .• <V O

*zUl • <> o •M Z CM <(3 UJ X ^

Ul V U,• O •

X -Xin •*• CM«* • m < o

a*

»- »- z z z »< O U J < « — « < cZ K - » - Z l - l - t - t - Ka «- a z z z <O O C O O O O D O

ao o»- z

UJ —z oto*

»- Ul3 Zo «a >-O 33 Ow a* m* 3* V)

K UlZ Ou. •zio aM

Cft Zz oUl Zz z- co u

aorz '

ozO f)

12• zz <o •O CM

si• oz •

Ul (MO -• 3Z Zui a

VCO

•>»v

»- Vz «u. <

oV CM- X

OMM

VOo

in

uia u.

inK

Q<uia

v<0

z in*•• v *» M ^

O • NZ * •Ul O •» CO«- CM X V f-

O «M k- H CMUl * Z Z NCD * U. U, »M ^ * • "* v « r*«-> •« y: x x

00 Ow o m o —co •« co ro m

< * * % o -« xz o o u o ••• •«a ui z z t-o o> ui «- c o zU. M « « Q Q u,

o -«o —

Ul ot-

a o

u

2:

Page 270: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

avxVx

VaUJ

UJCD

VCO

**•V

UJ X

- o- o

V— -O- in

oHX

V V•« N.in o

V VCO CVJ

n m* *Z T.» *

V VZ Z• •~ (\Jo o* X

o oX X

V V V Vcvi n «t inin m in in

vV <NJ(VJ •• N

ro ** zz •• VV Zz •• N

ro <\j<0 -• J^

I- I-4 4O OX X

V V<0 Nin in

* oo »-UJ UJCD O ffi

* 0 *UJ

O CD

COO *

UIo oc

o •UJ <OCD X

fO •

Z

V Xz - o» «4

03 •N O.. UJx a< u.t- X

oX

XV COCO •in x-« in

UJ -• •

X UJ- uw*

• aUJ- a

V)a

xo -UJ x

X 0.

- <o• UJ

UJ

V)a<oUJ

V V V VN V S S

(0 *O <G >0

X 0 X - - - -(0 Z >O LL UJ UJ UJ- a — « n en n

Vnt

j4fa*aw x -I- <0

Z J(A(fl

- z

O UI 4 X• a uj j o

o >- o aeo m i ui

UJ

Vs• I

CO

3 Xz in

UJV NV •N> O

CO>- u.u- xu m

X<0

X X X X X<0 \O \0 <0 <0

Xm

N

O * * UJ

o ec•• *•«

UJ or

— CM nN

in

I o \ c c c u j ' £ < o * c < £ ' > 0 v 0 > c x x orX X K O X X X X X X X U J

z »- >- am u ! C » * u j u j U J U J U J u i u J 4 4f - r - H - H K K l - K t - k i - Z Z***M z * ^ ^ * * ^ * ^ t o - * = * f t > < o r x x c ' xa o ' O O a a c : o : c r . o r o r o - - « c -* * o u » » * > » * » u . - - u . -

O O **N m in

X X

X X X X X- in in in in* CVJ M CM <MX X X X X

Q . H K > - ^ . K > - > -4 4 4 4 4 4 4Z Z Z Z Z Z Z

x c r a x a r o r o r a o r- c o o o o o o c— U-U. -LL l i -U . lJLU.

Min

r> ^ in «o Nin m in in m

257

Page 271: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

VX

<oMUJ

X

zMa.3J

***

u •T^ p«z -O UJ• 19

u. •

3 —Z *•a inU* VO COC9 ** CO

• MU. <UJ ko <• ou. •

UJ (/)

< UJo •z z

o •z >-< a• ora •< zi< V5• *< Zo 3 nS £ 3u - » • z

UJ < Z <

Z Z J 15 w

*#

*

UJao

vXXX

V

XX»

A

*»*«*zUJ

UJ

UJao -

x.incvx UJ a.iiz< M M oror zo o o uju. <J o or

3 • OO UJ 3 «or z z zOD « a u.

z uj

UJXV

*zUJo

z u.> UJ* oz #

U.

3z H a

Z

<f> 3 2» O C# CC 7# O Z» 3 O# 1^ U

ZO u> > UI• U, * X

<M > U. •«

— # UJ —z zuj a

tif

O<UJzaou.

V VX XX XX X

« « (M* » O* * (M* ** « Z< CD 3

WUJZu.

V U.

X £\ (/<

A UJ* Z* <* J* atU

V V X VX X X X V

V X X X X XX X X . X XX • • 08 • XX A A 4 A •• < CO <\l (ft A

A (VI (/) (/)Z > *• (VI < _Jn X X -J *nr a o -» is Mo a a j i or<n ui uj < uj uii-u. u. u u. u. <ro o o o o z(/> en ifl in in f\UJ UJ UJ UJ UJ tuM M I- M M f

t- »- t- t- >~ Uor a or or or utUJ UJ UJ UJ UJ -Ja a a a a ujc o o o o Mor or or a aa o. a a a. u.

oo o o o oZ Z Z Z Z <rt

a a a a a -Z Z Z Z Z K< < < < < oro o o o o ui

aa o a o a oz z z z z or< < < < < au u u o w uM M *• M M «p*

K »- t- *- *- *

-I J -I J -I -I

UJ UI UJ UI UJ U1

<I

X Xo oa aUJ LJI IZ Z Zo o oa or ao o oCO CC CD

oaUJiwV)<_JO

UJ

S3!a zUJ ~i o

W 3

— M ro * in << < < < < » .H (- K K t- Z< < < < < Oo a a o a zA A A A A A

X x_ O o o o> nn n w n

_l Oo zoUJ J

•« - - t- O

— UJ — UJ Zui o ui a u# * #A A A

» »

A A

X X XX X XX X XX X XX X XX X Xx x xX X Xx x xx x xx x xx x x

X X XX X XX X XX X XX X XX X XX X XX X XX X XX X XX X XX X X

cc co oin N n

oo

oIor>

tafto(VI

* o» o« UU(ft OUI <O

K •or oUJOL (VIO OCta ujwJ n

or oUJK O< OZI UJ

Z (VIUJ -3 •»- O

h- MW) OZO UJO M

a ino •u. o* (V)u oUJO u>

(VI< MH no o

* o»* UJ

ooin

u u u u u

258

Page 272: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o oo o o o o o o o o o o o o o o o o o o o o o o o o o o e p o o o o o o o\ U J t l ) U J U J U J U J U J U J U J U J U J U J I J J U J U J U J U J U J U J U J U J U J U J U J U J U J l L ) U J U J U J U J U J U J U J U J U J

i o o o o e o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o- I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I Ir o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o oo o o o o o o o o o o o o o o n o o n o o o o o o o o o o o o o o o o o

U l l U U J U J U J U J I l / U J L U l L I U J U J U J U J U J W U J U J U J t L ' U J U J U I U J U J l U U J U J U J l l J b l l U m i i l i i . i t l J

O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O

o o o o o o o o c o o o o o o o o o o o o o o o o o o o o o o o o o o oo o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o oU J U J U J U J U J U J U J U J U J U J U J U J U ^ U J U j U J U J U J U J U J U J U I l J J U J U I U J U . l l J U i U J U j l J J U J U J U J U Jo o P > i n N O < o i n o n N O o o n i n s o < o i r > o n c \ j o o o t t i n K G < o i r ) o r o < M f r )

o o o o o O o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o

o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o( t ) U J U J U U J l l / U J U J U J U J U J U J U J l i ( U J t U U . U J U j ' U J U J U J U J U J W U J U J U J U J U J U J U J U J U J U J U J

o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o oO O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O Oo o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o oU J U J U / U J U J U . ! U J ( U l U U j ' U J U ; U J l U U J U J U J U J U J U J U J U J U J l U l L l U J U J U J U J U j L U U J U J U J U J U J

o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o

o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o( U u J U J l i / U J U J U J U J l l J U J U J I l l l U U J U J l U U J U J U J U J m U J U J U J U J l l J U J U J U J U j U J U J U J U I U J U J

o o o o o o o o o o o o o o o o o o o o o c o o o o o o o o o o o o o o

o o o o o o o o o o o o o o o o o o o o o o o o c o o o o o o o o o o oi U U / U J U J U j U J U J l i J U J U J U j U . U J U J U j U U J U J U J U J U J U J l j U U j L U l L U J U U J W U J U j U J U j U J U i

o o o o o o c o o o o o o o o o o o o o o o o o o o o o o o o o o o o o

o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o

O O O O O O O O O O O O O O O O O O O O O o O O O O O O O O O O O O O Oo o o o o o o o o o c o o o o o o o o o o o o o o o o o o o o o o o o o

O O O O O O O O O O O O O O O O o O O O O O O O O O O O O O O O C ' O O O

259

Page 273: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O Oo o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o oU J U J t i J U J U J U J U J l J U J U J U J U J U J U J U J U J l U U J U J U J L J U J U J U J U J U J U J U J U J U J U J U J U J U J U J U J

O O O o O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O OI I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I IO O O o O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O OO O O O O O O O O O O O O O Q O O O O O O O O O O O O O O O O O O O O O

U l U J U J U J U J U J U J U I U J U J U J U J U J D J U J U J U J U J U J U I t i l U J U J U I U J U J U J U J U J U J U J U J U J U J U J U J

O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O

O O O O O O O O O O O O O O O O O O O O O O O O O O O - — — — "— — — —o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o c o o ol U U J U J U J U J U J U j U : U J U J U J U l U J U J U J U J U J U J U . ' U J U J U J U J U . ' U J U j U J U J U I U J U J U J U J U J U J U J

o o e o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o

o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o oU J U J U J U J U J U J U J U J U J U J U J U J U J U J U U J U J I L U J U J U J U J I U U J U J U J U J U J U J U J U J U J U J U U J U ^

o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o

o o o o o o o o o o o o o o o o o o o o o o o o o o o p o o o o o o o oU J l U U i U J U J U J U J U J U J U i U J U j U J U J U J U j U J U J U J U J U J U J U J U J U J U J U J U J U J U J U J U J U J U J U J U Ji n o o o o i n o o o o o o o i n o c o o i n o o o o o o o o o o o — N i n n O ' d o o

o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o(VJ(VJ(\lM(VJ(MN(M(M(vl(M(M<M(M<M(UMN(M(MCM<M(VJ(MM(M(MOOOOOOOOOO O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O

l U U J U J U J I l J U J U J I J J U J U J l U U J U J U J U J U J l U U J U J U J U J U J U J U J U J U J U J U J U J U J U J U J U J U J U J U J

o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o

O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O

o o o o o o o o o o o o o o o o o o o o o o o D o ^ n o o o o c c a o c c o o o o c o o o

o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o

o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o oU J U J U J U J U J U J U J U J U J U J U J U J U J U J U J U J U J U J U J U J U J U J U J U J U j U J l L U J U J U J U J U J U J U J U J U Jo o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o oo o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o

o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o

260

Page 274: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

o oo oUJ UJ^0 OO (Mco eo

O O ~ - -4o o o o o

ro

o o o o o o o

U J U J U J U J U J U J U J U J U J U J U J

v c o r o — i o f l b i o i w r o r o

o o o o o o o o o o o oIII I I I I I I I

U J U J U J U J U J U J U J U J U J U J U J U J

> o < y > - v C o o r o « o < o N « » c v j

- oo oIUJ UJCO \OO 9*- <0

o o o o o o o oO O O o O O O O

U J U J U J U J U J U J U J U J& ro in o ro co **o c w m r o N r * o t oN S N C O C O C G C O S

o oI Io oo o

UJ UJCO —s coro ro

O O O O OI I I I IO O O O oo o o o o

UJ UJ UJ UJ UJ

CO N O N M

0 o o o o o o1 I I I I I Io o o o o o o0 O A O O O O

UJ UJ Ul UJ UJ Ul UJ

1 m i/> •* tf? >JK *£

o o o o o o o o o o o o o oI I I I I I I I I I I I I Io o o o o o o o o o o o o oO O O O O O O O O O O O O O

U J U J U J U J U J U J U J U J U J U J U J U J U J U JS « * > 4 O O r > O > O O > O v O ' 0 | O C O•.C ?•)?}!*! PJ N Ov »v W wi tvt CM N •

O O O O O O O OI I I I I I I IO O O O O O O Oo o o o o o o oU J U J U J U J U J U J U J U Jv 0 i n f t j f * ^ ) r * t A t / >^ ^ < t r o r o r o i n Nr o r o r o r o r o r o r o r o

O O O o O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O

o o o o o o oUJ UJ Ul UJ U, Ui UJ«t in <o — in o ro^ 00 fO CD CO 0* ON CM ro — -• «•« N

o o o o o o o

UJ UJ UJ UJ UJ Ul U.

- • O O O O O O O O ' * ' " * 'o o o o o o o o o o o oI I IU J U J U J U J U J U J U J U J U J U J U J U J

(M N (M N (M ro roo o o o o o o

fr).,...-N».-, — — POrON

o o o o o o o o o o o o

o o o o o o o o o oI

U J U J I U U J U J U J U J U I U J U !< D r > - O ' O * r o o i n » * or o N N c o o o o ^ o o N i nC \ J — 4 * 4 * 4 f l M v 4 r V J ^ J ( \ J ^ i

o o o o o o oO O O •* C O Oo o o o o o o

IUJ UJ UJ UJ UJ UJ UJ

o o o o o o o o o oo o o o o o oo o o o o o oUJ UJ UJ UJ UJ UJ UJ

o o o o o o o o o o o oU J U J U J U J l i l U J U J U J U J U J U J U J

»• oo o

o o o o o c o oO O O O O O O O

U J U J U J U J U J U J U J U J U J U J

^ «• «4 <Jl M .1 M

o o o o o o o(M CVJ

o o

CJ « -

o o o-« <t <t

o o o< *o o

* «o o

•* •*o o

<t <t <t <f -

o o o o oO O O O O O O O O O

o o o o o o o o o o o o o oUJ UJ UJ UJ UJ Ui UJN ro o o "• w inin *o ** vo ^o ^o ^<\j <\i ro « •» • •« •<

U J U Jroa

ILUJUlr o o o

UJUJw m

M •« o0 0 0

Iuj u u/'o o —

M ^ ^ M ( \ j ( \ j N r o o >

o oo o

UJ UJo —«• CVJ

o oo o

UJ UJiO (M

o oo o

UJ UJo o

o o o o o o o o o o o o oUJ UJ UJ0 0 0

ro w evj

U J U J U J U J U J U J U J U j U J U Jo o - ' W i n r o ^ r o o o• * t c < o < 0 < o S N c o o m( \ J « - . ^ « ^ 1 - « ( V J C J

o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o oO O O O O O Oo o o o o o o

O Oo o

O O Oo o o

O Ooo

O < \ J t to o o

C V j No o

<M(\Jo o

<V j (VJoo

( V J ( M ( \ Jo o o

<VJOoo

O O O O o O O Oo o o o o o o o

U J U J U J l J J U J U J l U U J U J U J U J U J U J U J U J U J U J U J U J I i J U J l J J U J U J l J J I U U J U J U J I j J U J U

o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o oOOOOOOOOOOOOOOO(M(M(VJ(VI(VJ(VI(Vi(VJ(VJ(\J(Vj(\jOOOOOOOOOo o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o oU J l i J l J J l l J U J U J l i . U J l J J U J l l J U J U J U J U J I i l U . U J U J l i J U J U J U . U J U J UJ UJ UJ-UJ UJ Ul UJ UJ U: UJ UJ

o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o

o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o oU J U J U J U J I J J I l J U J U J U J l i J U J U J U J l i J u . U J I J J I J J U J I l J U J U J U J U J I a l ' l i l U J I L l l ^o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o oo o o o o o o o o o o o o o c o o o o o o o o o o o o o o o o o o o o o

o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o

261

Page 275: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

< M « « « 4 > « « * « M » M > 4 > « , * M Oo o o o o o o o o o o o o o o o o o oU J U J U J U J U J U J U J U J U I U J U J U J U J U J U J U J U J U J U J< o o N o i n i » < o o i n o o a N N a o f l o o o o o

o o o o o o o o o o o o o o o o o o oI I I I I I I I I I I I I I Io o o o o o o o o o o o o o o o o o oo o o o o o o o o o o o o o o o o o o111 UJ UJ Ul UJ UJ UJ III Ul HI 01 UJ UJ UJ UJ UJ III UJ UJ

OOOOO. O O O O O O O O O O O O O O

»4 •* •< »* ^ ^ V4 *•* »4 »* »* «*4 Q Q Q O

o o o o o o o o o o o o o o o o o o o

UJ UJ UJ U; UJ U, UJ UJ Ul UJ UJ UJ UJ UJ UJ UJ UJ U.' UJ

o in m o i n o i n o i n o H i nC M C M r o r O « 4 i n i n < 0 £ N Z N

• • • • U J »O O O O O O O O O O O < / ) O

o o o o o o o o o o o o o o o o o o oO O O — C O O O O O O O O O O O O O * "o o o o o o o o o o o o o o o o o o o

1U J U J U J U J U J U J U J U J U J U J U J U J U J U J U J U J U J U J U Jo o i n w i n — c o o o i n o r o i n — r - * t n i n t n i nC M C M < M ' O - " C M N - « - « O N * * r O r O O O O O f l D N

o o o o o o o o o o o o o o o o o o o

o o o o o o o o o o o o o o o o o o oU l U J U j U J U J U J U J U J U J U J U J U J U J U J U J U J U J U J l i Jc M r o o o * - C M t n r o t f r o o o c M r o o o o o oi n « o « t 6 \ o < o \ c N N o o o r o i n < o « o o o oCM CM ri •* •• ~* o ^ t M r y c M w r o o o o oo o o o o o o o o o o o o o o o o o oO O O O O O O O O O O O O O O O O O C Mo o o o o o o o o o o o o o o o o o oU J U 1 U J U J U J U J U . ' U J U J U J U J U J U J U J U J U J U J U J U Ji n o D O O o o o t n o o o o ^ i n o o o o o o oi n « < m o c M - < c } o e o c M £ i n 4 * o o o or o r o r o c M C M r o ^ ^ t n ^ ^ r o r o n r o i n i n i n * -O O O O O O O O O O O O O O O O O O O

o o o o o o o o o o o o o o o o o o —o o o o o o o o o o o o o o o o o o ollJ ll I tiJ III ll i Ij | ll III ll* [(I III III lij 111 ll | 111 III l | \ III

c o o o o o ^ - ' * < ' * * < t * ' « < ' * ' * < t i n i n i n ( D4 * « f M ( M r M ( M C M r M ( V J C M C M C M C M C M i n t n i n O t

o o o o o o o o o o o o o o o o o o on < t ^ - « — M f M c j c v j n n n n ^ < t o o o oo o o o o o o o o o o o o o o o o o oLL! lil LiJ UJ li Lti ii. til ii i ii! i|i MI ii • ii | iji ii ii ; |. QJo o o o o o o o o o o o o o o o o o o

***I/)aUJH

IaJ

ta4

a^^^UJz0Ul

au.yuUl

<H

Q

***

o o o o o o o o o o o o oo o o o o o o o o o o o oo o o o o o o o o o o o o

* *

^^ ^J CD 00 **• ** fO tO ^ ^ 0^ ^3 fO00 ^^ ** ^^ ^^ ^^ \f) ^^ ^ 0^ iO ^5 ^^^h ^» ^5 ^ ^^ ro ^o *^ ^^ ^^ ^^ ^^ ^^

o o o o o o o o o o o o o o o o o o oN « - C M i n ^ ~ P J l f > N - « O J i n N » * < M O O O O

o o o o o o o o o o o o o o o o o o oo o u

Page 276: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

MN

U1

2*****

<.F

NT

2X

20

<D

A *

AM

DA

P .

AM

D A

1 .

AM

DA

2 .E

F .

GE

F, G

F, G

GF

. R

NU

F .

GN

UF

O «0 Zy • <

O •a CM <O X KU. (VI J

»- UJz z oM u. •1 3o z z< o aUl Mj m z* Z 0* UJ Z« z z« •- c» O <J

UM

,GN

UM

.RP

I,V

VM

.Ell

S.O

AT

AX

12

8*8

<.?

ll.G

Etl .

3

Z <a o• zz <0 •O (V• — 1-

Z 3 3O Z Q.• 15 Z

Z • —UJ CMO — <• 3 Hz z <IL a o

*«*•» (VJ

CM^_ZU.

V Vo «o <0 O ZCVJ CM U!• X >

in *-X K O

<Q Z J< a JUJ O <a u. y

o0o(VJ

AR

AM

ET

ER

S

RM

U

AN

D

DE

LT

A

aj<uM

a1-UJzoUJo •«

*o << 1-UJ <cr ow ***

J 0UJ OO CO• •

"3 ^^Z V 0>or n O1

N • •CM V C 0>^^ fi «4 -^h

in c u> •« •• CM•* • X V-in 3• X >- Z

w < a* Q Z X- < aa ui o u.o: a u. -

o <oo oN «

DE

LT

A<

*CM

**3Z#0•<t u.

Ul X >3 X IZ «-" O«- a •i- a -z * *o u. zu > >0o03

Uz

QZUJ1-1

•oUJ03

*">M

«- \c —•* * * -o o u nUJ Z ZOJ UJ *- O•« fcH «M Q

.«in» «M '

C 0in v» M

0 Iin * ~

" •*V «-i Oin x o1 * UJ* CM CD•» - z« * »X O O

UJ Zu. en UJ« z z

0in

" (Min —

* c *U 1- OZ UJM c CDZ 0 Z

•M

in

.RM

U. D

EL

TA

. VF

4K4O

VN

n o(^ ^4

O •

UJ U. 'OIT 3 XZ Z* « U)0 H KZ Z »-UJ o orz o *

(V|in

/////, 2

8X

,aiD

AT

A*a

. 1

3. a

R

MU

*a

.F7

.3.

a vF

*a.F

T.3

.///

/<

X •x nx •X N OX U, CVIX • •X (8 -«• * %- < ZX H Z- J JX Ul

o wh- CM< CMZ CMa0 0u. a a«*NO^4

V

•zzXCM V1- CMZ HU, Z* U.V •Z ^0Z X

X UJCVI h-K >-•z au. *CM(VI(M(VJ

263

Page 277: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

inroinroinvm1 Ul

•K •£

M 04

zU- OM U

rom

voro•it

UJK

<r

*

FR

EQ

UE

NC

Y

.18H

R

NU

12

.

GN

U 1

2

.18H

R

NU

F

Zro•

XinM

l» Z< COZ "aou.0roro

VX*

z3

a

Vrt

mro•oX

ZCD UJ

_,

aX

CM

VXX

H

UJU

aina

zCO

XCO

N

aUl

zroM«

Xin•*X

4Z(XOu.^roro

intno

oo

VNroro•oK

UJ

^-to»or

*4in

V

aUJCDH<U.

z0(M»

XsCVJX

4zaou.Mroro

Vrororo•

<0X

UJK

aB

VO

LU

ME

F

RA

CT

ION

.20H

R

NU

F/R

NU

M

.

ZO(VJf

XN(VJX

1-ftZXDU.

COroro

VXX

u(VJ M

3 *.Z 0a z

UJzoUJCD

' ZUJ *3 -

Z ZO •" 0(vj H- ro

z0 0u oinin

/XA

MD

A&

1.0

<-2

.0*R

NU

N<

-X

I.O

-2

.0*R

NU

/XA

MD

Atl.O

-2

.0*R

NU

F<

4.0

*R

NU

M&

1.0

</X

3.0

-4

,0*R

NU

FtA

MD

A<

V C 1V V 0 • Z 0

V v v v v r - e c • ~ 3 »«4 v V K O O V ^ V > C » » <-• x z ro• v ^ v M t 7 * * i * ) » i n > * ' * ' i # tt x

« r r | » i / ) » < - i « - i » « - i » > - t » - i - 1 z < < x #X » M * » * X > f M M M M X X Z U j O O U . 4

< " - x « - > x < < " - x » « H < t < o x z z 5 oH X < X < K K - X < X < K ^ ~ X l L < t < Z Z

V < < v - < K < < < » - < K < < u . i i j x x a <* £ } O h * 4 ^ " 4 O O f r » 4 f r ~ 4 O O O 3 t e 1 f c f e ^ l t ^h ) % 4 O 4 O f t % 4 C O 4 Q 4 i % v t & « * ( V j r 0 4« — O O * Q ' * l L U , O * O * Z Z < < < < < Z* U J * l L * U . 3 3 * Z * Z 3 3 O Q O O O t tM ( K U . U J U . O Z Z Z U J S O Z Z Z Z Z Z Z JM u . u i o o o a o u j o o o a o < < < < < <

264

Page 278: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

Vo

o<XXVz

ao

» O

<#O

*

<t-UlCD

— CMI -< 3»- ZUl ZCD Ott U<Z -JZ -J< <o u

D

a•u.z

CMX -"> 3« Z» O

V •CM CMCO -• 3si• •• oCO Ul• a- u.

co• V~ o

CO O

V<t•

00

u!

Xin

Ul•

XCM CO

z •a co» •«n ui< •o xz -< —• •U. m> •

NV U.o •— X

co \oX X

o ao B

<ztrou.

m «e on o x u i u i u i o oCO X 3 3 3 •- t»

K Z Z Z *oO U I < C U I < M M

o o:o B

<Z k- K K K k aa 2 z z < o oO C O C O ' O f r - Z

*ZUl

oUlz

3OtrCD

**

•u. •r> -I° Uj• V3

U. •3 -Z -a in• •U. VO COo •• CO

fe~X<w<o•

«**MX

3'Z

O (MU -

Ul Zz z- ot- u3O Ul(X ZCD ~3 »-

CM —< Ulo •z z< >• •

3*o •Z M< a• aa •< zii< o• •< zo 3 mz z << a o* • z< z <

*- o »-I 19 CMUJ • •«O Z 3• O Z3 • OZ Z »a ui CMo -

3ZcrxVz3

O

*z>«

zi> o>3-3 ZZ Oa *L> U.

£ £« U.

3iz aor x

» o o z z e \ J c \ j a* CD z* 3 o* (/) O

— M

3 3Z Za o

»- oui 7a ui

#***CM•••3

ZOU

oz

Ul

aou.

uUJo

***

co oN o n o —CO •* CO IT ")

VXXX

*****

XoauiizoaoCD»**

XvO

u u o u o o o o u u p

265

Page 279: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

V V X VX X X X V

V X X X X XXXX • X XX • • <• • XX O (8 •* <B •• < 00 (M (/) (•

PJ </» (fl- M < Jz >

Ct X. Xa n oo o. aCD U UJ

-i i a< UJ UJ

U. U. U. LL U. <V O O O O O ZXS tf» i/l < / » < / > in OX Ul UJ UJ Ul Ul Ul

H J- Ua a uiUl Ul Ja g u ,

vXxx

***OD

yXXX

*» vft Xft X» Xn •>- «i ** *(M ftO *(M ft

<Z

* a* ui» a« o* a.N a.

Z Za •-ao zM <

t- oa oz <oto u

V W) *-s 5 *•x o wx o. <

a ctUJ IL,a ao oa aa a.

a 6 t/>a a u.oo o

z z z za az zo oo o

u u

wUJa o.

z z< < ao o ujo o oI I I

a ui uift Zft <ft J« aft i <CD Z I-

- J . J J . J JUl Ul Ul Ul Ul

— evj n * inJ<z

X.oami§ao03**ftftft(B

o oa aU J U J

<</) ( / )I </) (0

O J JQC O OOas ui uift « «» » »* « *ft * ** * *<a m «

J «< •Z X1-4 pM

gnH X•- XO XZ XO XJ Xft Xft Xft Xft Xft X(8 X

H f- K H Z< < < < OO O O O Z(Q <• (8 A <6

X X X X XO O O 0> fO10 Pi I*) CJ O

X XX XX XX XX XX XX XX XX XX XX XX X

X X XX X XX X XX X XX X XX X XX X XX X XX X XX X XX X XX X X

Page 280: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

AM

MA

.EF

,GE

F,G

I:.G

GF

.

X3

9<

«A

NP

X1

9<

«ti

NP

Xl9

F,V

M,V

AV

SX

2K

i,E

YB

A*

*

O CO >

< V Wt- o> -uj m 3CO X Z• < a< • •X Z (VI0. 3 M-I Z UJ< o 3• » •

M Z (VJ

a 3 w« v cr z uj» o • a •* (vi a. • M# X < Z *# (VI O O •« V(VI K Z O • CD(VI Z < • V »Ul U. • Z O «Da • < o w wZ V O » • -o >o z z o xU • < UJ (VI < (M

O • O X »- (-a w < • < < zO X K Z H O U.U. (VI _l UJ U! •

H- UJ • • V) V VZ Z C I L V O J O *M U , » 3 O ( V I O <| 3 Z W UJ.O 0O Z Z O • • (VI (VJ< o a • o (vi • xui M u. w < inJ W Z 3 * 0 * H« ^ ^K ^ ^ V ^z a z ™ z ^* u i z a x - < o z* z z < a» M C UJ O« ^v I i DF ll

Q \J Cb IL

-. (VI 10O0o

<K-IUlooz<3Za</>aUJKUJZ<a<aj<uM

K a3 1-a uiz z zM UJ O

> Ul< M O —h- O *< A *fLJ ^*0 J < H* J UJ <# «r a o« i j jfc b^W w ^

<t-JUJQ•

3Zor

N(VI V9 0in o•* M

* •- in• x* Q«- <a uia fy

Q.

O0N

V<t-

UJ0 0o »OD (VJ» *a »

V 0> 3m o> z• • ao a »- a> ou. o ' o •M O « U.X V Ul « X >

3 3 h- V |>- z z a. •- o —z x »- j a - oa z j * * uio u. c < u. z oc

<o o0 0- CO

u.>•<»-JUJo

0 •Z 3M Z

» a• •o •« <z in Hui • •• <•- O O O» in v »o • —

UJ O 1 Vco in * •- NM 1 « CO o* V «- id u) —* m x o o •-> 1 # U! (VI UJ Ul vO~ * ( v j c c in - co 3X

< C « * « ~ T — Z — > O Z - « Z

D O O u n X O O U H O O O t - HZ U I Z Z U I Z Z UJ Z 2 2 -l u m u j - c u - i n u J — o m u J - o o :

0 - (VIin in in

u

267

Page 281: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

VXX

(3

*Za

n v*• x• x

<a x» x< •K n< •o h-M U,

f» •• Ax *00 U.<M >•

XXX

X «X •x nX •X NX U,X •X (•

X K- JM UJ

o

Of.ou. <a•••NO

V

•>

zz0 -Jcvj 5?

• M

* zz u.z *_J V

z(V ZN JCM ttCVJ CVJ

O Zo u.

CVJCVJCVJ

in•

in

t- inzu. v

V)(M *<M *-iu19

Xrox Z» UJ

CVJcvj

(MCVJUJ

Im

xuZUl

o0UJaIL

ZUJxu.U)

•z.UJ

aUJa

XCO

</>a.vf>UJ•

lit£UJ

X ~m

Xm

flj

X0CVJ

Zo«-> V

^ XO X< •aU.

aUJX

Xn

n x - r o x

xo

V CVJCM •n x

ZDjo>

Xo

V CMfO *n y(

UJx(VJ

Ul

UZ

ozUJz•

UJCD

V

— V• V *•- n •

vV V V V NN CO V <t V <O •• • n • m • •-

fc«tf • ta4 f ^f^™ ^ ^™ ^* ^C M M M W X

«- X •- X <X < X < »-

V00

-H Z

X Z UJ< O XI- X Ut

~ z* »- o

nin

M a* IL

Of)

I - a-> » u.

•N a - a z * u j * u . * u ,o x i L X u . u a — u - i u o o o

O O f - < » - < O o O ' ** * < o < o * » * au . u . o * o * z z < <D 3 * Z * Z 3 3 0 0Z Z Z U I Z O Z Z Z Zc o u . o o o a o < <

nn if. to n m

268

Page 282: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

Vu.3*.a

*0•CM1O

•<J> V< <o oZ «rA< <X <4S U.

^iI*?Z 0oc •* «0 | V• o o

CM • •1 « *-0 X I• V <

M V OX 0 *1 • <V •• XZ c^ V3 Z VZ 3 Ztt Z 3# a zo * ac• o i

CM • O1 * •O 1 *•• ox- • »x n <« x a< * zQ < <Z 0 *< Z 0X < •

* * *CM < «< X <o a KZ _J UU< < (Q

(/)

*

•V)CMCMUl•

0,<oz<•

CMv<

3z

* a-> •M CM• CM

V UlCM OCD •» CM V

•* CM in00 Ul >x• • •- o <CD UJ •• an- u. -

O <D Ul. . V v

••• CM *• O> •1 CM 00 O X< yj • M inK a •• • ••ui z oo «o x mo o x x eo< O Ul 4 OZ J H K Z h-Z _l «- a

O U O V U. O

V•*•n*4Ul•

X00

tfl •CM «(M •ui r>• •«a ui< •0 Xz -< -• •

u. to> •

NV U.o •~ Xx CM

tO X UlX 3

UJ < l—

K Z (—- a zCf O OV U. U

«4

o<< 0

UJ Ul O 03 3 - S

M M < O

K t- K t- Q.Z Z < O O

U VJ t— O W) Ul

*«***zUl>M

oUlz

oaCD

**

*4t

*O0

a*#»

0o^»a

inMK3OaCO3(/)

MO

AP .R

PI . A

LP

HA

.B

ET

A .

GA

MM

A. E

F .

GE

F ,

GF .

GG

F*

<•<QZ<•<»-_l

Ulo3Zoriozzcu

GG

M.R

NU

M.G

NU

M.A

X3

9<

.BX

39

<,A

NP

X1

9<

,BN

PX

19

<.

5»zUlo•zUl*u.3

O•u.3Za

.IK

S.E

22

.GE

22

.RN

U1

2.V

F.V

M.V

AV

SX

2K

.EV

BA

3.

VOCM•OCMX

HUl•VoCM•OCMXMX

V09.ooCMv4

X<K

0•(/)CMCMUl•CM<Oz<

0

0CMx3Zair

o•0CMV<

JUlo*3Za*

OCM

Z,*M

0f)

oo

IVin«0IM

0 1CM <

- -J* Ul-> a*-» 3

•- fO -> Z* * C*" O ™> %a o a >- M

co oCV) O n O ~-co ** oc ro to

u u o u u u

269

Page 283: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

X

*v >in x »• * v u;

O V -> 31 "» • Z

(X — X (-X X < Z* *- I- QX X Ui U

Ul

IzH 3Z K OO Ui Zu a ui

***sCM(MUJaz .O CMU (M

Ul

- 0I- U3O UJa zCO -

</> 3* c* a« CO# 3* (ft

39

CX

39

.39

<.B

BX

78

<

AM

DA

. A

MO

AP

.RP

I . A

LP

HA

, B

ET

A ,

GA

MM

A. E

F •

GE

F .

GF

.G

GF .

EM

,GM

*GG

M.R

NU

M.G

NU

M,A

X3

9<

*BX

39

<.A

NP

X1

9<

.3M

PX

19

<

• ft.OCO < •N 1- ZX J UJU Ul •U Q U.U • 3

3 ZZ Z 0c a •w z 3"z o zui z az z«- o0 U

20

«2

0<

» I

KS

«E

22

.GE

22

»R

NU

12

. V

F.V

M.V

AV

SX

2 K

.EY

BA

R *

AX

12

8.8

<

X H>< <1- 0U) •ft (/)V CVJO CM(M Ul• •

O CM(VI <X O« Z

X <

o•o

(VJX<1- OJ •Ul 0 XO CM «* \ >3 3 »Z Z <a ce ui• * a> I <

o< (VJK •J -Ul *O M o* (V)3 O Oz n i-£ ** c «-> o •-

* a!-> *a x

vCM

**id VCM X» X

X XX Z 01- < •a i- -o < *t/» * v* < »-iX K Xo u< ona H a

-AM

OA

2*C

OS

X2

.0*T

ET

A<

/XR

OH

*R

OH

«

A2

*S

INX

0*T

ET

A<

/XR

OH

*R

OH

<

0 Q• Z

X »# 0o •« CM

O M *• * V0 V -* «. •V • ft-

M X XX U UOP U UCO U U

H*R

OH

<-3

• 0

/XR

OH

**4

« /G

AM

MA

O Va x* onZ X< 0y> o>X XX X0 0

o • •• M CM- 1 X

* * *•• CM CO»- >- H

T2

*C

OS

X2

.0*T

ET

A<

&T

3*C

OS

X*ft

O*T

ET

.0/X

GA

MM

A*R

OH

*RO

<<4 •-"

? XX X 0* o ao a #• * r

cvi X O* o cev or xCM « «ft 0 0

N* • •

X (M (M

U * *(J <t IDU K »-

-i O— CM n

270

Page 284: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

<-3

.0<

/XR

OH

**4

<&

2.0

/XR

OH

*R

OH

«/G

AM

MA

CO

SX

2. 0

*TE

TA

<&

T6

*CO

SX

4. 0

*T

ET

^ 41

z z< ^1 1-O X

• *••» O

X •4t ^^

< *Z Vz -< (VJ

X •+X X« t 1w<o ut= U

NX

4.0

*T

ET

INX

4.0

*T

ET

n (/)Vt *

* *n i-K 11 XX «* oo •' PO

(VJ *

* VV ~(VI (VI» »

1*4 frrt

X Xi) It

U VJu u

0(VJ

n v

* —i i en tt i

(Vj *o * •o z •

V• <

KUJ

*zax</>o

>> u

d i-1 Z Z

» IAVI

•> a: u

V V< <i- «-UJ UJ1- »-# *V V0 0• •

(VI (M1 ^dz za aX XX XV) VIo ou o(V (VIz ai/% * Av/ v.

U U

V V< <K »-UJ UJ1- K

* *V Vo o• •

(VJ (VI

zz>a aX X ZX X *z z *M M X

<fl W O

(VI (VI *z a zZ v T-

Z •!•

V) I/) (X

V

5 xa o* ax «0 Xa ox ax »z zX Xo o» m-

^(Vt (VJz aI»

XO Oa a

XR

OH

P2

«/G

AM

MA

^V V4 OZ •z -•^f jA

o z« az xX 10 Za xX 0

CM X ttZ O Xr _ ^• z.o (vj ora i x* * *a. a. a.

XP

I *C

OS

M2

6P

2*C

OS

NT

&

P3

*CO

SP

2<

/XR

OH

N*G

AM

MA

«

# vV 0o •• •*

** \1 Zz aa xX 1* zZ Xa z o* x av o x

A Jt rt• ~ \J

~ z •x a MU - (VIu o o

<-X

RN

*R

N-l

.0

«/R

OH

P2

&R

N*X

RN

-1.0

</«

OH

N<

/GA

1 *

CO

SM

2tQ

2*C

OS

NT

&O

3*C

OS

P2

<

< OX Xa *J V< 01 •o —~ zx a* x< *I VZ "^ (VJ

O - T• *LX M O

x x a

o u a

*X

R1

*S

INM

26

R2

*S

INP

2<

VO

1zax*za .* zv a-> *• z

Pft ^ Tp i P* ,L

a M oi x a« t 1 1hW W

(VJ u —a o «/5

S1

*S

INM

2&

S2

*S

INP

2<

X

VO

*MOzax*V1-}•

0 «-1 X^ oM UVI U

in

IU UJ *3D >- O1 OZ Z - <f

z z a » *o o * c - »o u x o « an of* fi

271

Page 285: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

V(V

*> ** >• • ( / 4 Va (vi x1 * V< * xt- X XJ X ZUJ t- <o a K» MI ^ —w ^

z * <a » tZ K* C UJ>- a t-

CO

SX

2.0

*T

ET

A<

/XR

OH

*R

OH

«

*(VI<Ozoo•«

X

c•

O (VI0 • *• o y0 * -» W AV *V ~ i~

~ ~ *M M OOD CD UID CD O

2.0

*TE

TA

</X

RO

H*R

OH

<

XZ1-1en*(VI

az<o•

(VI<hvM

HI

X

u0

RO

H**4«/G

AM

MA

XV VZ 00 •at co* iZ V0 Zat o» at< *z zz o< CO XX VX 0

o o •* * CVJ- (VI X1 1 1

— (vi nK K *-

2.0

*T

ET

A<

fcT

3*C

OS

X4

.0*T

ET

MA

*RO

H*R

OH

«

X Z(A <C O0 X» S(VI 0

v> —- 1K Z ZX 0 0* a ao * #•• z z

(Vi O O* a ay * x(VI 0 »& A ^» • ^

•N (V! •X | (VI

o * inU H H

X3

.0«

/XR

OH

**4

<&

2.0

/XR

OH

*R

OM

«/G

A*M

AX

2.0

*T

ET

A<

6T

6*C

OS

X4

.0*T

ET

*TE

TA

<

1 (A 0y o •< 0 <tX * Xa in z.j &• *<-

< u5 I/)1 <t *o i»- n• X H

— * »X O O» • •< f> (VII » *.Z V V< - (VIO (vi •

X 1-4 M

1 X X

>0 <J Ut- U U

0*T

ET

A<

*XZM

CO4t>0H-#Otn o» (VIv •— 10 V(VI * M

«n A* JP

— * Xx n «u (viu c *u o z

V<KUJH

ZaxV)o

a ou5 K*

•t fc tA^E V Vi

-> a o

y y y y< < < <K h- ^- ^>UJ UJ HI UJt~ H H H# # » *y y y yo o o o• • • •

(VI M' (VI (VI1 O 1 V)Z Z Z Za a a aX X X XX X X X(A (A Z ZO O *•• i-<U U (A (A

(VI (VI (VI (VIz a. z ao a M U U V) (f)

yx0 Za o* az *o za ox at

Z X #* z z» z zo a a* (VI (VI

o o oa a a

P2

</G

AH

MA

I *

CO

SM

2tP

2*C

OS

NT

&P

3*C

OS

P2

<T a.o xat #X VV 0

V O •

z - 7Z 0 Z< z ao a x* x *Z 1 Zz z ao z ia o *

If\ ^f Ao z •o • at N*a (u x x* * * oa a a u

RO

HN

*G

AM

MA

«

RN

*R

N-1 . 0

«/R

OH

P2

&R

N*X

RN

- 1

. 0

</R

OH

M<

/GA

MM

A

X XX 1y y0 <• z- ai jz <a iX 0u> •

Z X

0 *z at <Z 1 ZO X Z

« *^ 1 ftO 13Z • X

* * *o o a

272

Page 286: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

Ol*

CO

SM

2&

Q2

*CO

SN

TtQ

3*C

OS

P2

<

X

*VO

M

u>ZCEX

*V~> to-> z• in- C O .x a iu * *U — (VIu a a

»X

R1

*S

INM

2&

R2

*S

INP

2<

VO

M

|

ZCEX

*za* zv a~> *>• z

M O

x au *u -u v;

SI

*S

INM

2&

S2

*S

INP

2<

X

*VO

•fozCEX

v—}

fO **O M1 X* u(VI U</> u

Vu00uX

Uj UJ <

!!«K 1- JZ 2 _|o o <u u u<t •"f) ro

V</)

V Xffi »» a

ffi m0 •• ffio •o uu xX 0ffi Z1- *•

^J -J *J J W< < yu u »«

ON

C

OE

FF

ICIE

NT

S

AX

40

< *

AN

PX I9<

* A

ND

B

NP

X1

9<

UM

</X

AM

DA

&1

.0-2

.0*R

NU

F<

*B

X1

<

•< ZO CEUJ 1a o•a —UJ Xo *tart «£

U, O 0Z (M

UJ < •H * (VJ3 0 *a • «Z (VIo * Nu v n4I> •*« X O« < o

VM1 CX

X O# « z(VI * ** « zZ « CE

<&

XX

RN

& 1

. 0

</R

N<

*XB

ET

A/G

AM

M A

- A

LP

HA <

*B

X 1

1 1<

MA

<*B

XK

&X

XX

1.0

-AL

PH

A<

-XR

N*R

N-1

.0<

/GA

MM

A<

- ZX <ffi O

* XV V V< >- cz «- •Z X -< ffi 10 « ZX < CE< X XH a xUJ J 1ffi < *X * V

— * v •>1 V - XM M - a* X X Z""> < < ^

VM

MV

9/»

I IX8

*>

O*

^«ozcexoVfrrf

V XM CDM #X Zffi CE '* X UJV * 3Z V ZCE 1 >-X X I -

a zz offi U

*•(VIn

3Z(VJ(VJU! Z

CEJ 3J 1- 0< uj ru a u

«*3(VJN 3UJ Z

(VIUJ (MZ UJtart

1- UJ3 ZO -

£ 33 O(ft CE

* ffi# 3* Vt

• A

MD

AP *

RP I •

AL

PH

A*

BE

TA .

GA

MM

A* E

F •

GE

F *

GF •

GG

F,

M.G

GM

«R

NU

M,G

NU

M,A

X3

9<

.BX

39

AN

PX

19

<,B

Nr>

X1

9<

.

0<

* IK

S*E

22

*G

E2

2*R

NU

12

*V

F*V

M.V

AV

SX

2l<

tEV

BA

3*

< O (VIO • •Z Z 0< uj (vj• ox< • <H Z HJ UJ UJUj » •o u. v• 3 03 Z <VIZ 13 •Ct • O

U, MZ 3 X0 Z «z ce xzou

•- (VI

O U U

273

Page 287: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

o

V OCD •• O

CO O(VJ 4- X

< H.

<o U

Q« «

V> VC\i TV(AJ <&u.f *• 3

X Z< ttQ X

V>5<

(/)»

X VO CM•« *(/) #• V

v •>

M X

X <4 »-f- Ul -uj u> in• N •

V # O

• V«- ->

UJoc

oM

P)UJ

> c> o%J N

*lU tf)

o oo ou. ztn </)z z3 3(/) V)

O O -• •

» *

X -4 XZ Xo

oinVo•

(A«XON»(/)#u.

a*o•

W1

VCJ

*#VO

**XowX

Vu.

V>oV)

X Z X3 a o

H- 1

aio•

UJ -

H *- </)# v> X> U. #X t- U.

Z 3 Z 33 < 3 Z

V)*X191-V)»

a«o•

N1

VCVJ#

*V

«

*XoV)X

Io

VV

</>

V Z X Z XZ tt 3 Ct (S2 UJ < UJ —Z K t- H <fla o * o x~ > z *

V V Vz

( / ) X K Z

N

aUJKul

U. U,o o _# * *o o o

o oo o

• • • • o4 N 4 (M 4X X X X XX X X X N

C V J U j - < D < D Z U J X u . '

U. Z O

z z j z z a z a z a z a z x

m m

u. u.UJ 1/5 K

i2llM M (/).</)

K »- * *Z Z U. U.o o

— OfO f*}

z zW h- 3Z Z tfl3 3 *tn (/> a» « <Z Z CO

»- W h- NJ3 3 3 (/)

274

Page 288: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

VctCDIMV)«Ct<00N

OaCO

UJ

*- z aui ui <x x CDX (VI N-4 (VI W

UJ*tf

(V) (VIM (M

Ul*

M

V Vu. z>- »~3 3» »u. zo oo ou, z3 3* «u. zUJ UJo oX X« *a cct a* »o o• •

(VI (VI* %u. zo o3 3

V3

aa*o

Z (VI*- X3 Xv> VU. Zt- O3 3

Z £(/) O3 3

X Z*(VI 3(VI k-Ul UJo a

VA

VG

**«

VG

Ul <z >M

K Ul3 JfO M

S 53 0</) Ct» CO* 3» (A

LT

A ,

AM

OA

. A

MO

AP .

RP

I . A

LP

HA

. B

ET

A .

GA

MM

A. E

F .

GE

= .

G- ,,

GG

F .

EM

.GE

M.G

M.G

GM

.RN

UM

.GN

UM

.AX

39

<.B

X3

9<

.AN

PX

19

<.3

UP

X1

9<

UJ •O U.• 33 ZZ V5ct •Z 30 Zz as •0u

•M

ET

AX

20

.2C

K.I

KS

.E2

2.G

E2

2.R

NU

12

.VF

.VM

.VA

VS

X2

K.E

EY

BA

R,

,DA

TA

X1

28

.8<

• (/)V (VIO (VI(M Ul• •

O (VI(VI <X O~ zX <

N n

V*

< (VI»- •J -•C M

*3 0z nct* c> o

Vo•o

(VIX

zctX«Vo•

«4

M

K. a* XM ttct x

&Y

**2

<0

.51

(vi in# »« ox mxK Vet —O 1w »** Xzo u.a *-

M

act*in (vi• ino* o< HHUl OK O

Oin

VXX

Xz< Ul»- 3< Z* •»< >-1- ZUl O*- o— (VIin in

o(VI

(VI%

o •»o -«* mz3 0(/) O

O -i- 1cA ^-> ** •>n ->-> -j

V

l

M» Zfvi *« Zz a

z zo oa orZ X «# z z* z zz o oo a ora * ** -. —z z az z zc o oa a a

o u

275

Page 289: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

V<

fch-Vo•

94

zorXXz**•(

(A

Zz(/)

V<KUl

«zaXz£

zzto

V<t-UJHVo•

«4

oaXXzM

azto*

(/)

«•

Zz«7>*«4

ZzOQ£

*a*v

CD

JaUlH

**azto*

</)

*VX3Za.

*o•

CM1O

•»4

X

*0•

CM<4**ZZ»»•0)

zax•M

aJ

o

*V•»1CD

ZaUJ

^

vV<KUJ

X(/)0^J

*zzto«

»0

s

*•azoorX«*aIM</>*za4

X•>•»x

<

zaUJt»

•z3?to«

(/)

*Vz

a.»0•

CM

i

•«^

X«0

•N1

4^4

azto*V)

*Zorx«V•4

Z

o0;Xv•»•>Xa

x

zorUlK

VV«rKUt

&(/)O^J

*zzto4

w

0

1

«t

zaUJ»-onzaUJHOCM

ffUJ^»O

ZaUJ

z31/1

V< •>-Ui

Xzto«

oorX

310z<1zoa*vz32or*o•CM1O•

**XX4tV•4

XCD

*O Z• 3

Z ^% *. *^J M £

z z > z0 3 < 0

V<KJUlO

*3Za«o•

**CM

*ZUJX

Vzza

V u)» OX •

-• </> -CM > X

•k 4f {!>

« > Z

. •* •.• J it *

Z Z Z CD3 0 3 0 >•

Zori- oUl Zor ui

oon

M

IGM

AX

X,Y

,S

(G

X,S

IGY

,TA

UX

Y<

***

«rt

UJZM}_

3Oao3Vt#

*ft

AX

X,Y

,SIG

X,S

IGY

,TA

UX

Y<

ZO

(0

UJzK

oaCO3(//

A.

AM

DA

. A

MD

AP

.RP

I • A

LP

HA

, B

ET

A ,

GA

MM

A, E

F ,

GE

= ,G

= •

GG

F ,

t__)UJO•3Zazozzou

,GE

M,G

M,G

GM

,RN

UM

*GN

UM

,AX

39

<*B

X3

9<

, A

NP

X1

9<

*3

NP

X1

9<

ZUJ»

u.3ZO

3"za

*•*

AX

20

.20

<,I

KS

,E2

2,G

E2

2,R

NU

12

,VF

.VM

.VA

VS

X2

K.E

Y8

A!»

.

HU.

VoCM•

OCM

M

X

CM

VCO

tt

COCM

X

0f

(/)CMCMUJ

CM

OZ«(

n

»•in•oin•C1

VXX

u.•M

M

aorvXxVXz<t-

*<UJ

0>«t

CMino^

oo

to*

aain•o%«it_Ul¥-

Oin

CMino

ao

vXV>pXz< UJ

< z* M

^ ^*t- zUJ OK 0

^ CMin in

u u u

276

Page 290: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

VV VN M« <t X* m <> • 1uJ f) VCM in -* • x# n <x m xx «K V 0

O O (N)tfl a ** X xZ 0O U. «a •- </>

min

VVCMX<oVM

X4

X* oo •• o

(M It1>I ^

* >>• Xo o*- <W H

\Qininin•ininV0

r»IU 1D Z

Z 7 n*- i—*

3 K Xt- Zuj o a.a u «

<tin

UJ O

5" r>. %^

«- *^ "Z Z0 DO (f)

inm

oNn

o o *• •Ma

O r* •*w ^% * O u>w n n *•z z »D D C ~tf) (/) O •••

- Z

*V #- z1 0M (Y* U.X ** z zM * Z« z oz a c

V

O Z Va o <# a KZ * UJ0 Z t-a o #x a zz z xZ Z V)O O Oa a uN N HZ Q. ZI Z (/)O O Oa. a u

TA

<

TA

<

CO

SM

2

HI UJ *H >- CVJ* » zV V Z0 0 O• • a

PJ cvj #1 O VZ Z 0a a •X X "X X 1w w zO O Q£o o x(V) <M ZZ (X tt(/)(/) Ito o •*U 0 Q.

CO

SM

2-2

.0*C

OS

NT

<

*P

2<

RN

&l .0

<*R

OM

N*X

RN

*C

OS

M2

&2

.0*C

OS

NT

<

# V XZ - *a « vx x •-# < •-Z 0 Xz «•* <o a v>a # —* V D.

O X V• < •-

^* X X

z i *^. ^t ^

X Z Z<6 (X ff(V Itl LUCL t— ^~

0<

*R

OH

M2

&A

XI

K*R

N*X

RN

&1 .0

<*R

DH

N<

*

•«••

ZOfX

•« OJ *z z za o: aUJ UJ *

u5 O "-"" N XZ Z ^

(A | A IfeVI VI ~

•" C\J ZZ Z tt15 D Inv") ^0 ^*

V<UJ

#

0 Z• a

CM UJ

Z tAa «X Z UJ

2 IA 7I/I £

</) fl HZ ZD O

Od

2<

*X

-2

.0<

&A

X2

K*X

-3

.0*R

OH

*R

OH

*X

2.

0-2

.0

2<

*X

2.0

<&

AX

2K

*X

3.0

*R

OH

*R

OH

*X

2.0

&2

.0*C

OS

X X

V V V

X < X

* UJ * VO >- O V• # • <

O • O UJ-« CVJ CM KZ X Z *

|A ^^ (A —V) LJ VI •

X * X XV5 O• ^«in in

" ".

277

Page 291: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

cozD

XO<f-

u3

C M

D K^ ZUJ Oa u

<oin

O O O

O ^ oV \^J

* * *— (Mmz z zO D D

o(M•

m v* -«•- 1 O>

- X 0

CM *0 * »-O Z «-

Z

**Xa

— « %1 Z Z

IM * X

* z c•) a a

v0.»V")

£ ilZ O CD(/) QCOo x rou v a0 Z V

i u aCM CM CM * ZZ Z ft O <

V V </! V) I • O< < O O O (M Nt- »- u u a o aUJ U.I * * X CM #

i * # z a a w «a o < o o o » o u xX * U J C M ( M * X * Z O

a o « z z o o r o x aX C C Z K f f • # • # *x * a x x - v - v vZ Z M X X i o u> o -X X ( / ) ( 0 ( / ) Z * Z * Xo o o o o a - a - mo r a u u u x ^ x i x

z a z a z a x i r x zo o o o o — w n ^ i ua a u o u a a a a K

>C

OS

NT

<

o

CMZ

ou*zITX

*zXoa*vo•

••4

2

a x-« CMo o

r</R

OH

N*C

OS

P2

-2.0

*C

OS

N1

2ax*vo•

<H

a Mn <to o

)3&

BN

PX

J<

*Q

4%

IK*Q

2tA

NP

XJ

<*C

CD0«^04tV

XCO

NZ

UJH

CM CMz z a0 0 0

# # XV V V0 0 O• • •

•« «H IM

1 <d V)

a or aX X X

z z za a a•" CM COa a a

JN

-2.0

<*T

ET

A<

£R

Ne

2.0

<*T

ET

A<

RO

HN

BX

IK*R

2<

*S

INX

Xf

BN

PX

J<

*R

4<

*S

INX

9

X <d idV - roo a a• » »

•" V V1 « n

a CD aX X Z

<t Z 1

^ iua K

••< (VI COz z za a atu UJ UJK H KC^ <A ^^«- cvi nZ Z ZD D 3i A tn (AVI W* UJ

* * *z z z3 3 D( /)( />(/)

278

Page 292: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

V

«D

A2

*CO

SX

2.0

*TE

TA

</X

RO

H*R

OH

<C

ON

TIN

UE

SIG

X*-S

UM

l&2

.0*B

Xi<

*X

1.0

&A

I

VV

KUj

*O•

tf)0u1o•M

X

*Vo(MX

oorJL

1

-2.0

*R

X2

<-3

.O*e

X2

K*R

OH

4C

4.0

*T

ET

A<

k<

/XR

OH

**4

<-B

NP

XK

*X

2.0

*C

OS

J2

-6.0

*A

NP

XK

*C

OS

X4

.0*T

ET

<1

3

&2

.0*C

OS

X2

.0*T

FT

)A2

*CO

SX

2 ,

0*T

ET

A<

/XR

OH

*RO

SIG

V*S

UM

2&

?.0

*B

XK

*X

1*0

-AM

CkR

OH

*2

.0*X

l .0

&C

OS

X2

.0*T

ET

i*V

(VIXCO

o

uiV(VIXcc*o(VIo

:/X

RO

H**

4<

2

&6

.0*A

NP

XK

*C

OS

X4

.0*T

ET

A<

VZotf

rA<

-2.0

*C

OS

X2

.0*T

ET

/XR

OM

<

UJ1-*o

Xtf)ou#o(V;X

*V

XaCOid

in

>IN

X2

.0*T

ET

A<

/XR

OH

*RO

H<

«V•M

XCO

*(VI

sz<*0•

(VJidP)z3tf)*>•X3<h-

:

1

-6.0

*A

NP

XK

*S

INX

4.0

*T

ET

4K

/XR

OH

*RO

H<

2

-2.0

*B

NP

XK

*S

INX

4.0

*T

ET

/

RE

TU

RN

EN

D

4^ ^^» n* •V 0>CO CO• X

< COX V

CO »< * VH- «f 0>< x roUJ 4 COZ K NM < X

K 43 UJO Z Zct *• cCO H "-3 3 tf)tf) O Z

a ui* CO Z# 3 •** tf) Q

V•>•zX

^

*V•M»

zX

idV

a o> co •>f) fO ^ •• • o • *<- ^ • M X* * O « O O U J U J U Jfc* 'k Z ifc 3 H5 O

V V Z Z ZO * * ^ ( V I ^ * * * * * *I*)!*) • M • h - ^ - H»• - z z z0 0 X 0 X 0 0 0D Q O J D C D V J U O

ZOf31- CUJ 7ce ui

**«v

CO

VO

Xu•

VCO•s

• V X< u oX » *01 GO VH- * 0^<<!**,

X •UJ CO (DZ I- K« < XH <

CO K3 3

z -c *

tf)

*

V)O Z Oce Uj coco z3 «-tf>

O Xo o u

(M •< OCO fO f5

u u u L» U U

279

Page 293: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

VV V X VX X X X V

V X X X X XX X X . X XX • • « • X^ (9 (fc (ft »• 4 CO AJ (/) A

Z > > (VI 4 JO X. x _l 4a n o •* o •-•o a a _i i aCD UI UJ 4 UJ UJ

t-U. U U. U. U. 4O O O O O Z

in tn in tn in QUJ UI UJ UJ UJ UJ

00(s.»

VI

*->

n

oo

Vf

ttCO

*Vto*

M4OV•MXuVM

Xtj

UJ

zHzau

u.z

*-zou

z3

*-UJa

Q7UJ

(VICMUJaou

o

UIIaou.

uUJo

***

VXXX

<B

**

V V *X X #x x nX X K• • I

a (8 «•* * (VI* * o* * (VI* *« « z4 CO 3

Z

***»zUJXCM(MUJ

ft aUi UJ

& aoor aa ao uz za az z

o o oo oz z

»- K Ua a ujUJ UJ UQ. Q» UJO O Wor aa a u.oo oZ Z <fl•_ M UJa a Mz z t-4 N ao o ujo o oz z cr4 < a

UJ U UzV VX X U. *- ) -»-

u u u u

X X U.X X

« a* ** **, *« «* *< CD

(/>4 4_l _lUI UJ

UJz -«

X X ZO D Da a _iUJ Uj 4I I I

§§§a cr ao o oCD OB CO» * »

* # *

O Oa aUJ UII I

V) V)

o oUJ UJ

* «

a K »-I < 4z o o« (8 (B

V) (/) V) V)< < < <-I J J JUI UI UJ UI

m •* in 44 4 < M»- K- K Z4 4 4 Oa o o z(B (9 (8 (B

UJ X xW « Oa M co

X. K K X.O O O> Wm n CM ro

— oro m

<B (8 (8 ffl

> X Xin x xZ X X< X Xa x x»- X X» X X« x x» X X* X X* X XO \ X

X XX Xx xX XX XX XX XX XX XX XX XX X

x xX XX XX XX XX XX XX XX XX XX XX X

X X X«c -* in

u o o o o<» x i i z i rf^ 94 *^ ^ *4 ^ ^rf^ y* %» vj» « ^ ^^ *x ^^ *^ ^^ ^ ^

Page 294: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

DM

PG

66

*****

6<

»F

NT

2X

20

<

U »O

a CM0 XU. CM - -

Z Z 3M U. Q.

i z5< o

U ^f ^f

# Ul Q* Z »

* 0 #

MD

A,A

MD

AP

,AM

DA

1,A

MD

A2

,EF

,GE

F,G

F.G

GF

,RN

UC,G

NU

I-N

UM

,GN

UM

.RP

I,V

F.V

M,E

1 I

S,

DA

T A

X 1

28,

8<

,G6

6*

G6

6S ,

< a CM< z z•-o u.J 19Ul * 11? Vo z a o• o < o3 • I 0Z Z W CVIff HI • •

19 o inz • <o xZ Ul 19 Oz <O Ulu a.

— (VI

PA

RA

ME

TE

RS

R

MU

A

ND

D

EL

TA

tw

v a* H< Ul0 Z ZCM UJ OX > UJ

K O

Z J <

o < au. u »00oCM

<JUlo3za

NCM V0* ^0in o•* •*4 •

v «• in* • xK * O^ ^* <1o a uiM a a

o0N

OO00

aV 0«fO 0^• •o o- 0>

& *X V

^- zZ Xu0 U.IL "•

vOoff

*DE

LT

A<

CM

*za«o•

Ul X

z —H az *0 IL0 >

OO00

z

ozUlM

•19UlCDM

*U. *

1 "*O «- O *•

« O O O fO* Ul Z ZZ ID UJ *• C

in^3 ^4in v• MO Iin * -

* ••V M Oin x o1 * Ul^ (VI It-> - z

X O OUl Z

IL co ui>• z z

0in

roo19

CM UJin •« OD

^* vC Z

U K O OZ Ul ZM o 02 uiZ O Z Z

«*in

A. R

MU

, D

EL

TA

, V

F

H

ofc»

VNO•*

Ul 4)3 X

0 t- KZ ? •"•- o a2 U »

CMin

//////,2

8X

ID

AT

A*8

.I 3

,8

RM

U* 9

, F

T. 3

,

XXXXXX•

r*

zX

za0u.

0«-

VXXXX»n•NU.»

A«U.>

V

*

f) 2» z

N 0 JU. CM X• • (M

A -• H» * Z< Z U,t- z *J J VUl ZQ CM Z

CM JN M

^^M CVJ(P>

0 ZA Q U.*4

CM(M(VCVI

U

281

Page 295: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

VCXI

zu,*<0

inroin»

roin

vin

a<oois v

X

z4

UJa

$3

>uUJ

oUJau.

V -o •ro xro in

V)a«oUl

zO VX XU. Xo •

UJa<zin

zo

z «o z^ ^0 ^- o -

CM

zo z

N

a vUJ XZ X

8E

R<

CM

zUlu

z* a

v — ui_ • an xro in

au.UlzJo

zo

X<0<0o

•CM

O

o<

ii< <X cAu.

3XVV _u. a3 *z o(X •• <O I• o

N •I roO X• Xi- VX O

V I •O V

^- 3

<J>

a

uj

a» «- o

roin

UJ t£> XD XZM UJ 4

t- Z t- Z

V ~* V<\j • roro x roro in ro in

in <o x <o xin x

•ozUlz

^ VV

V r-Vao v

V« V

V VV N 00<o » •

*I

UlCO

z •- au. c a o

oCOro

UJ

*- aa o* u.

roro

O UJ

o a

uiT 7

UJ < " •->

O * U,

* (VIin ro

ro

< uj <* t- za « ao a o» u.

CM

rororo

Zouinin

< ao # _z o *< • oX CJX IV O .0 * 0• •• •- x roI * Xz < < «

Ul O O <X Z Z Ou. < < zUJ X X <

* * * %a — M << < < za o o as z i _j

282

Page 296: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

Vo•

•4

1<oz<XXVziorio•w*X« o< •o — <cZ 1 «< < o« K ao u. z. CD O

* * 0* << X -1H Z Ja, «* <CD O U

UJa<z(fl•

</)<0<o0•<oz

* <•» •« «• <ov o(\J (Jco •• «

— <cCO O• • V- 0 «00 UJ •• a «

w UL .«CO UJ» V *0- o> •CD 0 X• — in

•• » •»co <o x rnX X 0

KO U) < O*• t- Z H

M C

o or o oo » u. o

UJ0.<zV)• V

w «f<o •* ~O (M• UJ< no •Z X< in• •U. <t> •

inv -O UJv •M X

• in* -X X

HUJ <t- Z*- oror o* u.

< oUJ UJ UJ O O

iiiSKIM W •-" < O

H K H t- »- aZ Z Z < 00O O O O O »- 2U U U *-> O V) UJ

*****zUJ

UJz

oaCO

#

**

»«««

<o<e0aO <£>U <0

Ouj az z« ot- u3

gz1

CO -3 »-W 3« O* a« CO* 3* to

A,

AM

OA

P.

AM

DA

1.A

MO

A2

.EF

.GE

F,

GF

.GG

F.R

NU

r .G

NU

- •

OZ

•<t-JUJo»

iazoXzou

•ifi<£>0O•

vO<019•

VCO»

GO(MvX

»-<o»

</)p*

UJ•z>•

u.•

*•aor•z

o•z3Za»

zoo•zo•zUJo•z

UJ

UJ 0a •< 0Z 0v> ««• \

£ U.•O 00 O0 *

U.Oo

o•oo•»Vzo0«zoo

z>

*3zau>u.>

*3zct<CO3za

A<

/X1

2.0

&1 ,0*R

NU

BA

<

CO

ia00•

_4

X#0•o

*UJa<XV)

o*z>k>u.o*Vu.>oo.

«4

X

*<

N99*N

9*

Z>u>U.oo»u.o*Vu.>u»0•«X

*cc

Vu.>oo•

«—X'#zdu)z>«u.0

*u

z(9o«Vu.b>o•

X

*zohiu.3*z

*u.0

*o

u o* *CO <

* *U 0CO <

CO OM o n o *•40 •< CO f) fO

aU U U U

283

Page 297: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

Minf»0in•oinvo•o1<oz4tt

u.

V

•ou.Xo0•»**u.>o<\Jin

tnin•<n•invooM1

fO 4in Qzc <K X

C ItO M

oin

-

v4•o1u.>(*.in«ou>0•M

%

U.>umin

v•o1u.>X*in•o

/•) Oin oo *••t- *

u.o >O U'

<tm

uDZM

K

Zounm

&B

*O

-GG

M*X

B*C

-A*D

«*C

VF

V<X*VV(*#O

(VI##UXX

5x**0<oo

XX

A*C

6B

*D

-GG

M*X

B*C

- A

*D

«* 1

0 0

CDOU*<it*z0o«JVo<IuCO£K>cooo

zoXoo z• Oftf) D«0 *- Q<C UJ Zo a uj

v vX X

V X Xx x xX A A• < CO

AZ > >O K Xa n no a a _i03 UJ UJ <

VX VX XX X• X

A •V> Atn tn< J_J <

Ti 19 Mi a

UJ UJ

V U. U. U. U. U.X O O O O OXx </> c/> (A (s> </)• Ul UJ UJ Ul UJ

«*\0tOoao

V VX X

x x

aou.

uUJo

<o*****

« «;:«*< CD

>• >•X K0 oa a.UJ UJ1 Iz zo oa ao oCO CD

VX

X•

A

***#

ni

NOCM

zz

* f-» a* UJ* a* oz au ax« o<o z°sV) Z2so oil

K »-ft aUJ UJa a5 oa aa aS g g

V- Ka a

uUJ

UJ UJ _a a ujo o wa aa a u.o oz z

a az z< <o oo oll

(AUJa a

z z K< < a.O O UJ

o o o< < a

av <X UJX Ix tnA UJ* Z* <

* a» ico z

X J0 <a zUJ —1 otn 3

-J V3o zoUl J

# * *

A A A A

U U O U U O

H- *• *• K h- »-</> 10 W </> W W< < < < < <J J -I J J JUJ UJ UJ UJ UJ UJ

J— N »o * in <z< < < < < M

I- K K K H Z< < < < < gQ O D O O ZA A A A A A

X X X X X X•« O O O ( I*)i*) i^ o fo CM MX X X X X XX X X X X XX X X X X XX X X X X XX X X X X XX X X X X XX X X X X XX X X X X XX X X X X XX X X X X XX X X X X XX X X X V X» • * • • •

X<c

U W (J U U O X

X Xm o•* nkt W

x r r r I T

284

Page 298: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

II M

OM

PD

1 1

*****

6<

«F

NT

2X

20

<

MD

A,

AM

DA

P,

AM

DA

1 ,

AM

DA

2 *

EF ,

GE

F,

GF ,

GG

F,

*NU

= .

GS

IN

UM

.GN

UM

.RP

I ,V

F,V

M,E

1 1

S,D

AT

AX 1

28 , 8

<,D

1 1

5 ,

GD

I

u • < ao • •a (vi < zo x t- 0U. N J O

H UJ •Z X O ZM U. • O

1 3 »O Z Z Z< o a ujUJ M O

J (fl Z »# z o z» UJ Z UJ* z z« - 0* o u

(MHZU.

K V3 0a oZ 0M <\J

z •</> < in— H X

0 0 0» <V UJ* a

PA

RA

ME

TE

RS

R

MU

A

ND

D

EL

TA

J<U

v a« H< UJo z z(M UJ OX > UJ

*4 O

K O< A

U

Z _l «a _i ujo < au. u *0oo(VI

t-JUJoft3

za

NW VQl ^0in oM M

^ »M M in* • xK * O

o a uj— a a

ooN

O0COft

0*V 0>W O*, •

O O1

— o>u. aX V UJ

3 3I- Z ±^ ff *••Z X Ka zo a oU. M U

<0 00 0~ CO

*DE

LT

A<

(VI

#3Za#o•* u.X >X IM O M

a M o* * UJ.u. z a> > M

Oz

zUJM

•oUJCOM

**ltart

<0 M

0 U COz zUJ M CM M O

in» M

O td

in v• M

O |in * -V M Oin x o1 » UJ* (VJ CC•> M Z

K O OUl Z

U. 1C U)«- z z

oin

no0

(VJ UJm M oM O Z

U K O OZ UJ ZM o m uiZ 0 Z Z

..in

Ul

z1-zou(VJin

A. R

MU

, D

EL

TA

, VF

////

//.2

8X

,aiD

AT

A*a

*I3

,a

RM

U43.F

7.3

.

,a

vF

#a

,F7

.3,/

///<

K x n< X •O X N- X U.

X •V X AN • »o — <- I >-• M JO X UJX O

t-ll 1 tffUJ **

h- Z«* aor o* U. A

^*No•»

V

n

zz

O JM X» (V V- I- (VJ* Z t-z u. zZ * U.J V .

Z ^0(VI Z X

Al >* IIIIM W UJ(VJ (V| H

o z ao u. *

<v(M(Vi(VJ

285

Page 299: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

<flf««

«»*

O

(A0.

<0Ul

EF

/EM

ULui

in•nin»ninvini

z03

ZV 00 Vu - z • •Ul3 XO -Ul - -tr « ou, o x

z00

VX

N •t»IX HUl ZZ Ul

UaUla

aUlOD

«2

0H

zoM V

»- XU X< •IX

Vtt,Ulx zD -J -55

V -io •n xro in• •*

Ul O X3 XZ H Z ZM Ul < OC CO

' Z — —aou.

— (VIoro

KZ »c a

zmv -

n xn in• «4

ox inx m

>- zui < oo or- Z - t.« aa o o» u. o

zo

V (VI V <VI(VI » M »to x ro xn N ro N• (VI • (VI

<0 X <0 X

z oo

XI-

Ul <K XM a h.

E

ozuz•oUlCD

V•* V <0

V VK (0» •

VV N

n • in • *• I-H

0-2

. 0

*R

NJF

<

u» V< <Q OX Z< <X OX U,V 3V Z

i*Z Oa •« <to•

(VII n

O X• X

•» VX O

V I •

O V —• X u>- 3 Zv> Z 3< a zo # az o *< • oK M *X I *V O Io • o

.0-

Ulr- Z« o *•

?-

2

a o a o* u. » u.

nin in

(VInn

nro

H n *• oz * u.o o « au o •- itinin

. .U . U I U O Z Z X U I Z O

« x ni * x

z < < «X U) O O <o x z z oX U. < < ZU. UJ X X <

o * * * ** a — CM << < < < io o o o az z z z J

286

Page 300: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

u.

UM

</X

AM

OA

-1«

0<

. 8

2<

,IJK

IS. G

DI

1 •

AM

DA

P.O

IIS

M

8.4

<

•2 ~ * —a co Q uji • • «o — o •• <0 UJ *•• • oc •X — U, W» O CO —< • • V UJQ « .4 0> •

Z 1 00 O X< < — • — in» H o — • -•o uj o co <o x n• 03 — X X CO* * O H» < O UJ < O< Z J K t- Z Kt- z «j —auj < < c ot o oCD O U O » U, O

— 9oo o»4

V<*•

I*)•M

UJ•

XZ COV) ••M t

M •

o n» p»a ui<t •o xz —< ••»• •

U. CO> •

NV U.o »-. X— (M• f»)

O X UJ UJ UJX 333»- z z zUJ < M M M

K Z H H H- a z z zOr O O o O» u. u u u<vj o n o —00 •• 00 fO f)

^4

^o<H< 0Q 0i- N

*< oH H- a< o oO O H ZM o </) tU

aa0>

**«

*«zUJ>•••

oUJZ - -M

»-3oa003(/)»

**

* . A

MD

AP .

AM

D A 1

. A

MD

A2 .

EF ,

GE

F .

GF .

GG

F .

R N

UF .

GN

I

1. G

NU

M.R

PI

.VF

.VM

.El

1 S

. D

AT

AX

1 2

8. 8<

. 3 1

1 S

. GO

» < ** O 3- Z Zo < cco . .— -. < zo o »- o

O J OUJ M UI •

z o o zM • O

D- UJ 3 •3 Z Z Ja t- a ujOf k- OCD 3 Z •3 O O Ztn or z ui« 00 Z» 3 O* 10 U

•»

PIX

X1 6

. O

*R

MU

#*4

*O

EI-

TA

**3

<*R

PI/

32

«O

eE

M*G

EM

*R

MU

**4

*D

EL

TA

**3

/6.0

</f

RM

U**4

*D

EL

TA

**3

/6.0

<

cr v ** Z ZO UJ UJ• u oin # o* z •V UJ NZ I nIU U. X Z1 UJ « UJu. o a xuj # a tox u, # -

Z v> u; V «•« T X Z D- UJ X UJ * Z- % * i z aa <n x u, <s> 3

« « UJ "« >-- O X -• UJa o x c a

M ••»

***

QazouIoz

UJ

aou.*uUJo

Q

**

u u u u o u o o u u

287

Page 301: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

V V X VX X X X V

V X X X X XXXX • X XX • • * » X

• < CO (M W) Aa CM </)</)Z > > <M < _j0 X X I <a o n r» o >-o a a _i » a00 UJ U < UJ IU

H-u. u. u. u. u. <o o o o o z(/> lo in in en a

V UJ UJ UJ UJ UJ Ul

x £»- >- r K ux or tt V a or UJ• UJ UJ UJ UJ UJ _)n a a a o. a u* c o o o o «/>* a a a a a* a a a a a u.— o o o- z z z z z </>

VXXX•

(B«

M.

g

zoaoCD

*

.g

* *

VXXX*a#* v# X* X# Xn •t- rai *

<t *w *o »N *

<

3 >•Z X

— Cz a3?< w* (/>z <O _la oo(D U.1

« *# #

* *

x-«-o

UJ

u.v u.x rX <rt•9 ,J* <* a

a a a a a «z z z z z »-< < < < < ao o o o o uj

ao o a o o oz z z z z a< < < < < au u u o u uH h- ^ r— r" r~

in </) <o </)J _i * J J JUJ UJ UJ UJ UJ UJ

-I•* <vi n < IT ^4 < < < < M

Z

X _Jo <a

4 < < < < OO O O O O Z(V (8 (9 O (9 <8

X X X X X X•« o o o o n^o f) fo ro <\j ^n

O Zo

UJ J

* ** *

*o« *<B (8 * *(9 (8

X XX XX XX XX XX XX XX VX XX XX XX N

X XX XX XX XX XX XX XX XX XX XX XX X

X XX XX XX XX XX XX XX XX XX XX XX X

X X X X X X

288

Page 302: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

*L ~*J •** OO O

U M3 -

Z -* O• B>

U, VO COo •• 00

&2• M

Uu <10 t-o <• ou. •

UJ <A• **

CM ^< UJO •Z Z< >• •

— u.< >Q •Z M

» V < Q.» 0 • K* CM a •* M < Z* M O 3CM )- Z Z CM- Z < O -a u, • • aa » < z oZ V O 3 •O « Z Z Zu • < a w CM

O •> • N Hg (M < Z - * Z

W »- 13 O » U,U. (M J O • *

>- U! • (A H- V VZ Z O Z O J 3 O *•-u. » o - a c <i 3 • a z o o

f_jUJo0z<

3ZaCOaUJ

UJ

<aa_j<u•MaK

z z

u.•(B*3Za

i~

i•3Za

NCM V

OOCD«Oao«

v<

So*CM«»

Za*o

iUJ

oUJ00

< o aUJ MJ (A Z

* UJ Z* z z» Q O

UJ X " • XIA < in > UJ

M O - - inCMM

Z -Uj O

UJ Xiiu.>

in» OT4

o oin vo 7in W *^in M^ CM

n v•- x• X« X* X< •H n< •

U. O N> M u.» (B •< • (BI- X *J CO U.UJ CM >O •• X3 XZ Xa x• x «< X •H x n< X •Q X N•- X U.X •

V X <8

ro o — <o o - z t-O O • - Jui CM uj uj <o M UJ03 in - CD 3 * OZ - O Z - Z K

-< CM

~ o o u r n M o a u i - o a u t - h - z* uj z z u j z z uj z z z - az c n u j — o u . C D u j ' - ' O c D U J ' - O a o> « « - o - z z r o z z z o » u .

oooCM

O Oo o oN - CO

Oin in

CMin

so

u

Z

%** CM••* * zz u.z *J VzCM ZCM _JCM »«CM CM

t-o zO U.

CMCM

289

Page 303: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

^N

UF

<

2S

zUl

u.UJ

V)atoUJ

EF

/EM

in•toin

v •IM 10r- inzU. Vin

8H

x> «D VU ~ ^z • •UJ

O (MUJ N —a - aU, Q N

Zo

N>-aUJz

VsV

XfO

V —o •fO Xto in

h-zUJwaUJa

FIB

ER

,20

HF

RA

CT

ION

»//

<

0-2

u54OZ<XVVVu.za.#o•

(MI

O•

X

V

LU

ME

2/0

12

M

<oX

UJ •-

a a.

UJ <0 X_ 3 X•> z K x x

M UJ < CO COX H K Z -« -z - a

o a: o<-> u * u.

nin o

nn

v -ro xn in*o xX

>-UJ <K ZM aor oB U.

n

n

XoN•

X

mx

XoCVJ

ro •ro xro N• co

<o x

u*«4

oUJz«

oUJCO

V VV V

V N CD

< k H * M K < < > » < X ' - ' K < < OU J * » - X < X < » - » ~ X < X < » - K X2 « < < < l - < K < « < » - < » - < < U .Z O D K < H < O O > - < ' > - < r O O l 5

Vo• z- Dti Z< oro *z o< •X CMS IV Oo •

I »z < <UJ O Ox z zu. < <UJ X X

« a «- ao or o a oo * u. * u.

* win m

ronro

u a « » u . u j o o o a o u j o o o t t o < < < <inin

290

Page 304: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

V

o

a«o

Vo

roatXvo•

-idZ3

i»o•

oz

<ra-J<

* o< •o «~Z I< <# »-O UJ• CO

ft <

UJ <00 O

•V(VIoo

00

03•

03•

00

ZVt(VJ

aoz<•(VI•*OO V• *

(VI 00•• "Ha ujo •UJ <ta •u. f)V UJ

O X

*nUJ

XZ 00

M «fM •

O CO• «4

a uj< •o xz -

U. f»

00 tOX

HUJ <>• z»- atr o* u.

00 O

n tooo x

O UJ

o ao *(VIc

Nu. •»* C^

(VI Kn < oX UJ U UJ O O

< _. M M < O

Z t- +• »- K K ac z z z < o oO O C O Q O H Z

*4(

**4tZUJ

*O

UJz

3Oa003

***

*

a •*3 -3? 0O O• •

U </>3 ««

Z —IV ft

u! vo ooo •• co

U. (M

• Mu. <o <• oiU• V4

(VI —< UJ0 •z z4 >

~ u.o •z -< a• aa •< zO 3Z Z< o

# • •» < z* O O 3

3 < Z Zz < a

(VI «•« •> »- O U. < Zo o • >- o

(M _) J OUJ •» < UJ •Z O UJ O ZM a; • oK UJ U, 3 •3 Z Z Zo - _i a tua >- < o03 3 Z 7 •3 o o: o zin a uj z uj* 03 K Z* 3 X O* I/) UJ U

X4XV

(VI V* N a» # <rV * Oz z z3 3 <Z Z XO 13 V« 0 V(VI 0 (VI

* • ** - *Z M Z3 « 3Z M Za » o# * u5o z o(VI Z «x a xb» * *(VI V (VI* z *» 3 *V Z ZV V9 3N « Z* z a# UJ »Z O V3 id ZZ 0 UJ VU • O K

(VI 1 - 1 U.« 0 X Z •O • 1 3 JO - V Z <• X Z O Ulz « 3 x a(/) (M Z O U.(\l * O V •- # # Z oa o o z z 3 »• • . 3 UJ Z -

< / > o o o o z o o •N • o • o a i us o— o « ~ o — i o z •O O X O X O » U J O. -U . -Z . - O Hz x 3 x 3 - x x m( n u . z z z x x x e >— U J O U J O « f t * OrtOftOftOCt*Q * U . » Z < < < _ |

U . 3 Z 3 Q D O _ Ju ; z u j z z z z <O O O O < < < U

O CO O U••< 00 FO fO

ao*

O O O O

291

Page 305: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

Vo

If>

*•*V<

UJo*3zaXXoM

u.*zUJoIau.X«Vn

v *M «

U. V

O K

Z UJM Ou. *• 3

O Z• a- x• X

O X• z

O UJX *111 Oo •o ir

*J (VJ

u o

l*»

*«V

h-JUJo»3ZaxXub

U.<4au.

uioX

*Vco

*«V

JUJo

V # V0 3 0• z •n a wX X

5?!o z$** o *z

II 01:s Mz oO v9• •

u. (/>3 -Z -n^ ft• •

U. VO 00o »• 00

ft 2^•5UJ Ho <• o

u, »UJ (/>

(VJ —< UJQ •z z< >» •- u.< >o •< a• aa •<oz< (9

N

OZ

o(/> •CVJ O- o zO -« UJV * X•"• (VI </)<o ~ (vj(VI O -

VV VV On #* aa. *

2.0

*C

3 ro 3 - o oz * z o * * za ~« <A

(VI

* (vj z a«vi -, v> 3— O (VI »- Oo o — a; zo o a uj

V Q 3 •X Z Z Zx < a </)_J V » • (V)« x < z ~UJ X »- O Off _J _J O »U. < UJ • V)

UJ O Z CVJz at • (9 »O IL 3 • O (VJ VM Z Z » « >

i- z a uj z * x

3 I- O Z - O O

« z z • *" - ** 3 O * V* U, O X >

•« (VJ

3

(tX>•« VV ZZ UJUJ O19 *

z ^UJ $

V

UJ

>>

*VzUJO V V* (VJ (VJz * *UJ * «I V> (ft

UJ (£ O

3

(ZX>•V

Vz3

O»z3Z Oa *I V

U, U

*V(VI«*oI

(VJ«*aX

ffiX

*zUJO

oo ** aV *o o4t id

Z O I * V

a iX U.> UJ

c > * # *u. * u. * #UJ V UJ «/) WO Z X X X

* ou. *3 <Z X

* x * » u . v v i xZ UJ ZUJ X UJI «A *u. z u.

UJ UJ o i/) in* X * * «u. I u. a auj u. uj a i

z v18O CD

* (VI< «X «o o* (VI

u »« ao x

* (Vjz *UJ *O X^A Jfc

o v* va M* «0 «* 3O 3

(VJ (VI1 »O ** 3

X

V33

(V

OI »

(VI h-* K

£ 3X «

CD XX X* « zUJ < 3* UJ t-3 a uj3 u. a

u u u

292

Page 306: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

Vx vX XO X

2 S*- xu. «•

u.0 ZM Q

H- «O Kz u3 ZIL 3ft IL

AP

t A

MD

A1

.AM

DA

2.E

F.G

EF

.GF

.GG

F.R

NJF

.GIV

U

M.R

Pt.

VF

.VM

.Et

1S

.DA

TA

X1

28

,8<

,DU

S.G

D1

ii< o• •< X0 3X Z< a• •< xfr- 0J 0lu •0 X» o3 •X Xa u

oz •O XX UJX0u

(VI••1oo•

XV)(VI

D•in

(VI

O (vi• «

X ft(/) X•- 1— oo •

•»

*>

3

ax>VftVX

V UJ> 1X U,t- UJa xO Oin x* UJ>• *> <

VV VV 0a »« aa. «* Au <•»* u0 *• v

(VI (VI

A:ft OV 1(VI (VIft ftft fta a1 X

3 N IX ft <a » xs o. «> XX> 1 UJft ffi OV X h>

> X ft O> 3 X ft

3 * Z UJ Q.X V O O «a x « i yS UJ X O «V O V V 3 O » O» v » ( v i ( v i 2 z o « a «v x x « * i c t « v « ( v iz u i i u * « a i v o o iuj o v i i n c n s i L O f t o oo f t x a . i f l i n > 3 » c o u *ft U. UJ U J O O x Z C O I f t VX U J O > O ( V I ( V I * O h > U V ( V IU i O v » > f t » f t V » S » ( V I »1 I U . » U . # * X I L » < « #u . o u ; v u j i r J ( / ) 3 3 < x « o

UJ * O X X x X Z Z X h > C I 1o - x uj i s N. a a i a INftXftllLVVIXCLftMftu . f t x u . u j i / ) i n u . v > « v * *uj z uj UJ o IT. in 3 x v u # Q.x u i « x « « « z 3 O * a xu» » u. i u . a a a z » c o x ixu .u j u .u j a i x o c O b » i coi u u j f t u j * v » ( n u ) * i o < xo » 3 » 3 t n « x x o # x »« 3 X 3 X * a 3 3 f t * * Xx x a z a a a z z < x x u ju i o ; * c e % x x a c E X * u j ** * a < * M < k * * * * t ~ < * 3e o a a m c o u o a o K K D S

(VI««XftVV(VI«

*3O(VIftft3XSV33ft

*•

ftt-fr-XX* zo or< 3X t- Q- UJ Zu. a IL-

*«•*V>•Hou.•3X•J

XXinooUIzM

>-3O

3(Aftftft

V>•

HUU.»3X•JXXino0

z1

M

fr-

CtorCD3I/I

VJXli3XX

tn•o<

_jX13X

CO

CDft0>0«00omtn•*•

v

VV

V OV 1o <\ X< t-x ut- ILu ou. vb> UV u»u <id X< >-X UK ILU XIL ftx m ro

ft ft *4 S -n * m«c n O1

* (VI COCO O (VI«• tO *M CM fa)• • >

> <J >- (VI

u u u o u u

293

Page 307: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

V VX X

V X XX X XX • •X • •• « CO

z > >n x xoc o nO d dCO III UJ

X VX X VX X X• X X• • X

(M (A <•CM (A (AM < -J

_J <-j 19 M-i i or< UJ UJ

U- H U. U. U. tfo a o o o z(A (A (A (A (A £>UJ UJ UJ UJ UJ UJ

VV

UU.

*

<ta(U

> zs$OD »-* UJ>• a

*«*

oIou

oM

O

£ttou.

*uUJo

o*****

VXXX

V V #X X »x x nX X k-• • I. • <t

« « (V* * o* * N* *

* * Z< CD 3Z

> V «-X X ZO O 3a. a -iUJ UJ <

z z zo o oa a ao o oS) (D CD

v aX UJx ax o• a.• a** o* z* M« az z(M <- aoX O<M Z

ou

(A MVX -X Ui <AX Z <• U. J

• U. UI* M

I- H- *- *- Oir tt a a ujUJ UJ UJ UJ _Ja. o. a a UJo o o o <Aa a cr aa a a a u.o o o v9Z Z Z Z (AM M M M U;o. a a a. -z z z z »-< < < < ao o o o UJao o o o oz z 2 z a< < < < au u u u u

<A </) V) (A (A< < < < <J -I J J J111 UJ UJ UJ UI

(A — in

X XO UJ •a j xUJ U. M

I n(0 Z •<A O< (AJ WO M

O

H H K »- Z< < < < OO O O O Z

X X. K K Xo o o o* nn f> f) <N( ro

uj a.

« * *

xXXXXXXXXXXX

X XX XX XX XX XX XX XX XX XX XX XX X

X X XX X XX X XX X XX X XX X Xx v xX X XX X XX X XX X Xx s x

X X X X X X — — -«~i- —

Page 308: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

****

X2

0<

. A

MD

AP .

AM

DA

l . A

MD

A2 *

AL

PH

A*

BE

T A

* G

AM

MA

*

ft CM <CM K OCM Z ZO U. «fa • •Z V »o <o a.u • a

o •a CM <0 X KU. CM _!

t- UiZ Z OM l^ •

i z?< o aUl M.

J W ZA 7 Ow «. wft UJ Zft Z Zft •- O« 0 U

F,E

M,G

EM

,GM

,GG

M,R

NU

M.5

NU

M.A

X3

8<

*B

X3

8<

*

KS

.AN

PX

19

<*B

NP

X1

9<

,D2

2S

.GD

22

*V

F*V

M,D

2:2

SI

YY

X3

,3<

3 M, >.Z • •0 V V• 0 W

U. M •3 • mZ 0 Xa CM x* x x

u. < x0 H *O UJ V• • CO

U. V •13 O CO• W CM

U. • «-Ul 0 X0 CM <C• X »-

ii ^^ - *U. Ml «

Ul X Q

-> CM fO

CM)»Zu.

_K V V3 o «fa o <Z O O

• X< int~ x »-o o z» < aft UJ Oft tt U.

oooCM

<KJUJO

oz

3

av\aUlh-UlZ<aa_i(jMlQC

.UJz z

UJ O> UJ

3j 5J UJ< a

<KJ

£•3Za

CM V^ Oin o* •

- - w>* • x*- * o< Ml <

o a iuMI Ct QL

OON

VCO•o

**fcX

>-x

a0

<ooM

OoCO•o0o>•oao oV UJ *

z z aX £ J

2 jU O <Ml (J (J

0occ

V<H_lUJoftCM

' ftft3Za«o

(M •0 « U.

a z x >H a v ia >- MI oj _j a ••j j * *< < u, zO U ^ 5>

uz•"

iUJ

»

0UJCOMl

5

-n« -"o o o u nUJ UJ Z ZCD CD UJ MI OMl Ml Ml M Q

in• Mc oin v• <M

O 1in x -V M oin x o1 ft UJ* CM CC

X V5 OUJ Z

U. CO tilMl Z Z

oin

CO

0CM Ulin - eo

- >o zU 1- O OZ UJ ZMI O CO UJZ 0 Z Z

.4

in

UJ

- zU Hz zMl O

z u(Min

295

Page 309: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

V/xx

CO•Ku.•«B*

n v•« x• xa x» x< •

(VI(V)a19

vX

M (A(M K(VI HIa

ZN

zUJuKUla

zUiXu.UJ

VIa<oUJ zo

(VI

IDA

TA

.RM

U. D

EL

TA

, VF

//////// //,2

8X

. 3

1 O

t

X^/ ^N •O «*- Z

*0 XX

1-UJ <H ZM aa o» u.

NOft

NU.

U,

N OU. (VI• •

W **

* %< Zt- Z_J _JUJO (VI

(VI(VI

0(9 O

V

*zzJevi vH (VIZ KU. Z* U.V •z *oz tnJX UJ

H «z au. x(VJ(VI(VI

in

inv

f)invinI UJ

b£ 3•» z•M »«

X KZ

U. 0»- u

roin

H

FR

EQ

UE

NC

Y

,I3H

. 1

3H

D

22

/D2

2M

nv - zO • UJro x xn m u.• M UJ

at-

UJ <K Zw a zor o m* u. —

onn

z«4

N

aUJz

zf)

V -•M •n xn m• •*<o xX

KUJ <»- z« aa o* u.

^rv)f)

XUJffiKM

U.

zo

V (V)(VI •n xn N* (VI

in <o xin x

HO UI <t- 1- Z

M ao a oo > u.

^ (V)in n

H

VO

LU

ME

F

RA

CT

ION

2/D

22

M

.//<

O (VIV (VI On •n xn N* (VI

<0 XX

t- ZIL' < 0»- Z (VI-i aa o« u.

n "nn

uzM.

Z»0zUJzoUJffiz

UJ *O M

2*• oz0 0u oinin

V•M

•M

X<t-

4 ^tO Oid fe

"• O• UJ>- aM U.

VV * Vn • in• « »

M K «-

X < X^ H ^ < H< Q <O * O* U, *U. UJ U>UJ O O

V VV N CO.0 » •

M X X

X < << K KH ^ ^< O Oo * ** u. u,U. 5 Do z zO tt O

V VV V N 03

V «• V <0 • •n • m • •- M• M •*••-<•«M M M M X X Zw X - X < < OX < X < »- H X< I- < »- < < U.H < H < O O O< o < a » * *o « o * z z <* Z * Z O 3 OZ UJ Z O Z Z ZUJ O O O (X O <

(VI

296

Page 310: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

Vo•

OX

XsV0

*^1

X <0,0

u. <Ul X* «a -O 0X X< <

Vu.

zeco

CM10•

•*$o<MSVV

1oro

CM1o

X•V

zaoCM1O•

«*Xft<0

<XftCM

oX

M&

1 .

CK

/X3

.0-4

. 0

*RN

UF

&A

MO

A<

</X

AM

DA

-l ,

0<

3 X

ii* a0 I• o^ •1 ""0 X• ft

ro ^X oft X

0 ftX 0< •* 4< ftZ <a •-J UJ

oM

I

h-UJCDft<XX<0

CMCMOaxou•JJ<u

VCMCO•

•4

(0•

«4

CO••«

CO•

•4

CO•«•

00X

o»-o0

in»«•

X

CMCMO

a0X

CMCM0o<«CMCMo•o

UJau.V

o

•<oX

UJHta«

a:x—CO

VU)M

•roM

UJ

»X

*»X

t-<Xaou.aomt

D2

2S

M

i

O

$•

u.>VoV*

•*•ro o

CO X

O Ul^ H*

*^o aO B

CMCO

V

•M

Ul

XCO•

•ro*»UJ

X«•*4

•ro•su.•x

CMroX

*-<Xexou.o«««•

IU3z»-zooroco

•«id<

< 0UJ UJ O 03 3 ** NZ Z ft•- *• < cK K »- K az z < o oO 0 0 0 t- ZU U •- O </) UJ

O — Oro ro CJ*

o>

•V

• CO< roX XX CD< •O V• «n

< mK XHI <CO •• X

32a oj •< xCM Z< orO •x x< o• o

** •< Xo oX •< X• UJa u< •0 XX Ul

X(/>CMMo•

X>•

u.>»

CMCMOO•VinCMCM0

Vo«4

Xazo»

V0•*X Va roz •< fO• X

****N

3A

I9

UJZM

H3Oa

i*«4tft

ftft

UJ

O

UJzH30aCD

U)4tft4t41ft

ftftft0O

f_aUJzM

^>3

aoV)«*ft

ooh-aUJzr3Q

ao3t/1

*RP

I*A

MD

A

4>-

UJO•3

Xff

ZQ

xXou

z19»

U.

za•u.0o•

u.o*u.

UJ

*\^UJ

^*

»

VoCM•

OCMX<

Ul•

VcCM•

O(MX»4

X

CM

V•

Vm•(0XXXX•

£•co

(M«•

X<r-^0

ro

o•oCM\^5Xa.«z

o•oCMS<HJUJOftXor*>

o o u u u o u o u

297

Page 311: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

O

VIfl•o

X <* t-V _lin tu• oo *

0 0 1 3CM N n Z• * a or

•* -« x ** * « v uj uj»" n V "» D 3

-> • Z Z ZO M • M M M (V

n «- rn M x« * x <

C « CI -> «- *-o a o a x

UJCD•<a

v j00 <s •X MCD <CD O• Z

V <CO •n —• <

00 On zx <u •• a.v <CO On z• <

00

• (VIV (VIao an •X Zn >• •

V U.

£ >n •>x CM< N• oz o

3 »Z (AU> (VI• <VI

Z O3 •Z Vor o>• •*

Z Xo a.o z» oz •O V• oz -UJ X Vo a. ro• z •z < nUJ • X

• u.< 3

X O Z

>>•

15 V V• of)

(VI(VIoaz ._ _ _ _o (vi n a B M xU (VJ » • • X X

< x o

• • UL M •v *• 3 • noo a z o x

O CD < U.

v(VI

*Z Z X _J «5 UJ V OM Q U U J • • 00 (VJ

o< (VI3 U • O O 00 <

OUJ 3 • CM CM H O >-»a z z z u . » " j * j •«a Q » o a u J o x u J o x u j *

I- h- 3Z Z I- O

^- O O UJ Zuj u u a uj

O V(VI X* \ o>* >• 3 -x x z o •x z or • -*• < X O *

_ . _ _ a ^ - x * n « «( / ) 3 V > Z » X t - » S > » (VI I O < * V g»» O Z O U . « - < 3 3 * 3 O O # « / i * V — r O - >* a u j z u j x o z z < z r > ) < - < M M « < M M n «* c z z or CE uj a * * a x t- x x N» D - o * « k o r * o - « * c u . ' c n c o c ** tn o u > x < > Q M o r x a H c c c o o - z

•• (M (0

»-UJH

zaX</>oo

•> z z* * (/)-> z o•* a u

— on m

o u o

Page 312: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

•0

<*T

ET

A<

•0<

*T

ET

A<

.0<

*T

ET

A<

CM CM CM

Z Z Za a aX X XX X X(A (A ZO O M

» * *z a zo o **O U V.

•0

<*T

ET

A<

C\l

*aX ZX *z *M Z

* aa zM O

<A a

V

§ xS Sz «g§M as #iiO O (NJa a z* * zz a ao o •*a a a

RO

HN

<

& 1

.0

</R

OH

P2

</G

AM

MA

-1 »

0<

*X

P 1

*CO

SM

2&

P2

*CO

SN

T&

P3

*CO

SP

2<

« Z Z< a aZ X X

S z zSiSX (X V

°> z •1 X X

Vt % WCM f) Oa Q. u

N- 1

. 0

</X

RO

HN

*GA

MM

-AL

PH

A<

-XR

N*R

N-1

.0

«/R

OH

P2

&R

N*X

RN

-

a oM •

Z XZ *z o <z a z

O X Z

* 0 OZ • Xa CM xfe % %

•* ^u ro^3 C5 O

,0<

*XQ

1*C

OS

M2

&0

2*C

OS

NT

&Q

3*C

OS

P2

<

«4

X

*V") CM

• ZM O

x ao %U •"u a

VCMaM

(A

*NaoCM

Zhrt

<A«M

ax*V0

Tzaxza« zv an #

n-1a « oi x a* 0 *(M O -a u w

1.0

<*X

S1

*S

INM

2&

S2

*S

INP

2<

OZaxV

Tn -o ~1 X* uCM U(A U

UJ UJ

iiM - 3t» K Zz z a0 0 %u u xn on i*>

o>in

;v« a o— O 1ro M M

* %O •- •«o M a

VCM

*« Xi- ul Va CM x» * s< * >K X X OJ X Z O »UJ K < • OQ a K o *« O < * V3 (A » V •-z * < « - • - >a r K x x* O UJ GO CO> a K cc m

-j;%

- V)

n •> » z« fM *

o •» * zQ •> z a

299

Page 313: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

V V< <»- t-UJ UJH »-* *v v v

< o o^- • •UJ w (vi* z zz a aa x xX X Xvi vt tno o ou u u* * *K (M <VZ X &( / ) ( / )</>o o ou o u

V V< <K fr-ill UJ^ K

v vo o• •

**a aX XX Xz z

* *(VI (M

11

VI (/)

V

g zIT O* az *o za ox a

z x »# z z« z z

or * *z x a.o o o(t ce (t

P2

</G

AM

MA

CO

SM

2tP

2*C

OS

NT

&P

3*C

OS

P2

<

Z *O -a aN XV *

V O V< • oX - •X *A -< Z 1o a zS T S§15a o a

(vi x a *

o • cc •ff (VI X "•1 1 1 X

«•« (VI O Ua a a u

HN

*GA

MM

OftXVVo•

•4

1zaxi

z zZ 0o a

z o1 (VI

•" (Ma o

RN

*RN

-1 »

0«/R

OH

P2£.R

N*X

RN

-1 .

0<

/ R

OH

M<

/G A

M

SM

2&

Q2

*CO

SN

TC

-Q3

*CO

SP

2<

X O1 UV *

< —£ S5!v1 0o •• <*

x z* a<. xX V

X • -x « a1 X 1* o *n o —o o a

*S

INM

2&

R2

*S

INP

2<

•rt

ax4fVo

1ttX

*za5i-» *• z

ro M oa x a* u *w o -(X U V)

INM

2&

S2

*S

INP

2<

(0

*•«V)X

*Vo•

V*

IX

V

•> UJ

« zn •- «->O X >•* u zN U Ol/> <J U

V

V *CO •• 00

v CD nU CO •• • COu u •U U UU U XX X O

UJ < CO XD »- K -Z < < (flM

K _l J JZ J J Jo * < <U U U O

BN

PX

19<

.

•V

*•*Xaz•

VooCOX<

IS3

M Xy o* uI/) ** *N« #

RN

&l .0

</R

N<

*X

BE

TA

/GA

HM

A-A

LP

HA

<*B

XI

I<XXu>V

XCO

V

XX

9 O- X• <("• H* UJ^< * O1 CD

<J - XN M Ui *

n « M z v(V) * * —o * ~ z x

Q z •- a <

MA

&X

XI

.0-A

LP

HA

<-X

RN

*R

M-1

,0

</G

AM

MA

<

X<OsV

XCO

V »*• Vi- OX •CO -» 1< "Z.z aa xj i< ** VV «« XM aX Z< <

n n

300

Page 314: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

RN

tl.O

<*B

XI

I«/G

AM

MA

XOVtartX

z coa #N Z (Mv a o«- X UJ O

x -v igeo - M» X t- J

a z jz o <a u u

M

(VIn

za3t- OUJ Za uj

(MOO(VI U0 Z

3UJ IL

M J

3 Zo orCK UJCO K3 x</) Ul

RP I

.A

MO

A.

AM

OA

P ,

AM

OA 1

. A

MO

A2

. A

LP

HA

, B

ET

A,

GA

MM

A .

RN

UF

*GN

UF

.EM

,GE

M,G

M*G

GM

.RN

UM

,GN

UM

* A

X3

3<

*B

X3

8<

*

20

,20

<*IK

S*A

NP

Xi9

<.B

NP

X1

9<

,D2

2S

.GD

22

.VF

.VM

.D;>

2S

• • X< U. <

-I O UJUJ • •O U. V• \D C3 • (MZ U. •a ui oZ ^ Xo u. «zou

- (M

XX

3,3

<*V

YY

X3

.3<

XX•

V VGO <» Jjw

CD J

21 SSX X

K << t-o <

*X

fO

Vz3U,»

uzu.•3

X•

_JX

- Xa ina oJ> S•o «j* jX O

,0*F

UN

<

n)(

v3 IZ Ula x# VI3 MZ (VI

X S* z(/) I/)(M (M

O O

TA

/40

0.0

JUJo

*V(XI

**3 O 0Z • •

x 2 2* u. zUl Z Z

<(/)( /)

<*E

TA

XI*

J<

*S

IGX

,SIG

Y.T

AU

XY

<

••

M

XM

0* C^ x•* tart X

O O - — UJ• • * * a» * (AU. Z 0 -

z z j(/)</) O o U

*2

&E

TA

XI. J

<**2

<

0*5

1

* inv •^ o• in

h*

X VM O

X —>- 1 UJ

o o ztrt ff M* x ^>z zCC •"• O

oin

XS

IGX

**2

&S

IGY

**2

<-2

.0*R

NU

F*S

IGX

*S

IGY

# ~ >V Z Xu. a 33 UJ <Z K Ka u> #1 U. >

O (/> X• Z 3- 3 «X (/> K

* * *- U, (VIZ (fl Za z aUJ 3 UJK (/) K-

(MZaUJ

ou.z3 CVI UJJfl U> 3* Zu. o *-z *" z3 O Ow o u

.•in

u u

301

Page 315: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

0M

(A

*XO

(A

*Z

a

*oCM

VCM

**O

OCM

**XOIX

(AX* W )*V Z Xz a 33 UJ <z >- fr-et «•&»1 Z >

O (A X• Z 3- 3 <X <A fr-» m o.

V *ro x ^Z i/i «

VI <K

a z orUl 3 Ul»- «A fr-

Zafr-j;'fr-

3 Ul UJ«A 3 3

H L_ W^ P*

w 8 u

V Vu. u.o 0* «o o• •* (MX X

^ ^U. 1LUl tA fr"

i § *

S 3 3

GF

*UT

F<

O

U.(A

V V 3Z Z «O O U.# * UJO O V5• • X^ <\l #X X •*V X 0.Z Z ff(A K #Z Z 0

W <A CM

Z Z U.

3 3 3

GM

*UT

M<

0v>Z(A3* ZZ KUJ 3O OX u.

•- 3CJ» idCE Z• V)o 3

cvi u,

3 3

V3«

aor*o•CMXVVz3

(oS lipz* orN «%

^CM H OO U Zo a uj

**yNXU VZ N3 XU. U

zZ 3O U.

H Zu o3 TU UIk W

* Z* 3* U.

MD

A*

AM

DA

P*

AM

DA

l •

AM

OA 2

, A

LP

HA

* B

ET

A.

GA

MM

A *

GN

UF

*EM

.GE

M*G

M*G

GM

,RN

UM

.GN

UM

. A

X3

3<

*B

X3

8<

*<

*IK

S*A

NP

X1

9<

*B

NP

X1

9<

*D

22

GD

22

.VF

*V

M*D

22

SM

< • 0• U. CM

*» 3 •a. z oac a CM» • X< u. <K O H_J O UJUJ • •a u. v• o o3 • CMZ U. •K UJ O

2 . M• ^

? u> •*•III }£zo

<.V

YY

X3

.3<

nnxXXX

Vco• 0*

CO -CM •

X *^ O H* CJ1

^ O O cA^3 w i ta^

Z «3 0 ~V) O —

V

Xz(A

<

.JUlo

*S i« a# z %CM * r* z c2 a a

V VN N

* *V Vo o• •

CM V •<I N IZ # Za z ax a xX X X(A <A (AO 0 OU U U

w z" z(A (A <A0 0 0u u u

V VN N4t 4fV V0 0

•" CMhi IdZ Za aX XX X<A <A0 0U 0

— CM& «u-V, (A0 0u u

-« CM nCM -• O^ft fO (^

u u u302

Page 316: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

V• co< nz xW CD

O V• CO

UJ03

Z Kw zO COu o# uX zM ZV) Oo au «* Vo o

V

E Ta o£ 2S5x av #z zz zo oa a(V Nz &z zo oa a

z z<A (AO OO O

(VI (M

f (AO Oa o* *V Zo a• x* *| Zz za ox a* *z za a* *

• CM(<& QZ (Aff oX U« «V VZ (M3 az za o« a0 v• v

(M O1 •o .—9 bd- z3W ft« Xo *• z(M oro x

*

a(Ao zu z «•* o av a *N x vX fc M(A Z Xo <A au o«o *• v n

CM o a• *

*vX3 V

Z Zo. oj •

CM z< ao •z z< o• o

03

t- - VZ I «(A Z Xo a au x zid 4t *4<\J V Oa. z <M

*«2 Oa •X (M# Iv oz •z -O Xa *v oz •a <MM I

xCO

- za a* ujV*• O UJ O

V

o*z c

(A N« XV VV Vn N« »* *V VV <N H-X JZ UJ

(A «X 3X ZN aV XN MX «(A U

X

*V

u >u. •3 OX U.

J 3X XX •in jo xo x<A in

oUJ OZ (A

a a a a

xCO* (A

a zUJ 3»- (A

3 UX U. Z

* a0 0 3

Z K Oz z033O U. U.

on

UJ ZK UJ

o M xa t- xco 3 *3 o in«A a •« CD O* 3 ** (A <

VVO

ou,Voo

oIt

o x o* * «^ ^ o> n «co « n

_j o <t cvjx n oo o>i in - <o3 * - c\jx • • •

VVuI

oItO VV Vo «O X

x oH Ito #It *X «

n «- COro «j

« . a

(M

co u > o

b»V Zx a

o « 3V 00 t- O* * uu z>• > a uj

oM

(A• O

X MO «A

V M

• (AX •X >•(A •UJ Xa x>- in<A UJ

a

H UJ3 ZO M

a t-00 33 O<A a* CO* 3* (A

ZUJ

o zZ UJ

• u.Siz o

Ha za a< u.*- oj oit •o u.• o

z •O ItZ UJzoo

o u u u O (J O

303

Page 317: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

toCMNo•Z>•

U->•CM

CMs•to

CMCMO•

VoX0.

V0>•4X Va oz »< n• xto >* v«- V• •

V Vo nCM •«• mO X VCM X CMX X *< X *

• >•VCO

UJ•

VO CDCM CM

CM

VXX

«- Vin xz

o <* m i-x • <X O- O

O X HCM < OfX K C

W

aa

vXX>X

in•win•

roin

<oin

•ininvo•

Q.inax o *

CM ro

IO ILa M

t r » K 3< z

>- Z

» »o o

oin

x (Vm in

Z O O 3

nin

z z

»- z

in

Z Do z

Z Z Z Z

inin

voccxoax

Z X* z* Xz oor*

*- o * cv» z •- z zCM * * Z Z* z •- o oz a *• ct cc

^* ^ 0* Oo •* tt

Z Vo <a »-* uio *a z» aZ Xz too oa u* *CM fr-11 zz </>o oor u

V V< <K KUJ UJ>- >-* «V Vo oCM CMI h&

Z Za aX XX X(/) 10o oo u* *CM fMz ao ou u

toou»o•

CMI

CM CM

to toO O

**

CM Z

?<*Oa *z

zV O0 aM V

1 oa -x oz ora x* *«•« CMa a

toou*o•

CMOCM

toou

*orX#zoor*vot

v -CM Oa z* av x*• #«- VX ~< M

O XX <a v»* -v a«•« #X V< M

X XI 4

* *-. (MZ Za aUJ UI

304

Page 318: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

*Vzoor

*Vo•«4

4

i*1V

X<b>CMZ

o5Vo•

•*

ax

— CM »Z Z Za: a aUI UJ *i- >- v(•) (•) "•- CM XZ Z <

- * zz z a3 D UJ

TE

TA

<

*Vo•

(M1Zax

w

mzaUJKu>ro M CMZ U Z Z

M 5 W 3

» - * *Z Z O O3 O ~ •-(/) U </> (/)

roz3<A

»J3<H

O•»•

M

UJ O O O *

5- * » * -*- z z z zUJ O 3 3 3 O

M O>

» « ZN « «-> ** « * zz *• •> a

V

5 xa o* az *§§x az ^ *

* z z* Z IZ C 0o or a* w wz z az z zO 0 0a a a

A<

0<

*T

ET

A<

0<

*T

ET

A<

K » •UJ CM (Mt- O 1* Z Zz a aa x xX X X(/) (A (AO O OU U U

*- W Nz a z(A (A (A0 0 0O U W

OH

M2*C

OS

M2

*X

RN

*C

OS

M2

-2.0

*C

OS

NT

<

OS

P2

/RO

MP

2

a z u» z *V O Vo a o• # •- v «1 0 h»z • za - aX 0 X

z or za x a* * *- CM na. a a.

CO

SP

2&

2.0

*CO

SN

T<

/RO

HN

BX

I K

*P2

&A

NP

XJ<

*P3

&B

NP

X J<

*P

4<

* Oz .- -a a zx * a* V UJy M K0 X i*• DM- x z1 1 3Z fe (A^ Vr»

a - »x z -* a z* UJ 3a. H w

*XR

N*C

OS

M2

&2

.0*C

OS

NT

<

ZZo(X

*Vo•<•«

•- aa x* *x (MO O

CO

SP

2-2

• 0

*CO

SN

T <

XR

OH

N

I K

*Q

2&

AN

PX

J<

*Q

3I>

BN

PX

J<

*Q

4

« XZ CDQC (

X -« oV «O V• M

- Xz S«b ^

n a <Ma x z* * am * ujO 0 h-

m

305

Page 319: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

VV << t-K O)UJ >-H *# V

, V 0O t• (M

72z aa xx xX Zz *-M (A

(A »# V

V *(M aa »* v

<M N V •>

1111 = 50 O 0 0 X Za a a a CD or

W * » \ X v J u > r oX V V V V — f O Xa o o o o a a aU J * * * * * « U JK > 4 M * < ^ V V » -^ d l O ^ d l * 1 * ^ ^ fO( v i z z z z x x m - N Xx a a a a m a x u j x x s3 X X X X X Z 3 3 3 3 ( / >

% z z z z f > x * « * * v a<\j a a a a x i ro H x > x 3x * * * * a x z o o 3 H o3 - (M ro •* UJ 3 O « •-• < UJ Zco a a a cc H co o 10 w ^- a ui

^ro

Vco

* ro* •» 00V 10CO X• CO< V •X CO V< • 00K < f>< X •

< osz < x•" <3 Z Z0 ~ 0a t- i-3 O ZV) a uj« CC X» 3 «* (/) O

V

•XX<«VMM

»XX<oV

oo oo oo •»ro ro s •• • o • *•>

.4 M • X X

m vii o ^k OD m t^J ujV \y 9 9 TT 9V 2. 4t Z^ Z

O ^ ^ ^ C V l " ^ ^ 4 1 " 1 4 * ^ ^f O C O » f H * I > - ^ ' H P O

•- M Z Z Z »-

a a c G o m o o u a

OJ — Cro n ro

v09ro

* x* o« •V Vu oo• N

CO V X• U CO< . .X ID Vco • aor- < ro< X •

co ecUJ K NZ < X CO»•< < n^ UJ •3 2 Z *<O •-• O « Oa ». M M •ffl 3 t/) O3 O Z 0 »(A a uj ro v

c * co x Mz » 3 »- o xU) * CO O D U

V1XCO«VM.

-^oo xN <• hi~ V

•> x

„ ro vM

O Xo u

D U O

306

Page 320: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

3 3Z Z Z** ** cK K 3Z Z K 0O O UJ Zo u a ui

4t**o*

• KaUlzw1-oaCD3I/)«**

9t-aUlz3Oa3V)

MD

A1

.AM

DA

2. A

LO

HA

. B

ET

A.

GA

MM

A,

<•a<0z<•<oz<•M

aa•<KjUlo•

iazozz0u

•VUJmMCO•VenMM<•X

O•X

QC»X«V9•XO•XUJo•XUl•

(j_

2O•U5zCc•

u.V9•U.o£8•

u.u

9<

*B

NP

X1

9<

.D2

2S

.GD

22

.VF

,VM

.D2

2S

•M

Maz<•V)XM•Vo(VI•o(VIM<

Ul•Vo(VI

o(VIMM

X

Vn»

nM>

^•V

•nMXXX•VCO•00 W(VI •

H »< MH-< 0O CO ••

o •-o a

— <vi n

ro

o•(VIX

s3

a*vo

o •• •«

CVI I

X -3 aZ X

V HO J• Ul- o-) 3n a z

• M a- * ** V V Ul Ul

•* l^iizM M IH M M (£

n •» x M t= »- 3* x y z z »- o

o - * x > o o u i zo a x x u u a u j

— on n

CO

MP

D2

2*****

NG

uixaou.

UJo

o***

VXXX•a* V# X

V » XX * Xx n •x h- a• i *

<• <r #« (VI ** o »« M»* z03 3 >

Z X

V VX X

V X XX X XX » •x a <•• « co

<•z >• >n x xor* n ao a. aCD UJ UJ

u. u u.G O O

V UlX «X h-x a• ui• a» o» a* o.» Oz z(VI «-(vi aO TX <(VI O(VIo oW) «(AUi UZ M

U. KU. I/)

•M <

H J

V) UJ

(/> (/)Ul UlM M

K t-tt orui uia ao oa aa ao oz zM I—a az z2 2o oz z< <u u•- M>- h-(/) </)< <J JUl Ul

*<

> >-•x. zO 3a j

oaoco*

UJi

< ini (/>

z z <O O Ja ao oco CD* «

ui«

* <« or* 3co x.

Ul> Jx u.o0. UJUl V)i aV) Ul

< toJ Zo <

orui »-* «

* * *(9 O C9 « *a a

«. (vi n

* H- »-o o a

X X X- 0 0n ro n

X X XX X XX X XX X XX X XX X XX X XX X XX X XX X XX X XX X X

X X X X X X ~ ~ ~

u u u

307

Page 321: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

VX VV S Vx x x» X X« • X« (• •(VI </) (•(M (/I </)(M < J

I <

< UJ UJK

u u. <D O Z

to i/> r»UJ UJ IUM M ».

h- K Orr a UJUJ UJ -Ja. a ujo o </»a aa a u.oo oz zM M HI

0. Q. Mz z »-< < ao o uj

ao o o2 2 0 .< < au u u

to w w< < <j J JUJ UJ UJ

J<t in <

z< < M

H >- Z< < go o z

X X Xo o> rorn cvj (*>• • •S S VV S SS X XS V \S S VS X VN, V SS S XS X SX X VX X XX X X

i i rX X H

308

Page 322: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

>o

zx

z*****

>0 K<o zo u.a •Z VO vOu •

oa Nc xU. (M

^-Z Z- u.1

Q Z«t 0UJ *"_J t/t* z* UJ* z* "•* o

DA

I ,R

PI

,EF

.GE

F.G

F.G

GF

.PN

UF

.GN

U=

.U

M.A

X2

3<

,aX

23

<.X

tX2

0.6

0<

,FT

AX

23

.63

<

* Z< o• »< Z0 3Z Z< a• •< zK O-1 OUJ •O Z

•> o3 »Z Z(X UJ

oz •o arz uzou

6S

M.D

AT

AX

12

8t8

<

O0•<Z<o•

vC<0OO f-• 3

</) a^0 Z4 M

Q• <

</> H

* <i- Q

***M

(M

ZU.

V Vo 40 <O 0<Vi (\J» x

ITX >-

4Q Z< o:UJ Ca u.

0o0CM

TE

RS

R

MU

A

ND

D

EL

TA

UJZ<aa.

uaUJ

2 ZUJ O> Ui- oo

oJ <_) UJ< au «

<H_JUO•

3Za

f\J VO1 \0Ui O•• X4 •

« - m« • x< nt- * 0< M <

c a uj- a c:

00

^

o0CO

(£V 0>fl 9• •o a•* ou. o(MX V

3»- Z< aZ Xa0 U.u. «<00wf

0o

UJ M3 •*z a^. _jz jc <o uoo00

V<^JUJo*(M

V *< «K 3_) ZUJ a0 »X 0o •n xX Xy Mt- a« ay *K U.a >

\J

z»M•M

*ozUJ

oUJ02M

*u. x1 "•o •< *o >o •*• tt ^ 3k ft *^

*^ ^? ^3 ^^ j ro* U UJ Z Zs (Ti <n UJ ~ c> *• ••*••« c

»4

in•0in•oinVini•M

X

UL*<

3VM1y •""1 •*•— ox o* UJ(M CO- Z% sitO OUJ ZCD UJZ Z

cin

NU.

Za

n

u. o

H x_l 00UJ MO •• V3 \Z SOf V• s< XK V.< VD X«- X

XV Xr- •o -• r

<\J UJ U <0 Xin - co D x

*o z - z >-

z uj z z z >- a- C c c u j - o a cZ O Z Z Z U 9 U .

in in

309

Page 323: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

VV

«o invf) Xo »*15

X

N

N/VV

zinuoruia

xro

Tn

VXXXX

CO

NU.

</)>0<oo

a *-•COa>oUl

T »•»

(9

n

o<h<K-JUiC

o

VX

zs.O _lM X

* zZ U.z *-J V

(VI JM tt(M <Vj

O ZO U.

M(VI(VJ(Vi

If!

nin

v »(vi (0t- inzu, v• inx *UJ •-t- X

a u.

I zn vo••-4 <£)

• o> 10u ^>z oUJ3OUla xu. 1*0

Xn

tM

orUJ

X X*0 fO

V ~ Z V -«O • O - •fO X X rO Xn in u, m in» ~ o

ui c x

GF

/GM

VX Xn x

z *O K•- K

Oa <ui orm u

«- ui <»- »- zz « ao or ou * a.n oin P!

• «vC XX

KU! <

ZX -- Or

a ou.

ro

x.o

V (VI V(vi • rof! x nm N ro• (VI •

in <o x oin x xc u.1 < uiH t- Z r-

o or o ao B u. »

* (VIin n

UJ Xz ro_j "•

§ z

<0X OO X(VI \0. o

X O

o

czUlz

(VI

oUJCDz

X UJ *3 »- *

K X Z «£>< n "-i o u>Z — h- fl -"a z *o o o "•u, u o •"

VV * V

«- roX • M • •»

V VV N C V

n•

X X M

X < < *-X

Ul • w P-

XX < X <« r- < t- < < <

t- < k <f O O H<r o < a * * <o * o * u, u. o« u, * u. D 3 »U. Ul U. O Z Z ZLJ O O O (X O UJ

V V* V <C• m •

1-1 • M

x - x"< X <r- < r-< H <0 < C* o *z * z

V VN OP

O XX X< <K »-< < U. UJo o o

Q

Vo•

ub4oz<XXVo

Iz <

Z UJ Cz<X U.

* «

z o* * *Z Z 43 3 O O Oz z z z za. (j> 4 < <

nnro

inm

310

Page 324: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

Vu3Zrr«o•

CVJIo

u> V

O QZ Z< 4X OX U.V 3V Zu. a3 ftz oa •« «0 1 V• CO

CM • •I n -

0 X 1• X <

•* V OX 0 Z1 • <V - XZ u> X3 * VZ 3 Za z 3* a zo » a• 0 1

CM • Oi « •

0 1 —• 0 X

•* • ft Ox n < •ft X C -< ft Z 1o < < <z a # •-< Z 0 UJx < • i* » <t *CM < « << I < Zo a t- sZ _) UJ << < <D O

(A

*M•>

*1-a•z</>iO*0o•<oz<

* •-> tfM o• O

V OCM •00 tft• <0 V

•< <o mCO O M• • •- o *C UJ •• a ro~ u, -OP uj• v «

<c -« a •O CD O X

g . — I/I« • «•

Z CO O XO X XU K

C UJ <J >- H Z_j -a< o a ou o » u.

*h-a»

z vin <tic •«o n0 -• U.'< no •Z X< co• »

u, ro> •

NV U. "O • US— X <— C\J t-• n < o

r O i O X U w U J U J O OCO X 3 3 3 •- *•

t- Z Z Z *O u j < * - » « « - < CK K Z > - t - t - l - l - a

- a z z z < co a o o o o o o t -O » U . < J U < J ~ O < / )

ozUJ

zII)

oUJ

3OaCD3trtft«ftftft

ftftftooCVI- oa o

CMUJ -z aM

(- UJ3 ZO -

£ 33 Ovi a* toft 3ft I/)

VOO

• •II O3 CMZ Xo <• I-

U. UJ3 •Z Va o• <o

u. •o oO CVJ• X

fex• • V

U. V 3}uj n •O CM CO• x .-vj

U. CD ~UJ • X• V <

« rn i-a. CM <a x o• < •- • z< Z (/)O 3 »0Z Z <0< O O

< ZO 3Z Z< a• •< zK OJ OUJ •o z• o3 •Z Za it-oz •0-ZZ UJzou

QO•

V)

oCM

< OCVJo

• J •O O UJ -Q CM O *• X ft «

Vt 3 3* Z Z O«- a a n

* *X V OX >. O

CM

** ro*M O

a o

#vin•ol

H*

axIV

X <X I-« -IV UJin o• «0 31 Z

•> aC XX ** Vv n

n - x* X <•) - Ha x uj

CO 0CM o nc o - o o

o —ro m

u o o o o u311

Page 325: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

UJ UJ3 3Z Z Zo> ol (E

H h- 3Z Z »- CO O UJ ZU U CX UJ

-i O10 f)

***»*<o<ooasc *>U <£

Oui aZ Z•- c»- u3O UJa. zec «3 1-1/5 3* o* a.* CD* 3* in

23

DD

X2

3.2

3<

.DX

?3

.23

<tB

BX

49

<A

MD

A.

AM

DA

l ,R

PI • E

F.

GE

F ,

GF .

GG

F t

R N

UF

, G

NU

= .

RN

UM

.GN

UM

. A

X2

3<

.BX

?3

<« X

IX

2C

, 6

0 <

, F

T A

X2

0 t

60

<

• • •O < Z«f t- OX _| 0o m •a C ZC • O

3 •Z Z Zo a LJo, O

m z •z o zUj Z UJz z«- oo u

0!

GA

MA

.06

6S

M,D

AT

AX

12

8.8

<

»

o\0 uo •O OC• 3 S

Irt Z <>0 0? K^D ^ ^Jo o ui• • o

in cvi «y * 3ol < Z

z cr< *o >

cv,

0•ec

V3Za.i

o• vt

O H-0 Z

S O< Qt-_j aLJ 1O U:# OCVJ O <# Ul t-» J3 K U)z in ccr a #* ~ 3< U. Zuj « orQC # «< # >•

i^ 4fr

• V- 0* •01 0>

»o •-o oi a

* xo -• *o a x

VCM4t

*>.ui oiCM in* » 0.

* o ax in ax • *K o incr in •0 0(/I V ** X <I X \-C U. UJa — K

oin

VxX

X2

CVi < LJin •- 3

< zo * -•t- z

O Ul OO •- U

0. (\,

in in

CM4t

*IO 0 0a • •* o, 0

m * *• V V

O •" C>* • •V ol Ol

- X XX O 0CD O CCD O O

00

CM VM ~>-» 1

- Xto *

CMO »o *

AM

DA

l *R

OH

**X

-K

«*C

OS

XR

K*T

ET

A<

hi

^* 10I CM0a. ox ->* *V Ul ")-1 3 ")• Z

ol 0. (M

* X K 10* D Zx o a c(X O U C

01

fO

u u u

312

Page 326: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

TS

X

1

6

EQ

UA

TIO

NS

ZM

Oa00i8• o

0 UJ

*V On uj uj z- » 3 3 0• Z Z U

M M M llj

X >- H (flO Z Z «O O O #a u u *

N

•O•4

*M

(M3 BAmV ^_ ..

a ** o «x o a

vw**>ti V

> (M X

* * XV # >o x x• X Z

0 >- <

1 O <** (/) %

X Z K% O Ul>• a *-

RO

H**X

-1<

*C

OS

XT

ET

A<

**<OZ<*z(t*o•w

• h ^J<•} V

% XM (£

1-1 go

oo •• "— 1* *V V- 0>

X Xo oo oo o

1*R

OH

**X

-2<

*C

OS

X2

.0*T

ET

A<

<

i<*3Z ' "a o o* • •0 O O

• * *<\< v vM O>

* • •

« X Xx o oCD ^^ ^^

fl3 ^^ ^^

ao•C\J V

* "*n 1ro if

!•) * ^M *

O * ¥o * a

At*

RO

H**X

-K«

*C

OS

XR

K*T

ET

A<

K-

K*C

OS

XX

RK

- 1 .

0<

*T

ET

A<

<*C

OS

X

XR

K6

1,0

<*T

ET

O X -Z * 1< * ^0 Z 1* 0 X# a *» x *z * zo * aa a ax » ** v •-v •» <•» • a• « zfe* tart rf** ^* ^X X 1o o0 0o o

(M•

U«4

<kUJ -)3 ^z a^* ^ i>- rr iz ->O O *u a *

K<

*X

RO

H**K

&A

MD

Al*

RO

H**X

-K«

*C

OS

XR

K*T

ErA

<

K<

*R

K*X

RO

H**X

K-K

*C

OS

XX

RK

-I ,

0<

*T

ET

A<

<*C

OS

XX

RK

&i ,0

<*T

ET

» * -* * 1V V X0 0 1• • X

" — *1 1 «X X ZX X O1 * tt* V #v -> ~•» 1 <-> • o• « z

* X X 1* Q Q* a oa a o

Ulh-Z1-1Oa>c•*i

Ul(3OU,

Ul UJ C3 3 az z •*H ^- t-z z #o o *U (J #

<f< •k- <CJ MUJ *C •-

3 1ftu/z w «a ** D «>• o a

(M O ro CM

o

313

Page 327: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

*2

6Y

**2

<5

5-G

AM

# • xr v <» x* 4 m sv z • >o < m x• o in z

in i 4CM X V H1 X 4 4M X Z 0

a •- 4 -x or o o.v» O 1 XO (A X ft^r ft ^f ^ttr x K» c u. ujx a «- »-

mm

M

aa*6 in

m •0

O %K 4

t-C UJo >-

4in

VV4Z4O1Xxs>•Xz

«O 4 UJin H ^

4 ZO ft **H 4 h>

1- ZO UJ O

in >oin in

*2

<&

GA

MA

*A

MO

A1

*R

OH

**X

-K*C

OS

XT

ET

A<

*>u)(M

*«X O OX • •

* o —If) ft ft• V Vo ^* ft • •v *•* *•*• • X XX Q Om a o

oOD •• 0

(M ftft V••} ^

»£ »*ro |f

00 C

AM

DA

1*R

OH

**X

-K«

*C

QS

XR

K*T

ET

A<

v»y««

n x(M O• a0 XM ftft V

LJ -> •>

z & *»•• N 1 *•<i- n •> ^ xz "> » oO O ft ^ OU O K ff O

<0ro

i-

oaCCi

UJooUJ

XUj tU t—D D OrZ Z 3» - oH K U.Z Z *D O *U U *

N mo o

0*

*(M

D «Z fta *<O CO• n* ox o

vw

**>•0«\J4f

> ** DV Zo a• x

(M H-<»• ai a*• i/)

— a *ft X X~ ft Ca >• a

*2

<6

2.0

*R

MU

*A

MD

A1

*R

OH

**X

-K*C

OS

XT

FT

A<

#>•

V <JD WZ #a «x x oy x •X * 0z in ft4 • VH O «•

< * •ft V •-4 •- XH X CU.i (D OK CD C

0 0• oo •^ • oft M ftV ft Va -> ->• •« a -X CO X0 0o o oQ O Q

1*1IVJ

•o*4

ftU-i 1D -)Z S^

«- 0 IK ^ "^z ->O O »0 O *

o-f)

314

Page 328: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

V<*-UJK*Xa.x&ou*VVX

«r.por*

<oz

-#Ioax

UJ

(/)_la.(D

13ZM</>3

2Uj

U. V CD

a oo xu. w

UJ UJ UJ

**vroCJX<

</>h-zUJ»-0 <« 0U. Zu. <UJ VO VU V

0Z •O «•- 1

Vo•

<oz<

VVw* <* zZ 0< *u) 4 *0 a• z

— <X 0» VV 0o •• V*_ o

1 <

Vo•

•«

OtOOO

VN

V »- V0. • eg». N *(/) x #a K v• • •>

V V •^ " »•»» • X

M M <

X X K< 4 UJ O

UJ UJ M •

< X V V »T 1 V

u.UJKD

OOV«•X

00•

(VI

*

j£xCD

*0

ooV0

U X

X(D

*o•

(VI»

»4

•4

*

V

XCD

*O UJ

oU.'K3

Xo *-(V X• X

O O O * * —~™

X ~•-> XX M

X Xu xx erv- o

* x K »-* o z z^ c p o(X O O U

C CD« n

» J J J W * « « Z < 7 « - - Z * X Z Z

w

< pu &

in

i </>x ac *a «x z

w

*N>• <Mt- Zu5 Q£N UJ* t-» ON OJX Z -

tn

a aU. UJ

m

wZ CM t-

a*o -

z(X

o

N>

NX

%nza

UJ U.t- »-

roaUJ

zD

81nzU)

315

Page 329: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

V<M

**V V

Ni ->

zaato

u z uz </> z

z z z0 3 0U V U

Z X3 <M

5Sa *z -3 U.t/> 3

ZOXCO O O

3 C otrt * ** * IT.

z-§§3 (/)(/)

Va

V1•i-.

*<>-UJ»v•>

O tt<o -• X

(M U

* M

inj

o <

• Xisl <X I-

• oV W•> *• *

M V

X << Z IO

UJ O •• I (VJ

v v <o"> ") •• • OJ

^p ^«

M M V

x x oU X ->• K I

< o u,

**>o a

V ) x Z

a« w

Hu>(M

*

X Z U J Z U 3

a aUJUJ

aO U J

z zO 3

Vn

**

IUO«

*#3Za«v<

LUoo

< •UJ (0a x< *V »(VJ Oa •z oW X Z

- Z X

3 « C 3

z <c >o *3 <C <0 U.

3u>U.3XXVzoo»

3v»U-

(\i (JZ *3 U.^ "U- X Zz * a3 «0 3

CO UJ Zo a uj

tn

316

Page 330: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

B<

F

OR

T

RIT

OR

C

49

X2

3***

3.2

3<

• (VI4 V XX O (D(/) • •4 4 VH» x n4 (/) (VIX 4 •

K <?>ID ^ ^2 X XM 4

»- IU3 2 2O - Oa t- ~er 3 </i3 0 2(/) Ct UJ« CO Z

* 3 *"* W O

M n(Vi (VI• •

— ^<

* *M ^

O —") l*>

0 00 0

V

XociV

•»zX<

*Vo> •—4 •

0 • X• - X

O * 4 U* X * 3V V Z1 (VI T ••• f> • K

- ~ ZX C X O3D O IE O

Nn

C!(VI

(VIUJ U, *3 3 ~2 2*• *• fO^- H n2 20 0 0u u o*• on n

vM •

«- X* COn *

- V1 4 ">*• n •* M- O X— O CO

UJ UJ3 32 2 2_ - er»- K 3221-O O UJu u a4 MW f)

c<

***

»CO V• u4 *X CCCO •K 44 X

COUJ K2 4

—3Z1

C -ff ^"CD 33 0in a

o * co2 * 3It * tf>

Vn(VIXuV

4X

•VC!(VJ• .

0*

X CO4 M

•2 -0 * 0** M •(/) O

2 0 *lil f) Vz —- o xO Q U

V

XCC4tV

^O1 X

- V* «•» x

u— *n v

».

O Xo u

U, LJ3 32 2 2>-« « tth- K 32 2 KO O UJu o a— or*j fi

,psrp

<

v«XXuI/)aUJ2

3O

(D3

O *2 »U *

IP<

AM

OA

1 ,

RP

I .B

GE

F,G

GG

F.R

NU

F.G

NU

=.

GN

UM

* A

X2

3<

«B

X2

3<

« X

IX2

Q «

60 <

« E

T A

X2

0 ,

60

<

(/) • •a 4 z• 0 3> Z 2• 4 ax • •X 4 ZU K C- _l O10 UJ •a a x

• oULi 3 •2 X Z- c: LJt- 03 2 -O O Xa z luCO Z3 C(/) U

o o o u

317

Page 331: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

V<^-

VCO

co(VI

X

0

z

o

zo in M• • *« c *«c in >o • oO 0 (VI• in *

<n «<0 V X«o D x0 Z t-• or ain i o* x in** V^ 3|fc

IU. 0»- a

(VIom

VXV

in x• 2

f*1 4in K• <

(vi oin •- in

a inv ax * OX < »-

^>U. UJ OM »- O

(Viin

VX

** Xa >•a x» zm in <• in K0 <* o *< H <K- KUJ O UJH O t-

m *m in

56

.56

.57

4.6

5

\Q

V •o <t• 3

»«1 VJ Jo otr aX X

u. u,1-1 •-•

in >oin in

oz<4tV 0

1— •X 0 - X< • * c* O UJ tta * H *«-• tt 3 Cin a o «*Q. UJ OL QC

•O

CO•

rv; V

CT> O * -a • •> i• z o ->

^ DC * O Xii 3 u. ro #O »- Z (VIUJ UJ 3 O Ito tt in o ^

ino

H**K

*C

OS

XR

K*T

ET

A<

MF

o aor ujft HV O"> U,X Z4 3% inu, *

* z u.* or z* UJ 3a »- m

oz

V(VI

**oIX

*inoiu.3 Qin zV #— u.

a. x z3 < az x ui*•" * »-i- a *z ~ ao V) au a in0i*)

O/R

PI

•0CO

0 *• <(VI X \-* O UJin a Ht- * *3 O OO < UJa a o

za3f_UJa

cc•

(VI V

0 * -• -> 1O ">* •< Xz n *Z (VI3 0 *in o ^Nm

OH

**K

&A

MO

A1

*R

OH

**X

-K

«*C

OS

XR

<

MM

a aX UJ* t-V 0•> zX ZCC 3* inz *

* z z* a z* UJ 3a t- in

318

Page 332: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

M

**

Ct*in•oiz3V)

VU) -.

Z CD

iSo (nu &

n

a.axo

V<VI»*Vo(M#«V<Z<

VV<z<

O O<£> I• X

O> M

• >ec x

vV<z<

IM

CM«0»

<M

QZ

VVM**

c\j**

N X

Z •QT fOUJ «

ilu a

o » - < « - i n - < i v*

< UJa o

UJ <a o

u. uj o— i- o

uj o ujo »-

m

u. enM a

>o

a ouj a

00

< UJa o

n

0*

UJ 3a v)

o * *Q * a

OS

XR

K*

TE

TA

<

U«***IOa*VTx4*u.zaUJ*•

u.zaUJ.ou.z3j£U.z3(fl

Uj3ZM

»Z0u(V)n

<az<*VV(M»*yoN#«XM*I/)•01U.z3(0uiV(

M

M%aV)a.

4Oz4*u.zaU.1

%aaUJ

o•10*UJ

3Oa

Ioa*o4a

»rt

aaso•0oo•4

•<

t-UJH-*oUJQ

2a3

UJa

319

Page 333: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

n(M

O »• "^o* n o> zz ro i * zz -> * a3 o * * uj</> a x a t-

>o

u,

ax(AOU«VV

*IX*»Ioa*

Oz

** •z zo zor aX UJ* I-V O-> zX Zm

UJ3 3 X</> Z CD

UI»-xMou

X**Ioa*

Oz<*<Z<O »I >z oZ (M3 »(ft «u) XV Xa *

V(M* aa

o00

O•in a «o i H• a; * o uj z

» M * o k - u j a r » - zz K a i « i . * * 3X Z w a 3 O O I - Q3 O IA(A o a

or olu or or

UJa

XX

,Y.T

AU

X,T

AU

Y<

Y,T

AU

X,T

AU

Y<

O •> xX X*- o

^UJ Xz >-Mt- UJ3 ZO M

a »-ec 33 0v) a« 3* Ifl

n

Z

u.3

or

U.o0u,ou.UJou,UJ

aor

o

oz•<t»_JUJ0•3Zazozzoo

NU

MtG

NU

M,

AX

23

BX

23

<*X

IX2

0t6

0<

tET

AX

23 .

60

<

AM

A.O

66

SM

«D

AT

AX

12

8*8

<

a o• »z «oo <oO 0• oZ •O (A• <0Z 0UJ Co •• (Az ytU M

M M

*•in•oin•

3 0z inor» v0 3• Z

(M or* I< XZ X< u.o «

VCM

*«>u4(M

**Xxh-aoin*zoaoin

in•Din(VIT)

VXX

u,

VXN

XZ

H<OMl

aor*<t-Ui

(Min

M

aor*in in

m •0

o **- <

t~O UJO t-

roin

vXN>-Xz

in <in Ko »

H-O UJO K

in

Ninoin in• (0

in «v •0 «

>M1 Vr io oa orX X

u. u.• *+

in <cm m

>.4.

oz<1*X3<K

>P

X4t< OO •z «< ** _J>• z3 << IK U

0 0 0

32(

Page 334: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

O O ftl V• • * ~o o •> Iz * » -»

a x y o x3 u, u. m # *»- Z Z ftJ *UJ 3 3 O * *a in w o * a

in«o

V

fc-11!

^*VO•

1crXXz(/)»V

TX

I xc u.a z» aV UJ

x o< X

S ka 3

vt-UJ^*#Vo•

^*

1aXX(/)ou*Vvt

1M

I >0 U,a. z* aV UJ

X «£< >* u.X Za 3

o iV V< <

UJ UJ

# V * VV V V VO < 0 <• K • h-

UJ

1 I

a v a #v

* i/)x »

U J 3

v v>• Xu » |x vu. u.z z

X X« »< <o o oz z •» «n 3 < < <vi

>• * Z I I *

a z z 3 3 <UJ 3 O < < I

on

X«#IC

o x oX •</> -O ubU *

a # aVX

XZ*•</)*v-1

XXWJ

* OX U* «# vIO 1 X >

X I X I Z Z« x * x a av » v » uj ujx z x z h» o i

CO 03 O O C X >. x• * a « a z z z

O O M V * « * « z z z• • * — a — t r - « 3 3 u j 3

O O -> I » < « < ( / ) ( / ) 3 ( / >Z * » - > X O > - O » * Z I

UJZ Z3 3 O *

* a.y uj

aUJ

Z Z Z 33 3 O <in w u *-

V(V)

*«Vu»<VJ

**V<z

• <X O^S I

> xZ XZ O X3 • H</> n al * z o* j or v>> Z 3 *3 < K Z< Z UJ O»- u a a

vV<z

o uvO I• Xa x

in s• ><t Xin zV K

X ui

c at ax %X <

U. UJ

- ino

C UJo *-

- cin in in

321

Page 335: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

V l*>V «0

z N4 OO •1 N

X «0XX V> 0X •z -

x 4 1«0 t- I

4 Oc * aH 4 X

KO UJ U.O t- "-

o •**0 ^0

VX0

N V*C O• •*

<O 4• > \

<O # XvO 4 »

O <V Z OX < TO 1 4or * *X X >•

3 3U. 4 4M t_ h-

cv to0 «0

o o• •* o* z *_i a xZ 3 U.4 »- ZI UJ 3u a co

N<0

nCVJ

••M

o •«• *

o •>*u. n iz •>3 0 *in o x

XK

-K

*S

INX

XR

K-1

,0

<*T

ET

A<

XK

-K*C

OS

XX

RK

-1 ,0

<*T

ET

A<

* *5 50 Oa ct* *V V

X X4 4# *X Xa ax >u. u.

X X X* a a* UJ UJa »- K

x >u. u.z za aUJ UJH H

x >ii3 3 UJ

U. U. Kz z z3 3 0

(VIr»>

V 3

£ ?X VU. 0z -3 Xin 4X 1« X4 *0 <z o1 4

X >3 34 4»- >-

n(M•

0 O O -• • • ** z * S "*Z 3 Z Z CO< K Z ZI lit 3 3 Ou a in m o

n<o

*X

K-K

*S

INX

XR

K-

1.0

<*T

ET

A<

*IOax#V

XCD

*ax

^^ 3T1 X Z

-» * a* X UJx a. t-

<*S

INX

XR

K&

1 .0

<*T

ET

*X

K- 1 <

*C

OS

XX

RK

- 1 •

0<

*T

ET

A<

- #1 ZX Oi aX X* »* VI -)c xa CD* *«• *4 a

4 Z

aUJh-

"

<*C

OS

XX

RK

&1 .

0<

*T

ET

.*

X X >1 Z ZX Z Z* a aJUJUJ

O uJ Oa x >* z z- z z4 3 3§ in w

* *4 X >1 Z Z

z z3 3in in

X1

0<

-GA

MA

<*S

INX

2.0

*T

ET

A<

/XR

OH

**2

<-/

DA

1*X

BX

10

<-G

AM

A<

*C

OS

X2

.0*T

ET

A<

/XR

CM

**2

.XCO ZX 4» vi

— V4 0O -Z X4 CO1 1X >z zz z

UJ 3 3

2 \ I

t- X >Z 3 3C 4 4U t- >-

nfi

Page 336: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

o•

<0* z-J ttZ 3< K OX UJ Zu a u)

u

***VxXX VK X ^ (\j

MAI *^ t^ *z * a ao H m •« ** •*t- z « *g o -. o •-Z M • •

3 »- n o ou. o * * n —* z » x *« 3 a 3 a «# n ar f? o a.

u u

V<n —* in» -

« 0or inx •X 0v ino• V

(VI ^IM ^

X 1X UJ* 0^* •a -or I# VtaM V*• Z 2a a orX UJ UJI t- KZ 0 X< Z 01K 3 CD* 01 <Z « Xa zUJ 3 U.K <fl *»

enXV

X

*in«*»M

axXzV)

*o(VJ0>*4

lu UJ 13 3 0z z . z» M aH K X 3Z Z * (- QO O * UJ ZU U *- flf if

^— f^ f*.^ w O|A ffk (AU* ™J U'

u

**

**<0<0a0.

ou

oz•*o<UJ

aonU.

*uo<H<a**»«»

u u o

VV V X VX X X X V

V X X X X XX S X » X XX • • (8 • Xx t» » * a »• < to N (/> ra

(B (VI 01 I/)Z >• V (M < _Jn x x i <ir n Q 13 «o a. o. -i i aCD 111 UJ < UJ UJ

k>II. U. U. II.. U. <o n o o o z01 i« in (A m oUJ LU UJ UJ UJ UJtaM *•• NN kM ^M ^_* ^™ ^™ *t * ^»

H •- H K H Orr <r a ft a UJUJ Ul UJ U| UJ _la. o. a a. a. tuo o o o o wia ff OL nr aa o. a. a a. u.

CJ13 O O O (S

V Z Z Z Z Z 01<ly M »•»<••* M UJ

x a a a. a a -X Z Z Z » Z K• 4f 4t* tf tf «f (V» ^4 ft. ^* ^ l, 4i.

V (9 Q O O Q Q UJx » aX * Q O O Q O Ox * z z z ? z a* * < < < « c < a« *M V || II 11 (1 || |1w d t W w W W w W

« X X ( O t - » - K K f . t -V V » X X Q t / l W 1 0 1 W 0 1 0 1V V J L V . K . V *t 4f 4t 4t ^ *t^ ^ w ^ ^ ^ ^ l ^ ^ i L I ^ C .

X x m • » < 0 _ I - J - J . J _ J Jx x K r a « « o u J U J U J u j u J U J« • 1 » * O« ffl * # # J» # N » # < / > — N t * > < f i n <# # 0 * # 01 Z« f t ( V J « * U J < < < < C < M' M M ^ f f i ? k . L . t w k . ^ 9^ ^ ^ uj f- F* p* ^ r» *» * z u . < < < < r < o< O D 3 > > U . O O O O O Z

Z X X « r a f f i > ( 8 ( f e ( 8 ( a

x x z a a o i x x x x x xO O 3 W U J - > o o c > o * r >a a _ i i i o fo ro 'n m CM n1 1 I O ! 0 1 ~ X X X \ X XZ Z Z < < t - X X X \ X XO O O _ J _ J 0 1 X X X \ X XC Q : Q : O O M X X X \ X Xo o o » x x x \ x xm c D c p u j u j > - x x x \ x x# » » « » « x x x \ x x* » » * # # x x x \ x x» # # * # # x v x \ x x» * * # # # x x x \ x x» # # # # * \ x x \ x x( a < a « ( 8 O ( 8 X X X \ X X

< o > o - i n i n a r i i i i x( J H M K X X M X X X * * ) *

323

Page 337: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

Vo

o

# v# o* «v* >»* CJIT. t-& ZO U-a »a; vc o1) •*

oac fMO »?u. <vz z.M LLI

# Z* UJ# z* •-«• a

o x•> *

U. Vuj oO (M•»•*

u. <UJ •>•• V

uj oQ. <M< H>X COU) •••• <t

</> COit =>•"•• z» oc

^* »Q. *.ec O•• z

-^ e< »o a.a: ^< z ui

•> cc u>a • «n< z oo o ••a. o *:< * »

». Z IP^. o mcj »ti>z: a: o< LU ••

•5 » in

_j u »LU » V KD UL O ^J» ^ «M Q

^ Z •• ^«. li) O <->QC » f\J

LL. »* <lZ O « KQ Z H- <Z ct UJ C

Z *C »

O *r-l <M

V Vo >»•e <io o

U> l—W> Hr O

C i- —< OC -JU.' CJ <Ct U. U

cooCSJ

<1h-—IUJCJ

oz<

3a.or«/»<xUJ>-UJz<eg

o

at

auUJ

re

UJC

oooc

<vin

XK

V

O•M r>* f\J

U, <o: o# «

o o c

«rIT

V '''3 z>»• za. •-

zu o•- u

ccCO

V<

orv;

Za*o

u •

\JL a r-

< «• wK X *-J CD LL.uj r\) >Q »

ZCL

a «-•a

_i a—i *< u,u >

Io

c ~Z TVUJ •> •—ItaN O <«3

•. in vo • LL' O ICD in * •-<» V •—' U3X. Ul •«• O~J I * LU•- 5^ «NJ CD

O

Vr-o

f8

x. roX, •X. r- OX. LL. fM

X. (9 <->• It *

^ < Z£. *- a.

«Min

"B^ - ^^ - ^ t ^s l tC- H C C O m K t a o o * -5» LU Z Z UJ Z Zz e c u - N - c u - c a u j ' — o> > - « - ^ c « - z z z o

o\e\

u>LU

-- cu•o z* *o cjLL1 ZOC UJZ Z

«>

»*Q (VJ

f- LU

M OZ U

COIT

Z «MorC OLL. fb C

324

Page 338: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

(/) Ulin * oin «-O aO LU

a

vU-3Zo;*o•

CMIo

Zz. in

u.*v•es:-jKfVJKzU.

- inv •M roi~ ITzU. V» in

»0 I IUt» * _>

-> zHI «-• i-K »*> K•- Zoe u- o2t ~ O

r-l UJ•• a

<Ioo

inir

Xrot-l X.

•> o«v

> IT(_> mz oLU3OUJac Xu- ro

ooa

LU

Xrr

aUJX

—• V» at —x o rrin ^ m

Xpr

LL.O

aLUCD

LL

xin

IO

V M V

m x <*••

* tM

xoCM

O•-• Vt- ^O V< ••a:

C ar> ov>

inX ino o<M»xr>-

> t\l

uz

azLU

LUOJZ

v^••v

>— i ro

v vv v

V r- eo

to V<t <a az: at

•* h}•v u.V Z3V Zu. az cat •* •*O I• O

rv •I f^

O M• «v

-• Vw o

V I •

O V —• ar us

<a

vo

oc z# oro *• o

t\j .I >!•

O |• O

t— 1 •

I # »*

-o •* »*• inIT

CVJrvj

in

LU < LLK ar K~ a x •-oe o f* ax u. <-4 x•—>

o(f\

¥ H-ccci au. c

LU « Lt>- ar K•-> a «-a C a:

rr\co

inen

t- X Z< C• •-ar cv, »-a zo cu. o

i-4m ir-.rr in

O cjm •—

*c «-c *-

O O c » u . u - c = » o » a r z < < <» u . Z 3 D * a r » a s 3 ^ c o ou . i 2 Z z a L L u ? c z z a t - z . z o a

ar _j

325

Page 339: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

Vo

I<o

a.<x

1/1ininCJ

o2.

UJ

Xuu

io

3zOf.

* oo «Z I

O UJ• ec

•» *

* aa. z> u« u

V

oc•

oc

oc»

or»

00

or

O

inino

inin

OUJocu.VaC

in •in in

V fc u.in < »•-• o x•• z «->

m-^u

Xin

V U.o ••— X-* (\J

us

H- ZUJ <cc o

»_)»->-

or

<r u

(X OOO

C cU C3

<t> •«• u^ uj ai u c.>

H- Z Z Z *LL> <1 tol to4 I—i < CH - Z * - » - H » - ^ - C L^ - o c z z z « r c ct t C O O O C - O t - ZX U . O « J > O > — CDCOU,

on oIN O <**• Oor •-< oc ro

aa

***7LLJ>to»O

UJzto-

»-_)

UaccCO4t4t4

VO

» (NJLL •O OO N

u, «-•0 X

U- VUJ OO <M» A0— ^^u. <

UJ »» V

LLJ OO. M< •*X cc

•> <CO CC* =>to- z v• Ct 00

0, Z 00CC D (M

-• o w< » <o z t-s: 3 «< z o» ce »

a •• co< z ina <j ina. o ts

» 2, in >< O in *C3 » O VZ Z O IT^ UJ •» ty in o

o < •• in o i0 1- Z 0 • —«#• _j uu » o orK LU •• V CM »«

# a o u . o -^o o ix» ».r>«M <T«M M <«» U J 3 ^ C » - C > » - » • • KV

Z » - O O » J — •-< JIT. XOto- a « - f M O L L ' 5 » «t U J * «o^- u-**rMej«- ~> c jov^ • Z ) Z 3 < « v # * ( - )I - C O ^ » - 3 ^ 0 0 3 -> ••o - o r z o r a i Z zm>- r r \ -5zo r ' - '* C D Z C C C C t^ * a >* fr** Z 3 O »»C'-1O"> !*'*'-1

# c o « j x > c a o a > x x•' t-l OJ

o o o o

326

Page 340: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

qt>V UJ•n 3

«* Z Z

•* h- 3< Z »-h- O U,UJ O CX

Orr

#

**£.#irintDa2O

UJZ

^»3uCXCD•)(/)

**C *

z *UJ *

oU.oo

•ku,uu,UJoa.UJ

UJv ao «t't X

CO •>CO CO» X

V «-!

0 ••CM •->• a.

O orcv, •>

•QV XC «JtCM •>

• ao <CVi O«H iU <O *>ft V CJ

C XIT. CV <vr * »o o <a. KX »• -JC O UJU U Q

U ••UJ 2z ^ a.•- u oc" NMS co z0 Z Qor UJ XCC X X3 _ cCO O O

ft

VoCMftoCM

*•••*x»voCMK<

ftVoCM»*CDft<CC3Z Vat, co» •

X COD CMZ -4OK» «

X K-r> <z oCX •

ft COX inO inu> o» »

x ino in• 0

X 0UJ •>o in» inx oU' »

•• vu. oD CM2T ft SJO CJ> •» CM O

U. lH CM

Z K 3a uj x

on«X

^4 CM

eoCMV«l »_Ja.U)* u3 2x ora »» X> x

VCM

**.U)CM

C *< CM »H- » X_J -* •»•UJ ». »-a M a« x oDC. * coJF fi •— "•< *CX * CX X* C_ i— « 1 O> O a x a

vCM

*4>>

> >-* wOf * V1 O X

<t X Vr*~ X X

_J t» »fUJ !*• <C

o ot <a4 1 ft*Z2 co <I * 5»

Of > *5* I H-> C U-> CX *-

*RN

UB

A<

*S!N

?2

.0*T

ET

A<

/fR

OH

*RO

H<

o•

CMCOO

•fOK1

•>*'

*V VX OX •^ «»X X,>• • f-4

9* <z u< X»— «I41 Cr ^

* CM *> C5 V«3 •— i— •>— * &fUJ M CCK •— CD

-%2

.C£

RN

UB

A<

*X*Y

0*R

NU

RA

<*C

OS

T2

.0*T

ET

AV

</%

RO

HV

*RO

HV

<**4

«-0

.5*R

NU

BA

*X

X*X

X-«

1.0

-0.5

*R

NU

BA

<

« • >* CM XX w Oo o aOC • MK IT. X.*K »* VV 1 >•5 tjv 45»- * KU. V UJK O 1-» • »O »J O• V. •

«^ f— 1 >^i>* «J KZ O CO— X U4/1 41 U

*• ••' *tC3 " C3• V •

f"l •« f>CO •— ' O

o(Cot

f- • »4

/*R

OH

*RC

KT

ET

AV

</«

RO

HV

*RO

HV

<

v #<. 0h- •UJ CM>- IX* COO C• o

CM «W •— iz <CO X* <ff— 1 CO

< oCJ •X f-4< *

^ «f* V>• V •—

^ p*4 ft

> • «-^ f— •— 1» IK J*

O UU U

CM

t*R

K-l

.C<

*T

ET

A<

£A

MO

Al*

RO

H***-K

-l<

*zf>*co

*Vfl1

X.**«

*Xcor•«•«

O iCCM a» i

CM ** V-J •-« -J

1 •>f-4 -J t-f> * ^ ft**

CM « Oo it * c?c; * cc u

S'?

*RK

-l.O

<*T

ET

AV

<6

AH

DA

l*R

OH

V**

%-K

-l<

*o0

*v<r*

\

V *V M<I *

K *UJ >K X# Cv exo t«?• «

f-l iJ

w a1C 4tat v•* —>W •*

Z «-|1-4 •— 1

I/) »*

Ooo

1—4

327

Page 341: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

VV

UJ

Vo

Xa.»*-•*•oooo

v oO PS*

to to

O O V<M «T Oto » » V

O CO to- 00

^ to to X•• cc o •O 0 (V! O

. o » * f^

O O • COo o o •0*00&1 C_J •*• M<.CC.CC.tJ

uj UJ K- a K- xZ> 3 < I- 00 to-Z Z X U X 00 </•»

o•<*••

V.V<COz>zcc*o*

egV9o• o

ro •t* <** *»r-l «-"< <ru oX >< <II <«3V Vo o

Vo

» COu. ••CD OO CM» t*

u, •-«O X• to

U. VUJ OO fM

to •*u. *UJ »to V

UJ Oa. (M< *X CC

Vo•ro

«s.«r

«t#* oz> •T. mcc »<• Vo o

to < •*• —<00 CD (O IX Z> V O <*- Z V < • »-» CC 00 CD -T -I

W V<I Oo •<T <*3

CJ to-Vro

Z _l _) _J _j ooo o < < < < xo o o o o o ~^ C

u ccW hX *V JjL

CD ^ +t- aw O fi oo OO • * Z UJ «-• CVJ to. O 13 X

(N * O Z O Z» t- f\J » to- ,x

V oo m v i- _j z;fM Z »- Z _J K C> * O C W O < U J Z« r o o < o o c c u .

»**oo

UJz

occec

a a. CD zOf Z> <M OC» z -« *

-< o »* o< to < .O X" K ^X" Z5 < toH< z o «to CC • O

O. to 00 •< x, ir CM0 o «r -«1 O U! •*•

to a. tr v

O to tp CCX* X C ZJ< UJ to Zto 12 »r> cc

O 4 to IT IO

O t- X, C1 Oto- _) LU to •

x u; •• v -«O O U. O W

to Z5 <M *UJ U Z » C.

to- CC to (M O

to- o0. *cc <

* KV _JO UJ O• o •

r-l »p mI * >»

•< «I VO K- VX -J m« UJ * .MO*

VXto-

Xo

oo

00*or xr ccCC X.

V * _) -v .x; * uj <Z> Z> O h-Z X * _)CC CC * UJ10 * V Co <r *r *• CC * V

r* 13 * fM O O*• Z 'Z> * (M <M* CC X * » •O * CC 13 -H -4• O •»• a. * *

fM • »> O CC •— ~)

UJ

>— XX *-

VZJf.cc•li-

ce

*o

00

*oto uj

Q<rX

ccUJ "-< f\.'a t- Ko. o c-Z) en en

* o * c cUJCC O C< c c

oX

<o

Z I

I- COz >-o cO CC

ofo

o

32

Page 342: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

Vo

O

O X•» »

U. Viu o

U. <UJ »• V

UJ Oa «M< »«x ca

OCD

occ

o cor >-* a."ui -va. a

to o.* =>r. «•O v>h- inO inOB o

COIPmU) O» •3LOO'8t* a

Vrsi>

is; Vx <\j3 *< *H- V* 1

V •>

< UJ *H- *0 ** *ui r\j en isi

V # O Di in <"V * K-

•- -> o w u-»* -»-in M x— •« * oc

o a x H v # uj•• » rsi x • x co

« «• X I- I < 3L

CO CD

•- Z V• ac. 03

« - > • « »a. at ooOC =5 fSI

PJ#

*isl

- cv;#

*MX

arau.

Vu. X O3 Z3 ** # «—U. X Q,O O QCO O #

u. * * o

**VX

X VO X

> I^ ^J

X *•>* X

x x-o *^X H<

o a.X 3

a »to< x ino o mat o o

uX X< UJ

in

Q. OLa u.

X (ViLJ •*

o o• •

to oU- 3O <ft

** fe u. 3 inu: 3T 13 » in.c o « c u

2-a.Z)h- OID ZQC LU

UJ oZ X»M*

K UJ;j CJ *-a Ktc r>3 Oto or* CD

* 3* co

_J UJLU »O U.

oc. »U.

Z Z3O ZX <*Xoo

in «•IT #o >-» CJ V

V fvj XO # >.<VJ * >•. x •*

o •«• zPO I- <t* Qt *-< O <»- CO »UJ « <

X »-O UJa: K

Oir ir.

CMin i

U O

329

Page 343: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

IT.• •»oIT.»

Oin

Vo <M

XcOt

tU O

O *-f> *

woOu#V

I U-c zOf Of»* u,* V-V M>— u.(H Z

* tou. *•z a

a3L_JI/) U.* Z3X Z ZV Ct •-«X ^ H-«—" K- ZX UJ CO OL O

V

£5LU1—#

Of»*oocu*VV

1w

*1 '•k

ca«-*cJC

1

**X Zc aOt Of

O »v UJ«V * H- '» V fcj

r-4 I-* JL.

0 « »* • JL LU• i_ _i OJ iJ ^)

0 I «: 00 Z* f-< ^- z; <* •"•Z f $ *£ Z Z K-z cs * a z zr> 0 * St LL; I) OI/) O X Qf h- (/5 C^

V

h-LL'

#O

ro

OoTOa

vH-UJh-

</)CU

*v<jec

Za

O

CNJwO•

e*i* vV <-* Of< t-O XZ LU< V w

# V Zin f* z(M « _}• * «/»

o x •*•w o ** Of X Z< «. •• •» aOf V. X 3K •- K 0X X UJ ZU- (_) Of LU

**VNsl

Vo

O X•> •.

U- VLU O

u- <LU »•• V

UJ Oa. rsjX OJoo »

WO OD

•-. Z V» ac. a)

*-* » »a. a. a>of 3 M

VISJ

fSJ <

X h-

K4X

X «

>• XX »"O isiI/) V

XU.' O

o a. i-Z 3 <«i k: o• a ••

a. » co< z ino o m•*- o o^ •> *» 2. Lf^

< IS u>U • •> OZ Z O V< U- •• C\j V

«l » LO # X.K Z O >- CM >-

K UJ 13

u a</r of« o* r* to

UJ » V «\O U. O »

3 <\j » in KC • X • <l

_ J> O »* «-» «*Ot •• (M I— U- •—

U- w ct a.z r: «J c? v ofO Z H V' X *Z Ot U- * *• <la X t-C O LL. UJO

CLor.

u-> •o

u *

UJ

oin in

i- h- O5 K

CIT,

o o

330

Page 344: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

LT

x in zx. »<> «t *»* in v^ -< o< u. v •- •

\~ zc u. u u

in

inv

VV << »-K LULU H-

H- *» vV Oo •• •-<

t—I II ^it OCoc r^»*• »•»* ZOO Ml

0 oou •»* VV •-"-• I

I ^x: •*w ** ** X1 Oc oca * x x* v at atv ~ oc oc— »<• U.: UL

0-0

.5*R

NU

BA

<*Y

**2

<C

A*

•*• VV3 XfM #* X* #X V# << COCD 33 ZZ QCOC M

* Oin •• rv

CO COX Xs. s:or oo»: *<=

O O I

* ^t ^ CO CO ^ *O[cv; * x ^ x u i_j

LU * X C X . a - X L U A . 2 .^ J ^ H ^ I a i z > 3 Z ) < i < iZ I « W 0 0 0 0 2 ' ' B * Z>—o»- xx * * f c - ' s > i ' ^at - r r# X X X X X H - X X D2 fM W or OC X Z Z 13 ~ h-C O * X L U U . 3 Z 3 O ^ < U JO O X o r » - * - o o o o c j » — h-oc

tJfV!

rr, *

O *O *

1to vV << >-H- LULU Kh- V * V* V V VV «ff O «Of- • -

• UJ »•< UU-< H- 1 K1 * * *x: v oc v

oc o »*' o9V • »* ••* •"• Z *-"OO CO «— COO * tO X.O OC * QC* »« V »*V W -* W•x 00 | Z1 O * •-X U t* oo*• « # ## V * V* — ' X -<X I C 1O :* QC XOC | W Iw a*1 # ** x» . # v * zv * — * oc•- O. »* X LuW C CD C »-co oc * or co* » it * >«>t *•• a. »-< z:0. < 1 < 3« C * O 00x z >- a. *z <r i <? xoc oc z:UJ LU 13*- h- 00

«V<tcc3

V ZX oc .o *of. m» •X 0C 1OC Oft* •^^ _-J- ^B^

V »P< «0 V>- X XLU * O»- X OC# # #0 < X• m (_)

rg r> Ot>f Z Ko1) ot >>

• o * vo in «r# • »-V O LU< W »-CO V *Z3 V 0Z -f •a * <M» # »*O X oo• C O

CNJ a u«J * *0 N. -<• V <t

f «a Or h- s:K u. <r* t- *rH « V

v • < o -•z. a ..Ma x. »t eoLL < »•• CO\~ * o- xCO IT1! CJ 2t^ CO W _JA. LU • * 0-J13 iJ C O W00 Z * • V=tt M KI ro «•> *- X IXZ Z 2=3 O <roo o >-

.-« ro

in in ininin in in f.

331

Page 345: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

VV V x. V•v -s. >. -v v"s, v. x. >. x.

oOf

X Xo ata Z3

V >< *

O CD• af\j z

0* (X Vx «•» i••« o oi/) • ec* PO #v &F X< to aco v a3 V *'

a. # v# # <r- x •-• O LU

CM a i-c x c• V •

LU Z

C_ • —l

< e» C* Z Tin »— •«CM to »• * VO O ••*

^ f*i £C i>- I W

»- cLU Z

•-* (V

» < CO Ps) tO «f* CM tO tO

O X X >J <oe o o z> o •-o a a. _i i oc.CD LU UJ in ii t

V K**> u. a. u- u. u. «x a o o o o s:«v» to to (/) to to oC6 LU UJ UJ UJ UJ LU«. _ _, •-> •-> •_ |_* H- »_ t_ »- t- u* of ce oe oc cc iu* UJ UJ LU LU LU _J* a. a a. a o. LUat o o o a o too oe oc ex. a av, Q. a o. a a. u.u> ol/> O O O O 13O Z Z Z Z Z vl

« ui o. a. ex a. a «—* t o x a c a t z z K# V Z O CJ k_i (_) I—> LL'# V. U. Q.in x u. o o o Q o oin x. » z z ^ z z c co » *- < < «a < «i a.Q- re ooat * o o u u o uo # v v o t - « i — •->-•-<•-•O ^ X X ^ ^ K H - S - K K

V V * X X t U V ^ t / l t O t O v O t OI < V X » - V > > . I < < < 1 < < <

X X f T l » » t O _ J _ J J _ » _ J _ l

O V . « v » - r a r e i L U U i L U U J L U L UZ * •• I « « bO~ raf«^**^ -<0 ft*(M*<i|.uj~4rvim<»'ir<< # # o * * z zUJ # * C v J # * i £ < < « I < < * -1 ** «CDLJH-l->-H-»-at.

# # * • > -< i<<<<oct < c c r > > - v x c C j a c : Q Zu z x x t - f e f * r e w w f ?u , > > « ~ o o » » » » • »

X X * O . O . U . X X X X X X*t C O I 3 L U U J t O < - i O O O O ' « < 1 >

^J ^L Q ^gj I I Of fO f^ fC| fO ^^ f^

LU UjUJ<.«/)OOUJ • • • • • • • • > • •C I I | t o t o > x t v v , x x x

^ < i ^ « < a t o x ' > v < v ' x x x^ V_) LJ UJ — J J r f S X X ' X ^ . ' ^ . ' v

'»— aocu .c?c»<[ ' v>v ' ^ ' xx ' ^<[ CJ O U1 o t - v x x x - v - vC C D C D e D U J U - ' H - X ^ X X - v X* # * » # * « 1 v x x x x < v* * # » * » # X X ' V « V > . ' S .

# # * # # » * X - v X -v -v -v# # « « # # # ' V X X X V ' V* * » » # # « > . X X ' x X < V

ns (« re c» c* re "v x xx x x

X X X X X X ^ r - l ^ ^ H - ^ ^• c ^ o ^ m m ^ x x x x x x

Page 346: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

*****

2X

20

<

DA

P,

AM

DA

l ,

AM

OA

2 .

EF

* G

F.F

, G

F ,G

GF

, R

NJ^ *

GN

JF

<f K Z<* Z <O U. •a • <z v ao -o zu » <

0 •a CM <O X (-u. CM j

t- Ulz z; Q1 3

< o aUJ h._) </> Z* z o* UJ Z* z z# «M O

* Q U

U

UM

.RP

1.V

F,V

M,E

1 1

S,D

AT

AX

12

8.8

<,G

44

,G4

4S

.

ZO»z3Za•z0o• »-

Z 3c a.• * z

u. »o ^ «I• ^ h-

Z O 4UJ O O

4t

«

*- CM

U

CM

^-Zu.V Vo <c <0 0

• XinX K

4o z< exUl OCK U.

O00CM

TE

RS

R

MU

A

ND

D

EL

TA

UlZ<a<a._j<oM

ah-Ul

z z> u»* oo

QJ <•J UJ< a

0

<»-UJo•3za

NCM VO <0in o9* •+

G »

«N «4 tnIk • X< oK It O< >— <c a ui

00K

O0

•0>

V O1

ft 0>• •o a- <rfc*X V

^V- Tf< aQt

o u

£O«*

V<K_J

O

*M

*«3Za*c,

Ul X^ ^z «•-> az *0 U.

oo00

uzM

•Q

zUlM

•0UlCDM

*U. *

1 M

O ** \O •"• * » * -- o o u m* u: Z ZZ £ Ul •- 0> »^ * *^ o

^4

in» »H

o oin v• M

0 1in x -i •«

V «• hiin x vs1 * UJ

^ CM CD-> - z— * *X 0 Q

Ul Zu on ui>• z z

om

in0

CM Uin - CD

~ <Q Z •"

% O * * *U H- U O (JZ Ul Z Z•- O CD U, •-Z 0 Z Z Z

Min

DE

LT

A, V

F,2

8X

,aiD

AT

a.I

3,a

R

MU

*a

*F

7.3

»

• X3 XZ XQ? ^^• X

< XH X< XQ X•« X

XV XN •

O —- z» «•

UJ vO X3 XZ *-<« UJ <K H Zz « ac a o0*0 .CM Nin o«

VF

*8

,F

7.3

,////<

Vj^•

(8 M

» •ro z• z

N 0 JU. (M X• • CMre - t-* * z< z ut- Z %J J VUl ZQ M S

CM JCM XCM CM

t-0 7

a o u.••*MCMCMCM

333

Page 347: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

zoX

w VX XU. Xo •

0-2

. 0

*RN

UF

C

o

•*« Io *

oI X4 U.- O

>u•z.UJ3 Xa «UJ —a •a.

Kina<oUJ

N

aV UJx i

VaUJa?

V

h-ZU.»

vOX

UJKto<a»

in»

roIT•oinvinigni_ixu.^4

UJ

zM

f-zou

roin

Vonn•><oX

UJKM«(XX

4X O4 Owrt

»

Xin*4

X

»- X4 «Z -aou. ««onn

UJa4X

X<fM

M

V««mfO•*cX

UJt_M<

a*

xM•

Xm4

X

^-4Zd0u.Mno

ZUJJJ

aUJa

x«t««

•4

(VI

za x•- <MU •4aa z

oUJ XZ <t3 <tJ Oo

Xo

I(VI

V — V N<\i » n •n x m xrn in n in

uz

oUJ

CD

UJ *

M VV V V

V N CO V •* VV>0

>- X 4 X 4 h - » - X 4 X 4 H > - X

O4O

4XXVVu.3Za*o•CVJIo•

XV IC V• z- D

ztia

o *z o•

(M

U1 >C X «£ X(T. X X O « < t 4 4 K 4 t - 4 4 4 H 4

C U J 4 U J 4 — < " - ' O O * 4 Q 4 C * ' * 4 Q 4K H Z K Z C V i K f > ^ < O Q % O * U . U . C l * O

c o r o c t o o o * - a u . u j u . o z ? z u j zO X U - ^ U - O C * * U » U J O O O t t O U J O O

C Z

4XX IV O0 •• •*•- X1 *

Z 4 4UJ O OX Z ZU. 4 4UJ X X

» * Q. - WZ < 4 4 4D O C O OZ Z Z Z Z(/) 4 4 4 4

inCMn

nn

inin

Page 348: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

V<o

a*o

I Vc o• •n -x iX <V Oo z• <- Xfc> SZ V3 Z

(X Z* aO I• o

a•in

c<

V O(VJ Occ •

O X• »n <x o* z< <o »z o< •* <*< *X <a t-J UJ< CD

o•

T<ucc»zz

oo o- o00 UJ• a- U.CO• V

CC O

•4 »

00 «CX X

V«••

%•

Xm

a v

« CMO UJ• (0< •O Xz in

IL •> I"

V IL'O »- X-• in

ao xo tu «

<K< o

u j u j u j o o3 3 3 "-• N? z z w

< o a:u o *

Z K H X H t - K H » - aa - a z z z < coo o e r o c o o o o » - z

*****zUJ

UJz•4

3oaaen

**#*

o

oUJz•••t_3OaCD3(/)tt4t

*

O

O

&zM

t_3Oam3V)

ILIL

ntCJu.u.,4u.U.

J<zUJKXUJ

, A

MO

AP .

AM

OA 1

. A

MD

A2 .

EF .

GE

F .

GF .

GG

F .

RN

UF •

GM

U=

0z

<

JUic3

orzozz0u

tfl<t

0

(3

V00

00M

M

O

UJ

z

u.

aaz3

O

Z3ZazoozufzUJ0

*zUJ

V•4

u.*ri

u.u.o•

•4»0•

X Oa x• in

<» o<t o13O Jj<(J

VMIL

NU.U.

O•«••

O•oxinoa_jj4o

V

u!f)U.It

•4

•0

••4

1

XinooJJ<u

V

IL

* VIL ZIL 3

0 fcd

- u.• 3o z• a.

** xI *X 10in •O 0o *>_j <J 3< Zu a

12

.0&

11

.0

*R

NU

AV

<

XSV

4

3Zaoo•M

X

*oo•M

*a

«/tO

.**X

RM

U-l

.0<

/XR

MU

*D

EL

TA

<&

0.7

5

^ec.<^ VJ VUI (VI0 w.7 o0 <• ofO ZX <V Vz -O ILX X

* *^

o-• (M

oc o(M O M O ••00 «« CD I*S f)

o u u u o u335

Page 349: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

VX>

**V<l-JUJo*3Xorx«XUl

*oV <tIL XO X* m0 IL

co aX <X O- XIL <* *0 O

o n* *-< CMIL U.3 3

•M

X

*Vv oo •• f*

CD 1X 3CVI XIL or* Xo *• 0

m •fa) nV X< oh- •-1 (VIUJ XO «» V

i?a *# v0 <• H

in _iX UJ

ss0 3• X

— a1 X

3 *X Xor ujx *x oX <t0 XX Xo of) ro* <k•* CMX X

cvjx3

XOou)1M

X3«XUw0fa)CV)

CVI U.X 3

V 3 «<t O U.u. - ofa) X Ov 3 fa)CM O ••* cv u.* IL 33 3 *X 0 ILor — uj* u. oc 3 *• * or* a <

< m<D Q

i

Va<o3

*Maa*oCMXX Xa oc <to <t3 0 Z* * or<t «/) 3<t <f t- CO <t UJ Zo u) or uj

#4t

VXX««u.u.

ZOtortH

3

4t

**

P.

AM

DA

l.A

MD

A2

.EF ,

GE

F ,

GF .

GG

F ,

H N

U- ,

GN J

-

.RP

I.V

F.V

M.E

l IS

. D

AT

AX 1

28,

8<

*S

44

,G4

45

*

< X

ii< 0

< x0 3X Z< a» •< x

V h- OX _l OX UJ «« 0 XIL • O

"•i;z a; uj0 0

T I xO X UJZ X3 Ou. U

*4

V

y: cvi x >-a * i- J• » a uj* X O G<» 1 </> *O 0 * 3O * > X

- a a* 0 *V W N

cvt

Voro«/>*CM

*VNlNlfaiy

*V0•

aN <Nl O

M * ar« Nt <N * X* N XN N *M Nl <

Y&

ZZ

<*A

MD

AP

*SQ

RY

**3

<**2

^ f^v »0 *• y- in c1 » Oa * v)< >• #o or vX 0 0< Vi •

X * -X CM 1* # av * <o a o• < xn o <X X Xo < o• » M

CVI fM NJX • N1 0 Xfc «t *( D U O

OXVufa)(C

< zx a% 3- t- aIL U) ZIL or UJ

***VxX(MILIL

ZO

H

z1

u.***

II •3 UlZ *

• ou •3 <*Z *nr 13

IL v(5 00O *• 00

• XUL <UJ KO <• 0u. *UJ (/)

CM *-< UJo •X X

— IL

o •< a• ora •< zO 3Z Z< o

< XO 3X Z< Ct• •< z

V H OX _l OX U, •CM C ZU, • O

"•i.z a utc oM Z •

\- O XU X UJZ X3 0U. <J

^*

u o D U O

336

Page 350: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

*Y

**

a••*

o

c\j

M X t-

* ax oI </)O ft• >

— aft O>• (0

UJoft N ft3 ft NZ N fta * Nft NJ NM N N

O•

in•M

NNNNft

N NN N

ftO

•oc»<

V>«>ft(VI• (VI

O ftui ft

Vn

NN» >o a• o

fO V)\ ft0 v• o

(VJ •1 —N IN aN <* o u

zX < Vft X (C> uj u5a0 N(/) N1 x*

x orft 3(Vi >-U. UJ03 u u, a ui

•a •-> </)Z <tO *• 0u. •3 *Z 4or o« •

u. vO oc(0 »• GO

ft 21• X

u. <UJ t-0 <• o

a. •UJ (/)» •<

(vi —< UJ0 •z z< >» •- u.< >0 •z *•< a• aa •< zO 3Z Z< o. .

* < z» 03* Z Zv < ax • •X < Zm v H oU, X J OU. X UJ •

n o z vz u, • o < >«- z z a # j KK z a uj • » uj ay O O 4 X O OZ »- Z • •* 1 ft (fl3 ^ C Z O O 3 f t( L O Z U J O • Z Xr M _. ... ^u

w <? 2 ** QB Q-» 3 0 » ft 0# U, O >• N (/)

M M

n«*>a.0<n

*(M

**VVro**>>a0u)«NNNSVo•

*«1a<oz<X1o•

*•XNVX

3N Z

M # X Z* N x aN ft ft 3

N N U U) ZN N u. a UJ

•II ••» (/)z <to *• o

u. •3 •*z «nr o• •

U. VO 00o •• CO

Jjj~• X

U. <UJ Ko <• o

u. •UJ (/). •*

(VJ —< UJo •z z< >» »- u.< >o •Z M

< a• aa •< z0 3z z< o• *« < z

f t 03ft Z Zv < ax • •X < Z4 V t- CU. X JOU. X UJ •« o zz u. » oO U. 3 • ^ <MM z z a ftK z a uj • *u o o <t xz - z • * i3 H O Z O 0U. U Z UJ O •ft Z Z ~ft 3 0 *» U. U >

•-• (VJ

<HJUJoft3Za«N

U U U U U U

337

Page 351: IN-PLANE, FLEXURAL, TWISTING AND THICKNESS ...wanderlodgegurus.com/database/Theory/Composite Stiffness...composites. Finally a complete set of property curves for a boron-epoxy monofilament

V>•

V(*»

nrO<nNNNX

*(V

VV

aoin*tslNNXVo

Ia<oz<MOO

VX

V V XX X X

V X X XX V X •X • •> «tX < CD ft• ft

Z >• V ftO X Xa o on a ftCO III UJ

VXXX•in

3 19 •*-i i a< in uj

V U. U. U. U. U <x o o o o n zXX O (/)( /)( / )</) Q• UJ UJ LU It) 11) 111

# K K H t- H U# a a a a a LU* LU UJ UJ UJ UJ J* a. o CL o. n ujz o o o o o ino a a a a ax a a a a a u.« oo o o o o

z z z z z <no

</>UJ

H 3a N zo N a(n N * X Z* * N x or>. Nao

* 3N <* K aN a. uj rN u. a u.

K VO >u. •• H3 UX U,

o xO X

inLu O VZ O _l«- XH UJ «•>3 Z 3O - Xa K x _ien 3 * x3 o in iin a • 3

B O X

VVo

uu.oVo

<Ju.

(E X* «o *0> (*)00 >0O «t(O 3}in -<t -

CD

VVuI

uu.o vV Vu <uS X

X UK U,u *u. <tX *

* *

3in < CD O >•

N — «J* m wn o •ft ro oa ft v z<o • x aft fcA # 3• X CO H C* * * UJ Zu > > a. uj

**

ax.oo

zM

o<UJra.ou.

UJo

a**

a a a. a a «Z S Z Z Z K< < < < < a

z o o o o o ujv u. ax U . O O O Q O Ox > - < z z z z z ax K < < < < < a.

V VX XX XX X

« ** ** »* ** *< CO

X XO Oa aUJUJ

z zo oa ao oCD CC

# *# *

V VX XX XX X

* *» ** «* ** *< CD

QCu u u u u u

in in muj inT < < < <in _» j j j

OJ UJ UJ 111J -)U) UJ

•- w

X Xc oa aIkl UJI I

I a o

(ftj z

(3

UJ U

« *» *T Xro rocv ft

« *» *I Iin ITft ft

UJ * <*in • •a x xID — o> ro f)in • •

x x_ X X

CC X X*- X X* X X* X X* X X* X X* X XI X Xn x xin x x

j— • ^- «*•< < < go a a zc* o o> *<t in «• *x xo oD n

x xo 10ft '10

X XX XX XX XX XX XX XX XX XX XX XX X

X XX XXXXXXXX XXXXXX XX XXXXX

(J U O

x x x x x x — -. — « — -«« o « o - i r m « i i r i i i

O U U O U X X X X X X X X X X X X

338